1
|
Barbieri F, Grazia Martina M, Giorgio C, Linda Chiara M, Allodi M, Durante J, Bertoni S, Radi M. Benzofuran-2-Carboxamide Derivatives as Immunomodulatory Agents Blocking the CCL20-Induced Chemotaxis and Colon Cancer Growth. ChemMedChem 2024; 19:e202400389. [PMID: 38923732 DOI: 10.1002/cmdc.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The correlation between the CCL20/CCR6 axis and autoimmune and non-autoimmune disorders is widely recognized. Inhibition of the CCL20-dependent cell migration represents therefore a promising approach for the treatment of many diseases, such as inflammatory bowel diseases and colorectal cancer. We report herein our efforts to explore the biologically relevant chemical space around the benzofuran scaffold of MR120, a modulator of the CCL20/CCR6 axis previously discovered by our group. A functional screening allowed us to identify C4 and C5-substituted derivatives as the most effective inhibitors of the CCL20-induced chemotaxis of human peripheral blood mononuclear cells (PBMC). Moreover, selected compounds (16 e and 24 b) also proved to potently inhibit the growth of different colon cancer cell lines, with cytotoxic/cytostatic and antiproliferative activity.
Collapse
Affiliation(s)
- Francesca Barbieri
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Maria Grazia Martina
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Carmine Giorgio
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Maria Linda Chiara
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Marika Allodi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Joseph Durante
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Simona Bertoni
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Marco Radi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| |
Collapse
|
2
|
Yu S, Yang L, Shu J, Zhao T, Han L, Cai T, Zhao G. Olink Proteomics-Based Exploration of Immuno-Oncology-Related Biomarkers Leading to Lung Adenocarcinoma Progression. J Proteome Res 2024; 23:3674-3681. [PMID: 39028944 DOI: 10.1021/acs.jproteome.4c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
INTRODUCTION It is crucial to investigate the distinct proteins that contribute to the advancement of lung cancer. MATERIAL AND METHODS We analyzed the expression levels of 92 immuno-oncology-related proteins in 96 pairs of lung adenocarcinoma tissue samples using Olink proteomics. The differentially expressed proteins (DEPs) were successively screened in tumor and paraneoplastic groups, early and intermediate-late groups by a nonparametric rank sum test, and the distribution and expression levels of DEPs were determined by volcano and heat maps, etc., and the area under the curve was calculated. RESULTS A total of 24 DEPs were identified in comparisons between tumor and paracancerous tissues. Among them, interleukin-8 (IL8) and chemokine (C-C motif) ligand 20 (CCL20) as potential markers for distinguishing tumor tissues. Through further screening, it was found that interleukin-6 (IL6) and vascular endothelial growth factor A (VEGFA) may be able to lead to tumor progression through the JaK-STAT signaling pathway, Toll-like receptor signaling pathway and PI3K/AKT signaling pathway. Interestingly, our study revealed a down-regulation of IL6 and VEGFA in tumor tissues compared to paracancerous tissues. CONCLUSIONS IL8 + CCL20 (AUC: 0.7056) have the potential to differentiate tumor tissue from paracancerous tissue; IL6 + VEGFA (AUC: 0.7531) are important protein markers potentially responsible for tumor progression.
Collapse
Affiliation(s)
- Shiwen Yu
- School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Liangwei Yang
- Department of Thoracic Surgery, Ningbo No.2 Hospital, Ningbo 315010, Zhejiang, China
| | - Jianfeng Shu
- Department of Thoracic Surgery, Ningbo No.2 Hospital, Ningbo 315010, Zhejiang, China
| | - Tian Zhao
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, Zhejiang, China
| | - Liyuan Han
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, Zhejiang, China
| | - Ting Cai
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, Zhejiang, China
| | - Guofang Zhao
- Department of Thoracic Surgery, Ningbo No.2 Hospital, Ningbo 315010, Zhejiang, China
| |
Collapse
|
3
|
Jiang J, Cheng R, Song A, Lou Y, Fan G. Multi-omics analysis reveals mechanism of Schisandra chinensis lignans and acteoside on EMT in hepatoma cells via ERK1/2 pathway. Funct Integr Genomics 2024; 24:112. [PMID: 38849609 DOI: 10.1007/s10142-024-01351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/08/2024] [Accepted: 03/28/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), a globally common cancer, often presents late and shows high resistance to chemotherapy, resulting in suboptimal treatment efficacy. Components from traditional Chinese medicines have been recognized for their anti-cancer properties. OBJECTIVE Exploring the mechanism of Schisandra chinensis lignans and acteoside in suppressing Epithelial-Mesenchymal Transition (EMT) in hepatoma cells through the Extracellular signal-Regulated Kinases (ERK)1/2 pathway and identifying biomarkers, molecular subtypes, and targets via multi-omics for precision oncology. METHODS Proliferation was assessed using cell counting kit-8 (CCK-8) assays, with scratch and transwell assays for evaluating invasion and migration. Flow cytometry quantified apoptosis rates. Expression levels of CCL20, p-ERK1/2, c-Myc, Vimentin, and E-cadherin/N-cadherin were analyzed by real-time PCR and Western blot. Tumor volume was calculated with a specific formula, and growth. RESULTS The Schisandra chinensis lignans and acteoside combination decreased CCL20 expression, inhibited hepatoma proliferation and migration, and enhanced apoptosis in a dose- and time-dependent manner. Molecular analysis revealed increased E-cadherin and decreased N-cadherin, p-ERK1/2, c-Myc, and Vimentin expression, indicating ERK1/2 pathway modulation. In vivo, treated nude mice showed significantly reduced tumor growth and volume. CONCLUSION Schisandra chinensis lignans and acteoside potentially counteract CCL20-induced EMT, invasion, and migration in hepatocellular carcinoma cells via the ERK1/2 pathway, enhancing apoptosis. Multi-omics analysis further aids in pinpointing novel biomarkers for precision cancer therapy.
Collapse
Affiliation(s)
- Jingjing Jiang
- Department of Pharmacy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Ru Cheng
- Department of Pharmacy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Aoqi Song
- Department of Pharmacy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
4
|
Wang S, Sun Y, Li C, Chong Y, Ai M, Wang Y, Shi H, Shang Y. TH1L involvement in colorectal cancer pathogenesis by regulation of CCL20 through the NF-κB signalling pathway. J Cell Mol Med 2024; 28:e18391. [PMID: 38809918 PMCID: PMC11135906 DOI: 10.1111/jcmm.18391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 05/31/2024] Open
Abstract
TH1L (also known as NELF-C/D) is a member of the Negative Elongation Factor (NELF) complex, which is a metazoan-specific factor that regulates RNA Polymerase II (RNAPII) pausing and transcription elongation. However, the function and molecular mechanisms of TH1L in cancer progression are still largely unknown. In this study, we found that TH1L was highly expressed in colorectal cancer (CRC) tissues and the faeces of CRC patients. Overexpression of TH1L significantly enhanced the proliferation and migration of CRC cells, while its knockdown markedly suppressed these processes. In mechanism, RNA sequencing revealed that CCL20 was upregulated in TH1L-overexpressed CRC cells, leading to activation of the NF-κB signalling pathway. Rescue assays showed that knockdown of CCL20 could impair the tumour-promoting effects of THIL in CRC cells. Taken together, these results suggest that TH1L may play a vital role via the CCL20/NF-κB signalling pathway in CRC proliferation and migration and may serve as a potential target for diagnosis and therapy of CRC.
Collapse
Affiliation(s)
- Shaochang Wang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Yujing Sun
- Department of Laboratory MedicinePeking University International HospitalBeijingChina
| | - Chunya Li
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Yueyang Chong
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
- Department of Cancer Precision Medicine, The MED‐X InstituteThe First Affiliated Hospital of Xi‘an Jiaotong UniversityXi‘anChina
| | - Meihong Ai
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Yanxia Wang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Haiyun Shi
- Department of GastroenterologyBeijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Capital Medical UniversityBeijingChina
| | - Yu Shang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| |
Collapse
|
5
|
Shao Y, Lan Y, Chai X, Gao S, Zheng J, Huang R, Shi Y, Xiang Y, Guo H, Xi Y, Yang L, Yang T. CXCL8 induces M2 macrophage polarization and inhibits CD8 + T cell infiltration to generate an immunosuppressive microenvironment in colorectal cancer. FASEB J 2023; 37:e23173. [PMID: 37665572 DOI: 10.1096/fj.202201982rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
The poor prognosis of immunotherapy in patients with colorectal cancer (CRC) necessitates a comprehensive understanding of the immunosuppressive mechanisms within tumor microenvironment (TME). Undoubtedly, the anti-tumor immune cells play an indispensable role in immune tolerance. Therefore, it is imperative to investigate novel immune-related factors that have the capacity to enhance anti-tumor immunity. Here, we employed bioinformatic analysis using R and Cytoscape to identify the hub gene chemokine (C-X-C motif) ligand 8 (CXCL8), which is overexpressed in CRC, in the malignant progression of CRC. However, its specific role of CXCL8 in CRC immunity remains to be elucidated. For this purpose, we evaluated how tumor-derived CXCL8 promotes M2 macrophage infiltration by in vivo and in vitro, which can be triggered by IL-1β within TME. Mechanistically, CXCL8-induced polarization of M2 macrophages depends on the activation of the STAT3 signaling. Finally, immunohistochemistry and multiplexed immunohistochemistry analysis identified that CXCL8 not only enhances PD-L1+ M2 macrophage infiltration but also attenuates the recruitment of PD-1+ CD8+ T cells in murine CRC models. Together, these findings emphasize the critical role for CXCL8 in promoting M2 macrophage polarization and inhibiting CD8+ T cell infiltration, thereby links CXCL8 to the emergency of immunosuppressive microenvironment facilitating tumor evasion. Overall, these findings may provide novel strategy for CRC immunotherapy.
Collapse
Affiliation(s)
- Ying Shao
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Yan Lan
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Xinyue Chai
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Shuhua Gao
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Jinxiu Zheng
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Rui Huang
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Yu Shi
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Yi Xiang
- Department of Orthpaedics, The Logistics Support Forces of Chinese PLA 985 Hospital, Taiyuan, China
| | - Hongmei Guo
- Department of Casualty Management, The Logistics Support Forces of Chinese PLA 985 Hospital, Taiyuan, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, China
| | - Lijun Yang
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, China
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Tao Yang
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Zhang N, Pang C, Li Z, Xu F, Zhao L. Serum CXCL8 and CXCR2 as diagnostic biomarkers for noninvasive screening of cervical cancer. Medicine (Baltimore) 2023; 102:e34977. [PMID: 37653753 PMCID: PMC10470760 DOI: 10.1097/md.0000000000034977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) is the fourth most frequently diagnosed cancer and the fourth leading cause of cancer-related death in women. Identifying new biomarkers for the early detection of CC is an essential requirement in this field. CXCL8 was originally discovered because of its role in inflammation by binding to CXCR1 and CXCR2; however, it is now known to play an important role in cancer. In this study, we aimed to evaluate the expression levels of potential biomarkers (CXCL8, CXCR1, and CXCR2) and to explore their diagnostic potential in CC. METHODS The expression levels of serum CXCL8, CXCR1, and CXCR2 were investigated by kit method on Immulite-1000 in 30 healthy volunteers, 30 precancerous patients and 70 CC patients. RESULTS The results indicated that the expression of CXCL8 and CXCR2 was significantly higher in the serum of CC patients than in healthy volunteers, similar to the well-established tumor marker (squamous-cell cancerantigen [SCC]). Receiver operating characteristic analyses showed that the combination of CXCL8, CXCR2, and SCC had the highest diagnostic sensitivity and area under the curve value. Meanwhile, the positive predictive value and negative predictive value were not very low. Moreover, high concentrations of CXCL8 and CXCR2 are associated with an increased risk of CC. CONCLUSIONS In conclusion, our data demonstrated that combined serum CXCL8, CXCR2, and SCC measurements are helpful for CC diagnosis and can be used as potential biomarkers for the early detection of CC. Cytokines, such as CXCL8 and CXCR2, can be easily measured in most university hospital laboratories and in some private laboratories with a routine test.
