1
|
Zhang C, Wang X, Song H, Yuan J, Zhang X, Yuan Y, Wang Z, Lei Z, He J. M6A modification-mediated LIMA1 promotes the progression of hepatocellular carcinoma through the wnt-βcatenin/Hippo pathway. Cell Biol Toxicol 2024; 41:9. [PMID: 39707043 DOI: 10.1007/s10565-024-09959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), considered as one of the most common and lethal cancers worldwide, has drawn significant attention from researchers.Extensively studied diverse cancers, the function of LIMA1 in tumorigenesis and cancer progression remains ambiguous.. Moreover, the role of LIMA1 in HCC remains controversial. METHODS The expression difference of LIMA1 in hepatocellular carcinoma, which was verified by TMT quantitative proteomics, immunohistochemistry, western blot, and the TCGA database, has been investigated in this study. Demonstrated by using transwell, cck8, sphere formation, and other experiments, the effects of LIMA1 on the migration, proliferation, stemness, and other aspects of hepatocellular carcinoma were significant. Moreover, the effect of LIMA1 on the wnt-βcatenin/Hippo pathway was revealed by using RNA sequencing and western blot, and the relationship between LIMA1 and βcatenin was verified by using COIP. Finally, the effect of m6a modification on LIMA1 was further verified using Western blotting, actinomycin D and MeRip experiments. RESULTS In HCC tissues and several HCC cell lines, LIMA1 was expressed at a relatively high level.LIMA1 positively regulated the invasion, migration, proliferation and stemness of hepatocellular carcinoma, and silencing of LIMA1 inhibited the tumorigenic ability of HCC cells in nude mice. Moreover, it was shown that LIMA1 can have an impact on the wnt-β-catenin/Hippo pathway. And silencing β-catenin suppressed the invasion, migration, proliferation and stemness of hepatocellular carcinoma cells mediated by LIMA1. Finally, it was further verified that the activation of LIMA1 in hepatocellular carcinoma cells is due to m6-methyladenosine methylation that is dependent on METTL3. CONCLUSIONS In HCC, LIMA1 functions as a tumor promoter and engages with the WNT-β-catenin and Hippo signaling pathways,, affecting the characteristics of tumor cells. LIMA1 expression is regulated by METTL3-mediated m6A modification, leading to its high expression in HCC. Our research presents a hopeful objective for the detection and therapy of HCC.
Collapse
Affiliation(s)
- Chao Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Linfen Central Hospital, LinFen, 041099, China
| | - Xiaoxiao Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Huangqin Song
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Junlong Yuan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Xiaomin Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Yiran Yuan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Zhuangqiang Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Zhang Lei
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jiefeng He
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
2
|
Obulkasim H, Adili A, Liu Y, Duan S. Expression and molecular insights of lima1 in cholangiocarcinoma. Cell Adh Migr 2024; 18:4-17. [PMID: 39076043 PMCID: PMC11290767 DOI: 10.1080/19336918.2024.2383068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
Lim Domain and Actin Binding protein1 (lima1) influence cancer cell function. Thus far, functional role of lima1 in cholangiocarcinoma remains unknown. We used public databases, in vitro experiments, and multi-omics analysis to investigate the Lima1 in cholangiocarcinoma. Our results showed that lima1 expression is significantly upregulated and high levels of lima1 are significantly associated with vascular invasion in cholangiocarcinoma. Furthermore, lima1 knocking out inhibits the RBE cell invasion. Multi-omics data suggest that lima1 affect a broad spectrum of cancer related pathways, promoting tumor progression and metastatic ability in cholangiocarcinoma. This study provides insights into molecular associations of lima1 with tumorigenesist and establishes a preliminary picture of the correlation network in cholangiocarcinoma.
Collapse
Affiliation(s)
- Halmurat Obulkasim
- Department of General Surgery, Hospital of Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
- Department of General Surgery, Postdoctoral Workstation of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Ailiya Adili
- Biology Groupe, Hansoh Biology Group Co. Ltd, Shanghai, China
| | - Yu Liu
- Department of General Surgery, Hospital of Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Shaobin Duan
- Department of General Surgery, Hospital of Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
- Department of General Surgery, Postdoctoral Workstation of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
3
|
Hecht M, Alber N, Marhoffer P, Johnsson N, Gronemeyer T. The concerted action of SEPT9 and EPLIN modulates the adhesion and migration of human fibroblasts. Life Sci Alliance 2024; 7:e202201686. [PMID: 38719752 PMCID: PMC11077590 DOI: 10.26508/lsa.202201686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Septins are cytoskeletal proteins that participate in cell adhesion, migration, and polarity establishment. The septin subunit SEPT9 directly interacts with the single LIM domain of epithelial protein lost in neoplasm (EPLIN), an actin-bundling protein. Using a human SEPT9 KO fibroblast cell line, we show that cell adhesion and migration are regulated by the interplay between both proteins. The low motility of SEPT9-depleted cells could be partly rescued by increased levels of EPLIN. The normal organization of actin-related filopodia and stress fibers was directly dependent on the expression level of SEPT9 and EPLIN. Increased levels of SEPT9 and EPLIN enhanced the size of focal adhesions in cell protrusions, correlating with stabilization of actin bundles. Conversely, decreased levels had the opposite effect. Our work thus establishes the interaction between SEPT9 and EPLIN as an important link between the septin and the actin cytoskeleton, influencing cell adhesion, motility, and migration.
Collapse
Affiliation(s)
- Matthias Hecht
- Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| | - Nane Alber
- Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| | - Pia Marhoffer
- Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| |
Collapse
|
4
|
Li S, Yang F, Cheng F, Zhu L, Yan Y. Lipotoxic hepatocyte derived LIMA1 enriched small extracellular vesicles promote hepatic stellate cells activation via inhibiting mitophagy. Cell Mol Biol Lett 2024; 29:82. [PMID: 38822260 PMCID: PMC11140962 DOI: 10.1186/s11658-024-00596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/10/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Hepatic stellate cells (HSCs) play a crucial role in the development of fibrosis in non-alcoholic fatty liver disease (NAFLD). Small extracellular vesicles (sEV) act as mediators for intercellular information transfer, delivering various fibrotic factors that impact the function of HSCs in liver fibrosis. In this study, we investigated the role of lipotoxic hepatocyte derived sEV (LTH-sEV) in HSCs activation and its intrinsic mechanisms. METHODS High-fat diet (HFD) mice model was constructed to confirm the expression of LIMA1. The relationship between LIMA1-enriched LTH-sEV and LX2 activation was evaluated by measurement of fibrotic markers and related genes. Levels of mitophagy were detected using mt-keima lentivirus. The interaction between LIMA1 and PINK1 was discovered through database prediction and molecular docking. Finally, sEV was injected to investigate whether LIMA1 can accelerate HFD induced liver fibrosis in mice. RESULTS LIMA1 expression was upregulated in lipotoxic hepatocytes and was found to be positively associated with the expression of the HSCs activation marker α-SMA. Lipotoxicity induced by OPA led to an increase in both the level of LIMA1 protein in LTH-sEV and the release of LTH-sEV. When HSCs were treated with LTH-sEV, LIMA1 was observed to hinder LX2 mitophagy while facilitating LX2 activation. Further investigation revealed that LIMA1 derived from LTH-sEV may inhibit PINK1-Parkin-mediated mitophagy, consequently promoting HSCs activation. Knocking down LIMA1 significantly attenuates the inhibitory effects of LTH-sEV on mitophagy and the promotion of HSCs activation. CONCLUSIONS Lipotoxic hepatocyte-derived LIMA1-enriched sEVs play a crucial role in promoting HSCs activation in NAFLD-related liver fibrosis by negatively regulating PINK1 mediated mitophagy. These findings provide new insights into the pathological mechanisms involved in the development of fibrosis in NAFLD.
