1
|
Li H, Wang X, Zhu J, Yang B, Lou J. Identifying key inflammatory genes in psoriasis via weighted gene co-expression network analysis: Potential targets for therapy. BIOMOLECULES & BIOMEDICINE 2024; 24:1133-1149. [PMID: 38829444 PMCID: PMC11379011 DOI: 10.17305/bb.2024.10327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/24/2024] [Accepted: 03/24/2024] [Indexed: 06/05/2024]
Abstract
Psoriasis is a globally prevalent chronic inflammatory skin disease. This study aimed to scrutinize the hub genes related to inflammation and potential molecular mechanisms in psoriasis. Utilizing mRNA expression profiles from public datasets GSE13355, GSE78097, and GSE14905, we set up a comprehensive analysis. Initially, we selected differentially expressed genes (DEGs) from psoriasis and control samples in GSE13355, followed by calculating inflammatory indices using genomic set variation analysis (GSVA). Weighted gene co-expression network analysis (WGCNA) was then applied to link significant modules with the inflammatory index. This process helped us identify differentially expressed inflammation-related genes (DE-IRGs). A protein-protein interaction (PPI) network was established, with the molecular complex detection (MCODE) plug-in pinpointing six chemokine genes (CCR7, CCL2, CCL19, CXCL8, CXCL1, and CXCL2) as central hub genes. These genes demonstrated pronounced immunohistochemical staining in psoriatic tissues compared to normal skin. Notably, the CCR7 gene exhibited the highest potential for m6A modification sites. Furthermore, we constructed transcription factor-microRNA-mRNA networks, identifying 139 microRNAs and 52 transcription factors associated with the hub genes. For the LASSO logistic regression model, the area under the curve (AUC) in the training set was 1, and in the two validation cohorts GSE78097 and GSE14905 were 1 and 0.872, respectively. In conclusion, our study highlights six chemokine genes (CCR7, CCL2, CCL19, CXCL8, CXCL1, and CXCL2) as potential biomarkers in psoriasis, providing insights into the immune and inflammatory responses as pivotal instances in disease pathogenesis. These findings pave the way for exploring new therapeutic targets, particularly focusing on chemokine-associated pathways in psoriasis treatment.
Collapse
Affiliation(s)
- Huidan Li
- Clinical Laboratory Medicine Center, Shanghai General Hospital, Shanghai, China
| | - Xiaorui Wang
- Clinical Laboratory Medicine Center, Shanghai General Hospital, Shanghai, China
| | - Jing Zhu
- Clinical Laboratory Medicine Center, Jiading Branch of Shanghai General Hospital, Shanghai, China
| | - Bingzhe Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiatao Lou
- Clinical Laboratory Medicine Center, Shanghai General Hospital, Shanghai, China
| |
Collapse
|
2
|
Yuan LH, Zhang LJ. Effects of CSF1R/p-ERK1/2 signaling pathway on RF/6A cells under high glucose conditions. Eur J Ophthalmol 2024; 34:1165-1173. [PMID: 38099815 DOI: 10.1177/11206721231219717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
OBJECTIVE This study analyzed how high glucose affects CSF1R and p-ERK1/2 expression in RF/6A cells. METHODS The cells were cultured as high glucose (HG) and normal control (C) groups, and CSF1R shRNA was introduced. Real time PCR was used to detect the expression of CSF1R and p-ERK1/2 mRNA. Western blot was used to detect the expression of CSF1R and p-ERK1/2 proteins. Cell Counting Kit 8 (CCK-8) method was used to detect cell proliferation, while flow cytometry was used to detect apoptosis in HREC. RESULTS Real-time PCR showed significantly raised CSF1R mRNA expression in HG. CSF1R inhibition lowered HG + LV shCSF1R CSF1R mRNA levels. Western blotting revealed higher CSF1R and p-ERK1/2 protein expression in HG than in C. Their expression level dropped after CSF1R inhibition. The number of tube-forming cells was higher in HG than in C, which reduced after CSF1R suppression. Inhibiting CSF1R also decreased cell proliferation and raised apoptosis. CONCLUSION Overall, under high glucose, CSF1R and p-ERK1/2 were highly expressed, leading to reduced cellular activity, and CSF1R inhibition helped alleviate this effect.
Collapse
Affiliation(s)
- Lin Hui Yuan
- Dalian Medical University, Dalian, China
- Department of Ophthalmology, the Third People's Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Li Jun Zhang
- Dalian Medical University, Dalian, China
- Department of Ophthalmology, the Third People's Hospital Affiliated to Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Kraft T, Grützmann K, Meinhardt M, Meier F, Westphal D, Seifert M. Personalized identification and characterization of genome-wide gene expression differences between patient-matched intracranial and extracranial melanoma metastasis pairs. Acta Neuropathol Commun 2024; 12:67. [PMID: 38671536 PMCID: PMC11055243 DOI: 10.1186/s40478-024-01764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma is the most serious type of skin cancer that frequently spreads to other organs of the human body. Especially melanoma metastases to the brain (intracranial metastases) are hard to treat and a major cause of death of melanoma patients. Little is known about molecular alterations and altered mechanisms that distinguish intra- from extracranial melanoma metastases. So far, almost all existing studies compared intracranial metastases from one set of patients to extracranial metastases of an another set of melanoma patients. This neglects the important facts that each melanoma is highly individual and that intra- and extracranial melanoma metastases from the same patient are more similar to each other than to melanoma metastases from other patients in the same organ. To overcome this, we compared the gene expression profiles of 16 intracranial metastases to their corresponding 21 patient-matched extracranial metastases in a personalized way using a three-state Hidden Markov Model (HMM) to identify altered genes for each individual metastasis pair. This enabled three major findings by considering the predicted gene expression alterations across all patients: (i) most frequently altered pathways include cytokine-receptor interaction, calcium signaling, ECM-receptor interaction, cAMP signaling, Jak-STAT and PI3K/Akt signaling, (ii) immune-relevant signaling pathway genes were downregulated in intracranial metastases, and (iii) intracranial metastases were associated with a brain-like phenotype gene expression program. Further, the integration of all differentially expressed genes across the patient-matched melanoma metastasis pairs led to a set of 103 genes that were consistently down- or up-regulated in at least 11 of the 16 of the patients. This set of genes contained many genes involved in the regulation of immune responses, cell growth, cellular signaling and transport processes. An analysis of these genes in the TCGA melanoma cohort showed that the expression behavior of 11 genes was significantly associated with survival. Moreover, a comparison of the 103 genes to three closely related melanoma metastasis studies revealed a core set of eight genes that were consistently down- or upregulated in intra- compared to extracranial metastases in at least two of the three related studies (down: CILP, DPT, FGF7, LAMP3, MEOX2, TMEM119; up: GLDN, PMP2) including FGF7 that was also significantly associated with survival. Our findings contribute to a better characterization of genes and pathways that distinguish intra- from extracranial melanoma metastasis and provide important hints for future experimental studies to identify potential targets for new therapeutic approaches.
Collapse
Affiliation(s)
- Theresa Kraft
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Konrad Grützmann
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Matthias Meinhardt
- Department of Pathology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Skin Cancer Center at the University Cancer Center (UCC) Dresden and the National Center for Tumor Diseases Dresden (NCT), Fetscherstr. 74, 01307, Dresden, Germany
| | - Dana Westphal
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT), Fetscherstr. 74, 01307, Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- National Center for Tumor Diseases Dresden (NCT), Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
4
|
Kang X, Huang Y, Wang H, Jadhav S, Yue Z, Tiwari AK, Babu RJ. Tumor-Associated Macrophage Targeting of Nanomedicines in Cancer Therapy. Pharmaceutics 2023; 16:61. [PMID: 38258072 PMCID: PMC10819517 DOI: 10.3390/pharmaceutics16010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The tumor microenvironment (TME) is pivotal in tumor growth and metastasis, aligning with the "Seed and Soil" theory. Within the TME, tumor-associated macrophages (TAMs) play a central role, profoundly influencing tumor progression. Strategies targeting TAMs have surfaced as potential therapeutic avenues, encompassing interventions to block TAM recruitment, eliminate TAMs, reprogram M2 TAMs, or bolster their phagocytic capabilities via specific pathways. Nanomaterials including inorganic materials, organic materials for small molecules and large molecules stand at the forefront, presenting significant opportunities for precise targeting and modulation of TAMs to enhance therapeutic efficacy in cancer treatment. This review provides an overview of the progress in designing nanoparticles for interacting with and influencing the TAMs as a significant strategy in cancer therapy. This comprehensive review presents the role of TAMs in the TME and various targeting strategies as a promising frontier in the ever-evolving field of cancer therapy. The current trends and challenges associated with TAM-based therapy in cancer are presented.