Collapse
Affiliation(s)
- Nianzhu Zhang
- Department of Laboratory Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Chunsong Pang
- Department of Laboratory Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhenguo Li
- Department of Laboratory Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fang Xu
- Department of Laboratory Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Lifen Zhao
- Department of Laboratory Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Maharati A, Moghbeli M. PI3K/AKT signaling pathway as a critical regulator of epithelial-mesenchymal transition in colorectal tumor cells. Cell Commun Signal 2023; 21:201. [PMID: 37580737 PMCID: PMC10424373 DOI: 10.1186/s12964-023-01225-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 08/16/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent gastrointestinal malignancies that are considered as a global health challenge. Despite many progresses in therapeutic methods, there is still a high rate of mortality rate among CRC patients that is associated with poor prognosis and distant metastasis. Therefore, investigating the molecular mechanisms involved in CRC metastasis can improve the prognosis. Epithelial-mesenchymal transition (EMT) process is considered as one of the main molecular mechanisms involved in CRC metastasis, which can be regulated by various signaling pathways. PI3K/AKT signaling pathway has a key role in CRC cell proliferation and migration. In the present review, we discussed the role of PI3K/AKT pathway CRC metastasis through the regulation of the EMT process. It has been shown that PI3K/AKT pathway can induce the EMT process by down regulation of epithelial markers, while up regulation of mesenchymal markers and EMT-specific transcription factors that promote CRC metastasis. This review can be an effective step toward introducing the PI3K/AKT/EMT axis to predict prognosis as well as a therapeutic target among CRC patients. Video Abstract.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Han X, Wu J, Sha Z, Lai R, Shi J, Mi L, Yin F, Guo Z. Dicer Suppresses Hepatocellular Carcinoma via Interleukin-8 Pathway. Clin Med Insights Oncol 2023; 17:11795549231161212. [PMID: 37056297 PMCID: PMC10088407 DOI: 10.1177/11795549231161212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/15/2023] [Indexed: 04/15/2023] Open
Abstract
Background Elevated level of interleukin-8 (IL-8) promotes hepatocellular carcinoma (HCC) development and contributes to poor prognosis. Previously, we have proved that Dicer inhibits HCC progression. In this study, we evaluated the potential interaction between IL-8 and Dicer as well as their influence on HCC. Methods Hepatocellular carcinoma cells of SMMC-7721 were divided into 2 groups for subsequent analysis: pCMV-Dicer group for Dicer-overexpressing lentivirus transfected cells (pCMV-Dicer cells) and pCMV-NC group for empty lentivirus transfected cells (pCMV-NC cells). Cell Counting kit-8 (CCK8), wound healing, and transwell were used to evaluate the inhibitory effect of Dicer overexpression on proliferation, migration, and invasion of HCC cells. The level of IL-8 was measured by flow cytometry bead-based immunoassays. Male nude BALB/c mice injected with pCMV-Dicer or pCMV-NC cell suspensions was used for transplant of HCC tumor. Results We found that the secretion of IL-8 was reduced in the medium of pCMV-Dicer cells (P = .027). Recombinant human IL-8 (rhIL-8) reversed the inhibitory effect of Dicer on proliferation (P < .01), migration (P = .003), and invasion (P = .001), whereas IL-8 inhibitor of reparixin enhanced inhibitory effect of Dicer on proliferation (P < .05), migration (P = .008), and invasion (P = .000). Lenvatinib downregulated the IL-8 level of HCC cells (P = .000) as well as promote Dicer-induced inhibition for HCC cells referring to proliferation (P < .05), migration (P = .000), and invasion (P = .000). Animal experiments also demonstrated that Dicer cooperated with lenvatinib to inhibit the growth of HCC tumors (P < .05). Conclusions Dicer cooperated with lenvatinib to inhibit HCC growth via downregulating IL-8, and Dicer displayed its potential capability to enhance the anti-tumor effect of lenvatinib.
Collapse
Affiliation(s)
- Xin Han
- Department of Gastroenterology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Jianhua Wu
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Ziyue Sha
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Ruixue Lai
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Jianfei Shi
- Department of Gastroenterology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Lili Mi
- Department of Gastroenterology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Fei Yin
- Department of Gastroenterology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Zhanjun Guo
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
- Zhanjun Guo, Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang 050011, P.R. China.
| |
Collapse
|
9
|
Israr M, DeVoti JA, Papayannakos CJ, Bonagura VR. Role of chemokines in HPV-induced cancers. Semin Cancer Biol 2022; 87:170-183. [PMID: 36402301 DOI: 10.1016/j.semcancer.2022.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Human papillomaviruses (HPVs) cause cancers of the uterine cervix, oropharynx, anus, and vulvovaginal tract. Low-risk HPVs, such as HPV6 and 11, can also cause benign mucosal lesions including genital warts, and in patients with recurrent respiratory papillomatosis, lesions in the larynx, and on occasion, in the lungs. However, both high and less tumorigenic HPVs share a striking commonality in manipulating both innate and adaptive immune responses in HPV- infected keratinocytes, the natural host for HPV infection. In addition, immune/inflammatory cell infiltration into the tumor microenvironment influences cancer growth and prognosis, and this process is tightly regulated by different chemokines. Chemokines are small proteins and exert their biological effects by binding with G protein-coupled chemokine receptors (GPCRs) that are found on the surfaces of select target cells. Chemokines are not only involved in the establishment of a pro-tumorigenic microenvironment and organ-directed metastases but also involved in disease progression through enhancing tumor cell growth and proliferation. Therefore, having a solid grasp on chemokines and immune checkpoint modulators can help in the treatment of these cancers. In this review, we discuss the recent advances on the expression patterns and regulation of the main chemokines found in HPV-induced cancers, and their effects on both immune and non-immune cells in these lesions. Importantly, we also present the current knowledge of therapeutic interventions on the expression of specific chemokine and their receptors that have been shown to influence the development and progression of HPV-induced cancers.
Collapse
Affiliation(s)
- Mohd Israr
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - James A DeVoti
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Christopher J Papayannakos
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Vincent R Bonagura
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| |
Collapse
|
10
|
Dobre M, Trandafir B, Milanesi E, Salvi A, Bucuroiu I, Vasilescu C, Niculae AM, Herlea V, Hinescu ME, Constantinescu G. Molecular profile of the NF-κB signalling pathway in human colorectal cancer. J Cell Mol Med 2022; 26:5966-5975. [PMID: 36433652 PMCID: PMC9753446 DOI: 10.1111/jcmm.17545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/06/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022] Open
Abstract
The development and progression of colorectal cancer (CRC) have been associated with inflammation processes that involve the overactivation of the NF-κB signalling pathway. The characterization of the NF-κB expression profile in CRC is an important topic since the suppression of NF-κB represents a potential therapeutic approach. In this study, we assessed the expression levels of 84 NF-κB-related genes in paired tumoral (T) and peritumoral (PT) tissues from 18 CRC patients and 18 normal colonic mucosae, and the expression levels of three miRNAs targeting the most dysregulated genes revealed by the case-control analysis. Comparing the gene expression profile of T and controls, 60 genes were dysregulated. The comparison of T and PT revealed 17 dysregulated genes in the tumoral tissues, with IL1B, CXCL8, IL1A, and CSF2 being the most upregulated. Notably, through a bioinformatics analysis, the differential gene expression of 11 out of the 17 genes was validated on a larger cohort of 308 CRC patients compared with 41 controls. Moreover, a decrease in the levels of RELA, NOD1, CASP8, BCL2L1, ELK1, and IKBKB was identified in poorly differentiated tumours compared to moderately differentiated tumours. The analysis of the three miRNAs targeting IL1B, CXCL8, IL1A, and CSF2 showed that miR-182-5p was upregulated in T compared with PT, whereas miR-10b-5p was downregulated in T compared with PT and control tissues. Our results may contribute to the design of new experimental therapeutic strategies based on endogenous molecules, such as miRNAs, to target the genetic key players of the NF- κB pathway.
Collapse
Affiliation(s)
- Maria Dobre
- Victor Babes National Institute of PathologyBucharestRomania
| | - Bogdan Trandafir
- Faculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania,Fundeni Clinical InstituteBucharestRomania
| | - Elena Milanesi
- Victor Babes National Institute of PathologyBucharestRomania
| | - Alessandro Salvi
- Division of Biology and Genetics, Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Ioana Alina Bucuroiu
- Faculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Catalin Vasilescu
- Faculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania,Fundeni Clinical InstituteBucharestRomania
| | - Andrei Marian Niculae
- Victor Babes National Institute of PathologyBucharestRomania,Faculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania
| | | | - Mihail Eugen Hinescu
- Victor Babes National Institute of PathologyBucharestRomania,Faculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Gabriel Constantinescu
- Faculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania,Clinical Emergency Hospital BucharestBucharestRomania
| |
Collapse
|
11
|
Yang J, Gao S, Qiu M, Kan S. Integrated Analysis of Gene Expression and Metabolite Data Reveals Candidate Molecular Markers in Colorectal Carcinoma. Cancer Biother Radiopharm 2022; 37:907-916. [PMID: 33259728 DOI: 10.1089/cbr.2020.3980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: This study investigated potential gene targets and metabolite markers associated with colorectal carcinoma (CRC). Materials & Methods: Gene expression data (GSE110224) related with CRC were obtained from Gene Expression Omnibus, including 17 tumor tissues and 17 normal colon ones. The gene differential analysis, functional analysis, protein-protein interaction (PPI) analysis, and metabolite network construction were performed to identify key genes related to CRC. Moreover, an external dataset was used to validate genes of interest in CRC, and corresponding survival analysis was also conducted. Results: The authors extracted 197 differentially expressed genes (75 upregulated and 122 downregulated genes). Moreover, upregulated genes were closely associated with rheumatoid arthritis and amoebiasis pathways. The downregulated genes were mainly related to bile secretion and proximal tubule bicarbonate reclamation pathway. Combined with PPI network and metabolite prediction, the overlapped nine genes (CXCL1, CXCL8, CXCL10, HDS1782, IL18, PCK1, PTGS2, SERPINB2, TMP1) were found to be critical in CRC. Similar gene expression profiles of nine critical genes were validated by an external dataset, except for SERPINB2. In addition, the expressions of TIMP1, IL1B, and PTGS2 were closely related with prognosis. Finally, the metabolite network analysis revealed that there were close associations between prostaglandin E2 and three pathways (rheumatoid arthritis, amoebiasis, and leishmaniasis). Conclusion: CXCL1/CXCL8/IL1B/PTGS2-prostaglandin E2 axes were the potential signatures involved in CRC progression, which could provide new insights to understand the molecular mechanisms of CRC.
Collapse
Affiliation(s)
- Junsheng Yang
- Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang City, China
| | - Shan Gao
- Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang City, China
| | - Meiqing Qiu
- Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang City, China
| | - Shifeng Kan
- Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang City, China
| |
Collapse
|
12
|
Cheng X, Shen T, Liu P, Fang S, Yang Z, Li Y, Dong J. mir-145-5p is a suppressor of colorectal cancer at early stage, while promotes colorectal cancer metastasis at late stage through regulating AKT signaling evoked EMT-mediated anoikis. BMC Cancer 2022; 22:1151. [DOI: 10.1186/s12885-022-10182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background:
miR-145-5P is generally considered as a tumor suppressor at early stage of colorectal cancer, but up-regulation occurs in the progressive and later stages which is associated with metastasis, indicating miR-145-5p may play dual role in colorectal cancer (CRC). To explore the detailed mechanism of miR-145-5p in carcinogenic is of importance.
Methods:
The expression pattern of miR-145-5p in CRC patients was downloaded from TCGA database, and the probable mechanism involved in the carcinogenic effect of miR-145-5p was predicted by bioinformatics analysis. Then, interference of miR-145-5p on SW480 and SW620 cells was conducted, and the influences on tumor cell viability, invasion ability, epithelial-mesenchymal transition (EMT), anoikis, and relative protein expression were examined respectively.
Results:
A total of 522 CRC patients’ data indicated that miR-145-5p expression was significantly higher in metastatic CRC than that in non-metastatic CRC, and higher expression of miR-145-5p was correlate with worse prognosis. Overexpression of miR-145-5P-5p enhanced the proliferation and invasion ability of SW620, but inhibited them in SW480. EMT was induced in SW620 after miR-145-5p overexpression and mesenchymal–epithelial transition (MET) was induced in SW480, resulted in the decreased apoptotic rate in SW620 and elevated apoptotic rate in SW480 respectively. Western blot results showed that AKT signaling pathway was involved in the miR-145-5p evoked EMT-mediated anoikis process in SW620 and SW480 cells.
Conclusion:
miR-145-5p is a tumor suppressor at early stage of CRC, and an oncogene at advanced stage of CRC. AKT signaling evoked EMT-mediated anoikis might be the pathway by which miR-145-5P regulates CRC cell invasion and metastasis.