Collapse
Affiliation(s)
- Shihui Li
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Fuji Yang
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Fang Cheng
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ling Zhu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated With Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China.
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated With Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, China.
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine, Jiangsu University, Changzhou, 213017, China.
| |
Collapse
|
5
|
Lindell E, Zhang X. Exploring the Enigma: The Role of the Epithelial Protein Lost in Neoplasm in Normal Physiology and Cancer Pathogenesis. Int J Mol Sci 2024; 25:4970. [PMID: 38732188 PMCID: PMC11084159 DOI: 10.3390/ijms25094970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The cytoskeleton plays a pivotal role in maintaining the epithelial phenotype and is vital to several hallmark processes of cancer. Over the past decades, researchers have identified the epithelial protein lost in neoplasm (EPLIN, also known as LIMA1) as a key regulator of cytoskeletal dynamics, cytoskeletal organization, motility, as well as cell growth and metabolism. Dysregulation of EPLIN is implicated in various aspects of cancer progression, such as tumor growth, invasion, metastasis, and therapeutic resistance. Its altered expression levels or activity can disrupt cytoskeletal dynamics, leading to aberrant cell motility and invasiveness characteristic of malignant cells. Moreover, the involvement of EPLIN in cell growth and metabolism underscores its significance in orchestrating key processes essential for cancer cell survival and proliferation. This review provides a comprehensive exploration of the intricate roles of EPLIN across diverse cellular processes in both normal physiology and cancer pathogenesis. Additionally, this review discusses the possibility of EPLIN as a potential target for anticancer therapy in future studies.
Collapse
Affiliation(s)
| | - Xiaonan Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden;
| |
Collapse
|
6
|
Jiang W, Yang X, Shi K, Zhang Y, Shi X, Wang J, Wang Y, Chenyan A, Shan J, Wang Y, Chang J, Chen R, Zhou T, Zhu Y, Yu Y, Li C, Li X. MAD2 activates IGF1R/PI3K/AKT pathway and promotes cholangiocarcinoma progression by interfering USP44/LIMA1 complex. Oncogene 2023; 42:3344-3357. [PMID: 37752233 DOI: 10.1038/s41388-023-02849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Spindle assembly checkpoint (SAC) plays an essential part in facilitating normal cell division. However, the clinicopathological and biological significance of mitotic arrest deficient 2 like 1 (MAD2/MAD2L1), a highly conserved member of SAC in cholangiocarcinoma (CCA) remain unclear. We aim to determine the role and mechanism of MAD2 in CCA progression. In the study, we found up-regulated MAD2 facilitated CCA progression and induced lymphatic metastasis dependent on USP44/LIMA1/PI3K/AKT pathway. MAD2 interfered the binding of USP44 to LIMA1 by sequestrating more USP44 in nuclei, causing impaired formation of USP44/LIMA1 complex and enhanced LIMA1 K48 (Lys48)-linked ubiquitination. In therapeutic perspective, the data combined eleven cases of CCA PDTX model showed that high-MAD2 inhibits tumor necrosis and diminishes the inhibition of cell viability after treated with gemcitabine-based regimens. Immunohistochemistry (IHC) analysis of tissue microarray (TMA) for CCA patients revealed that high-MAD2, low-USP44 or low-LIMA1 level are correlated with worse survival for patients. Together, MAD2 activates PI3K/AKT pathway, promotes cancer progression and induces gemcitabine chemo-resistance in CCA. These findings suggest that MAD2 might be an excellent indicator in prognosis analysis and chemotherapy guidance for CCA patients.
Collapse
Affiliation(s)
- Wangjie Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China
| | - Xiao Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kuangheng Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaodong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China
| | - Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jifei Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuming Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Anlan Chenyan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jijun Shan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yirui Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Chang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruixiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanping Zhu
- Personaloncology Biological Technology Co., Ltd, Nanjing, Jiangsu, China
| | - Yue Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China
| | - Changxian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China.
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Wang X, Zhang C, Song H, Yuan J, Zhang X, Yuan Y, Zhang L, He J. Characterization of LIMA1 and its emerging roles and potential therapeutic prospects in cancers. Front Oncol 2023; 13:1115943. [PMID: 37274282 PMCID: PMC10235525 DOI: 10.3389/fonc.2023.1115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Actin is the most abundant and highly conserved cytoskeletal protein present in all eukaryotic cells. Remodeling of the actin cytoskeleton is controlled by a variety of actin-binding proteins that are extensively involved in biological processes such as cell motility and maintenance of cell shape. LIM domain and actin-binding protein 1 (LIMA1), as an important actin cytoskeletal regulator, was initially thought to be a tumor suppressor frequently downregulated in epithelial tumors. Importantly, the deficiency of LIMA1 may be responsible for dysregulated cytoskeletal dynamics, altered cell motility and disrupted cell-cell adhesion, which promote tumor proliferation, invasion and migration. As research progresses, the roles of LIMA1 extend from cytoskeletal dynamics and cell motility to cell division, gene regulation, apical extrusion, angiogenesis, cellular metabolism and lipid metabolism. However, the expression of LIMA1 in malignant tumors and its mechanism of action have not yet been elucidated, and many problems and challenges remain to be addressed. Therefore, this review systematically describes the structure and biological functions of LIMA1 and explores its expression and regulatory mechanism in malignant tumors, and further discusses its clinical value and therapeutic prospects.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Chao Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Huangqin Song
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Junlong Yuan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaomin Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yiran Yuan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Lei Zhang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiefeng He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
EPLIN, a Putative Tumour Suppressor in Colorectal Cancer, Implications in Drug Resistance. Int J Mol Sci 2022; 23:ijms232315232. [PMID: 36499558 PMCID: PMC9736569 DOI: 10.3390/ijms232315232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Colorectal cancer is a serious threat to human health. Poor prognosis and frequently reported drug resistance urges research into novel biomarkers and mechanisms to aid in the understanding of the development and progression of colorectal cancer and to optimise therapeutic strategies. In the current study, we investigated the roles of a putative tumour suppressor, EPLIN, in colorectal cancer. Our clinical colorectal cancer cohort and online databases revealed a downregulation of EPLIN in colorectal cancer tissues compared with normal tissues. The reduced expression of EPLIN was associated with poor clinical outcomes of patients. In vitro cellular function assays showed that EPLIN elicited an inhibitory effect on cellular growth, adhesion, migration and invasion. Utilising a protein microarray on protein samples from normal and tumour patient tissues suggested HSP60, Her2 and other signalling events were novel potential interacting partners of EPLIN. It was further revealed that EPLIN and HSP60 were negative regulators of Her2 in colorectal cancer cells. The clinical cohort also demonstrated that expression of HSP60 and Her2 affected clinical outcomes, but most interestingly the combination of EPLIN, HSP60 and Her2 was able to identify patients with the most unfavourable clinical outcome by independently predicting patient overall survival and disease free survival. Furthermore, EPLIN and HSP60 exhibited potential to regulate cellular response to chemotherapeutic and EGFR/Her2 targeted therapeutic agents. In conclusion, EPLIN is an important prognostic factor for patients with colon cancer and reduced EPLIN in CRC contributes to aggressive traits of CRC cells and their responses to chemotherapeutic drugs. Collectively, EPLIN is a pivotal factor for the development and progression of colorectal cancer and has important clinical and therapeutic values in this cancer type.