Collapse
Affiliation(s)
- Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA;
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Yongzhuo Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangzhou 528400, China;
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Huiyuan Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Sanika Jadhav
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA;
| | - Zongliang Yue
- Department of Health Outcome and Research Policy, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA;
| | - Amit K. Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas of Medical Sciences, Little Rock, AR 72205, USA;
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
5
|
Liu Y, Zhan Z, Kang Z, Li M, Lv Y, Li S, Tong L, Feng F, Li Y, Zhang M, Xue Y, Chen Y, Zhang T, Song P, Su Y, Shen Y, Sun Y, Yang X, Chen Y, Yao S, Yang H, Wang C, Geng M, Li W, Duan W, Xie H, Ding J. Preclinical and early clinical studies of a novel compound SYHA1813 that efficiently crosses the blood-brain barrier and exhibits potent activity against glioblastoma. Acta Pharm Sin B 2023; 13:4748-4764. [PMID: 38045044 PMCID: PMC10692396 DOI: 10.1016/j.apsb.2023.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/30/2023] [Accepted: 08/09/2023] [Indexed: 12/05/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in adults and is poorly controlled. Previous studies have shown that both macrophages and angiogenesis play significant roles in GBM progression, and co-targeting of CSF1R and VEGFR is likely to be an effective strategy for GBM treatment. Therefore, this study developed a novel and selective inhibitor of CSF1R and VEGFR, SYHA1813, possessing potent antitumor activity against GBM. SYHA1813 inhibited VEGFR and CSF1R kinase activities with high potency and selectivity and thus blocked the cell viability of HUVECs and macrophages and exhibited anti-angiogenetic effects both in vitro and in vivo. SYHA1813 also displayed potent in vivo antitumor activity against GBM in immune-competent and immune-deficient mouse models, including temozolomide (TMZ) insensitive tumors. Notably, SYHA1813 could penetrate the blood-brain barrier (BBB) and prolong the survival time of mice bearing intracranial GBM xenografts. Moreover, SYHA1813 treatment resulted in a synergistic antitumor efficacy in combination with the PD-1 antibody. As a clinical proof of concept, SYHA1813 achieved confirmed responses in patients with recurrent GBM in an ongoing first-in-human phase I trial. The data of this study support the rationale for an ongoing phase I clinical study (ChiCTR2100045380).
Collapse
Affiliation(s)
- Yingqiang Liu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhengsheng Zhan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhuang Kang
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Mengyuan Li
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongcong Lv
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shenglan Li
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Linjiang Tong
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fang Feng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Li
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mengge Zhang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaping Xue
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yi Chen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zhang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Peiran Song
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yi Su
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanyan Shen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiming Sun
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinying Yang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Chen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shanyan Yao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hanyu Yang
- Shanghai Runshi Pharmaceutical Technology Co., Ltd., Shanghai 201218, China
| | - Caixia Wang
- Shanghai Runshi Pharmaceutical Technology Co., Ltd., Shanghai 201218, China
| | - Meiyu Geng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbin Li
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wenhu Duan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hua Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jian Ding
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
6
|
Fermi V, Warta R, Wöllner A, Lotsch C, Jassowicz L, Rapp C, Knoll M, Jungwirth G, Jungk C, Dao Trong P, von Deimling A, Abdollahi A, Unterberg A, Herold-Mende C. Effective Reprogramming of Patient-Derived M2-Polarized Glioblastoma-Associated Microglia/Macrophages by Treatment with GW2580. Clin Cancer Res 2023; 29:4685-4697. [PMID: 37682326 DOI: 10.1158/1078-0432.ccr-23-0576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/26/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
PURPOSE Targeting immunosuppressive and pro-tumorigenic glioblastoma (GBM)-associated macrophages and microglial cells (GAM) has great potential to improve patient outcomes. Colony-stimulating factor-1 receptor (CSF1R) has emerged as a promising target for reprograming anti-inflammatory M2-like GAMs. However, treatment data on patient-derived, tumor-educated GAMs and their influence on the adaptive immunity are lacking. EXPERIMENTAL DESIGN CD11b+-GAMs freshly isolated from patient tumors were treated with CSF1R-targeting drugs PLX3397, BLZ945, and GW2580. Phenotypical changes upon treatment were assessed using RNA sequencing, flow cytometry, and cytokine quantification. Functional analyses included inducible nitric oxide synthase activity, phagocytosis, transmigration, and autologous tumor cell killing assays. Antitumor effects and changes in GAM activation were confirmed in a complex patient-derived 3D tumor organoid model serving as a tumor avatar. RESULTS The most effective reprogramming of GAMs was observed upon GW2580 treatment, which led to the downregulation of M2-related markers, IL6, IL10, ERK1/2, and MAPK signaling pathways, while M1-like markers, gene set enrichment indicating activated MHC-II presentation, phagocytosis, and T-cell killing were substantially increased. Moreover, treatment of patient-derived GBM organoids with GW2580 confirmed successful reprogramming, resulting in impaired tumor cell proliferation. In line with its failure in clinical trials, PLX3397 was ineffective in our analysis. CONCLUSIONS This comparative analysis of CSF1R-targeting drugs on patient-derived GAMs and human GBM avatars identified GW2580 as the most powerful inhibitor with the ability to polarize immunosuppressive GAMs to a proinflammatory phenotype, supporting antitumor T-cell responses while also exerting a direct antitumor effect. These data indicate that GW2580 could be an important pillar in future therapies for GBM.
Collapse
Affiliation(s)
- Valentina Fermi
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Rolf Warta
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
- German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, Germany
| | - Amélie Wöllner
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Catharina Lotsch
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Lena Jassowicz
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 522, Heidelberg, Germany
| | - Carmen Rapp
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Maximilian Knoll
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Gerhard Jungwirth
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Christine Jungk
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Philip Dao Trong
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Andreas von Deimling
- Dept. of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Amir Abdollahi
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
- German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, Germany
| |
Collapse
|
7
|
Yang Y, Yan C, Chen XJ. CERCAM is a prognostic biomarker associated with immune infiltration of macrophage M2 polarization in head and neck squamous carcinoma. BMC Oral Health 2023; 23:724. [PMID: 37803318 PMCID: PMC10559510 DOI: 10.1186/s12903-023-03421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023] Open
Abstract
PURPOSE This study aimed to investigate the relevance of cerebral endothelial cell adhesion molecule (CERCAM) expression to head and neck squamous cell carcinoma (HNSCC) prognosis and immune infiltration by macrophage M2 polarization. METHODS Timer, UALCAN and HPA databases was used to analyze the differences in mRNA and protein levels of CERCAM expression in HNSCC. The Timer database was also applied to analyze the correlation between CERCAM in HNSCC and immune infiltration. TCGA-HNSCC database was applied to analyze the correlation between CERCAM expression levels and clinicopathological features, and its diagnostic and prognostic value in HNSCC was also assessed. The cBioPortal and MethSurv databases were then applied to analyze the genetic variation and methylation status of CERCAM. In vitro cellular assays were performed to provide evidence that CERCAM promotes malignant biological behavior of tumors and promotes macrophage M2 polarization in tumors. Finally, underlying pathophysiological mechanisms of CERCAM involvement in the development of HNSCC were predicted using a bioinformatics approach. RESULTS CERCAM is significantly overexpressed in HNSCC and correlates with poor prognostic levels and has good performance in predicting survival status in HNSCC patients. Cox regression analysis indicates that CERCAM expression levels are independent risk factors for predicting OS, DSS, and PFI. CERCAM promotes tumor malignant biological behavior and promotes macrophage M2 polarization immune infiltration in HNSCC. In addition, CERCAM promotes tumor cell adhesion in head and neck squamous carcinoma and promotes tumor progression through several oncogenic signaling pathways. CONCLUSION CERCAM may serve as a new diagnostic and prognostic biomarker in HNSCC and is a promising therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Ying Yang
- Department of Stomatology, General Hospital of the Central Theater Command, Wuhan, 430070, China
| | - Cong Yan
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, 110000, P.R. China
| | - Xiao-Jian Chen
- Department of Stomatology, General Hospital of the Central Theater Command, Wuhan, 430070, China.
| |
Collapse
|
8
|
Sun S, Yang C, Wang K, Huang R, Zhang KN, Liu Y, Cao Z, Zhao Z, Jiang T. Molecular and clinical characterization of PTRF in glioma via 1,022 samples. BMC Cancer 2023; 23:551. [PMID: 37322408 DOI: 10.1186/s12885-023-11001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Polymerase I and transcript release factor (PTRF) plays a role in the regulation of gene expression and the release of RNA transcripts during transcription, which have been associated with various human diseases. However, the role of PTRF in glioma remains unclear. In this study, RNA sequencing (RNA-seq) data (n = 1022 cases) and whole-exome sequencing (WES) data (n = 286 cases) were used to characterize the PTRF expression features. Gene ontology (GO) functional enrichment analysis was used to assess the biological implication of changes in PTRF expression. As a result, the expression of PTRF was associated with malignant progression in gliomas. Meanwhile, somatic mutational profiles and copy number variations (CNV) revealed the glioma subtypes classified by PTRF expression showed distinct genomic alteration. Furthermore, GO functional enrichment analysis suggested that PTRF expression was associated with cell migration and angiogenesis, particularly during an immune response. Survival analysis confirmed that a high expression of PTRF is associated with a poor prognosis. In summary, PTRF may be a valuable factor for the diagnosis and treatment target of glioma.
Collapse
Affiliation(s)
- Si Sun
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Changlin Yang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Kuanyu Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Ruoyu Huang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Ke-Nan Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Yanwei Liu
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhi Cao
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
- Chinese Glioma Genome Atlas Network and Asian Glioma Genome Atlas Network, Beijing, 100070, China.