Collapse
|
13
|
CXCL8 Up-Regulated LSECtin through AKT Signal and Correlates with the Immune Microenvironment Modulation in Colon Cancer. Cancers (Basel) 2022; 14:cancers14215300. [PMID: 36358719 PMCID: PMC9657600 DOI: 10.3390/cancers14215300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Patients with high expression of CXCL8 are not sensitive to immune checkpoint inhibitors (ICIs) treatment, but the mechanism is unclear. LSECtin is the immune checkpoint ligand of LAG3, and is considered as an important factor of ICIs resistance. This study confirmed the role of CXCL8 and LSECtin in immune microenvironment modulation of colon cancer. The expression of CXCL8 is positively correlated with more than 40 immune checkpoints. CXCL8 could up-regulate LSECtin through AKT signal and promoted the proliferation and invasion ability of colon cancer. These results may be important reasons for the primary drug resistance of ICIs in colon cancer. Abstract Background: The role of CXCL8 and LSECtin in colon cancer liver metastasis and immune checkpoint inhibitors (ICIs) treatment effect were widely recognized. However, the regulatory role of CXCL8 on LSECtin is still unclear. Methods: The expression of CXCL8 or LSECtin was analyzed by TCGA database, and verified by GES110225 and clinical samples. The relationship between the expression of CXCL8 or LSECtin and immune cells infiltration, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, Gene Ontology (GO) items, stromal score, Estimation of STromal and Immune cells in MAlignant Tumours (ESTIMAT) immune score, tumor mutation burden (TMB), mismatch repair gene and immune checkpoints expression were analyzed by Spearman. The effects of CXCL8 on LSECtin expression, proliferation, and invasion ability were clarified by recombinant CXCL8 or CXCL8 interfering RNA. Results: In colon cancer, the expression of CXCL8 was higher, but LSECtin was lower than that in normal mucosa. The expression of CXCL8 or LSECtin was significantly positively correlated with immune cells infiltration, stromal score, ESTIMATE immune score, TMB, and immune checkpoints expression. The expression of LSECtin was closely related to the cytokine-cytokine receptor interaction pathway and response of chemokine function, such as CXCL8/CXCR1/2 pathway. There was a significant positive correlation between the expression of CXCL8 and LSECtin in colon cancer. CXCL8 up-regulated LSECtin through AKT signal and promoted the proliferation and invasion ability of colon cancer. Conclusions: CXCL8 up-regulated LSECtin by activating AKT signal and correlated with the immune microenvironment modulation in colon cancer.
Collapse
|
14
|
Fang L, Liu K, Liu C, Wang X, Ma W, Xu W, Wu J, Sun C. Tumor accomplice: T cell exhaustion induced by chronic inflammation. Front Immunol 2022; 13:979116. [PMID: 36119037 PMCID: PMC9479340 DOI: 10.3389/fimmu.2022.979116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The development and response to treatment of tumor are modulated by inflammation, and chronic inflammation promotes tumor progression and therapy resistance. This article summarizes the dynamic evolution of inflammation from acute to chronic in the process of tumor development, and its effect on T cells from activation to the promotion of exhaustion. We review the mechanisms by which inflammatory cells and inflammatory cytokines regulate T cell exhaustion and methods for targeting chronic inflammation to improve the efficacy of immunotherapy. It is great significance to refer to the specific state of inflammation and T cells at different stages of tumor development for accurate clinical decision-making of immunotherapy and improving the efficiency of tumor immunotherapy.
Collapse
Affiliation(s)
- Liguang Fang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kunjing Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Xiaomin Wang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macao SAR, China
| | - Wenhua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- *Correspondence: Changgang Sun,
| |
Collapse
|
15
|
Liu F, Liang Y, Sun R, Yang W, Liang Z, Gu J, Zhao F, Tang D. Astragalus mongholicus Bunge and Curcuma aromatica Salisb. inhibits liver metastasis of colon cancer by regulating EMT via the CXCL8/CXCR2 axis and PI3K/AKT/mTOR signaling pathway. Chin Med 2022; 17:91. [PMID: 35922850 PMCID: PMC9351103 DOI: 10.1186/s13020-022-00641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the most challenging aspects of colon cancer (CC) prognosis and treatment is liver-tropic metastasis. Astragalus mongholicus Bunge-Curcuma aromatica Salisb. (AC) is a typical medication combination for the therapy of many malignancies. Our previous studies found that AC intervention inhibits liver metastasis of colon cancer (LMCC). Nevertheless, the comprehensive anti-metastasis mechanisms of AC have not been uncovered. METHODS In bioinformatics analysis, RNA-seq data of CC and LMCC patients were collected from TCGA and GEO databases, and differentially expressed genes (DEGs) were identified. The biological processes and signaling pathways involved in DEGs were enriched by GO and KEGG. The protein-protein interaction (PPI) network of DEGs was established and visualized using the Cytocape software, followed by screening Hub genes in the PPI network using Degree value as the criterion. Subsequently, the expression and survival relevance of Hub gene in COAD patients were verified. In the experimental study, the effects of AC on the inhibition of colon cancer growth and liver metastasis were comprehensively evaluated by cellular and animal models. Finally, based on the results of bioinformatics analysis, the possible mechanisms of AC inhibition of colon cancer EMT and liver metastasis were explored by in vivo and in vitro pharmacological experiments. RESULTS In this study, we obtained 2386 DEGs relevant to LMCC from the COAD (colon adenocarcinoma) and GSE38174 datasets. Results of GO gene function and KEGG signaling pathway enrichment analysis suggested that cellular EMT (Epithelial-mesenchymal transition) biological processes, Cytokine-cytokine receptor interaction and PI3K/Akt signaling pathways might be closely related to LMCC mechanism. We then screened for CXCL8, the core hub gene with the highest centrality within the PPI network of DEGs, and discovered that CXCL8 expression was negatively correlated with the prognosis of COAD patients. In vitro and in vivo experimental evidence presented that AC significantly inhibited colon cancer cell proliferation, migration and invasion ability, and suppressed tumor growth and liver metastasis in colon cancer orthotopic transplantation mice models. Concomitantly, AC significantly reduced CXCL8 expression levels in cell supernatants and serum. Moreover, AC reduced the expression and transcription of genes related to the PI3K/AKT pathway while suppressing the EMT process in colon cancer cells and model mice. CONCLUSIONS In summary, our research predicted the potential targets and pathways of LMCC, and experimentally demonstrated that AC might inhibit the growth and liver metastasis in colon cancer by regulating EMT via the CXCL8/CXCR2 axis and PI3K/AKT/mTOR signaling pathway, which may facilitate the discovery of mechanisms and new therapeutic strategies for LMCC.
Collapse
Affiliation(s)
- Fuyan Liu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Liang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruolan Sun
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weicheng Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongqing Liang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junfei Gu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fan Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Decai Tang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
16
|
Qiu J, Li M, Su C, Liang Y, Ou R, Chen X, Huang C, Zhang Y, Ye Y, Liao W, Zhang C. FOXS1 Promotes Tumor Progression by Upregulating CXCL8 in Colorectal Cancer. Front Oncol 2022; 12:894043. [PMID: 35898871 PMCID: PMC9309265 DOI: 10.3389/fonc.2022.894043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022] Open
Abstract
Background Forkhead box S1 (FOXS1) is a member of the forkhead box (FOX) transcriptional factor superfamily. The biological roles and underlying regulatory mechanism of FOXS1 in CRC remain unclear. Methods Bioinformatics analysis, Western blotting, real-time PCR, and immunohistochemistry (IHC) were used to detect the expression FOXS1 in CRC. MTT assay, transwell assay, human umbilical vein endothelial cell tube formation assay, and chicken chorioallantoic membrane assay were performed to investigate the effects of FOXS1 on proliferation, invasion, and angiogenesis. Additionally, tumor formation assay and orthotopic implantation assay were used to investigate the effects of FOXS1 on tumor growth and metastasis in vivo. Furthermore, gene set enrichment analysis (GSEA) was used to analyze the correlation between FOXS1 and EMT or angiogenesis. The correlation between FOXS1 and CXCL8 expression was analyzed in clinical CRC samples using IHC. Results The results showed that FOXS1 expression was upregulated in CRC tissues compared with adjacent normal intestine tissues. A high FOXS1 expression is positively correlated with poor survival. FOXS1 promoted the malignant behavior of CRC cancer cells in vitro, including proliferation, invasion, and angiogenesis. In addition, FOXS1 promoted tumor growth and metastasis in nude mice. Mechanistically, FOXS1 upregulated the expression of C–X–C motif chemokine ligand 8 (CXCL8) at the transcriptional level. Knockdown of CXCL8 blocked FOXS1 induced the enhancement of the EMT and angiogenesis. GSEAs in public CRC datasets revealed strong correlations between FOXS1 expression and EMT marker and angiogenesis markers. IHC showed that FOXS1 expression was positively correlated with CXCL8 expression and CD31 expression in clinical CRC samples. Conclusion The results suggest that FOXS1 promotes angiogenesis and metastasis by upregulating CXCL8 in CRC. Interference with the FOXS1/CXCL8 axis may serve as a potential therapeutic target for the treatment of metastatic CRC.
Collapse
Affiliation(s)
- Junfeng Qiu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Mingzhou Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cailin Su
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yihao Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruizhang Ou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Xiaoning Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Chengmei Huang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yaxin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yaping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
- *Correspondence: Yaping Ye, ; Wenting Liao, ; Chao Zhang,
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- *Correspondence: Yaping Ye, ; Wenting Liao, ; Chao Zhang,
| | - Chao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- *Correspondence: Yaping Ye, ; Wenting Liao, ; Chao Zhang,
| |
Collapse
|
17
|
Goïta AA, Guenot D. Colorectal Cancer: The Contribution of CXCL12 and Its Receptors CXCR4 and CXCR7. Cancers (Basel) 2022; 14:1810. [PMID: 35406582 PMCID: PMC8997717 DOI: 10.3390/cancers14071810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common cancers, and diagnosis at late metastatic stages is the main cause of death related to this cancer. This progression to metastasis is complex and involves different molecules such as the chemokine CXCL12 and its two receptors CXCR4 and CXCR7. The high expression of receptors in CRC is often associated with a poor prognosis and aggressiveness of the tumor. The interaction of CXCL12 and its receptors activates signaling pathways that induce chemotaxis, proliferation, migration, and cell invasion. To this end, receptor inhibitors were developed, and their use in preclinical and clinical studies is ongoing. This review provides an overview of studies involving CXCR4 and CXCR7 in CRC with an update on their targeting in anti-cancer therapies.
Collapse
Affiliation(s)
| | - Dominique Guenot
- INSERM U1113/Unistra, IRFAC—Interface de Recherche Fondamentale et Appliquée en Cancérologie, 67200 Strasbourg, France;
| |
Collapse
|
18
|
Märkl F, Huynh D, Endres S, Kobold S. Utilizing chemokines in cancer immunotherapy. Trends Cancer 2022; 8:670-682. [DOI: 10.1016/j.trecan.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/28/2022]
|
19
|
Pretzsch E, Nieß H, Bösch F, Westphalen C, Jacob S, Neumann J, Werner J, Heinemann V, Angele M. Age and metastasis – How age influences metastatic spread in cancer. Colorectal cancer as a model. Cancer Epidemiol 2022; 77:102112. [PMID: 35104771 DOI: 10.1016/j.canep.2022.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
|
20
|
Walle T, Kraske JA, Liao B, Lenoir B, Timke C, von Bohlen und Halbach E, Tran F, Griebel P, Albrecht D, Ahmed A, Suarez-Carmona M, Jiménez-Sánchez A, Beikert T, Tietz-Dahlfuß A, Menevse AN, Schmidt G, Brom M, Pahl JHW, Antonopoulos W, Miller M, Perez RL, Bestvater F, Giese NA, Beckhove P, Rosenstiel P, Jäger D, Strobel O, Pe’er D, Halama N, Debus J, Cerwenka A, Huber PE. Radiotherapy orchestrates natural killer cell dependent antitumor immune responses through CXCL8. SCIENCE ADVANCES 2022; 8:eabh4050. [PMID: 35319989 PMCID: PMC8942354 DOI: 10.1126/sciadv.abh4050] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 01/31/2022] [Indexed: 05/17/2023]
Abstract
Radiotherapy is a mainstay cancer therapy whose antitumor effects partially depend on T cell responses. However, the role of Natural Killer (NK) cells in radiotherapy remains unclear. Here, using a reverse translational approach, we show a central role of NK cells in the radiation-induced immune response involving a CXCL8/IL-8-dependent mechanism. In a randomized controlled pancreatic cancer trial, CXCL8 increased under radiotherapy, and NK cell positively correlated with prolonged overall survival. Accordingly, NK cells preferentially infiltrated irradiated pancreatic tumors and exhibited CD56dim-like cytotoxic transcriptomic states. In experimental models, NF-κB and mTOR orchestrated radiation-induced CXCL8 secretion from tumor cells with senescence features causing directional migration of CD56dim NK cells, thus linking senescence-associated CXCL8 release to innate immune surveillance of human tumors. Moreover, combined high-dose radiotherapy and adoptive NK cell transfer improved tumor control over monotherapies in xenografted mice, suggesting NK cells combined with radiotherapy as a rational cancer treatment strategy.