Collapse
|
9
|
Qi Y, Wang H, Zhang Q, Liu Z, Wang T, Wu Z, Wu W. CAF-Released Exosomal miR-20a-5p Facilitates HCC Progression via the LIMA1-Mediated β-Catenin Pathway. Cells 2022; 11:cells11233857. [PMID: 36497115 PMCID: PMC9740131 DOI: 10.3390/cells11233857] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Currently, exosomes derived from Cancer-associated fibroblast (CAF) have reportedly been involved in regulating hepatocellular carcinoma (HCC) tumour microenvironment (TME). LIM domain and actin binding 1 (LIMA1) is an actin-binding protein that is involved in controlling the biological behaviour and progression of specific solid tumours. We aimed to determine the effect of LIMA1 and exosome-associated miR-20a-5p in HCC development. LIMA1 and miR-20a-5p expression levels were examined by real-time quantitative PCR (qRT-PCR), western blotting or immunohistochemistry (IHC). Functional experiments, including Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) assays, colony formation assays, wound healing assays, and Transwell invasion assays, were performed to investigate the effect of LIMA1 and miR-20a-5p. A dual-luciferase reporter gene assay was performed to confirm the interaction of miR-20a-5p and LIMA1. Exosomes were characterised by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blotting. We noted that LIMA1 was downregulated in human HCC tissues and cells and remarkably correlated with overall survival (OS) and recurrence-free survival (RFS). LIMA1 overexpression suppressed HCC cell proliferation and metastasis in vitro and in vivo, while LIMA1 knockdown had the opposite effects. A mechanistic investigation showed that LIMA1 inhibited the Wnt/β-catenin signalling pathway by binding to BMI1 and inducing its destabilisation. Additionally, we found that LIMA1 expression in HCC cells could be suppressed by transferring CAF-derived exosomes harbouring oncogenic miR-20a-5p. In summary, LIMA1 is a tumour suppressor that inhibits the Wnt/β-catenin signalling pathway and is downregulated by CAF-derived exosomes carrying oncogenic miR-20a-5p in HCC.
Collapse
Affiliation(s)
- Yong Qi
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of Graduate School, Anhui Medical University, Hefei 230032, China
| | - Haibo Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of Graduate School, Anhui Medical University, Hefei 230032, China
| | - Qikun Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of Graduate School, Anhui Medical University, Hefei 230032, China
| | - Zhiqiang Liu
- Department of Graduate School, Anhui Medical University, Hefei 230032, China
| | - Tianbing Wang
- Department of General Surgery, Anhui No. 2 Provinicial People’s Hospital, Hefei 230011, China
| | - Zhengsheng Wu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Correspondence: (Z.W.); (W.W.); Tel.: +86-13965012315 (Z.W.); +86-13805694400 (W.W.)
| | - Wenyong Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of Graduate School, Anhui Medical University, Hefei 230032, China
- Department of General Surgery, Anhui No. 2 Provinicial People’s Hospital, Hefei 230011, China
- Correspondence: (Z.W.); (W.W.); Tel.: +86-13965012315 (Z.W.); +86-13805694400 (W.W.)
| |
Collapse
|
10
|
Kim SH, Baek KH. Ovarian tumor deubiquitinase 6A regulates cell proliferation via deubiquitination of nucleolin and caspase‑7. Int J Oncol 2022; 61:127. [PMID: 36082810 DOI: 10.3892/ijo.2022.5417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022] Open
Abstract
Most proteins maintain protein homeostasis via post‑translational modifications, including the ubiquitin‑proteasome system. Deubiquitinating enzymes (DUBs) have essential intercellular roles, such as responses to DNA damage, proteolysis and apoptosis. Therefore, it is important to understand DUB‑related diseases to identify DUBs that target abnormally regulated proteins in cells. Ovarian tumor deubiquitinase 6A (OTUD6A) was previously reported as a downregulated DUB in HCT116 cells with p53 knockdown. Therefore, it was expected that the relationship between OTUD6A and p53 would affect cell proliferation. In the present study, putative substrates of OTUD6A related to the p53 signaling pathway were identified. Application of liquid chromatography‑tandem mass spectrometry and proteomic analysis led to the identification of nucleolin (known to bind p53) as a binding protein. In addition, immunoprecipitation studies determined that caspase‑7, an apoptotic protein, is associated with p53 signaling and is regulated by OTUD6A. It was further identified that OTUD6A regulates the protein stability of nucleolin, but not caspase‑7. It was also demonstrated that OTUD6A acts as a respective DUB through the deubiquitination of K48‑linked polyubiquitin chain of nucleolin and the K63‑linked polyubiquitin chain of caspase‑7. Furthermore, overexpression of OTUD6A induced cell proliferation via enhancing cell cycle progression of MCF7 cells. Taken together, OTUD6A may be proposed as a target for anticancer therapy.