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
- Chinese Glioma Genome Atlas Network and Asian Glioma Genome Atlas Network, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, 100069, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing, 100070, China.
| |
Collapse
|
9
|
Regulation of Metastatic Tumor Dormancy and Emerging Opportunities for Therapeutic Intervention. Int J Mol Sci 2022; 23:ijms232213931. [PMID: 36430404 PMCID: PMC9698240 DOI: 10.3390/ijms232213931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer recurrence and metastasis, following successful treatment, constitutes a critical threat in clinical oncology and are the leading causes of death amongst cancer patients. This phenomenon is largely attributed to metastatic tumor dormancy, a rate-limiting stage during cancer progression, in which disseminated cancer cells remain in a viable, yet not proliferating state for a prolonged period. Dormant cancer cells are characterized by their entry into cell cycle arrest and survival in a quiescence state to adapt to their new microenvironment through the acquisition of mutations and epigenetic modifications, rendering them resistant to anti-cancer treatment and immune surveillance. Under favorable conditions, disseminated dormant tumor cells 're-awake', resume their proliferation and thus colonize distant sites. Due to their rarity, detection of dormant cells using current diagnostic tools is challenging and, thus, therapeutic targets are hard to be identified. Therefore, unraveling the underlying mechanisms required for keeping disseminating tumor cells dormant, along with signals that stimulate their "re-awakening" are crucial for the discovery of novel pharmacological treatments. In this review, we shed light into the main mechanisms that control dormancy induction and escape as well as emerging therapeutic strategies for the eradication of metastatic dormant cells, including dormancy maintenance, direct targeting of dormant cells and re-awakening dormant cells. Studies on the ability of the metastatic cancer cells to cease proliferation and survive in a quiescent state before re-initiating proliferation and colonization years after successful treatment, will pave the way toward developing innovative therapeutic strategies against dormancy-mediated metastatic outgrowth.
Collapse
|
10
|
Alptekin A, Parvin M, Chowdhury HI, Rashid MH, Arbab AS. Engineered exosomes for studies in tumor immunology. Immunol Rev 2022; 312:76-102. [PMID: 35808839 DOI: 10.1111/imr.13107] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Exosomes are a type of extracellular vesicle (EV) with diameters of 30-150 nm secreted by most of the cells into the extracellular spaces and can alter the microenvironment through cell-to-cell interactions by fusion with the plasma membrane and subsequent endocytosis and release of the cargo. Because of their biocompatibility, low toxicity and immunogenicity, permeability (even through the blood-brain barrier (BBB)), stability in biological fluids, and ability to accumulate in the lesions with higher specificity, investigators have started making designer's exosomes or engineered exosomes to carry biologically active protein on the surface or inside the exosomes as well as using exosomes to carry drugs, micro RNA, and other products to the site of interest. In this review, we have discussed biogenesis, markers, and contents of various exosomes including exosomes of immune cells. We have also discussed the current methods of making engineered and designer's exosomes as well as the use of engineered exosomes targeting different immune cells in the tumors, stroke, as well as at peripheral blood. Genetic engineering and customizing exosomes create an unlimited opportunity to use in diagnosis and treatment. Very little use has been discovered, and we are far away to reach its limits.
Collapse
Affiliation(s)
- Ahmet Alptekin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Mahrima Parvin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | | | | | - Ali S Arbab
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
11
|
Wu Q, Tu H, Li J. Multifaceted Roles of Chemokine C-X-C Motif Ligand 7 in Inflammatory Diseases and Cancer. Front Pharmacol 2022; 13:914730. [PMID: 35837284 PMCID: PMC9273993 DOI: 10.3389/fphar.2022.914730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over recent years, C-X-C motif ligand 7 (CXCL7) has received widespread attention as a chemokine involved in inflammatory responses. Abnormal production of the chemokine CXCL7 has been identified in different inflammatory diseases; nevertheless, the exact role of CXCL7 in the pathogenesis of inflammatory diseases is not fully understood. Persistent infection or chronic inflammation can induce tumorigenesis and progression. Previous studies have shown that the pro-inflammatory chemokine CXCL7 is also expressed by malignant tumor cells and that binding of CXCL7 to its cognate receptors C-X-C chemokine receptor 1 (CXCR1) and C-X-C chemokine receptor 2 (CXCR2) can influence tumor biological behavior (proliferation, invasion, metastasis, and tumor angiogenesis) in an autocrine and paracrine manner. CXCL7 and its receptor CXCR1/CXCR2, which are aberrantly expressed in tumors, may represent new targets for clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Qianmiao Wu
- Department of Hematology, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Medicine, Nanchang University, Nanchang, China
| | - Huaijun Tu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Li
- Department of Hematology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Xu H, Feng Y, Kong W, Wang H, Feng Y, Zhen J, Tian L, Yuan K. High Expression Levels of SIGLEC9 Indicate Poor Outcomes of Glioma and Correlate With Immune Cell Infiltration. Front Oncol 2022; 12:878849. [PMID: 35756603 PMCID: PMC9218569 DOI: 10.3389/fonc.2022.878849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Objective This study aimed to investigate the diagnostic value and underlying mechanisms of sialic acid-binding Ig-like lectin 9 (SIGLEC9) in gliomas. Patients and Methods The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases were used to analyze the association of SIGLEC9 expression levels with tumor stages and survival probability. Immunohistochemical staining of SIGLEC9 and survival analysis were performed in 177 glioma patients. Furthermore, related mechanisms were discovered about SIGLEC9 in glioma tumorigenesis, and we reveal how SIGLEC9 functions in macrophages through single-cell analysis. Results TCGA and CGGA databases indicated that patients with high SIGLEC9 expression manifested a significantly shorter survival probability than those with low SIGLEC9 expression. SIGLEC9 was upregulated significantly in malignant pathological types, such as grade III, grade IV, mesenchymal subtype, and isocitrate dehydrogenase wild-type gliomas. The immunohistochemical staining of tissue sections from 177 glioma patients showed that high-SIGLEC9-expression patients manifested a significantly shorter survival probability than low-SIGLEC9-expression patients with age ≧60 years, grade IV, glioblastoma multiforme, alpha thalassemia/intellectual disability syndrome X-linked loss, and without radiotherapy or chemotherapy. Furthermore, the SIGLEC9 expression level was positively correlated with myeloid-derived suppressor cell infiltration and neutrophil activation. The SIGLEC9 expression was also positively correlated with major immune checkpoints, such as LAIR1, HAVCR2, CD86, and LGALS9. Through single-cell analysis, we found that the SIGLEC9 gene is related to the ability of macrophages to process antigens and the proliferation of macrophages. Conclusion These findings suggested that SIGLEC9 is a diagnostic marker of poor outcomes in glioma and might serve as a potential immunotherapy target for glioma patients in the future.
Collapse
Affiliation(s)
- Heng Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yanyan Feng
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Weijia Kong
- Beijing Hospital of Traditional Chinese Medicine Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Hesong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuyin Feng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jianhua Zhen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lichun Tian
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kai Yuan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Szulc-Kielbik I, Kielbik M. Tumor-Associated Macrophages: Reasons to Be Cheerful, Reasons to Be Fearful. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:107-140. [PMID: 35165862 DOI: 10.1007/978-3-030-91311-3_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor microenvironment (TME) is a complex and constantly evolving entity that consists not only of cancer cells, but also of resident host cells and immune-infiltrating cells, among which macrophages are significant components, due to their diversity of functions through which they can influence the immune response against tumor cells. Macrophages present in tumor environment are termed as tumor-associated macrophages (TAMs). They are strongly plastic cells, and depending on the TME stimuli (i.e., cytokines, chemokines), TAMs polarize to antitumoral (M1-like TAMs) or protumoral (M2-like TAMs) phenotype. Both types of TAMs differ in the surface receptors' expression, activation of intracellular signaling pathways, and ability of production and various metabolites release. At the early stage of tumor formation, TAMs are M1-like phenotype, and they are able to eliminate tumor cells, i.e., by reactive oxygen species formation or by presentation of cancer antigens to other effector immune cells. However, during tumor progression, TAMs M2-like phenotype is dominating. They mainly contribute to angiogenesis, stromal remodeling, enhancement of tumor cells migration and invasion, and immunosuppression. This wide variety of TAMs' functions makes them an excellent subject for use in developing antitumor therapies which mainly is based on three strategies: TAMs' elimination, reprograming, or recruitment inhibition.