Collapse
Affiliation(s)
- Thomas Walle
- Department of Molecular and Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Immunobiochemistry and MI3, Mannheim Institute for Innate Immunoscience, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
- Corresponding author. (T.W.); (P.E.H.)
| | - Joscha A. Kraske
- Department of Molecular and Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiooncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany
| | - Boyu Liao
- Department of Molecular and Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiooncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany
| | - Bénédicte Lenoir
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center, Heidelberg, Germany
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carmen Timke
- Department of Molecular and Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, St. Franziskus Hospital, Flensburg, Germany
| | - Emilia von Bohlen und Halbach
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center, Heidelberg, Germany
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Paul Griebel
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Dorothee Albrecht
- Department of Molecular and Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Azaz Ahmed
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center, Heidelberg, Germany
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Meggy Suarez-Carmona
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center, Heidelberg, Germany
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alejandro Jiménez-Sánchez
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tizian Beikert
- Department of Molecular and Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiooncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany
| | - Alexandra Tietz-Dahlfuß
- Department of Molecular and Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ayse Nur Menevse
- Leibniz Institute for Immunotherapy, Division of Interventional Immunology, Regensburg, Germany
| | - Gabriele Schmidt
- Core Facility Light Microscopy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuela Brom
- Core Facility Light Microscopy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens H. W. Pahl
- Department of Immunobiochemistry and MI3, Mannheim Institute for Innate Immunoscience, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | | | - Matthias Miller
- Department of Immunobiochemistry and MI3, Mannheim Institute for Innate Immunoscience, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Ramon Lopez Perez
- Department of Molecular and Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiooncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Bestvater
- Core Facility Light Microscopy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nathalia A. Giese
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Philipp Beckhove
- Leibniz Institute for Immunotherapy, Division of Interventional Immunology, Regensburg, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Dana Pe’er
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Niels Halama
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Center for Translational Oncology (HITRON), Mainz, Germany
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiooncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany
- Heidelberg Ion Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry and MI3, Mannheim Institute for Innate Immunoscience, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Peter E. Huber
- Department of Molecular and Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiooncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Corresponding author. (T.W.); (P.E.H.)
| |
Collapse
|
21
|
Kwantwi LB, Wang S, Sheng Y, Wu Q. Multifaceted roles of CCL20 (C-C motif chemokine ligand 20): mechanisms and communication networks in breast cancer progression. Bioengineered 2021; 12:6923-6934. [PMID: 34569432 PMCID: PMC8806797 DOI: 10.1080/21655979.2021.1974765] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging studies have demonstrated notable roles of CCL20 in breast cancer progression. Based on these findings, CCL20 has become a potential therapeutic target for cancer immunotherapy. Accordingly, studies utilizing monoclonal antibodies to target CCL20 are currently being experimented. However, the existence of cytokine network in the tumor microenvironment collectively regulates tumor progression. Hence, a deeper understanding of the role of CCL20 and the underlying signaling pathways regulating the functions of CCL20 may provide a novel strategy for therapeutic interventions. This review provides the current knowledge on how CCL20 interacts with breast cancer cells to influence tumor progression via immunosuppression, angiogenesis, epithelial to mesenchymal transition, migration/invasion and chemoresistance. As a possible candidate biomarker, we also reviewed signal pathways and other factors in the tumor microenvironment regulating the tumor-promoting functions of CCL20.These new insights may be useful to design new potent and selective CCL20 inhibitors against breast cancer in the future.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Shujing Wang
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Youjing Sheng
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Qiang Wu
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| |
Collapse
|
22
|
CCL20 induces colorectal cancer neoplastic epithelial cell proliferation, migration, and further CCL20 production through autocrine HGF-c-Met and MSP-MSPR signaling pathways. Oncotarget 2021; 12:2323-2337. [PMID: 34853656 PMCID: PMC8629403 DOI: 10.18632/oncotarget.28131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
CCL20-CCR6 interactions promote colorectal cancer through direct effects on neoplastic epithelial cells and through modulating the tumor microenvironment. The mechanism of these effects on neoplastic epithelial cells is poorly understood. This study demonstrates that CCL20 induces secretion of hepatocyte growth factor (HGF) and phosphorylation of HGF’s cognate receptor c-Met in HT29 and HCT116 colorectal cancer cell lines both in concentration- and time-dependent manners. Similar to CCL20, HGF induces migration, autofeedback CCL20 secretion, and ERK1/2 phosphorylation in the colon cancer cells. CCL20-dependent ERK1/2 phosphorylation is blocked by HGF inhibition, and CCL20-dependent migration and CCL20 secretion are blocked by inhibition of HGF or ERK. Interestingly, unlike CCL20, HGF does not induce proliferation of colon cancer cells, and CCL20-dependent cell proliferation is not blocked by direct HGF inhibition. CCL20-dependent proliferation, however, is blocked by the multi-tyrosine kinase inhibitor crizotinib. Exploring this effect, it was found that CCL20 also induces production of MSP and phosphorylation of MSP’s receptor MSPR by the colorectal cancer cells. CCL20-dependent cell proliferation is inhibited by directly blocking MSP-MSPR interactions. Thus, CCL20-mediated migration and CCL20 secretion are regulated through a pathway involving HGF, c-Met, and ERK, while CCL20-mediated proliferation is instead regulated through MSP and its receptor MSPR.
Collapse
|
23
|
Mandal DP, Mohanty N, Behera PK, Gopinath D, Panda S, Al-Kheraif AA, Divakar DD, Anil S, Panda S. A Plausible Proposition of CCL20-Related Mechanism in Fusobacterium nucleatum-Associated Oral Carcinogenesis. Life (Basel) 2021; 11:1218. [PMID: 34833094 PMCID: PMC8621507 DOI: 10.3390/life11111218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE The objective of this prospective observational case-control study is to evaluate the prevalence of Fusobacterium nucleatum in the tissues of oral squamous cell carcinoma (OSCC). Reconnoitering the CCL20-related mechanism of carcinogenesis in Fusobacterium nucleatum-positive OSCC is another objective. METHODOLOGY Tissues from 50 OSCC patients and 30 healthy oral tissues were collected. The prevalence of Fusobacterium nucleatum was evaluated in both tumour and healthy tissue by polymerase chain reaction. The immunohistochemistry of OSCC tissues was conducted to evaluate the difference in the expression of CCL20 between Fusobacterium nucleatum-positive and -negative OSCC tissues. RESULTS Fusobacterium nucleatum was significantly (p < 0.001) prevalent in OSCC tissues (74%), compared to healthy tissues (26%). No association of Fusobacterium nucleatum or CCL20 immuno-expression with any clinical or histopathological features of OSCC was observed. While the intensity of CCL20 immuno-expression did not differ (p = 0.053), the CCL20-positive cell population was significantly different (p = 0.034) between Fusobacterium nucleatum-positive and -negative OSCC. CONCLUSION Fusobacterium nucleatum is possibly prevalent in oral cancer tissues in the Indian population. By using immunohistochemistry, this is the first study to propose that the carcinogenesis in Fusobacterium nucleatum-positive OSCC may be CCL20-related. The findings enrich the knowledge of mechanisms involved in Fusobacterium nucleatum-mediated oral carcinogenesis.
Collapse
Affiliation(s)
- Devi Prasad Mandal
- Institute of Dental Sciences, Siksha ’O’ Anusandhan Deemed to Be University, Bhubaneswar 751030, Odisha, India;
| | - Neeta Mohanty
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha ’O’ Anusandhan Deemed to Be University, Bhubaneswar 751030, Odisha, India;
| | - Paresh Kumar Behera
- Head and Neck Oncology, Acharya Harihar Regional Cancer Centre, Cuttack 753007, Odisha, India;
| | - Divya Gopinath
- Clinical Oral Health Sciences Division, School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Sasmita Panda
- Department of Pathology, Acharya Harihar Regional Cancer Centre, Cuttack 753007, Odisha, India;
| | - Abdulaziz A. Al-Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia; (A.A.A.-K.); (D.D.D.)
| | - Darshan Devang Divakar
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia; (A.A.A.-K.); (D.D.D.)
| | - Sukumaran Anil
- Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
- College of Dental Medicine, Qatar University, Doha P.O. Box 2713, Qatar
| | - Swagatika Panda
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha ’O’ Anusandhan Deemed to Be University, Bhubaneswar 751030, Odisha, India;
| |
Collapse
|
24
|
Song S, He X, Wang J, Wang R, Wang L, Zhao W, Wang Y, Zhang Y, Yu Z, Miao D, Xue Y. ELF3-AS1 contributes to gastric cancer progression by binding to hnRNPK and induces thrombocytosis in peripheral blood. Cancer Sci 2021; 112:4553-4569. [PMID: 34418240 PMCID: PMC8586678 DOI: 10.1111/cas.15104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023] Open
Abstract
Numerous studies have reported that a variety of long noncoding RNAs (lncRNAs) can promote the proliferation, invasion, and migration of different tumor cells. However, different lncRNAs regulate cell functions in various forms, and the exact mechanisms are not clear. Here, we investigated the effect of the lncRNA ELF3-AS1 on gastric cancer (GC) cell function and explored the exact mechanism. Quantitative real-time polymerase chain reaction was used to detect the expression of ELF3-AS1 in GC tissues and adjacent nontumor tissues. Knockdown and overexpression of ELF3-AS1 was used to detect the effect of ELF3-AS1 on cell function. Potential downstream target genes were identified using RNA transcriptome sequencing, while RNA immunoprecipitation, chromatin immunoprecipitation, and Western blotting were performed to explore the tumor promotion mechanisms of ELF3-AS1. We observed that ELF3-AS1 was highly expressed in GC tissues, and high ELF3-AS1 expression predicted poor prognosis. The knockdown of ELF3-AS1 significantly inhibited cell proliferation, migration, and epithelial-mesenchymal transition and promoted apoptosis. Mechanistic investigations revealed that ELF3-AS1 may regulate the downstream target gene, C-C motif chemokine 20, by binding with the RNA-binding protein hnRNPK. Additionally, we found that high ELF3-AS1 expression was associated with thrombocytosis. Interleukin-6 and thrombopoietin may be involved in ELF3-AS1-induced paraneoplastic thrombocytosis. Together, our results demonstrate that aberrantly expressed ELF3-AS1 in GC may play important roles in oncogenesis and progression and is expected to become a new target for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Shubin Song
- Department of gastrointestinal surgeryHarbin Medical University Cancer HospitalHarbinChina
- Department of Breast SurgeryShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Xuezhi He
- Department of Nutrition and Food HygieneSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Jing Wang
- Department of Anatomy, Histology and EmbryologyState Key Laboratory of Reproductive MedicineThe Research Center for Bone and Stem CellsNanjing Medical UniversityNanjingChina
| | - Rong Wang
- Department of Anatomy, Histology and EmbryologyThe Research Center for Bone and Stem CellsNanjing Medical UniversityNanjingChina
| | - Leilei Wang
- Department of Breast SurgeryShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Wei Zhao
- Department of Breast SurgeryShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Yimin Wang
- Department of gastrointestinal surgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Yongle Zhang
- Department of gastrointestinal surgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Zhiyong Yu
- Department of Breast SurgeryShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Dengshun Miao
- The Research Center for AgingFriendship Affiliated Plastic Surgery Hospital of Nanjing Medical UniversityNanjingChina
| | - Yingwei Xue
- Department of gastrointestinal surgeryHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
25
|
Mehta M, Malyla V, Paudel KR, Chellappan DK, Hansbro PM, Oliver BG, Dua K. Berberine loaded liquid crystalline nanostructure inhibits cancer progression in adenocarcinomic human alveolar basal epithelial cells in vitro. J Food Biochem 2021; 45:e13954. [PMID: 34609010 DOI: 10.1111/jfbc.13954] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 01/11/2023]
Abstract
Metastasis represents the leading cause of death in lung cancer patients. C-X-C Motif Chemokine Ligand 8 (CXCL-8), Chemokine (C-C motif) ligand 20 (CCL-20) and heme oxygenase -1 (HO-1) play an important role in cancer cell proliferation and migration. Berberine is an isoquinoline alkaloid isolated from several herbs in the Papaveraceae family that exhibits anti-inflammatory, anticancer and antidiabetic properties. Therefore, the aim of present study is to investigate the inhibitory potential of berberine monoolein loaded liquid crystalline nanoparticles (berberine-LCNs) against cancer progression. Berberine-LCNs were prepared by mixing berberine, monoolein and poloxamer 407 (P407) using ultrasonication method. A549 cells were treated with or without 5 µM dose of berberine LCNs for 24 hr and total cellular protein was extracted and further analyzed for the protein expression of CCl-20, CXCL-8 and HO-1 using human oncology array kit. Our results showed that berberine-LCNs significantly reduced the expression of CCl-20, CXCL-8 and HO-1 at dose of 5µM. Collectively, our findings suggest that berberine-LCNs have inhibitory effect on inflammation/oxidative stress related cytokines i.e. CCL20, CXCL-8, and HO-1 which could be a novel therapeutic target for the management of lung cancer. PRACTICAL APPLICATIONS: Berberine is an isoquinoline alkaloid extracted from various plants of Papaveraceae family. CXCL-8, CCL-20 and HO-1 play an important role in cancer progression. Our study showed that Berberine LCNs significantly downregulate the expression of CXCL-8, CCL-20 and HO-1 which suggests that Berberine loaded nanoparticles could be a promising therapeutic alternative for the management of lung cancer.