Collapse
Affiliation(s)
- So-Hee Kim
- Department of Biomedical Science, CHA University, Seongnam‑Si, Gyeonggi‑Do 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Seongnam‑Si, Gyeonggi‑Do 13488, Republic of Korea
| |
Collapse
|
11
|
Liu Y, Gu W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin Cancer Biol 2022; 85:4-32. [PMID: 33785447 PMCID: PMC8473587 DOI: 10.1016/j.semcancer.2021.03.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Although the classic activities of p53 including induction of cell-cycle arrest, senescence, and apoptosis are well accepted as critical barriers to cancer development, accumulating evidence suggests that loss of these classic activities is not sufficient to abrogate the tumor suppression activity of p53. Numerous studies suggest that metabolic regulation contributes to tumor suppression, but the mechanisms by which it does so are not completely understood. Cancer cells rewire cellular metabolism to meet the energetic and substrate demands of tumor development. It is well established that p53 suppresses glycolysis and promotes mitochondrial oxidative phosphorylation through a number of downstream targets against the Warburg effect. The role of p53-mediated metabolic regulation in tumor suppression is complexed by its function to promote both cell survival and cell death under different physiological settings. Indeed, p53 can regulate both pro-oxidant and antioxidant target genes for complete opposite effects. In this review, we will summarize the roles of p53 in the regulation of glucose, lipid, amino acid, nucleotide, iron metabolism, and ROS production. We will highlight the mechanisms underlying p53-mediated ferroptosis, AKT/mTOR signaling as well as autophagy and discuss the complexity of p53-metabolic regulation in tumor development.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
12
|
Huang H, Du Y, Zhao D, Chen K. The Relationship between the Prognostic Marker LIMA1 in Head and Neck Squamous Cell Carcinoma and Immune Infiltration. JOURNAL OF ONCOLOGY 2022; 2022:1040116. [PMID: 37181789 PMCID: PMC10175016 DOI: 10.1155/2022/1040116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
Background Head and neck squamous cell carcinoma (HNSC) is one of the most common malignancies, and identification of HNSC biomarkers is critical. LIM Domain And Actin Binding 1 (LIMA1) is involved in actin cytoskeleton regulation and dynamics. The role of LIMA1 in HNSC is unclear. This is the first study to investigate the expression of LIMA1 in HNSC patients and its prognostic value, potential biological functions, and impact on the immune system. Methods Gene expression and clinicopathological analysis, enrichment analysis, and immune infiltration analysis were all based on data from The Cancer Genome Atlas (TCGA) with additional bioinformatics analysis. Statistical analysis was performed using TIMER and ssGSEA to analyze the immune response to LIMA1 expression in HNSCs. In addition, Gene Expression Omnibus (GEO), Kaplan-Meier(K-M) survival analysis, and data from the Human Protein Atlas (HPA) were used to validate the results. Results LIMA1 played a key role as an independent prognostic factor in HNSC patients. GSEA found that LIMA1 is associated with promoting cell adhesion and suppressing immune function. LIMA1 expression was significantly correlated with infiltration of B cells, CD8+ T cells, CD4+ T cells, dendritic cells, and neutrophils and was coexpressed with immune-related genes and immune checkpoints. Conclusion The expression of LIMA1 is increased in HNSC, and the high expression of LIMA1 is associated with poor prognosis. LIMA1 may affect tumor development by regulating tumor-infiltrating cells in the tumor microenvironment (TME). LIMA1 may be a potential target for immunotherapy.
Collapse
Affiliation(s)
- Hesen Huang
- Department of Otolaryngology-Head and Neck Surgery, Xiang'an Hospital of Xiamen University, Xiamen 361100, Fujian, China
| | - Yu Du
- Department of Otolaryngology-Head and Neck Surgery, Xiang'an Hospital of Xiamen University, Xiamen 361100, Fujian, China
| | - Dean Zhao
- Department of Otolaryngology-Head and Neck Surgery, Xiang'an Hospital of Xiamen University, Xiamen 361100, Fujian, China
| | - Kaiqin Chen
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, Xiamen 361100, Fujian, China
| |
Collapse
|
13
|
Ma W, Liao Y, Gao Z, Zhu W, Liu J, She W. Overexpression of LIMA1 Indicates Poor Prognosis and Promotes Epithelial-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma. CLINICAL MEDICINE INSIGHTS: ONCOLOGY 2022; 16:11795549221109493. [PMID: 35837368 PMCID: PMC9274436 DOI: 10.1177/11795549221109493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background: LIMA1 encodes LIM domain and actin binding 1, a
cytoskeleton-associated protein whose loss has been linked to migration and
invasion behavior of cancer cells. However, the roles of LIMA1 underlying
the malignant behavior of tumors in head and neck squamous cell carcinoma
(HNSC) are not fully understood. Methods: We conducted a multi-omics study on the role of LIMA1 in HNSC based on The
Cancer Genome Atlas data. Subsequent in vitro experiments were performed to
validate the results of bioinformatic analysis. We first identified the
correlation between LIMA1 and tumor cell functional states
according to single-cell sequencing data in HNSC. The potential downstream
effects of LIMA1 were explored for gene ontology and Kyoto Encyclopedia of
Genes and Genomes pathways through functional enrichment analysis of the
gene sets that correlated with LIMA1 in HNSC. The
prognostic role of LIMA1 was assessed using the log rank test to compare
difference in survival between LIMA1High and LIMA1Low
patients. Univariate Cox regression and multivariate Cox regression were
further carried out to identify the prognostic value of LIMA1 in HNSC. Results: LIMA1 was identified as a prognostic biomarker and is associated with
epithelial-mesenchymal transition (EMT) progress in HNSC. In vitro silencing
of LIMA1 suppressed EMT and related pathways in HNSC. Conclusions: LIMA1 promotes EMT and further leads to tumor invasion and metastasis.
Increased expression of LIMA1 indicates poor survival,
identifying it as a prognostic biomarker in HNSC.
Collapse
Affiliation(s)
- Wei Ma
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China.,Department of Otolaryngology-Head and Neck Surgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yiqun Liao
- Department of Clinical Medical College, Dalian Medical University, Dalian, China
| | - Ziwen Gao
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Wenyan Zhu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huaian, China
| | - Jianbing Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Yancheng City Dafeng People's Hospital, Yancheng, China
| | - Wandong She
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Zakharova VV, Magnitov MD, Del Maestro L, Ulianov SV, Glentis A, Uyanik B, Williart A, Karpukhina A, Demidov O, Joliot V, Vassetzky Y, Mège RM, Piel M, Razin S, Ait-Si-Ali S. SETDB1 fuels the lung cancer phenotype by modulating epigenome, 3D genome organization and chromatin mechanical properties. Nucleic Acids Res 2022; 50:4389-4413. [PMID: 35474385 PMCID: PMC9071401 DOI: 10.1093/nar/gkac234] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
Imbalance in the finely orchestrated system of chromatin-modifying enzymes is a hallmark of many pathologies such as cancers, since causing the affection of the epigenome and transcriptional reprogramming. Here, we demonstrate that a loss-of-function mutation (LOF) of the major histone lysine methyltransferase SETDB1 possessing oncogenic activity in lung cancer cells leads to broad changes in the overall architecture and mechanical properties of the nucleus through genome-wide redistribution of heterochromatin, which perturbs chromatin spatial compartmentalization. Together with the enforced activation of the epithelial expression program, cytoskeleton remodeling, reduced proliferation rate and restricted cellular migration, this leads to the reversed oncogenic potential of lung adenocarcinoma cells. These results emphasize an essential role of chromatin architecture in the determination of oncogenic programs and illustrate a relationship between gene expression, epigenome, 3D genome and nuclear mechanics.