Collapse
Affiliation(s)
| | - Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| |
Collapse
|
14
|
Soto-Diaz K, Vailati-Riboni M, Louie AY, McKim DB, Gaskins HR, Johnson RW, Steelman AJ. Treatment With the CSF1R Antagonist GW2580, Sensitizes Microglia to Reactive Oxygen Species. Front Immunol 2021; 12:734349. [PMID: 34899694 PMCID: PMC8664563 DOI: 10.3389/fimmu.2021.734349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 01/29/2023] Open
Abstract
Microglia activation and proliferation are hallmarks of many neurodegenerative disorders and may contribute to disease pathogenesis. Neurons actively regulate microglia survival and function, in part by secreting the microglia mitogen interleukin (IL)-34. Both IL-34 and colony stimulating factor (CSF)-1 bind colony stimulating factor receptor (CSFR)1 expressed on microglia. Systemic treatment with central nervous system (CNS) penetrant, CSFR1 antagonists, results in microglia death in a dose dependent matter, while others, such as GW2580, suppress activation during disease states without altering viability. However, it is not known how treatment with non-penetrant CSF1R antagonists, such as GW2580, affect the normal physiology of microglia. To determine how GW2580 affects microglia function, C57BL/6J mice were orally gavaged with vehicle or GW2580 (80mg/kg/d) for 8 days. Body weights and burrowing behavior were measured throughout the experiment. The effects of GW2580 on circulating leukocyte populations, brain microglia morphology, and the transcriptome of magnetically isolated adult brain microglia were determined. Body weights, burrowing behavior, and circulating leukocytes were not affected by treatment. Analysis of Iba-1 stained brain microglia indicated that GW2580 treatment altered morphology, but not cell number. Analysis of RNA-sequencing data indicated that genes related to reactive oxygen species (ROS) regulation and survival were suppressed by treatment. Treatment of primary microglia cultures with GW2580 resulted in a dose-dependent reduction in viability only when the cells were concurrently treated with LPS, an inducer of ROS. Pre-treatment with the ROS inhibitor, YCG063, blocked treatment induced reductions in viability. Finally, GW2580 sensitized microglia to hydrogen peroxide induced cell death. Together, these data suggest that partial CSF1R antagonism may render microglia more susceptible to reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Katiria Soto-Diaz
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Mario Vailati-Riboni
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Allison Y Louie
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Daniel B McKim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Biomedical and Translational Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rodney W Johnson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Andrew J Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
15
|
Batoon L, McCauley LK. Cross Talk Between Macrophages and Cancer Cells in the Bone Metastatic Environment. Front Endocrinol (Lausanne) 2021; 12:763846. [PMID: 34803925 PMCID: PMC8597897 DOI: 10.3389/fendo.2021.763846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
The skeleton is a common site for cancer metastases with the bone microenvironment providing the appropriate conditions for cancer cell colonization. Once in bone, cancer cells effectively manipulate their microenvironment to support their growth and survival. Despite previous efforts to improve treatment modalities, skeletal metastases remain with poor prognoses. This warrants an improved understanding of the mechanisms leading to bone metastasis that will aid development of effective treatments. Macrophages in the tumor microenvironment are termed tumor associated macrophages (TAMs) and their crosstalk with cancer cells is critical in regulating tumorigenicity in multiple cancers. In bone metastases, this crosstalk is also being increasingly implicated but the specific signaling pathways remain incompletely understood. Here, we summarize the reported functions, interactions, and signaling of macrophages with cancer cells during the metastatic cascade to bone. Specifically, we review and discuss how these specific interactions impact macrophages and their profiles to promote tumor development. We also discuss the potential of targeting this crosstalk to inhibit disease progression. Finally, we identify the remaining knowledge gaps that will need to be addressed in order to fully consider therapeutic targeting to improve clinical outcomes in cancer patients.
Collapse
Affiliation(s)
- Lena Batoon
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
- Bones and Immunology Group, Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| |
Collapse
|
16
|
ITLN1 inhibits tumor neovascularization and myeloid derived suppressor cells accumulation in colorectal carcinoma. Oncogene 2021; 40:5925-5937. [PMID: 34363021 DOI: 10.1038/s41388-021-01965-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Low levels of ITLN1 have been correlated with obesity-related colorectal carcinogenesis, however, the specific functions and underlying mechanisms remain unclear. Thus, we sought to explore the inhibitory role of ITLN1 in the tumor-permissive microenvironment that exists during the first occurrence and subsequent development of colorectal carcinoma (CRC). Results indicated that ITLN1 was frequently lost in CRC tissues and ITLN1 to be an independent prognostic predictor of CRC. Orthotopic and subcutaneous tumor xenograft approaches were then used to further confirm the protective role of ITLN1 during tumor progression. Increased ITLN1 expression in CRC cells significantly inhibited local pre-existing vessels sprouting, EPC recruitment and the infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) into tumor tissues without affecting the behavior of CRC cells in vitro. Comparatively, ITLN1-derived MDSCs had a lower suppressive effect on T cell proliferation, NOS2 expression, and ROS production. In addition, ITLN1 overexpression markedly suppressed bone marrow (BM)-derived hematopoietic progenitor cells (HPC) differentiation into MDSCs as well as NOS2 activity on MDSCs. Using H-2b+YFP + chimerism through bone marrow transplantation, increased ITLN1 in HCT116 significantly reduced the BM-derived EPCs and MDSCs in vivo mobilization. Mechanistically, results indicated ITLN1 inhibited tumor-derived IL-17D and CXCL2 (MIP2) through the KEAP1/Nrf2/ROS/IL-17D and p65 NF-ĸB/CXCL2 signaling cascades dependent on PI3K/AKT/GSK3ß. This effect was reversed by the PI3K selective inhibitor LY294002. Collectively, ITLN1 synergistically suppressed IL-17D and CXCL2-mediated tumor vascularization, bone marrow derived EPC recruitment, as well as MDSCs generation and trafficking. Thus, ITLN1 potentially serves as a critical prognostic and therapeutic target for CRC.
Collapse
|
17
|
Moeini P, Niedźwiedzka-Rystwej P. Tumor-Associated Macrophages: Combination of Therapies, the Approach to Improve Cancer Treatment. Int J Mol Sci 2021; 22:ijms22137239. [PMID: 34281293 PMCID: PMC8269174 DOI: 10.3390/ijms22137239] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophages are one of the most important cells of the innate immune system and are known for their ability to engulf and digest foreign substances, including cellular debris and tumor cells. They can convert into tumor-associated macrophages (TAMs) when mature macrophages are recruited into the tumor microenvironment. Their role in cancer progression, metastasis, and therapy failure is of special note. The aim of this review is to understand how the presence of TAMs are both advantageous and disadvantageous in the immune system.
Collapse
Affiliation(s)
- Pedram Moeini
- Plant Virology Research Center, Shiraz University, Shiraz 71441-65186, Iran;
| | | |
Collapse
|
18
|
Yan J, Zhao Q, Wang J, Tian X, Wang J, Xia X, Ott M, Rao G, Heimberger AB, Li S. FGL2-wired macrophages secrete CXCL7 to regulate the stem-like functionality of glioma cells. Cancer Lett 2021; 506:83-94. [PMID: 33676940 DOI: 10.1016/j.canlet.2021.02.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/09/2021] [Accepted: 02/28/2021] [Indexed: 12/20/2022]
Abstract
Glioma stem cells (GSCs) are thought to underlie glioma initiation, evolution, resistance to therapies, and relapse. They are defined by their capacity to initiate glioma in immunocompromised mice which precludes analysis of their interaction with immune cells. Macrophages dominate the immune cell composition in glioma. We hypothesized that stemness and immune evasion induced by macrophages are closed intertwined in glioma. By using mass cytometry and RNA sequencing, we reveal that in immunocompetent mice, FGL2 promotes the stem-like phenotypes of glioma cells in an expression level-dependent manner. Mechanistically, FGL2-producing glioma cells recruit macrophages into the tumor microenvironment and induce the macrophages to secrete CXCL7 via the CD16/SyK/PI3K/HIF1α pathways. CXCL7, in turn, enhances the stem-like functionality of glioma cells, resulting in an increase in tumor incidence and progression that can be blocked with a neutralizing anti-CXCL7 antibody. Clinically, the FGL2-CXCL7 paracrine loop positively correlated with a higher macrophage signature and poorer prognosis in glioma patients. Thus, glioma cells' stem-like functionality is regulated by FGL2 in the presence of macrophages, and the FGL2-CXCL7 paracrine signaling axis is critical for regulating this function.
Collapse
Affiliation(s)
- Jun Yan
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Laboratory of Brain Disorders, Capital Medical University, Beijing, China; Ministry of Science and Technology, Capital Medical University, Beijing, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China; Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China; Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Qingnan Zhao
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiangjun Tian
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xueqing Xia
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Martina Ott
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shulin Li
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Ali S, Borin TF, Piranlioglu R, Ara R, Lebedyeva I, Angara K, Achyut BR, Arbab AS, Rashid MH. Changes in the tumor microenvironment and outcome for TME-targeting therapy in glioblastoma: A pilot study. PLoS One 2021; 16:e0246646. [PMID: 33544755 PMCID: PMC7864405 DOI: 10.1371/journal.pone.0246646] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a hypervascular and aggressive primary malignant tumor of the central nervous system. Recent investigations showed that traditional therapies along with antiangiogenic therapies failed due to the development of post-therapy resistance and recurrence. Previous investigations showed that there were changes in the cellular and metabolic compositions in the tumor microenvironment (TME). It can be said that tumor cell-directed therapies are ineffective and rethinking is needed how to treat GBM. It is hypothesized that the composition of TME-associated cells will be different based on the therapy and therapeutic agents, and TME-targeting therapy will be better to decrease recurrence and improve survival. Therefore, the purpose of this study is to determine the changes in the TME in respect of T-cell population, M1 and M2 macrophage polarization status, and MDSC population following different treatments in a syngeneic model of GBM. In addition to these parameters, tumor growth and survival were also studied following different treatments. The results showed that changes in the TME-associated cells were dependent on the therapeutic agents, and the TME-targeting therapy improved the survival of the GBM bearing animals. The current GBM therapies should be revisited to add agents to prevent the accumulation of bone marrow-derived cells in the TME or to prevent the effect of immune-suppressive myeloid cells in causing alternative neovascularization, the revival of glioma stem cells, and recurrence. Instead of concurrent therapy, a sequential strategy would be better to target TME-associated cells.