Collapse
Affiliation(s)
- Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Vamshikrishna Malyla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Keshav R Paudel
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
26
|
Pan-Cancer Analysis of Prognostic and Immune Infiltrates for CXCs. Cancers (Basel) 2021; 13:cancers13164153. [PMID: 34439306 PMCID: PMC8392715 DOI: 10.3390/cancers13164153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary CXCs are important genes that regulate inflammation and tumor metastasis. While there are many studies with a focus on individual CXCs, few present a pan-cancer analysis of the whole CXC family. Our results indicate that CXCs are a potential therapeutic target in a variety of tumors and a potential prognostic marker that could improve the survival of cancer patients and the accuracy of prognosis. Meanwhile, we found that CXCs may be involved in diseases caused by intestinal flora. Abstract Background: CXCs are important genes that regulate inflammation and tumor metastasis. However, the expression level, prognosis value, and immune infiltration of CXCs in cancers are not clear. Methods: Multiple online datasets were used to analyze the expression, prognosis, and immune regulation of CXCs in this study. Network analysis of the Amadis database and GEO dataset was used to analyze the regulation of intestinal flora on the expression of CXCs. A mouse model was used to verify the fact that intestinal bacterial dysregulation can affect the expression of CXCs. Results: In the three cancers, multiple datasets verified the fact that the mRNA expression of this family was significantly different; the mRNA levels of CXCL3, 8, 9, 10, 14, and 17 were significantly correlated with the prognosis of three cancers. CXCs were correlated with six types of immuno-infiltrating cells in three cancers. Immunohistochemistry of clinical samples confirmed that the expression of CXCL8 and 10 was higher in three cancer tissues. Animal experiments have shown that intestinal flora dysregulation can affect CXCL8 and 10 expressions. Conclusion: Our results further elucidate the function of CXCs in cancers and provide new insights into the prognosis and immune infiltration of breast, colon, and pancreatic cancers, and they suggest that intestinal flora may influence disease progression through CXCs.
Collapse
|
27
|
Comprehensive Omics Analysis of a Novel Small-Molecule Inhibitor of Chemoresistant Oncogenic Signatures in Colorectal Cancer Cell with Antitumor Effects. Cells 2021; 10:cells10081970. [PMID: 34440739 PMCID: PMC8392328 DOI: 10.3390/cells10081970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023] Open
Abstract
Tumor recurrence from cancer stem cells (CSCs) and metastasis often occur post-treatment in colorectal cancer (CRC), leading to chemoresistance and resistance to targeted therapy. MYC is a transcription factor in the nuclei that modulates cell growth and development, and regulates immune response in an antitumor direction by mediating programmed death ligand 1 (PD-L1) and promoting CRC tumor recurrence after adjuvant chemotherapy. However, the molecular mechanism through which c-MYC maintains stemness and confers treatment resistance still remains elusive in CRC. In addition, recent reports demonstrated that CRC solid colon tumors expresses C-X-C motif chemokine ligand 8 (CXCL8). Expression of CXCL8 in CRC was reported to activate the expression of PD-L1 immune checkpoint through c-MYC, this ultimately induces chemoresistance in CRC. Accumulating studies have also demonstrated increased expression of CXCL8, matrix metalloproteinase 7 (MMP7), tissue inhibitor of metalloproteinase 1 (TIMP1), and epithelial-to-mesenchymal transition (EMT) components, in CRC tumors suggesting their potential collaboration to promote EMT and CSCs. TIMP1 is MMP-independent and regulates cell development and apoptosis in various cancer cell types, including CRC. Recent studies showed that TIMP1 cleaves CXCL8 on its chemoattractant, thereby influencing its mechanistic response to therapy. This therefore suggests crosstalk among the c-MYC/CXCL8/TIMP1 oncogenic signatures. In this study, we explored computer simulations through bioinformatics to identify and validate that the MYC/CXCL8/TIMP1 oncogenic signatures are overexpressed in CRC, Moreover, our docking results exhibited putative binding affinities of the above-mentioned oncogenes, with our novel small molecule, RV59, Finally, we demonstrated the anticancer activities of RV59 against NCI human CRC cancer cell lines both as single-dose and dose-dependent treatments, and also demonstrated the MYC/CXCL8/TIMP1 signaling pathway as a potential RV59 drug target.
Collapse
|
28
|
Saxena S, Singh RK. Chemokines orchestrate tumor cells and the microenvironment to achieve metastatic heterogeneity. Cancer Metastasis Rev 2021; 40:447-476. [PMID: 33959849 PMCID: PMC9863248 DOI: 10.1007/s10555-021-09970-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/22/2021] [Indexed: 01/26/2023]
Abstract
Chemokines, a subfamily of the cell cytokines, are low molecular weight proteins known to induce chemotaxis in leukocytes in response to inflammatory and pathogenic signals. A plethora of literature demonstrates that chemokines and their receptors regulate tumor progression and metastasis. With these diverse functionalities, chemokines act as a fundamental link between the tumor cells and their microenvironment. Recent studies demonstrate that the biology of chemokines and their receptor in metastasis is complex as numerous chemokines are involved in regulating site-specific tumor growth and metastasis. Successful treatment of disseminated cancer is a significant challenge. The most crucial problem for treating metastatic cancer is developing therapy regimes capable of overcoming heterogeneity problems within primary tumors and among metastases and within metastases (intralesional). This heterogeneity of malignant tumor cells can be related to metastatic potential, response to chemotherapy or specific immunotherapy, and many other factors. In this review, we have emphasized the role of chemokines in the process of metastasis and metastatic heterogeneity. Individual chemokines may not express the full potential to address metastatic heterogeneity, but chemokine networks need exploration. Understanding the interplay between chemokine-chemokine receptor networks between the tumor cells and their microenvironment is a novel approach to overcome the problem of metastatic heterogeneity. Recent advances in the understanding of chemokine networks pave the way for developing a potential targeted therapeutic strategy to treat metastatic cancer.
Collapse
Affiliation(s)
- Sugandha Saxena
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA.
| |
Collapse
|
29
|
Cendrowicz E, Sas Z, Bremer E, Rygiel TP. The Role of Macrophages in Cancer Development and Therapy. Cancers (Basel) 2021; 13:1946. [PMID: 33919517 PMCID: PMC8073377 DOI: 10.3390/cancers13081946] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Macrophages are critical mediators of tissue homeostasis and influence various aspects of immunity. Tumor-associated macrophages are one of the main cellular components of the tumor microenvironment. Depending on their activation status, macrophages can exert a dual influence on tumorigenesis by either antagonizing the cytotoxic activity of immune cells or, less frequently, by enhancing antitumor responses. In most situations, TAMs suppress T cell recruitment and function or regulate other aspects of tumor immunity. The importance of TAMs targeting in cancer therapy is derived from the strong association between the high infiltration of TAMs in the tumor tissue with poor patient prognosis. Several macrophage-targeting approaches in anticancer therapy are developed, including TAM depletion, inhibition of new TAM differentiation, or re-education of TAM activation for cancer cell phagocytosis. In this review, we will describe the role of TAMs in tumor development, including such aspects as protumorigenic inflammation, immune suppression, neoangiogenesis, and enhancement of tissue invasion and distant metastasis. Furthermore, we will discuss therapeutic approaches that aim to deplete TAMs or, on the contrary, re-educate TAMs for cancer cell phagocytosis and antitumor immunity.
Collapse
Affiliation(s)
- Ewa Cendrowicz
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (E.C.); (E.B.)
| | - Zuzanna Sas
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, Building F, 02-097 Warsaw, Poland;
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (E.C.); (E.B.)
| | - Tomasz P. Rygiel
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, Building F, 02-097 Warsaw, Poland;
| |
Collapse
|
30
|
Shen D, Tian L, Yang F, Li J, Li X, Yao Y, Lam EWF, Gao P, Jin B, Wang R. ADO/hypotaurine: a novel metabolic pathway contributing to glioblastoma development. Cell Death Discov 2021; 7:21. [PMID: 33483477 PMCID: PMC7822925 DOI: 10.1038/s41420-020-00398-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 01/07/2023] Open
Abstract
Significant advance has been made towards understanding glioblastoma metabolism through global metabolomic profiling. However, hitherto little is known about the role by which altered metabolism plays in driving the aggressive glioma phenotype. We have previously identified hypotaurine as one of the top-ranked metabolites for differentiating low- and high-grade tumors, and that there is also a strong association between the levels of intratumoral hypotaurine and expression of its biosynthetic enzyme, cysteamine (2-aminoethanethiol) dioxygenase (ADO). Using transcription profiling, we further uncovered that the ADO/hypotaurine axis targets CCL20 secretion through activating the NF-κB pathway to drive the self-renewal and maintenance of glioma 'cancer stem cells' or glioma cancer stem-like cells. Conversely, abrogating the ADO/hypotaurine axis using CRISPR/Cas9-mediated gene editing limited glioblastoma cell proliferation and self-renewal in vitro and tumor growth in vivo in an orthotopical mouse model, indicating that this metabolic pathway is a potential key therapeutic target. Collectively, our results unveil a targetable metabolic pathway, which contributes to the growth and progression of aggressive high-grade gliomas, as well as a novel predictive marker for glioblastoma diagnosis and therapy.
Collapse
Affiliation(s)
- Dachuan Shen
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, 116001, Dalian, Liaoning, P.R. China
| | - Lili Tian
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, 116011, Dalian, Liaoning, P.R. China
| | - Fangyu Yang
- Department of Neurosurgery, General Hospital of Northern Theater Command, 110015, Shenyang, Liaoning, P.R. China
| | - Jun Li
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, 116011, Dalian, Liaoning, P.R. China
| | - Xiaodong Li
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, 116044, Dalian, Liaoning, P.R. China
| | - Yiqun Yao
- Department of Thyroid and Breast Surgery, Affiliated Zhongshan Hospital of Dalian University, 116001, Dalian, Liaoning, P.R. China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Peng Gao
- Clinical Laboratory, Dalian Sixth People's Hospital, 116031, Dalian, Liaoning, P.R. China.
| | - Bilian Jin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, 116044, Dalian, Liaoning, P.R. China.
| | - Ruoyu Wang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, 116001, Dalian, Liaoning, P.R. China.
| |
Collapse
|
31
|
Indukuri R, Hases L, Archer A, Williams C. Estrogen Receptor Beta Influences the Inflammatory p65 Cistrome in Colon Cancer Cells. Front Endocrinol (Lausanne) 2021; 12:650625. [PMID: 33859619 PMCID: PMC8042384 DOI: 10.3389/fendo.2021.650625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/05/2021] [Indexed: 11/15/2022] Open
Abstract
Inflammation is a primary component of both initiation and promotion of colorectal cancer (CRC). Cytokines secreted by macrophages, including tumor necrosis factor alpha (TNFα), activates the pro-survival transcription factor complex NFκB. The precise mechanism of NFκB in CRC is not well studied, but we recently reported the genome-wide transcriptional impact of TNFα in two CRC cell lines. Further, estrogen signaling influences inflammation in a complex manner and suppresses CRC development. CRC protective effects of estrogen have been shown to be mediated by estrogen receptor beta (ERβ, ESR2), which also impacts inflammatory signaling of the colon. However, whether ERβ impacts the chromatin interaction (cistrome) of the main NFκB subunit p65 (RELA) is not known. We used p65 chromatin immunoprecipitation followed by sequencing (ChIP-Seq) in two different CRC cell lines, HT29 and SW480, with and without expression of ERβ. We here present the p65 colon cistrome of these two CRC cell lines. We identify that RELA and AP1 motifs are predominant in both cell lines, and additionally describe both common and cell line-specific p65 binding sites and correlate these to transcriptional changes related to inflammation, migration, apoptosis and circadian rhythm. Further, we determine that ERβ opposes a major fraction of p65 chromatin binding in HT29 cells, but enhances p65 binding in SW480 cells, thereby impacting the p65 cistrome differently in the two cell lines. However, the biological functions of the regulated genes appear to have similar roles in both cell lines. To our knowledge, this is the first time the p65 CRC cistrome is compared between different cell lines and the first time an influence by ERβ on the p65 cistrome is investigated. Our work provides a mechanistic foundation for a better understanding of how estrogen influences inflammatory signaling through NFκB in CRC cells.