Collapse
Affiliation(s)
- Vlada V Zakharova
- Epigenetics and Cell Fate (EDC) department, UMR7216, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Mikhail D Magnitov
- Institute of Gene Biology, Russian Academy of Science, Moscow 119334, Russia
| | - Laurence Del Maestro
- Epigenetics and Cell Fate (EDC) department, UMR7216, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Science, Moscow 119334, Russia,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexandros Glentis
- Institute Jacques Monod, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Burhan Uyanik
- INSERM UMR1231, LipSTIC, University of Burgundy Franche-Comté F-21000, Dijon, France
| | - Alice Williart
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, 75248 Paris, France
| | - Anna Karpukhina
- UMR9018, CNRS, Université Paris-Sud Paris-Saclay, Institut Gustave Roussy; 94805 Villejuif, France,Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - Oleg Demidov
- INSERM UMR1231, LipSTIC, University of Burgundy Franche-Comté F-21000, Dijon, France,Institute of Cytology, RAS, 194064 St. Petersburg, Russia,NTU Sirius, 354340 Sochi, Russia
| | - Veronique Joliot
- Epigenetics and Cell Fate (EDC) department, UMR7216, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Yegor S Vassetzky
- UMR9018, CNRS, Université Paris-Sud Paris-Saclay, Institut Gustave Roussy; 94805 Villejuif, France,Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - René-Marc Mège
- Institute Jacques Monod, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, 75248 Paris, France
| | - Sergey V Razin
- Correspondence may also be addressed to Sergey V. Razin. Tel: +7 499 135 3092;
| | | |
Collapse
|
15
|
Lata S, Mishra R, Arya RP, Arora P, Lahon A, Banerjea AC, Sood V. Where all the Roads Meet? A Crossover Perspective on Host Factors Regulating SARS-CoV-2 infection. J Mol Biol 2022; 434:167403. [PMID: 34914966 PMCID: PMC8666384 DOI: 10.1016/j.jmb.2021.167403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 01/11/2023]
Abstract
COVID-19 caused by SARS-CoV-2 is the latest pandemic which has thrown the world into an unprecedented social and economic uncertainties along with huge loss to humanity. Identification of the host factors regulating the replication of SARS-CoV-2 in human host may help in the development of novel anti-viral therapies to combat the viral infection and spread. Recently, some research groups used genome-wide CRISPR/Cas screening to identify the host factors critical for the SARS-CoV-2 replication and infection. A comparative analysis of these significant host factors (p < 0.05) identified fifteen proteins common in these studies. Apart from ACE2 (receptor for SARS-CoV-2 attachment), other common host factors were CSNK2B, GDI2, SLC35B2, DDX51, VPS26A, ARPP-19, C1QTNF7, ALG6, LIMA1, COG3, COG8, BCOR, LRRN2 and TLR9. Additionally, viral interactome of these host factors revealed that many of them were associated with several SARS-CoV-2 proteins as well. Interestingly, some of these host factors have already been shown to be critical for the pathogenesis of other viruses suggesting their crucial role in virus-host interactions. Here, we review the functions of these host factors and their role in other diseases with special emphasis on viral diseases.
Collapse
Affiliation(s)
- Sneh Lata
- Virology Laboratory, National Institute of Immunology, New Delhi, India
| | - Ritu Mishra
- Virology Laboratory, National Institute of Immunology, New Delhi, India
| | - Ravi P. Arya
- KSBS, Indian Institute of Technology, New Delhi, India
| | - Pooja Arora
- Hansraj College, University of Delhi, New Delhi, India
| | | | - Akhil C. Banerjea
- Institute of Advanced Virology, Kerala, India,Corresponding authors
| | - Vikas Sood
- Biochemistry Department, Jamia Hamdard, New Delhi, India,Corresponding authors
| |
Collapse
|
16
|
Chen LL, Wang WJ. p53 regulates lipid metabolism in cancer. Int J Biol Macromol 2021. [DOI: https://doi.org/10.1016/j.ijbiomac.2021.09.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Chen LL, Wang WJ. p53 regulates lipid metabolism in cancer. Int J Biol Macromol 2021; 192:45-54. [PMID: 34619274 DOI: 10.1016/j.ijbiomac.2021.09.188] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/22/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
Reprogrammed cell metabolism is a well-accepted hallmark of cancer. Metabolism changes provide energy and precursors for macromolecule biosynthesis to satisfy the survival needs of cancer cells. The specific changes in different aspects of lipid metabolism in cancer cells have been focused in recent years. These changes can affect cell growth, proliferation, differentiation and motility through affecting membranes synthesis, energy homeostasis and cell signaling. The tumor suppressor p53 plays vital roles in the control of cell proliferation, senescence, DNA repair, and cell death in cancer through various transcriptional and non-transcriptional activities. Accumulating evidences indicate that p53 also regulates cellular metabolism, which appears to contribute to its tumor suppressive functions. Particularly the role of p53 in regulating lipid metabolism has gained more and more attention in recent decades. In this review, we summarize recent advances in the function of p53 on lipid metabolism in cancer. Further understanding and research on the role of p53 in lipid metabolism regulation will provide a potential therapeutic window for cancer treatment.
Collapse
Affiliation(s)
- Ling-Li Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Wen-Jun Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
18
|
Laubach K, Zhang J, Chen X. The p53 Family: A Role in Lipid and Iron Metabolism. Front Cell Dev Biol 2021; 9:715974. [PMID: 34395447 PMCID: PMC8358664 DOI: 10.3389/fcell.2021.715974] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
The p53 family of tumor suppressors, which includes p53, p63, and p73, has a critical role in many biological processes, such as cell cycle arrest, apoptosis, and differentiation. In addition to tumor suppression, the p53 family proteins also participate in development, multiciliogenesis, and fertility, indicating these proteins have diverse roles. In this review, we strive to cover the relevant studies that demonstrate the roles of p53, p63, and p73 in lipid and iron metabolism.