Collapse
Affiliation(s)
- Sehar Ali
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Thaiz F. Borin
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Raziye Piranlioglu
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Roxan Ara
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Iryna Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia, United States of America
| | - Kartik Angara
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Bhagelu R. Achyut
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Ali Syed Arbab
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
- * E-mail: (ASA); (MHR)
| | - Mohammad H. Rashid
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail: (ASA); (MHR)
| |
Collapse
|
20
|
Kwok D, Okada H. T-Cell based therapies for overcoming neuroanatomical and immunosuppressive challenges within the glioma microenvironment. J Neurooncol 2020; 147:281-295. [PMID: 32185647 PMCID: PMC7182069 DOI: 10.1007/s11060-020-03450-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/05/2020] [Indexed: 12/22/2022]
Abstract
Glioblastoma remains as the most common and aggressive primary adult brain tumor to date. Within the last decade, cancer immunotherapy surfaced as a broadly successful therapeutic approach for a variety of cancers. However, due to the neuroanatomical and immunosuppressive nature of malignant gliomas, conventional chemotherapy and radiotherapy treatments garner limited efficacy in patients with these tumors. The intricate structure of the blood brain barrier restricts immune accessibility into the tumor microenvironment, and malignant gliomas can activate various adaptive responses to subvert anticancer immune responses and reinstate an immunosuppressive milieu. Yet, evidence of lymphocyte infiltration within the brain and recent advancements made in cell engineering technologies implicate the vast potential in the future of neuro-oncological immunotherapy. Previous immunotherapy platforms have paved way to improved modalities, which includes but is not limited to personalized vaccines and chimeric antigen receptor T-cell therapy. This review will cover the various neuroanatomical and immunosuppressive features of central nervous system tumors and highlight the innovations made in T-cell based therapies to overcome the challenges presented by the glioblastoma microenvironment.
Collapse
Affiliation(s)
- Darwin Kwok
- Department of Neurological Surgery, University of California, San Francisco, Helen Diller Family Cancer Research Building HD 472 1450 3rd Street, San Francisco, CA, 94158-0520, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, Helen Diller Family Cancer Research Building HD 472 1450 3rd Street, San Francisco, CA, 94158-0520, USA.
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Cancer Immunotherapy Program, University of California, San Francisco, CA, USA.
| |
Collapse
|
21
|
Role of Neutrophils and Myeloid-Derived Suppressor Cells in Glioma Progression and Treatment Resistance. Int J Mol Sci 2020; 21:ijms21061954. [PMID: 32182988 PMCID: PMC7139844 DOI: 10.3390/ijms21061954] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/29/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Recent efforts in brain tumor research have been directed towards the modulation of the immune system for therapeutic interventions. Several human cancers, including gliomas, are infiltrated with immune cell types-including neutrophils and myeloid-derived suppressor cells-that contribute to tumor progression, invasiveness, and treatment resistance. The role of tumor-associated neutrophils and myeloid-derived suppressor cells in cancer biology remains elusive, as these cells can exert a multitude of pro-tumor and antitumor effects. In this review, we provide the current understanding and novel insights on the role of neutrophils and myeloid-derived suppressor cells in glioma progression and treatment resistance, as well as the mechanisms of pleiotropic behaviors in these cells during disease progression, with an emphasis on possible strategies to reprogram these cells towards their antitumor actions.
Collapse
|
22
|
Current Strategies to Target Tumor-Associated-Macrophages to Improve Anti-Tumor Immune Responses. Cells 2019; 9:cells9010046. [PMID: 31878087 PMCID: PMC7017001 DOI: 10.3390/cells9010046] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
: Established evidence demonstrates that tumor-infiltrating myeloid cells promote rather than stop-cancer progression. Tumor-associated macrophages (TAMs) are abundantly present at tumor sites, and here they support cancer proliferation and distant spreading, as well as contribute to an immune-suppressive milieu. Their pro-tumor activities hamper the response of cancer patients to conventional therapies, such as chemotherapy or radiotherapy, and also to immunotherapies based on checkpoint inhibition. Active research frontlines of the last years have investigated novel therapeutic strategies aimed at depleting TAMs and/or at reprogramming their tumor-promoting effects, with the goal of re-establishing a favorable immunological anti-tumor response within the tumor tissue. In recent years, numerous clinical trials have included pharmacological strategies to target TAMs alone or in combination with other therapies. This review summarizes the past and current knowledge available on experimental tumor models and human clinical studies targeting TAMs for cancer treatment.
Collapse
|
23
|
Qu Y, Dou B, Tan H, Feng Y, Wang N, Wang D. Tumor microenvironment-driven non-cell-autonomous resistance to antineoplastic treatment. Mol Cancer 2019; 18:69. [PMID: 30927928 PMCID: PMC6441162 DOI: 10.1186/s12943-019-0992-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
Drug resistance is of great concern in cancer treatment because most effective drugs are limited by the development of resistance following some periods of therapeutic administration. The tumor microenvironment (TME), which includes various types of cells and extracellular components, mediates tumor progression and affects treatment efficacy. TME-mediated drug resistance is associated with tumor cells and their pericellular matrix. Noninherent-adaptive drug resistance refers to a non-cell-autonomous mechanism in which the resistance lies in the treatment process rather than genetic or epigenetic changes, and this mechanism is closely related to the TME. A new concept is therefore proposed in which tumor cell resistance to targeted therapy may be due to non-cell-autonomous mechanisms. However, knowledge of non-cell-autonomous mechanisms of resistance to different treatments is not comprehensive. In this review, we outlined TME factors and molecular events involved in the regulation of non-cell-autonomous resistance of cancer, summarized how the TME contributes to non-cell-autonomous drug resistance in different types of antineoplastic treatment, and discussed the novel strategies to investigate and overcome the non-cell-autonomous mechanism of cancer non-cell-autonomous resistance.
Collapse
Affiliation(s)
- Yidi Qu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bo Dou
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Horyue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China. .,School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
24
|
Darvishi B, Majidzadeh-A K, Ghadirian R, Mosayebzadeh M, Farahmand L. Recruited bone marrow derived cells, local stromal cells and IL-17 at the front line of resistance development to anti-VEGF targeted therapies. Life Sci 2018; 217:34-40. [PMID: 30472294 DOI: 10.1016/j.lfs.2018.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022]
Abstract
Although anti-angiogenic agents targeting VEGF have shown affordable beneficial outcomes in several human cancer types, in most pre-clinical and clinical studies, these effects are transient and followed by rapid relapse and tumor regrowth. Recently, it has been suggested that recruited bone marrow derived cells (BMDCs) to the tumor-microenvironment together with stromal cells play an important role in development of resistance to anti-VEGF therapies. Additionally, acquired resistance to anti-VEGF therapies has shown to be mediated partly through overexpression of different pro-angiogenic cytokines and growth factors including G-CSF, IL-6, IL-8, VEGF and FGF by these cells. Alongside, IL-17, a pro-inflammatory cytokine, mostly secreted by infiltrated CD4+ T helper cells, has shown to mediate resistance to anti-VEGF therapies, through recruiting BMDCs and modulating stromal cells activities including endothelial cells, tumor associated macrophages and cancer associated fibroblasts. Here, we examined the role of BMDCs, tumor stromal cells, IL-17 and their negotiation in development of resistance to anti-VEGF targeted therapies.
Collapse
Affiliation(s)
- Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Tasnim Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reihane Ghadirian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Marjan Mosayebzadeh
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
25
|
Ma S, Pradeep S, Hu W, Zhang D, Coleman R, Sood A. The role of tumor microenvironment in resistance to anti-angiogenic therapy. F1000Res 2018; 7:326. [PMID: 29560266 PMCID: PMC5854986 DOI: 10.12688/f1000research.11771.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2018] [Indexed: 12/11/2022] Open
Abstract
Anti-angiogenic therapy has been demonstrated to increase progression-free survival in patients with many different solid cancers. Unfortunately, the benefit in overall survival is modest and the rapid emergence of drug resistance is a significant clinical problem. Over the last decade, several mechanisms have been identified to decipher the emergence of resistance. There is a multitude of changes within the tumor microenvironment (TME) in response to anti-angiogenic therapy that offers new therapeutic opportunities. In this review, we compile results from contemporary studies related to adaptive changes in the TME in the development of resistance to anti-angiogenic therapy. These include preclinical models of emerging resistance, dynamic changes in hypoxia signaling and stromal cells during treatment, and novel strategies to overcome resistance by targeting the TME.
Collapse
Affiliation(s)
- Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Reproductive Medicine Research Center, Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong province, China
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dikai Zhang
- Reproductive Medicine Research Center, Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong province, China
| | - Robert Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
26
|
Redundant angiogenic signaling and tumor drug resistance. Drug Resist Updat 2018; 36:47-76. [DOI: 10.1016/j.drup.2018.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
|
27
|
Arbab AS, Rashid MH, Angara K, Borin TF, Lin PC, Jain M, Achyut BR. Major Challenges and Potential Microenvironment-Targeted Therapies in Glioblastoma. Int J Mol Sci 2017; 18:ijms18122732. [PMID: 29258180 PMCID: PMC5751333 DOI: 10.3390/ijms18122732] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is considered one of the most malignant, genetically heterogeneous, and therapy-resistant solid tumor. Therapeutic options are limited in GBM and involve surgical resection followed by chemotherapy and/or radiotherapy. Adjuvant therapies, including antiangiogenic treatments (AATs) targeting the VEGF–VEGFR pathway, have witnessed enhanced infiltration of bone marrow-derived myeloid cells, causing therapy resistance and tumor relapse in clinics and in preclinical models of GBM. This review article is focused on gathering previous clinical and preclinical reports featuring major challenges and lessons in GBM. Potential combination therapies targeting the tumor microenvironment (TME) to overcome the myeloid cell-mediated resistance problem in GBM are discussed. Future directions are focused on the use of TME-directed therapies in combination with standard therapy in clinical trials, and the exploration of novel therapies and GBM models for preclinical studies. We believe this review will guide the future of GBM research and therapy.