Collapse
Affiliation(s)
- Rajitha Indukuri
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Linnea Hases
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Amena Archer
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Cecilia Williams
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- *Correspondence: Cecilia Williams, ;
| |
Collapse
|
32
|
Asokan S, Bandapalli OR. CXCL8 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:25-39. [PMID: 34286439 DOI: 10.1007/978-3-030-62658-7_3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment represents a dynamic and complex cellular network involving intricate communications between the tumor and highly heterogeneous groups of cells, including tumor-supporting immune and inflammatory cells, cancer-associated fibroblasts, endothelial cells, tumor-associated macrophages, adipose cells, and pericytes. Associated with a variety of growth factors, chemokines, cytokines, and other signaling molecules, the interaction between the tumor microenvironment and the tumor cells empowers aggressiveness of tumor by enhancing its survivability. CXCL8 (also known as Interleukin 8), a multifunctional proinflammatory chemokine that was initially classified as a neutrophil chemoattractant, recently has been found to be a key contributor in tumorigenesis. The upregulation of CXCL8 at the tumor invasion front in several human cancers suggests its interplay between the tumor and its microenvironment rendering tumor progression by enhancing angiogenesis, tumor genetic diversity, survival, proliferation, immune escape, metastasis, and multidrug resistance. The autocrine and paracrine modulation of CXCL8 via the chemokine receptors CXCR1/2 promotes several intracellular signaling cascades that fosters tumor-associated inflammation, reprogramming, epithelial-mesenchymal transition, and neovascularization. Hence, decrypting the regulatory/signaling cascades of CXCL8 and its downstream effects may harbor prognostic clinical prospects of a tumor microenvironment-oriented cancer therapeutics.
Collapse
Affiliation(s)
- Sahana Asokan
- Heidelberg University, Molecular Biosciences, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany. .,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany. .,Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
33
|
Zhang J, Zhang H, Li F, Song Z, Li Y, Zhao T. Identification of intestinal flora-related key genes and therapeutic drugs in colorectal cancer. BMC Med Genomics 2020; 13:172. [PMID: 33198757 PMCID: PMC7670602 DOI: 10.1186/s12920-020-00810-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a multifactorial tumor and a leading cause of cancer-specific deaths worldwide. Recent research has shown that the alteration of intestinal flora contributes to the development of CRC. However, the molecular mechanism by which intestinal flora influences the pathogenesis of CRC remains unclear. This study aims to explore the key genes underlying the effect of intestinal flora on CRC and therapeutic drugs for CRC. METHODS Intestinal flora-related genes were determined using text mining. Based on The Cancer Genome Atlas database, differentially expressed genes (DEGs) between CRC and normal samples were identified with the limma package of the R software. Then, the intersection of the two gene sets was selected for enrichment analyses using the tool Database for Annotation, Visualization and Integrated Discovery. Protein interaction network analysis was performed for identifying the key genes using STRING and Cytoscape. The correlation of the key genes with overall survival of CRC patients was analyzed. Finally, the key genes were queried against the Drug-Gene Interaction database to find drug candidates for treating CRC. RESULTS 518 genes associated with intestinal flora were determined by text mining. Based on The Cancer Genome Atlas database, we identified 48 DEGs associated with intestinal flora, including 25 up-regulated and 23 down-regulated DEGs in CRC. The enrichment analyses indicated that the selected genes were mainly involved in cell-cell signaling, immune response, cytokine-cytokine receptor interaction, and JAK-STAT signaling pathway. The protein-protein interaction network was constructed with 13 nodes and 35 edges. Moreover, 8 genes in the significant cluster were considered as the key genes and chemokine (C-X-C motif) ligand 8 (CXCL8) correlated positively with the overall survival of CRC patients. Finally, a total of 24 drugs were predicted as possible drugs for CRC treatment using the Drug-Gene Interaction database. CONCLUSIONS These findings of this study may provide new insights into CRC pathogenesis and treatments. The prediction of drug-gene interaction is of great practical significance for exploring new drugs or novel targets for existing drugs.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Huaiyu Zhang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zheyu Song
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yezhou Li
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| | - Tiancheng Zhao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
34
|
Chu Y, Li J, Zeng Z, Huang B, Zhao J, Liu Q, Wu H, Fu J, Zhang Y, Zhang Y, Cai J, Zeng F. A Novel Model Based on CXCL8-Derived Radiomics for Prognosis Prediction in Colorectal Cancer. Front Oncol 2020; 10:575422. [PMID: 33178604 PMCID: PMC7592598 DOI: 10.3389/fonc.2020.575422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction: Prognosis prediction is essential to improve therapeutic strategies and to achieve better clinical outcomes in colorectal cancer (CRC) patients. Radiomics based on high-throughput mining of quantitative medical imaging is an emerging field in recent years. However, the relationship among prognosis, radiomics features, and gene expression remains unknown. Methods: We retrospectively analyzed 141 patients (from study 1) diagnosed with CRC from February 2018 to October 2019 and randomly divided them into training (N = 99) and testing (N = 42) cohorts. Radiomics features in venous phase image were extracted from preoperative computed tomography (CT) images. Gene expression was detected by RNA-sequencing on tumor tissues. The least absolute shrinkage and selection operator (LASSO) regression model was used for selecting imaging features and building the radiomics model. A total of 45 CRC patients (study 2) with immunohistochemical (IHC) staining of CXCL8 diagnosed with CRC from January 2014 to October 2018 were included in the independent testing cohort. A clinical model was validated for prognosis prediction in prognostic testing cohort (163 CRC patients from 2014 to 2018, study 3). We performed a combined radiomics model that was composed of radiomics score, tumor stage, and CXCL8-derived radiomics model to make comparison with the clinical model. Results: In our study, we identified the CXCL8 as a hub gene in affecting prognosis, which is mainly through regulating cytokine-cytokine receptor interaction and neutrophil migration pathway. The radiomics model incorporated 12 radiomics features screened by LASSO according to CXCL8 expression in the training cohort and showed good performance in testing and IHC testing cohorts. Finally, the CXCL8-derived radiomics model combined with tumor stage performed high ability in predicting the prognosis of CRC patients in the prognostic testing cohort, with an area under the curve (AUC) of 0.774 [95% confidence interval (CI): 0.674-0.874]. Kaplan-Meier analysis of the overall survival probability in CRC patients stratified by combined model revealed that high-risk patients have a poor prognosis compared with low-risk patients (Log-rank P < 0.0001). Conclusion: We demonstrated that the radiomics model reflected by CXCL8 combined with tumor stage information is a reliable approach to predict the prognosis in CRC patients and has a potential ability in assisting clinical decision-making.
Collapse
Affiliation(s)
- Yanpeng Chu
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China.,Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Jie Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Zhaoping Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Bin Huang
- Department of Gastrointestinal Surgery, Nanchong Central Hospital, Nanchong, China
| | - Jiaojiao Zhao
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Qin Liu
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Huaping Wu
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Jiangping Fu
- Department of Oncology, Dazhou Central Hospital, Dazhou, China
| | - Yin Zhang
- Department of Oncology, Dazhou Central Hospital, Dazhou, China
| | - Yefan Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China.,School of Medicine, Sichuan University of Arts and Science, Dazhou, China
| |
Collapse
|
35
|
Zhu Z, Hou Q, Guo H. NT5DC2 knockdown inhibits colorectal carcinoma progression by repressing metastasis, angiogenesis and tumor-associated macrophage recruitment: A mechanism involving VEGF signaling. Exp Cell Res 2020; 397:112311. [PMID: 32991874 DOI: 10.1016/j.yexcr.2020.112311] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed tumors among human worldwide. Angiogenesis and tumor-associated macrophage (TAM) recruitment are closely associated with CRC development. Nevertheless, the mechanisms revealing CRC progression are still not fully understood. 5'-Nucleotidase domain containing 2 (NT5DC2), a member of the NT5DC family, modulates various cellular events to mediate tumor growth, and thus serves as a disgnostic biomarker. Here, we explored the potential of NT5DC2 on tumor progression in CRC. We first found that NT5DC2 expression was significantly up-regulated in CRC tissues and cell lines. CRC patients with higher NT5DC2 expression showed poor overall survival. Furthermore, CRC cell lines stably transfected with shNT5DC2 lentivirus plasmids exhibited markedly reduced cell proliferation, migration and invasion compared with the negative control group. Hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (VEGF-A) expression levels were remarkably reduced in CRC cells with NT5DC2 deletion, along with evidently reduced tube formation in the HUVECs cultured in the collected conditional medium. The expression levels of CC chemokine ligand 2 (CCL2) and its receptor CCR2 were found to be greatly down-regulated in CRC cells transfected with shNT5DC2. Moreover, NT5DC2 knockdown markedly suppressed the activation of protein kinase-B/nuclear transcription factor κB (AKT/NF-κB) signaling in CRC cells. Furthermore, we found that NT5DC2 deletion obviously reduced the TAM recruitments through suppressing CCL2/CCR2 and AKT/NF-κB signaling pathways. Intriguingly, our in vitro experiments demonstrated that VEGF reduction was necessary for shNT5DC2-inhibited cell proliferation, migration, invasion, angiogenesis and TAM recruitment. In vivo studies also confirmed that NT5DC2 knockdown effectively reduced the tumor growth and VEGF expression in a xonegraft mouse model with CRC. Lung metastasis of CRC cells was also hindered by NT5DC2 deletion in vivo. Collectively, our results indicated a previously unrecognized NT5DC2/VEGF/CCL2 axis involved in CRC development and metastasis.
Collapse
Affiliation(s)
- Zhenyu Zhu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Qingsheng Hou
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Hongliang Guo
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
36
|
Li C, Ci Y, Liu X, Chen C, Liu C, Li X, Li Q, Song Y. Inositol Hexakisphosphate and Inositol Enhance the Inhibition of Colorectal Cancer Growth and Liver Metastasis by Capecitabine in a Mouse Model. Nutr Cancer 2020; 73:2306-2314. [DOI: 10.1080/01635581.2020.1820055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chunlei Li
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Yifan Ci
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Xiaohan Liu
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Chen Chen
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Cuiping Liu
- School of Nursing, Qingdao University, Qingdao, Shandong, China
| | - Xin Li
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Qianqian Li
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Yang Song
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
37
|
Li Y, Liu J, Xiao Q, Tian R, Zhou Z, Gan Y, Li Y, Shu G, Yin G. EN2 as an oncogene promotes tumor progression via regulating CCL20 in colorectal cancer. Cell Death Dis 2020; 11:604. [PMID: 32732864 PMCID: PMC7393501 DOI: 10.1038/s41419-020-02804-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Engrailed-2 (EN2), a member of the engrailed homeobox family, has been shown to be abnormally expressed in a variety of cancers. However, the expression and the clinical significance of EN2 in colorectal cancer (CRC) are largely unknown. Firstly, we found that EN2 acted as an oncogene in CRC. EN2 was upregulated in colorectal cancer tissues compared with adjacent normal tissues. Higher EN2 expression was significantly associated with poorer survival rate. Knockdown of EN2 markedly inhibited proliferation and migration capacities of SW480 cells in vitro, and suppressed tumorigenicity in vivo. Mechanistically, Chemokine ligand 20 (CCL20), a member of the C-C motif chemokine subfamily, was identified as a direct target gene of EN2 in CRC. CCL20 expression was positively correlated with EN2 expression in CRC tissues. Moreover, EN2 promoted the proliferation and migration of CRC cells by regulating the expression of CCL20 in vitro. These results suggest that EN2 plays a critical role in the CRC tumor progression and may serve as a potential target for CRC prevention and therapy.