Collapse
Affiliation(s)
| | | | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
19
|
Zeng J, Jiang WG, Sanders AJ. Epithelial Protein Lost in Neoplasm, EPLIN, the Cellular and Molecular Prospects in Cancers. Biomolecules 2021; 11:biom11071038. [PMID: 34356662 PMCID: PMC8301816 DOI: 10.3390/biom11071038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Epithelial Protein Lost In Neoplasm (EPLIN), also known as LIMA1 (LIM Domain And Actin Binding 1), was first discovered as a protein differentially expressed in normal and cancerous cell lines. It is now known to be key to the progression and metastasis of certain solid tumours. Despite a slow pace in understanding the biological role in cells and body systems, as well as its clinical implications in the early years since its discovery, recent years have witnessed a rapid progress in understanding the mechanisms of this protein in cells, diseases and indeed the body. EPLIN has drawn more attention over the past few years with its roles expanding from cell migration and cytoskeletal dynamics, to cell cycle, gene regulation, angiogenesis/lymphangiogenesis and lipid metabolism. This concise review summarises and discusses the recent progress in understanding EPLIN in biological processes and its implications in cancer.
Collapse
|
20
|
Xiong D, Chen D, Liu D, Wu W, Dou X, Ji X, Li J, Zhang X. The Overexpression of NMHC IIA Promoted Invasion and Metastasis of Nasopharyngeal Carcinoma Cells. J Cancer 2021; 12:4218-4228. [PMID: 34093822 PMCID: PMC8176418 DOI: 10.7150/jca.47506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/01/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Nasopharyngeal carcinoma (NPC) is a kind of head and neck squamous cell carcinoma (HNSCC) with a strong tendency for metastasis and recurrence. Non-muscle myosin heavy chain IIA (NMHC IIA) plays important roles in recurrence and metastasis of cancers. However, the function and mechanism of NMHC IIA expression in NPC remain unclear. Methods: A receiver operating characteristic (ROC) curve was constructed for 141 specimens of HNSCC tissues and 44 control samples from The Cancer Genome Atlas (TCGA) database. Co-expressed genes with MYH9 were identified using LinkedOmics. Transcription factors (TFs) and miRNA regulation network were constructed using Networkanalyst. The migration and invasion ability of nasopharyngeal carcinoma cells were evaluated by in vitro migration and matrigel invasion assays, respectively. Results: The public microarray results showed that MYH9 expression levels were upregulated in HNSCC tissues compared with the matched adjacent normal tissues in this study (p<0.0001). The AUC of MYH9 reached up to 0.8303 at a cutoff value of 175.2, with a sensitivity and specificity of 70.21% and 86.36%, respectively. MYH9 expression was increased in lymph node metastasis HNSCC tumors compared with that in tumors without lymph node metastasis (p<0.05) and showed a strong positive association with expression of FLNA. High MYH9 and FLNA expression were related with poorer overall survival in HNSCC. MYH9 with positively associated genes regulated focal adhesion, cell-substrate junction assembly and cell morphogenesis were involved in differentiation using GO and KEGG analysis. MYH9 was correlated with a network of TFs including SP1, SRF, JUN and FOS in HNSCC. The suppression of endogenous NMHC IIA decreased cellular migration and invasion in HNE1 cells and reduced the expression of phosphorylation of EGFR, AKT and ERK. The over-expression of NMHC IIA increased cellular migration and invasion in COS-7 cells and increased the expression of phosphorylation of EGFR, AKT and ERK. Conclusion: Expression of NMHC IIA mRNA was higher in HNSCC than in the adjacent normal tissues. NMHC IIA expression was increased in lymph node metastasis HNSCC tumors compared with tumors without lymph node metastasis. High MYH9 was association with poorer overall survival in HNSCC. NMHC IIA expression increased the invasion and metastasis abilities of the nasopharyngeal cancer cell line in vitro by augmenting the expression of phosphorylation of EGFR, AKT and ERK. These findings will be beneficial for providing an effectively therapeutic strategy for NPC.
Collapse
Affiliation(s)
- Dan Xiong
- Medical Laboratory of The Third Affiliated Hospital of ShenZhen university, Shenzhen, 518001, China
| | - Dayang Chen
- Medical Laboratory of The Third Affiliated Hospital of ShenZhen university, Shenzhen, 518001, China
| | - Dawei Liu
- Department of pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Wu
- Medical Laboratory of The Third Affiliated Hospital of ShenZhen university, Shenzhen, 518001, China
| | - Xiaowen Dou
- Medical Laboratory of The Third Affiliated Hospital of ShenZhen university, Shenzhen, 518001, China
| | - Xiang Ji
- Medical Laboratory of The Third Affiliated Hospital of ShenZhen university, Shenzhen, 518001, China
| | - Jian Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Xiuming Zhang
- Medical Laboratory of The Third Affiliated Hospital of ShenZhen university, Shenzhen, 518001, China
| |
Collapse
|
21
|
Wirsing AM, Bjerkli IH, Steigen SE, Rikardsen O, Magnussen SN, Hegge B, Seppola M, Uhlin-Hansen L, Hadler-Olsen E. Validation of Selected Head and Neck Cancer Prognostic Markers from the Pathology Atlas in an Oral Tongue Cancer Cohort. Cancers (Basel) 2021; 13:cancers13102387. [PMID: 34069237 PMCID: PMC8156750 DOI: 10.3390/cancers13102387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
The Pathology Atlas is an open-access database that reports the prognostic value of protein-coding transcripts in 17 cancers, including head and neck cancer. However, cancers of the various head and neck anatomical sites are specific biological entities. Thus, the aim of the present study was to validate promising prognostic markers for head and neck cancer reported in the Pathology Atlas in oral tongue squamous cell carcinoma (OTSCC). We selected three promising markers from the Pathology Atlas (CALML5, CD59, LIMA1), and analyzed their prognostic value in a Norwegian OTSCC cohort comprising 121 patients. We correlated target protein and mRNA expression in formalin-fixed, paraffin-embedded cancer tissue to five-year disease-specific survival (DSS) in univariate and multivariate analyses. Protein expression of CALML5 and LIMA1 were significantly associated with five-year DSS in the OTSCC cohort in univariate analyses (p = 0.016 and p = 0.043, respectively). In multivariate analyses, lymph node metastases, tumor differentiation, and CALML5 were independent prognosticators. The prognostic role of the other selected markers for head and neck cancer patients identified through unbiased approaches could not be validated in our OTSCC cohort. This underlines the need for subsite-specific analyses for head and neck cancer.