Collapse
Affiliation(s)
- Ali S Arbab
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Mohammad H Rashid
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Kartik Angara
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Thaiz F Borin
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Ping-Chang Lin
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Meenu Jain
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Bhagelu R Achyut
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
28
|
Gao XL, Zhang M, Tang YL, Liang XH. Cancer cell dormancy: mechanisms and implications of cancer recurrence and metastasis. Onco Targets Ther 2017; 10:5219-5228. [PMID: 29138574 PMCID: PMC5667781 DOI: 10.2147/ott.s140854] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
More recently, disease metastasis and relapse in many cancer patients several years (even some decades) after surgical remission are regarded as tumor dormancy. However, the knowledge of this phenomenon is cripplingly limited. Substantial quantities of reviews have summarized three main potential models that can be put forth to explain such process, including angiogenic dormancy, immunologic dormancy, and cellular dormancy. In this review, newly uncovered mechanisms governing cancer cell dormancy are discussed, with an emphasis on the cross talk between dormant cancer cells and their microenvironments. In addition, potential mechanisms of reactivation of these dormant cells in certain anatomic sites including lymph nodes and bone marrow are discussed. Molecular mechanism of cellular dormancy in head and neck cancer is also involved.
Collapse
Affiliation(s)
- Xiao-Lei Gao
- State Key Laboratory of Oral Diseases.,Department of Oral and Maxillofacial Surgery
| | - Mei Zhang
- State Key Laboratory of Oral Diseases.,Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases.,Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases.,Department of Oral and Maxillofacial Surgery
| |
Collapse
|
29
|
Massara M, Persico P, Bonavita O, Mollica Poeta V, Locati M, Simonelli M, Bonecchi R. Neutrophils in Gliomas. Front Immunol 2017; 8:1349. [PMID: 29123517 PMCID: PMC5662581 DOI: 10.3389/fimmu.2017.01349] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022] Open
Abstract
Neutrophils are the most abundant white blood cells and are the first recruited to inflammatory sites. Neutrophils are an important component of the tumor stroma and can exert both anti-tumoral and pro-tumoral activities, depending on their maturation and activation state. In human gliomas, the number of circulating and infiltrating neutrophils correlates with the severity of the disease, indicating a prognostic and possible pro-tumoral role for these leukocytes. In glioma preclinical models, neutrophils promote tumor growth and orchestrate the resistance to anti-angiogenic therapies. Nevertheless, recent data indicate that neutrophils can be activated to directly kill tumor cells or to orchestrate the anti-tumoral response. Here, we review current knowledge about the role of neutrophils in glioma and their possible involvement in new strategies to improve current cancer therapies.
Collapse
Affiliation(s)
- Matteo Massara
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | | | - Ornella Bonavita
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Valeria Mollica Poeta
- Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Rozzano, Italy
| | - Massimo Locati
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Matteo Simonelli
- Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Rozzano, Italy
| | - Raffaella Bonecchi
- Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Rozzano, Italy
| |
Collapse
|
30
|
Achyut BR, Angara K, Jain M, Borin TF, Rashid MH, Iskander ASM, Ara R, Kolhe R, Howard S, Venugopal N, Rodriguez PC, Bradford JW, Arbab AS. Canonical NFκB signaling in myeloid cells is required for the glioblastoma growth. Sci Rep 2017; 7:13754. [PMID: 29062041 PMCID: PMC5653749 DOI: 10.1038/s41598-017-14079-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/06/2017] [Indexed: 02/08/2023] Open
Abstract
Tumor development and therapeutic resistance are linked with tumor-associated macrophage (TAM) and myeloid-derived suppressor cell (MDSC) infiltration in tumors via chemokine axis. Chemokine expression, which determines the pro or anti-inflammatory status of myeloid cells, are partly regulated by the nuclear factor-kappa B (NF-κB) pathway. Here, we identified that conditional deletion of canonical NF-κB signaling (p65) in myeloid cells inhibited syngeneic glioblastoma (GBM) through decreased CD45 infiltration in tumors, as characterized by decreased TAMs (CD206+) and MDSCs (Gr1+ CD11b+), increased dendritic cells (CD86+) and cytotoxic T cells (CD8+) in the p65 knockout (KO) mice. Proinflammatory cytokines (IFNγ, MCP1, MIP1α, and TNFα) and myeloid differentiation factor (Endoglin) were increased in myeloid cells from p65 KO tumor, which demonstrated an influence on CD8+T cell proliferation. In contrast, p65KO athymic chimeric mice with human GBM, failed to inhibit tumor growth, confirming the contribution of T cells in an immune competent model. The analysis of human datasets and GBM tumors revealed higher expression of p65 in GBM-associated CD68+ macrophages compared to neighboring stroma. Thus, canonical NF-κB signaling has an anti-inflammatory role and is required for macrophage polarization, immune suppression, and GBM growth. Combining an NF-κB inhibitor with standard therapy could improve antitumor immunity in GBM.
Collapse
Affiliation(s)
- B R Achyut
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, USA.
| | - Kartik Angara
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Meenu Jain
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Thaiz F Borin
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Mohammad H Rashid
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - A S M Iskander
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Roxan Ara
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Ravindra Kolhe
- Department of Pathology, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Shelby Howard
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Natasha Venugopal
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Paulo C Rodriguez
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Jennifer W Bradford
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, USA. .,Department of Biological Sciences, Augusta University, Augusta, GA, USA.
| | - Ali S Arbab
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, USA.
| |
Collapse
|
31
|
Colwell N, Larion M, Giles AJ, Seldomridge AN, Sizdahkhani S, Gilbert MR, Park DM. Hypoxia in the glioblastoma microenvironment: shaping the phenotype of cancer stem-like cells. Neuro Oncol 2017; 19:887-896. [PMID: 28339582 PMCID: PMC5570138 DOI: 10.1093/neuonc/now258] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most common and aggressive malignant primary brain tumor. Cellular heterogeneity is a characteristic feature of the disease and contributes to the difficulty in formulating effective therapies. Glioma stem-like cells (GSCs) have been identified as a subpopulation of tumor cells that are thought to be largely responsible for resistance to treatment. Intratumoral hypoxia contributes to maintenance of the GSCs by supporting the critical stem cell traits of multipotency, self-renewal, and tumorigenicity. This review highlights the interaction of GSCs with the hypoxic tumor microenvironment, exploring the mechanisms underlying the contribution of GSCs to tumor vessel dynamics, immune modulation, and metabolic alteration.
Collapse
Affiliation(s)
- Nicole Colwell
- Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, Bethesda, Maryland ; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, Bethesda, Maryland ; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Amber J Giles
- Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, Bethesda, Maryland ; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Ashlee N Seldomridge
- Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, Bethesda, Maryland ; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Saman Sizdahkhani
- Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, Bethesda, Maryland ; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, Bethesda, Maryland ; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Deric M Park
- Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, Bethesda, Maryland ; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| |
Collapse
|
32
|
Simon T, Gagliano T, Giamas G. Direct Effects of Anti-Angiogenic Therapies on Tumor Cells: VEGF Signaling. Trends Mol Med 2017; 23:282-292. [DOI: 10.1016/j.molmed.2017.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 12/18/2022]
|
33
|
Achyut BR, Arbab AS. Taming immune suppressor: application of myeloid-derived suppressor cells in anti-cancer gene therapy. Transl Cancer Res 2017; 6:S160-S162. [PMID: 28503409 DOI: 10.21037/tcr.2017.02.37] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bhagelu R Achyut
- Tumor Angiogenesis Lab, Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Ali S Arbab
- Tumor Angiogenesis Lab, Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| |
Collapse
|
34
|
Angara K, Rashid MH, Shankar A, Ara R, Iskander A, Borin TF, Jain M, Achyut BR, Arbab AS. Vascular mimicry in glioblastoma following anti-angiogenic and anti-20-HETE therapies. Histol Histopathol 2016; 32:917-928. [PMID: 27990624 DOI: 10.14670/hh-11-856] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma (GBM) is one hypervascular and hypoxic tumor known among solid tumors. Antiangiogenic therapeutics (AATs) have been tested as an adjuvant to normalize blood vessels and control abnormal vasculature. Evidence of relapse exemplified in the progressive tumor growth following AAT reflects development of resistance to AATs. Here, we identified that GBM following AAT (Vatalanib) acquired an alternate mechanism to support tumor growth, called vascular mimicry (VM). We observed that Vatalanib induced VM vessels are positive for periodic acid-Schiff (PAS) matrix but devoid of any endothelium on the inner side and lined by tumor cells on the outer-side. The PAS+ matrix is positive for basal laminae (laminin) indicating vascular structures. Vatalanib treated GBM displayed various stages of VM such as initiation (mosaic), sustenance, and full-blown VM. Mature VM structures contain red blood cells (RBC) and bear semblance to the functional blood vessel-like structures, which provide all growth factors to favor tumor growth. Vatalanib treatment significantly increased VM especially in the core of the tumor, where HIF-1α was highly expressed in tumor cells. VM vessels correlate with hypoxia and are characterized by co-localized MHC-1+ tumor and HIF-1α expression. Interestingly, 20-HETE synthesis inhibitor HET0016 significantly decreased GBM tumors through decreasing VM structures both at the core and at periphery of the tumors. In summary, AAT induced resistance characterized by VM is an alternative mechanism adopted by tumors to make functional vessels by transdifferentiation of tumor cells into endothelial-like cells to supply nutrients in the event of hypoxia. AAT induced VM is a potential therapeutic target of the novel formulation of HET0016. Our present study suggests that HET0016 has a potential to target therapeutic resistance and can be combined with other antitumor agents in preclinical and clinical trials.