Collapse
Affiliation(s)
- Yimin Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jiaxin Liu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qing Xiao
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ruotong Tian
- School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Zhengwei Zhou
- School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Yaqi Gan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yuanyuan Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Guang Shu
- School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China.
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China. .,China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
38
|
Kadomoto S, Izumi K, Mizokami A. The CCL20-CCR6 Axis in Cancer Progression. Int J Mol Sci 2020; 21:ijms21155186. [PMID: 32707869 PMCID: PMC7432448 DOI: 10.3390/ijms21155186] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Chemokines, which are basic proteins that exert their effects via G protein-coupled receptors and a subset of the cytokine family, are mediators deeply involved in leukocyte migration during an inflammatory reaction. Chemokine (C-C motif) ligand 20 (CCL20), also known as macrophage inflammatory protein (MIP)-3α, liver activation regulated chemokine (LARC), and Exodus-1, is a small protein that is physiologically expressed in the liver, colon, and skin, is involved in tissue inflammation and homeostasis, and has a specific receptor C-C chemokine receptor 6 (CCR6). The CCL20-CCR6 axis has long been known to be involved in inflammatory and infectious diseases, such as rheumatoid arthritis and human immunodeficiency virus infections. Recently, however, reports have shown that the CCL20-CCR6 axis is associated with several cancers, including hepatocellular carcinoma, colorectal cancer, breast cancer, pancreatic cancer, cervical cancer, and kidney cancer. The CCL20-CCR6 axis promotes cancer progression directly by enhancing migration and proliferation of cancer cells and indirectly by remodeling the tumor microenvironment through immune cell control. The present article reviewed the role of the CCL20-CCR6 axis in cancer progression and its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - Kouji Izumi
- Correspondence: ; Tel.: +81-76-265-2393; Fax: +81-76-234-4263
| | | |
Collapse
|
39
|
Li J, Huang L, Zhao H, Yan Y, Lu J. The Role of Interleukins in Colorectal Cancer. Int J Biol Sci 2020; 16:2323-2339. [PMID: 32760201 PMCID: PMC7378639 DOI: 10.7150/ijbs.46651] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
Abstract
Despite great progress has been made in treatment strategies, colorectal cancer (CRC) remains the predominant life-threatening malignancy with the feature of high morbidity and mortality. It has been widely acknowledged that the dysfunction of immune system, including aberrantly expressed cytokines, is strongly correlated with the pathogenesis and progression of colorectal cancer. As one of the most well-known cytokines that were discovered centuries ago, interleukins are now uncovering new insights into colorectal cancer therapy. Herein, we divide currently known interleukins into 6 families, including IL-1 family, IL-2 family, IL-6 family, IL-8 family, IL-10 family and IL-17 family. In addition, we comprehensively reviewed the oncogenic or antitumour function of each interleukin involved in CRC pathogenesis and progression by elucidating the underlying mechanisms. Furthermore, by providing interleukins-associated clinical trials, we have further driven the profound prospect of interleukins in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Clinical Medicine, Grade 2017, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ling Huang
- Department of Clinical Medicine, Grade 2017, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hanzhang Zhao
- Department of Clinical Medicine, Grade 2017, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuheng Yan
- Department of Clinical Medicine, Grade 2017, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450001, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
40
|
Yin H, Tang Y, Guo Y, Wen S. Immune Microenvironment of Thyroid Cancer. J Cancer 2020; 11:4884-4896. [PMID: 32626535 PMCID: PMC7330689 DOI: 10.7150/jca.44506] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid cancer (TC) is a highly heterogeneous endocrine malignancy with an increased incidence in women than in men. Previous studies regarding the pathogenesis of TC focused on the pathological changes of the tumor cells while ignoring the importance of the mesenchymal cells in tumor microenvironment. However, more recently, the stable environment provided by the interaction of thyroid cancer cells with the peri-tumoral stroma has been widely studied. Studies have shown that components of an individual's immune system are closely related to the occurrence, invasion, and metastasis of TC, which may affect response to treatment and prognosis of the patients. This article presents a comprehensive review of the immune cells, secreted soluble mediators and immune checkpoints in the immune microenvironment, mechanisms that promoting TC cells immune evasion and existing immunotherapy strategies. Besides it provides new strategies for TC prognosis prediction and immunotherapy.
Collapse
Affiliation(s)
- Hongyu Yin
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Yemei Tang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Shuxin Wen
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China.,General Hospital, Shenzhen University, Shenzhen 518061, Guangdong, P.R. China
| |
Collapse
|
41
|
Shi X, Gong L, Liu Y, Hou K, Fan Y, Li C, Wen T, Qu X, Che X. 4-phenylbutyric acid promotes migration of gastric cancer cells by histone deacetylase inhibition-mediated IL-8 upregulation. Epigenetics 2020; 15:632-645. [PMID: 31814524 PMCID: PMC7574398 DOI: 10.1080/15592294.2019.1700032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). It is associated with gene transcription and expression. 4-Phenylbutyric acid (4-PBA), an HDAC inhibitor (HDACi), can inhibit cancer cell proliferation by increasing the level of histone acetylation. However, 4-PBA did not show any efficacy in clinical trials. In this study, we found that 4-PBA induced epithelial-mesenchymal transition (EMT) in gastric cancer cell lines MGC-803 and BGC-823 with ectopic E-cadherin expression. Based on the expression profile microarray, IL-8 was the most significantly up-regulated gene by 4-PBA, and was selected for further investigation. Knockdown of IL-8 partially prevented 4-PBA-induced-EMT by blocking the activation of the downstream Gab2-ERK pathway. Furthermore, CHIP assay confirmed that acetyl-H3 directly combined with the promoter region of IL-8 to promote its transcription. Therefore, the results of this study demonstrated that 4-PBA-mediated inhibition of HDAC activity could induce EMT in gastric cancer cells via acetyl-histone-mediated IL-8 upregulation, and the downstream Gab2/ERK activation. These data indicated the possible reason for the failure of 4-PBA in clinical trials.
Collapse
Affiliation(s)
- Xiaonan Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Libao Gong
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yibo Fan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Ti Wen
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
42
|
Shen CJ, Chang KY, Lin BW, Lin WT, Su CM, Tsai JP, Liao YH, Hung LY, Chang WC, Chen BK. Oleic acid-induced NOX4 is dependent on ANGPTL4 expression to promote human colorectal cancer metastasis. Am J Cancer Res 2020; 10:7083-7099. [PMID: 32641980 PMCID: PMC7330862 DOI: 10.7150/thno.44744] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Colorectal cancer (CRC) progression and related mortality are highly associated with metabolic disorders. However, the molecular mechanism involved in the regulation of hyperlipidemia-associated CRC metastasis remains unclear. This study aimed to investigate the effects of angiopoietin-like 4 (ANGPTL4) on NADPH oxidase 4 (NOX4) expression and reactive oxygen species (ROS) production, which might provide new targets for improving outcomes in patients with hyperlipidemia-associated CRC metastasis. Methods: The clinical relevance of relationship between NOX4 expression and ANGPTL4 was examined in CRC patients by the Oncomine and TCGA data set. Expressions of NOX4, epithelial-mesenchymal transition (EMT) markers, and gene regulation of NOX4 in free fatty acids (FFAs)-treated CRC cells were determined. The FFAs-triggered metastatic ability of CRC cells under treatments of antioxidants or knockdown of NOX4, ANGPTL4, and MMPs was evaluated in vitro and in vivo. In addition, effects of antioxidants and depletion of metastasis-associated molecules on the correlation between ROS production and FFAs-promoted CRC metastasis were also clarified. Results: In this study, we found that the induction of NOX4, followed by the increased ROS was essential for oleic acid (OA)-promoted CRC cell metastasis. The depletion of ANGPTL4 significantly inhibited c-Jun-mediated transactivation of NOX4 expression, accompanied with reduced levels of ROS, MMP-1, and MMP-9, resulting in the disruption of OA-promoted CRC cell metastasis. Moreover, knockdown of ANGPTL4, NOX4, MMP-1, and MMP-9 or the treatment of antioxidants dramatically inhibited circulating OA-enhanced tumor cell extravasation and metastatic seeding of tumor cells in lungs, indicating that the ANGPTL4/NOX4 axis was critical for dyslipidemia-associated tumor metastasis. Conclusion: The coincident expression of NOX4 and ANGPTL4 in CRC tumor specimens provides the insight into the potential therapeutic targets for the treatment of dyslipidemia-associated CRC metastasis.
Collapse
|
43
|
Mitchell A, Hasanali SL, Morera DS, Baskar R, Wang X, Khan R, Talukder A, Li CS, Manoharan M, Jordan AR, Wang J, Bollag RJ, Singh N, Albo D, Ghosh S, Lokeshwar VB. A chemokine/chemokine receptor signature potentially predicts clinical outcome in colorectal cancer patients. Cancer Biomark 2020; 26:291-301. [PMID: 31524146 DOI: 10.3233/cbm-190210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Differential expression of chemokines/chemokine receptors in colorectal cancer (CRC) may enable molecular characterization of patients' tumors for predicting clinical outcome. OBJECTIVE To evaluate the prognostic ability of these molecules in a CRC cohort and the CRC TCGA-dataset. METHODS Chemokine (CXCL-12α, CXCL-12β, IL-17A, CXCL-8, GM-CSF) and chemokine receptor (CXCR-4, CXCR-7) transcripts were analyzed by RT-qPCR in 76 CRC specimens (normal: 27, tumor: 49; clinical cohort). RNA-Seq data was analyzed from the TCGA-dataset (n= 375). Transcript levels were correlated with outcome; analyses: univariate, multivariable, Kaplan-Meier. RESULTS In the clinical cohort, chemokine/chemokine receptor levels were elevated 3-10-fold in CRC specimens (P⩽ 0.004) and were higher in patients who developed metastasis (P= 0.03 - < 0.0001). CXCR-4, CXCR-7, CXCL-12α, CXCL-8, IL-17 and GM-CSF levels predicted metastasis (P⩽ 0.0421) and/or overall survival (OS; P⩽ 0.0373). The CXCR-4+CXCR-7+CXCL-12 marker (CXCR-4/7+CXCL-12 (α/b) signature) stratified patients into risk for metastasis (P= 0.0014; OR, 2.72) and OS (P= 0.0442; OR, 2.7); sensitivity: 86.67%, specificity: 97.06%. In the TCGA-dataset, the CXCR-4/7+CXCL-12 signature predicted metastasis (P= 0.011; OR, 2.72) and OS (P= 0.0006; OR: 4.04). In both datasets, the signature was an independent predictor of clinical outcome. CONCLUSIONS Results of 451 specimens from both cohorts reveal that the CXCR-4/7+CXCL-12 signature potentially predicts outcome in CRC patients and may allow earlier intervention.
Collapse
Affiliation(s)
- Andrew Mitchell
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sarrah L Hasanali
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Daley S Morera
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Rohitha Baskar
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xin Wang
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Rahil Khan
- Bio-Repository Alliance of Georgia for Oncology at Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Asif Talukder
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Charles S Li
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | | | - Andre R Jordan
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center, University of Miami-Miller School of Medicine, Miami, FL, USA
| | - Jiaojiao Wang
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Roni J Bollag
- Bio-Repository Alliance of Georgia for Oncology at Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Nagendra Singh
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Daniel Albo
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Santu Ghosh
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Vinata B Lokeshwar
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
44
|
Construction of a CXC Chemokine-Based Prediction Model for the Prognosis of Colon Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6107865. [PMID: 32337262 PMCID: PMC7150705 DOI: 10.1155/2020/6107865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/05/2020] [Indexed: 01/01/2023]
Abstract
Colon cancer is the third most common cancer, with a high incidence and mortality. Construction of a specific and sensitive prediction model for prognosis is urgently needed. In this study, profiles of patients with colon cancer with clinical and gene expression data were downloaded from Gene Expression Omnibus and The Cancer Genome Atlas (TCGA). CXC chemokines in patients with colon cancer were investigated by differential expression gene analysis, overall survival analysis, receiver operating characteristic analysis, gene set enrichment analysis (GSEA), and weighted gene coexpression network analysis. CXCL1, CXCL2, CXCL3, and CXCL11 were upregulated in patients with colon cancer and significantly correlated with prognosis. The area under curve (AUC) of the multigene forecast model of CXCL1, CXCL11, CXCL2, and CXCL3 was 0.705 in the GSE41258 dataset and 0.624 in TCGA. The prediction model was constructed using the risk score of the multigene model and three clinicopathological risk factors and exhibited 92.6% and 91.8% accuracy in predicting 3-year and 5-year overall survival of patients with colon cancer, respectively. In addition, by GSEA, expression of CXCL1, CXCL11, CXCL2, and CXCL3 was correlated with several signaling pathways, including NOD-like receptor, oxidative phosphorylation, mTORC1, interferon-gamma response, and IL6/JAK/STAT3 pathways. Patients with colon cancer will benefit from this prediction model for prognosis, and this will pave the way to improve the survival rate and optimize treatment for colon cancer.