Collapse
Affiliation(s)
- Anna Maria Wirsing
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
| | - Inger-Heidi Bjerkli
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
- Department of Otorhinolaryngology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Sonja Eriksson Steigen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
- Department of Clinical Pathology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Oddveig Rikardsen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
- Department of Otorhinolaryngology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Synnøve Norvoll Magnussen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
| | - Beate Hegge
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
| | - Marit Seppola
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
| | - Lars Uhlin-Hansen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
- Department of Clinical Pathology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Elin Hadler-Olsen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
- The Public Dental Health Service Competence Centre of Northern Norway, 9019 Tromsø, Norway
- Correspondence: ; Tel.: +47-48-06-72-49
| |
Collapse
|
22
|
EPLIN Expression in Gastric Cancer and Impact on Prognosis and Chemoresistance. Biomolecules 2021; 11:biom11040547. [PMID: 33917939 PMCID: PMC8068319 DOI: 10.3390/biom11040547] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 01/17/2023] Open
Abstract
Epithelial protein lost in neoplasm (EPLIN) has been implicated as a suppressor of cancer progression. The current study explored EPLIN expression in clinical gastric cancer and its association with chemotherapy resistance. EPLIN transcript expression, in conjunction with patient clinicopathological information and responsiveness to neoadjuvant chemotherapy (NAC), was explored in two gastric cancer cohorts collected from the Beijing Cancer Hospital. Kaplan-Meier survival analysis was undertaken to explore EPLIN association with patient survival. Reduced EPLIN expression was associated with significant or near significant reductions of overall, disease-free, first progression or post-progression survival in the larger host cohort and Kaplan Meier plotter datasets. In the larger cohort EPLIN expression was significantly higher in the combined T1 + T2 gastric cancer group compared to the T3 + T4 group and identified to be an independent prognostic factor of disease-free survival and overall survival by multivariate analysis. In the smaller, NAC cohort, EPLIN expression was found to be significantly lower in tumour tissues than in paratumour tissues. EPLIN expression was significantly associated with responsiveness to chemotherapy which contributes to overall survival. Together, EPLIN appears to be a prognostic factor and may be associated with patient sensitivity to NAC.
Collapse
|
23
|
Taha M, Aldirawi M, März S, Seebach J, Odenthal-Schnittler M, Bondareva O, Bojovic V, Schmandra T, Wirth B, Mietkowska M, Rottner K, Schnittler H. EPLIN-α and -β Isoforms Modulate Endothelial Cell Dynamics through a Spatiotemporally Differentiated Interaction with Actin. Cell Rep 2020; 29:1010-1026.e6. [PMID: 31644899 DOI: 10.1016/j.celrep.2019.09.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/08/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Actin-binding proteins are essential for linear and branched actin filament dynamics that control shape change, cell migration, and cell junction remodeling in vascular endothelium (endothelial cells [ECs]). The epithelial protein lost in neoplasm (EPLIN) is an actin-binding protein, expressed as EPLIN-α and EPLIN-β by alternative promoters; however, the isoform-specific functions are not yet understood. Aortic compared to cava vein ECs and shear stress-exposed cultured ECs express increased EPLIN-β levels that stabilize stress fibers. In contrast, EPLIN-α expression is increased in growing and migrating ECs, is targeted to membrane protrusions, and terminates their growth via interaction with the Arp2/3 complex. The data indicate that EPLIN-α controls protrusion dynamics while EPLIN-β has an actin filament stabilizing role, which is consistent with FRAP analyses demonstrating a lower EPLIN-β turnover rate compared to EPLIN-α. Together, EPLIN isoforms differentially control actin dynamics in ECs, essential in shear stress responses, cell migration, and barrier function.
Collapse
Affiliation(s)
- Muna Taha
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Mohammed Aldirawi
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Sigrid März
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Jochen Seebach
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Maria Odenthal-Schnittler
- Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Department of Ophthalmology, Westfälische Wilhelms University of Münster, Medical Center, 48149 Münster, Germany
| | - Olga Bondareva
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Vesna Bojovic
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Thomas Schmandra
- Heart and Vascular Clinic Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| | - Benedikt Wirth
- Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Institute for Analysis and Numerics, Westfälische Wilhelms University of Münster, 48149 Münster Germany
| | - Magdalena Mietkowska
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Hans Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany.
| |
Collapse
|
24
|
Idogawa M, Hida T, Tanaka T, Ohira N, Tange S, Sasaki Y, Uhara H, Masumori N, Tokino T, Natori H. Renal angiomyolipoma (AML) harboring a missense mutation of TSC2 with copy-neutral loss of heterozygosity (CN-LOH). Cancer Biol Ther 2019; 21:315-319. [PMID: 31847710 DOI: 10.1080/15384047.2019.1702406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Angiomyolipoma (AML) is classified as a perivascular epithelioid cell neoplasm, mostly occurring in the kidney. Twenty percent of patients with renal AML have tuberous sclerosis complex (TSC) caused by germline variation in the TSC1 or TSC2 gene. In this paper, we report the first case of renal AML harboring somatic missense mutations of the TSC2 gene and concomitant copy-neutral loss of heterozygosity (CN-LOH). The patient presented with solitary renal AML and pulmonary lymphangiomyomatosis and without other findings suggestive of TSC. Exome sequencing analysis of the renal AML, however, identified a pathogenic somatic missense mutation in the TSC2 gene (NM_000548:c.5228G>A:p. R1743Q), although no other somatic mutation was detected. Furthermore, no germline mutation in TSC1 or TSC2 was detected. Interestingly, the mutant allele ratio was too high for a somatic heterozygous mutation without loss of heterozygosity (LOH). Furthermore, no copy number variation was detected around the TSC2 locus (16p13.3). To clarify the allelic status, we analyzed heterozygous single-nucleotide polymorphisms (SNPs) in chromosome 16. In these SNPs, an unbalanced allele ratio was accumulated inside the 16p13.3 region. These results suggested copy-neutral LOH (CN-LOH). Consequently, we concluded that the missense mutation of the TSC2 gene and CN-LOH of the TSC2 locus caused renal AML.
Collapse
Affiliation(s)
- Masashi Idogawa
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiaki Tanaka
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Shoichiro Tange
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasushi Sasaki
- Biology, Department of Liberal Arts and Sciences Center for Medical Education, Sapporo Medical University, Sapporo, Japan
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoya Masumori
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | |
Collapse
|
25
|
p53-induced ARVCF modulates the splicing landscape and supports the tumor suppressive function of p53. Oncogene 2019; 39:2202-2211. [DOI: 10.1038/s41388-019-1133-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023]
|
26
|
Prognostic Effect of Long Noncoding RNA NEAT1 Expression Depends on p53 Mutation Status in Cancer. JOURNAL OF ONCOLOGY 2019; 2019:4368068. [PMID: 31186635 PMCID: PMC6521466 DOI: 10.1155/2019/4368068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Recently, many studies have revealed that long noncoding RNAs (lncRNAs) play important roles in various biological and pathological processes. Our previous study reported that lncRNA NEAT1 is a direct transcriptional target of p53. NEAT1 is an essential component of paraspeckles, which have recently been identified as a novel type of nuclear compartment. Although our previous findings indicate that NEAT1 induction contributes to the tumor-suppressor function of p53, the role of NEAT1 in cancer is still controversial. In this study, we comprehensively analyzed the relationship between NEAT1 expression and p53 mutation status. Interestingly, survival analysis based on NEAT1 expression in several cancer tissues revealed that the p53 wild-type group with high NEAT1 expression had a good prognosis, while poor prognosis or no correlation between NEAT1 expression and survival was observed in the p53-mutated group. These results demonstrate that the tumor-suppressive effect of NEAT1 depends on p53 function and is consistent with our previous report showing that NEAT1 supports the tumor-suppressive function of p53. Specifically, NEAT1 seems to play a tumor-suppressive role only in the presence of wild-type p53. These results provide important clues to the roles of NEAT1 in cancer.