Collapse
Affiliation(s)
- Kartik Angara
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Mohammad H Rashid
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Adarsh Shankar
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Roxan Ara
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Asm Iskander
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Thaiz F Borin
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Meenu Jain
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Bhagelu R Achyut
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Ali S Arbab
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
35
|
Deng L, Stafford JH, Liu SC, Chernikova SB, Merchant M, Recht L, Martin Brown J. SDF-1 Blockade Enhances Anti-VEGF Therapy of Glioblastoma and Can Be Monitored by MRI. Neoplasia 2016; 19:1-7. [PMID: 27940247 PMCID: PMC5149063 DOI: 10.1016/j.neo.2016.11.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 12/15/2022] Open
Abstract
Despite the approval of antiangiogenic therapy for glioblastoma multiforme (GBM) patients, survival benefits are still limited. One of the resistance mechanisms for antiangiogenic therapy is the induction of hypoxia and subsequent recruitment of macrophages by stromal-derived factor (SDF)-1α (CXCL-12). In this study, we tested whether olaptesed pegol (OLA-PEG, NOX-A12), a novel SDF-1α inhibitor, could reverse the recruitment of macrophages and potentiate the antitumor effect of anti–vascular endothelial growth factor (VEGF) therapy. We also tested whether magnetic resonance imaging (MRI) with ferumoxytol as a contrast agent could provide early information on macrophage blockade. Orthotopic human G12 glioblastomas in nude mice and rat C6 glioblastomas were employed as the animal models. These were treated with bevacizumab or B-20, both anti-VEGF antibodies. Rats were MR imaged with ferumoxytol for macrophage detection. Tumor hypoxia and SDF-1α expression were elevated by VEGF blockade. Adding OLA-PEG to bevacizumab or B-20 significantly prolonged the survival of rodents bearing intracranial GBM compared with anti-VEGF therapy alone. Intratumoral CD68+ tumor associated macrophages (TAMs) were increased by VEGF blockade, but the combination of OLA-PEG + VEGF blockade markedly lowered TAM levels compared with VEGF blockade alone. MRI with ferumoxytol as a contrast agent noninvasively demonstrated macrophage reduction in OLA-PEG + anti-VEGF–treated rats compared with VEGF blockade alone. In conclusion, inhibition of SDF-1 with OLA-PEG inhibited the recruitment of TAMs by VEGF blockage and potentiated its antitumor efficacy in GBM. Noninvasive MRI with ferumoxytol as a contrast agent provides early information on the effect of OLA-PEG in reducing TAMs.
Collapse
Affiliation(s)
- Lei Deng
- Department of Radiation Oncology, Stanford University, A246, 1050A Arastradero Rd., Palo Alto, CA 94304-1334, USA
| | - Jason H Stafford
- Department of Radiation Oncology, Stanford University, A246, 1050A Arastradero Rd., Palo Alto, CA 94304-1334, USA
| | - Shie-Chau Liu
- Department of Radiation Oncology, Stanford University, A246, 1050A Arastradero Rd., Palo Alto, CA 94304-1334, USA
| | - Sophia B Chernikova
- Department of Radiation Oncology, Stanford University, A246, 1050A Arastradero Rd., Palo Alto, CA 94304-1334, USA
| | - Milton Merchant
- Department of Neurology, Stanford University School of Medicine, 875 Blake Wilbur Dr., Stanford, CA 94305, USA
| | - Lawrence Recht
- Department of Neurology, Stanford University School of Medicine, 875 Blake Wilbur Dr., Stanford, CA 94305, USA
| | - J Martin Brown
- Department of Radiation Oncology, Stanford University, A246, 1050A Arastradero Rd., Palo Alto, CA 94304-1334, USA.
| |
Collapse
|
36
|
Arbab AS, Jain M, Achyut BR. p53 Mutation: Critical Mediator of Therapy Resistance against Tumor Microenvironment. BIOCHEMISTRY & PHYSIOLOGY 2016; 5:e153. [PMID: 27917327 PMCID: PMC5135095 DOI: 10.4172/2168-9652.1000e153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ali S Arbab
- Tumor Angiogenesis Lab, Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Meenu Jain
- Tumor Angiogenesis Lab, Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - B R Achyut
- Tumor Angiogenesis Lab, Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
37
|
Shankar A, Jain M, Lim MJ, Angara K, Zeng P, Arbab SA, Iskander A, Ara R, Arbab AS, Achyut BR. Anti-VEGFR2 driven nuclear translocation of VEGFR2 and acquired malignant hallmarks are mutation dependent in glioblastoma. ACTA ACUST UNITED AC 2016; 8:172-178. [PMID: 28149448 DOI: 10.4172/1948-5956.1000410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Anti-angiogenic therapies (AATs), targeting VEGF-VEGFR pathways, are being used as an adjuvant to normalize glioblastoma (GBM) vasculature. Unexpectedly, clinical trials have witnessed transient therapeutic effect followed by aggressive tumor recurrence. In pre-clinical studies, targeting VEGFR2 with vatalanib, increased GBM growth under hypoxic microenvironment. There is limited understanding of these unanticipated results. Here, we investigated tumor cell associated phenotypes in response to VEGFR2 blockade. METHODS Human U251 cells were orthotopically implanted in mice (day 0) and were treated with vehicle or vatalanib on day 8. Tumor specimens were collected for immunohistochemistry and protein array. Nuclear translocation of VEGFR2 was analyzed through IHC and western blot. In vitro studies were performed in U251 (p53 and EGFR mutated) and U87 (p53 and EGFR wildtype) cells following vehicle or vatalanib treatments under normoxia (21% O2) and hypoxia (1% O2). Proliferation, cell cycle and apoptosis assays were done to analyze tumor cell phenotypes after treatments. RESULTS Vatalanib treated animals displayed distinct patterns of VEGFR2 translocation into nuclear compartment of U251 tumor cells. In vitro studies suggest that vatalanib significantly induced nuclear translocation of VEGFR2, characterized in chromatin bound fraction, especially in U251 tumor cells grown under normoxia and hypoxia. Anti-VEGFR2 driven nuclear translocation of VEGFR2 was associated with increased cell cycle and proliferation, decreased apoptosis, and displayed increased invasiveness in U251 compared to U87 cells. CONCLUSIONS Study suggests that AAT- induced molecular and phenotypic alterations in tumor cells are associated with mutation status and are responsible for aggressive tumor growth. Therefore, mutation status of the tumor in GBM patients should be taken in to consideration before applying targeted therapy to overcome unwanted effects.
Collapse
Affiliation(s)
- Adarsh Shankar
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Meenu Jain
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Mei Jing Lim
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Kartik Angara
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Peng Zeng
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Syed A Arbab
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Asm Iskander
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Roxan Ara
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Ali S Arbab
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Bhagelu R Achyut
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| |
Collapse
|
38
|
Buqué A, Bloy N, Aranda F, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch-Small molecules targeting the immunological tumor microenvironment for cancer therapy. Oncoimmunology 2016; 5:e1149674. [PMID: 27471617 PMCID: PMC4938376 DOI: 10.1080/2162402x.2016.1149674] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Progressing malignancies establish robust immunosuppressive networks that operate both systemically and locally. In particular, as tumors escape immunosurveillance, they recruit increasing amounts of myeloid and lymphoid cells that exert pronounced immunosuppressive effects. These cells not only prevent the natural recognition of growing neoplasms by the immune system, but also inhibit anticancer immune responses elicited by chemo-, radio- and immuno therapeutic interventions. Throughout the past decade, multiple strategies have been devised to counteract the accumulation or activation of tumor-infiltrating immunosuppressive cells for therapeutic purposes. Here, we review recent preclinical and clinical advances on the use of small molecules that target the immunological tumor microenvironment for cancer therapy. These agents include inhibitors of indoleamine 2,3-dioxigenase 1 (IDO1), prostaglandin E2, and specific cytokine receptors, as well as modulators of intratumoral purinergic signaling and arginine metabolism.
Collapse
Affiliation(s)
- Aitziber Buqué
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Norma Bloy
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabelle Cremer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | | | - Wolf Hervé Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- INSERM, U970, Paris, France
- Paris-Cardiovascular Research Center (PARCC), Paris, France
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
39
|
Shaaban S, Alsulami M, Arbab SA, Ara R, Shankar A, Iskander A, Angara K, Jain M, Bagher-Ebadian H, Achyut BR, Arbab AS. Targeting Bone Marrow to Potentiate the Anti-Tumor Effect of Tyrosine Kinase Inhibitor in Preclinical Rat Model of Human Glioblastoma. ACTA ACUST UNITED AC 2016; 12:69-81. [PMID: 27429653 DOI: 10.3923/ijcr.2016.69.81] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antiangiogenic agents caused paradoxical increase in pro-growth and pro-angiogenic factors and caused tumor growth in glioblastoma (GBM). It is hypothesized that paradoxical increase in pro-angiogenic factors would mobilize Bone Marrow Derived Cells (BMDCs) to the treated tumor and cause refractory tumor growth. The purposes of the studies were to determine whether whole body irradiation (WBIR) or a CXCR4 antagonist (AMD3100) will potentiate the effect of vatalanib (a VEGFR2 tyrosine kinase inhibitor) and prevent the refractory growth of GBM. Human GBM were grown orthotopically in three groups of rats (control, pretreated with WBIR and AMD3100) and randomly selected for vehicle or vatalanib treatments for 2 weeks. Then all animals underwent Magnetic Resonance Imaging (MRI) followed by euthanasia and histochemical analysis. Tumor volume and different vascular parameters (plasma volume (vp), forward transfer constant (Ktrans), back flow constant (kep), extravascular extracellular space volume (ve) were determined from MRI. In control group, vatalanib treatment increased the tumor growth significantly compared to that of vehicle treatment but by preventing the mobilization of BMDCs and interaction of CXCR4-SDF-1 using WBIR and ADM3100, respectively, paradoxical growth of tumor was controlled. Pretreatment with WBIR or AMD3100 also decreased tumor cell migration, despite the fact that ADM3100 increased the accumulation of M1 and M2 macrophages in the tumors. Vatalanib also increased Ktrans and ve in control animals but both of the vascular parameters were decreased when the animals were pretreated with WBIR and AMD3100. In conclusion, depleting bone marrow cells or CXCR4 interaction can potentiate the effect of vatalanib.