Collapse
|
45
|
Wu H, Zhang X, Han D, Cao J, Tian J. Tumour-associated macrophages mediate the invasion and metastasis of bladder cancer cells through CXCL8. PeerJ 2020; 8:e8721. [PMID: 32201645 PMCID: PMC7073239 DOI: 10.7717/peerj.8721] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Tumour-associated macrophages (TAMs) are associated with both the progression and poor prognosis of a variety of solid tumours. This study aimed to investigate and clarify the tumour-promoting role of CXCL8 secreted by TAMs in the urothelial carcinoma microenvironment of the bladder. Immunohistochemistry (n = 55) was used to detect Chemokine (C-X-C motif) ligand 8 (CXCL8), CD163 (a TAM marker), Matrixmetalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF), and E-cadherin in cancerous and adjacent tissues of bladder cancer patients. TAMs-like PBM (peripheral blood mononuclear)-derived macrophages were developed using in vitro experiments. T24, 5637, and UM-UC-3 were treated with conditioned medium (CM) for the experimental intervention group, without CM for the blank control group, and with CM and an anti-CXCL8 neutralizing antibody for the experimental control group, respectively. The immunohistochemical study showed that the expression of CXCL8 was significantly upregulated as the number of infiltrating TAMs increased in the tumour tissues. A high expression of CXCL8 significantly correlated with an increase in the expression of MMP-9 and VEGF and a decrease in expression of E-cadherin in the microenvironment. This revealed that TAM-derived CXCL8 is highly associated with bladder cancer migration, invasion, and angiogenesis. The concentration of CXCL8 was significantly higher in CM collected from TAM-like PBM-derived macrophages than that from THP-1 cells. In subsequent in vitro experiments, we found that CM derived from TAM-like PBM-derived macrophages can also increase the migration rate, invasiveness, and pro-angiogenic properties of tumour cells. Additionally, the effect of CXCL8 was significantly diminished by the addition of an anti-CXCL8 neutralizing antibody to CM. The infiltration of TAMs in the tumour microenvironment leads to the elevation of CXCL8, which in turn promotes the secretion of MMP-9, VEGF, and E-cadherin by bladder cancer cells. This alters the migration, invasion, and pro-angiogenic capacity of bladder cancer cells and accelerates cancer progression.
Collapse
Affiliation(s)
- Hao Wu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.,Urology Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, Gansu, P.R. China
| | - Xiangxiang Zhang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.,Urology Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, Gansu, P.R. China
| | - Dali Han
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.,Urology Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, Gansu, P.R. China
| | - Jinlong Cao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.,Urology Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, Gansu, P.R. China
| | - Junqiang Tian
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.,Urology Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, Gansu, P.R. China
| |
Collapse
|
46
|
Shen T, Cheng X, Liu X, Xia C, Zhang H, Pan D, Zhang X, Li Y. Circ_0026344 restrains metastasis of human colorectal cancer cells via miR-183. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4038-4045. [PMID: 31608699 DOI: 10.1080/21691401.2019.1669620] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: CircRNA circ_0026344 was previously revealed as a tumour-suppressive gene in colorectal cancer (CRC) progression. The purpose of this research was to investigate the role of circ_0026344 in CRC cells metastasis induced by chemokines. Methods: Two human CRC cell lines SW480 and Caco-2 were treated by CCL20 and CXCL8. Cell proliferation, migration/invasion, expression of epithelial-mesenchymal transition (EMT) inducers and the expression of circ_0026344 were measured using sulforhodamine B assay, Transwell chamber, western blot and qRT-PCR, respectively. The effects of circ_0026344 on CRC cells migration/invasion and the expression of EMT inducers were evaluated. Moreover, the downstream miRNA and signalling pathways of circ_0026344 were studied. Results: CCL20 and CXCL8 synergized to facilitate the proliferation, migration and invasion of CRC cells. At the meantime, E-cadherin was downregulated, whereas N-cadherin, Vimentin and Snail were up-regulated by CCL20 and CXCL8 co-stimulation, which was accompanied by the mobilization of PI3K/AKT/ERK signalling. More interestingly, the expression of circ_0026344 was down-regulated by CCL20 and CXCL8 co-stimulation. Silence of circ_0026344 increased the migratory and invasive capacities of CRC cells and increased EMT process as well. Overexpression of circ_0026344 led to a contrary impact. miR-183 was negatively regulated by circ_0026344, and the inhibitory effects of circ_0026344 overexpression on Wnt/β-catenin pathway were reversed when miR-183 was overexpressed. Conclusion: Overexpression of circ_0026344 restrained CRC metastasis and EMT induced by CCL20 and CXCL8 synergistical treatment. miR-183 was a downstream effector of circ_0026344, and the anti-tumour function of circ_0026344 might be involved in the repressed Wnt/β-catenin signalling. Highlights CCL20 and CXCL8 synergize to decrease the expression of circ_0026344; Silence of circ_0026344 promotes CRC cells migration, invasion and EMT process; miR-183 is a downstream effector of circ_0026344.
Collapse
Affiliation(s)
- Tao Shen
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Xianshuo Cheng
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Xin Liu
- Tumor Institute, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Cuifeng Xia
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Hongtao Zhang
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Dingguo Pan
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Xuan Zhang
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Yunfeng Li
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| |
Collapse
|
47
|
Do HTT, Lee CH, Cho J. Chemokines and their Receptors: Multifaceted Roles in Cancer Progression and Potential Value as Cancer Prognostic Markers. Cancers (Basel) 2020; 12:E287. [PMID: 31991604 PMCID: PMC7072521 DOI: 10.3390/cancers12020287] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 12/19/2022] Open
Abstract
Chemokines are chemotactic cytokines that mediate immune cell chemotaxis and lymphoid tissue development. Recent advances have indicated that chemokines and their cognate receptors play critical roles in cancer-related inflammation and cancer progression. On the basis of these findings, the chemokine system has become a new potential drug target for cancer immunotherapy. In this review, we summarize the essential roles of the complex network of chemokines and their receptors in cancer progression. Furthermore, we discuss the potential value of the chemokine system as a cancer prognostic marker. The chemokine system regulates the infiltration of immune cells into the tumor microenvironment, which induces both pro- and anti-immunity and promotes or suppresses tumor growth and proliferation, angiogenesis, and metastasis. Increasing evidence indicates the promising prognostic value of the chemokine system in cancer patients. While CCL2, CXCL10, and CX3CL1/CX3CR1 can serve as favorable or unfavorable prognostic factors depending on the cancer types, CCL14 and XCL1 possess good prognostic value. Other chemokines such as CXCL1, CXCL8, and CXCL12 are poor prognostic markers. Despite vast advances in our understanding of the complex nature of the chemokine system in tumor biology, knowledge about the multifaceted roles of the chemokine system in different types of cancers is still limited. Further studies are necessary to decipher distinct roles within the chemokine system in terms of cancer progression and to validate their potential value in cancer prognosis.
Collapse
Affiliation(s)
| | | | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi 10326, Korea; (H.T.T.D.); (C.H.L.)
| |
Collapse
|
48
|
Li J, Liu Q, Huang X, Cai Y, Song L, Xie Q, Liu F, Chen X, Xu P, Zeng F, Chu Y, Zeng F. Transcriptional Profiling Reveals the Regulatory Role of CXCL8 in Promoting Colorectal Cancer. Front Genet 2020; 10:1360. [PMID: 32038715 PMCID: PMC6985586 DOI: 10.3389/fgene.2019.01360] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/11/2019] [Indexed: 01/22/2023] Open
Abstract
C-X-C motif chemokine ligand 8 (CXCL8) is involved in tumor proliferation, migration, and invasion. However, the function of CXCL8 in colorectal cancer (CRC) is controversial. Here, we analyzed RNA-sequencing (RNA-seq) data to identify differentially expressed genes and pathways according to gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with CRC. The levels of the mRNA encoding CXCL8 were significantly increased in early and advanced stages of CRC, as well as in metastases and nonmetastasis cases using RNA-seq analysis (n = 91). These findings were consistent with immunohistochemical analysis of CXCL8 expression (n = 87). Protein-protein interaction (PPI) prediction combined with transcriptional profiling data revealed that CXCL8 levels positively correlated with cAMP responsive element binding protein 1 (CREB1)/ribosomal protein S6 kinase B1 (RPS6KB1) expression, which promotes cell proliferation and differentiation in high expression, while inversely correlated with the expression of Bcl2 associated agonist of cell death (BAD) protein to inhibit apoptosis during the progression of CRC. These findings provide compelling clinical and molecular evidence to support the conclusion that CXCL8 contributes to the genesis and progression of CRC.
Collapse
Affiliation(s)
- Jie Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Qin Liu
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Xuan Huang
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yurui Cai
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Li Song
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Qianrong Xie
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Fuchuan Liu
- Department of Pathology, Dazhou Central Hospital, Dazhou, China
| | - Xiaochun Chen
- Department of Pathology, Dazhou Central Hospital, Dazhou, China
| | - Peng Xu
- Department of Pathology, Dazhou Central Hospital, Dazhou, China
| | - Fanwei Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Yanpeng Chu
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China.,School of Medicine, Sichuan University of Arts and Science, Dazhou, China
| |
Collapse
|
49
|
Chen W, Qin Y, Liu S. CCL20 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1231:53-65. [PMID: 32060846 DOI: 10.1007/978-3-030-36667-4_6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CCL20, as a chemokine, plays an important role in rheumatoid arthritis, psoriasis, and other diseases by binding to its receptor CCR6. Recent 10 years' research has demonstrated that CCL20 also contributes to the progression of many cancers, such as liver cancer, colon cancer, breast cancer, pancreatic cancer, and gastric cancer. This article reviews and discusses the previous studies on CCL20 roles in cancers from the aspects of its specific effects on various cancers, its remodeling on tumor microenvironment (TME), its synergistic effects with other cytokines in tumor microenvironment, and the specific mechanisms of CCL20 signal activation, illustrating CCL20 signaling in TME from multiple directions.
Collapse
Affiliation(s)
- Weilong Chen
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institute, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yuanyuan Qin
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institute, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Shanghai, China. .,Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institute, Shanghai, China. .,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
50
|
Jiang X, Liu G, Hu Z, Chen G, Chen J, Lv Z. cGAMP inhibits tumor growth in colorectal cancer metastasis through the STING/STAT3 axis in a zebrafish xenograft model. FISH & SHELLFISH IMMUNOLOGY 2019; 95:220-226. [PMID: 31586458 DOI: 10.1016/j.fsi.2019.09.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
The leading cause of mortality due to colorectal cancer (CRC) is highly associated with the development of liver metastases. Recently, we described cGAMP that is closely related to the metastatic state wherein the progress of metastatic tumors is associated with favorable outcomes in a zebrafish xenograft model. cGAMP was administered and the expression levels of type-I interferons were induced amongst tumor tissues to illuminate the overall measure of the induced STING/STAT3 axis in colorectal liver metastases. Furthermore, cGAMP-STING dependent STAT3 activation resulted in the inhibition of tumor cell proliferation, viability, and invasion in vitro. The subtotal reduction in tumor growth attributed to a large number of infiltrating inflammatory cells in vivo. We showed that cGAMP inhibited migration through angiogenesis by up-regulating IL-2, TNF-α, and IFN-γ, whereas STAT3 down-regulation inhibited CXCL8, BCL-2, and VEGFA expression. The importance of cGAMP in inhibiting the invasion front of CRC confirmed that the cGAMP dependent activation of STING/STAT3 axis played a key role in the inhibition of tumor progression.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- College of Lifescience and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China.
| | - Guangping Liu
- College of Life Sciences, Yan'an University, Yan'an, 716000, China.
| | - Zhiyi Hu
- College of Lifescience and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China.
| | - Guiqian Chen
- College of Lifescience and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China.
| | - Jianqing Chen
- College of Lifescience and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China.
| | - Zhengbing Lv
- College of Lifescience and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China.
| |
Collapse
|