Collapse
|
27
|
Collins RJ, Morgan LD, Owen S, Ruge F, Jiang WG, Sanders AJ. Mechanistic insights of epithelial protein lost in neoplasm in prostate cancer metastasis. Int J Cancer 2018; 143:2537-2550. [PMID: 30098000 DOI: 10.1002/ijc.31786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 01/21/2023]
Abstract
EPLIN is frequently downregulated or lost in various cancers. The purpose of this study was to evaluate the importance of EPLIN in prostate cancer progression, with particular focus on the mechanistic implications to elucidate EPLIN's tumor suppressive function in cancer. EPLIN expression was evaluated in prostate cancer cell lines and tissues. PC-3 and LNCaP EPLINα overexpression models were generated through transfection with EPLINα sequence and EPLIN knockdown was achieved using shRNA in CA-HPV-10 cells. Functional assays were performed to evaluate cellular characteristics and potential mechanisms were evaluated using a protein microarray, and validated using western blot analysis. EPLIN expression was reduced in clinical prostate cancer sections, including hyperplasia (p ≤ 0.001) and adenocarcinoma (p = 0.005), when compared to normal prostate tissue. EPLINα overexpression reduced cell growth, migration and invasion, and influenced transcript, protein and phosphoprotein expression of paxillin, FAK and Src. EPLIN knockdown increased the invasive and migratory nature of CA-HPV-10 cells and also induced changes to FAK and Src total and/or phospho expression. Functional characterization of cellular migration and invasion in addition to FAK and Src inhibition demonstrated differential effects between control and EPLINα overexpression and EPLIN knockdown cell lines. This study highlights that EPLIN expression in prostate cancer is able to influence several aspects of cancer cell characteristics, including cell growth, migration and invasion. The mechanism of the tumor suppressive action of EPLIN remains to be fully elucidated; and this study proposes a role for EPLIN's ability to regulate the aggressive characteristics of prostate cancer cells partially through regulating FAK/Src signaling.
Collapse
Affiliation(s)
- Ross J Collins
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Liam D Morgan
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sioned Owen
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
28
|
Koyama R, Tamura M, Nakagaki T, Ohashi T, Idogawa M, Suzuki H, Tokino T, Sasaki Y. Identification and characterization of a metastatic suppressor BRMS1L as a target gene of p53. Cancer Sci 2017; 108:2413-2421. [PMID: 29030916 PMCID: PMC5715288 DOI: 10.1111/cas.13420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022] Open
Abstract
The tumor suppressor p53 and its family members, p63 and p73, play a pivotal role in the cell fate determination in response to diverse upstream signals. As transcription factors, p53 family proteins regulate a number of genes that are involved in cell cycle arrest, apoptosis, senescence, and maintenance of genomic stability. Recent studies revealed that p53 family proteins are important for the regulation of cell invasion and migration. Microarray analysis showed that breast cancer metastasis suppressor 1‐like (BRMS1L) is upregulated by p53 family proteins, specifically p53, TAp63γ, and TAp73β. We identified two responsive elements of p53 family proteins in the first intron and upstream of BRMS1L. These response elements are well conserved among mammals. Functional analysis showed that ectopic expression of BRMS1L inhibited cancer cell invasion and migration; knockdown of BRMS1L by siRNA induced the opposite effect. Importantly, clinical databases revealed that reduced BRMS1L expression correlated with poor prognosis in patients with breast and brain cancer. Together, these results strongly indicate that BRMS1L is one of the mediators downstream of the p53 pathway, and that it inhibits cancer cell invasion and migration, which are essential steps in cancer metastasis. Collectively, our results indicate that BRMS1L is involved in cancer cell invasion and migration, and could be a therapeutic target for cancer.
Collapse
Affiliation(s)
- Ryota Koyama
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Miyuki Tamura
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Takafumi Nakagaki
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Tomoko Ohashi
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Masashi Idogawa
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University, Sapporo, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Yasushi Sasaki
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
29
|
Belcastro E, Wu W, Fries-Raeth I, Corti A, Pompella A, Leroy P, Lartaud I, Gaucher C. Oxidative stress enhances and modulates protein S -nitrosation in smooth muscle cells exposed to S -nitrosoglutathione. Nitric Oxide 2017; 69:10-21. [DOI: 10.1016/j.niox.2017.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/30/2017] [Accepted: 07/21/2017] [Indexed: 12/23/2022]
|
30
|
Idogawa M, Ohashi T, Sasaki Y, Nakase H, Tokino T. Long non-coding RNA NEAT1 is a transcriptional target of p53 and modulates p53-induced transactivation and tumor-suppressor function. Int J Cancer 2017; 140:2785-2791. [PMID: 28295289 DOI: 10.1002/ijc.30689] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/13/2017] [Accepted: 03/07/2017] [Indexed: 12/28/2022]
Abstract
p53 is one of the most important tumor suppressor genes, and the direct transcriptional targets of p53 must be explored to elucidate its functional mechanisms. Thus far, the p53 targets that have been primarily studied are protein-coding genes. Our previous study revealed that several long non-coding RNAs (lncRNAs) are direct transcriptional targets of p53, and knockdown of specific lncRNAs modulates p53-induced apoptosis. In this study, analysis of next-generation chromatin immunoprecipitation-sequencing (ChIP-seq) data for p53 revealed that the lncRNA NEAT1 is a direct transcriptional target of p53. The suppression of NEAT1 induction by p53 attenuates the inhibitory effect of p53 on cancer cell growth and also modulates gene transactivation, including that of many lncRNAs. Furthermore, low expression of NEAT1 is related to poor prognosis in several cancers. These results indicate that the induction of NEAT1 expression contributes to the tumor-suppressor function of p53 and suggest that p53 and NEAT1 constitute a transcriptional network contributing to various biological functions and tumor suppression.
Collapse
Affiliation(s)
- Masashi Idogawa
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoko Ohashi
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Yasushi Sasaki
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|