Collapse
Affiliation(s)
- S Shaaban
- Laboratory of Tumor Angiogenesis, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA
| | - M Alsulami
- Laboratory of Tumor Angiogenesis, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA
| | - S A Arbab
- Laboratory of Tumor Angiogenesis, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA
| | - R Ara
- Laboratory of Tumor Angiogenesis, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA
| | - A Shankar
- Laboratory of Tumor Angiogenesis, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA
| | - A Iskander
- Laboratory of Tumor Angiogenesis, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA
| | - K Angara
- Laboratory of Tumor Angiogenesis, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA
| | - M Jain
- Laboratory of Tumor Angiogenesis, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA
| | - H Bagher-Ebadian
- Department of Radiology, Henry Ford Health System, Detroit, MI, USA
| | - B R Achyut
- Laboratory of Tumor Angiogenesis, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA
| | - A S Arbab
- Laboratory of Tumor Angiogenesis, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA
| |
Collapse
|
40
|
Shankar A, Borin TF, Iskander A, Varma NR, Achyut BR, Jain M, Mikkelsen T, Guo AM, Chwang WB, Ewing JR, Bagher-Ebadian H, Arbab AS. Combination of vatalanib and a 20-HETE synthesis inhibitor results in decreased tumor growth in an animal model of human glioma. Onco Targets Ther 2016; 9:1205-19. [PMID: 27022280 PMCID: PMC4790509 DOI: 10.2147/ott.s93790] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Due to the hypervascular nature of glioblastoma (GBM), antiangiogenic treatments, such as vatalanib, have been added as an adjuvant to control angiogenesis and tumor growth. However, evidence of progressive tumor growth and resistance to antiangiogenic treatment has been observed. To counter the unwanted effect of vatalanib on GBM growth, we have added a new agent known as N-hydroxy-N′-(4-butyl-2 methylphenyl)formamidine (HET0016), which is a selective inhibitor of 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis. The aims of the studies were to determine 1) whether the addition of HET0016 can attenuate the unwanted effect of vatalanib on tumor growth and 2) whether the treatment schedule would have a crucial impact on controlling GBM. Methods U251 human glioma cells (4×105) were implanted orthotopically. Two different treatment schedules were investigated. Treatment starting on day 8 (8–21 days treatment) of the tumor implantation was to mimic treatment following detection of tumor, where tumor would have hypoxic microenvironment and well-developed neovascularization. Drug treatment starting on the same day of tumor implantation (0–21 days treatment) was to mimic cases following radiation therapy or surgery. There were four different treatment groups: vehicle, vatalanib (oral treatment 50 mg/kg/d), HET0016 (intraperitoneal treatment 10 mg/kg/d), and combined (vatalanib and HET0016). Following scheduled treatments, all animals underwent magnetic resonance imaging on day 22, followed by euthanasia. Brain specimens were equally divided for immunohistochemistry and protein array analysis. Results Our results demonstrated a trend that HET0016, alone or in combination with vatalanib, is capable of controlling the tumor growth compared with that of vatalanib alone, indicating attenuation of the unwanted effect of vatalanib. When both vatalanib and HET0016 were administered together on the day of the tumor implantation (0–21 days treatment), tumor volume, tumor blood volume, permeability, extravascular and extracellular space volume, tumor cell proliferation, and cell migration were decreased compared with that of the vehicle-treated group. Conclusion HET0016 is capable of controlling tumor growth and migration, but these effects are dependent on the timing of drug administration. The addition of HET0016 to vatalanib may attenuate the unwanted effect of vatalanib.
Collapse
Affiliation(s)
- Adarsh Shankar
- Tumor Angiogenesis Laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Thaiz F Borin
- Laboratory of Molecular Investigation of Cancer (LIMC), Faculty of Medicine of Sao Jose do Rio Preto, Sao Jose do Rio Preto, Brazil
| | - Asm Iskander
- Tumor Angiogenesis Laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Nadimpalli Rs Varma
- Department of Radiology, Cellular and Molecular Imaging Laboratory, Detroit, MI, USA
| | - Bhagelu R Achyut
- Tumor Angiogenesis Laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Meenu Jain
- Tumor Angiogenesis Laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Tom Mikkelsen
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Austin M Guo
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Wilson B Chwang
- Department of Radiology, Cellular and Molecular Imaging Laboratory, Detroit, MI, USA
| | - James R Ewing
- Department of Neurology and Radiology, Henry Ford Health System, Detroit, MI, USA
| | | | - Ali S Arbab
- Tumor Angiogenesis Laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
41
|
Achyut BR, Arbab AS. Myeloid cell signatures in tumor microenvironment predicts therapeutic response in cancer. Onco Targets Ther 2016; 9:1047-55. [PMID: 27042097 PMCID: PMC4780185 DOI: 10.2147/ott.s102907] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tumor microenvironment (TME) consists of several immune and nonimmune cell populations including tumor cells. For many decades, experimental studies have depicted profound contribution of TME toward cancer progression and metastasis development. Several therapeutic strategies have been tested against TME through preclinical studies and clinical trials. Unfortunately, most of them have shown transient effect, and have largely failed due to aggressive tumor growth and without improving survival. Solid tumors are known to have a strong myeloid component (eg, tumor-associated macrophages) in tumor development. Recent data suggest that therapeutic responses in tumor are characterized by alterations in immune cell signatures, including tumor-associated myeloid cells. Polarized tumor-associated myeloid cells (M1–M2) are critical in impairing therapeutic effect and promoting tumor growth. The present review is intended to compile all the literatures related to the emerging contribution of different populations of myeloid cells in the development of tumor and therapeutic failures. Finally, we have discussed targeting of myeloid cell populations as a combination therapy with chemo-, targeted-, or radiation therapies.
Collapse
Affiliation(s)
- Bhagelu R Achyut
- Tumor Angiogenesis Laboratory, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Ali S Arbab
- Tumor Angiogenesis Laboratory, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
42
|
Achyut BR, Shankar A, Iskander ASM, Ara R, Knight RA, Scicli AG, Arbab AS. Chimeric Mouse model to track the migration of bone marrow derived cells in glioblastoma following anti-angiogenic treatments. Cancer Biol Ther 2016; 17:280-90. [PMID: 26797476 DOI: 10.1080/15384047.2016.1139243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Bone marrow derived cells (BMDCs) have been shown to contribute in the tumor development. In vivo animal models to investigate the role of BMDCs in tumor development are poorly explored. We established a novel chimeric mouse model using as low as 5 × 10(6) GFP+ BM cells in athymic nude mice, which resulted in >70% engraftment within 14 d. In addition, chimera was established in NOD-SCID mice, which displayed >70% with in 28 d. Since anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in glioblastoma (GBM), which resulted into marked hypoxia and recruited BMDCs to the tumor microenvironment (TME). We exploited chimeric mice in athymic nude background to develop orthotopic U251 tumor and tested receptor tyrosine kinase inhibitors and CXCR4 antagonist against GBM. We were able to track GFP+ BMDCs in the tumor brain using highly sensitive multispectral optical imaging instrument. Increased tumor growth associated with the infiltration of GFP+ BMDCs acquiring suppressive myeloid and endothelial phenotypes was seen in TME following treatments. Immunofluorescence study showed GFP+ cells accumulated at the site of VEGF, SDF1 and PDGF expression, and at the periphery of the tumors following treatments. In conclusion, we developed a preclinical chimeric model of GBM and phenotypes of tumor infiltrated BMDCs were investigated in context of AATs. Chimeric mouse model could be used to study detailed cellular and molecular mechanisms of interaction of BMDCs and TME in cancer.
Collapse
Affiliation(s)
- B R Achyut
- a Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University , Augusta , GA , USA
| | - Adarsh Shankar
- a Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University , Augusta , GA , USA
| | - A S M Iskander
- a Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University , Augusta , GA , USA
| | - Roxan Ara
- a Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University , Augusta , GA , USA
| | | | - Alfonso G Scicli
- c Cellular and Molecular Imaging Laboratory, Henry Ford Health System , Detroit , MI , USA
| | - Ali S Arbab
- a Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University , Augusta , GA , USA
| |
Collapse
|
43
|
Abstract
Cancer is a wound that never heals. This is suggested by the data produced after several years of cancer research and therapeutic interventions done worldwide. There is a strong similarity between Newton's third law and therapeutic behavior of tumor. According to Newton's third law "for every action, there is an equal and opposite reaction". In cancer therapeutics, tumor exerts strong pro-tumor response against applied treatment and imposes therapeutic resistance, one of the major problems seen in preclinical and clinical studies. There is an urgent need to understand the tumor biology of therapy resistant tumors following the therapy. Here, we have discussed the problem and provided possible path for future studies to treat cancer.
Collapse
Affiliation(s)
- Ali S Arbab
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, Augusta 30907, GA, USA
| | - Meenu Jain
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, Augusta 30907, GA, USA
| | - Bhagelu R Achyut
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, Augusta 30907, GA, USA
| |
Collapse
|