1
|
Niu S, Sun T, Wang M, Yao L, He T, Wang Y, Zhang H, Li X, Xu Y. Multiple time points for detecting circulating tumor DNA to monitor the response to neoadjuvant therapy in breast cancer: a meta-analysis. BMC Cancer 2025; 25:115. [PMID: 39844103 PMCID: PMC11752932 DOI: 10.1186/s12885-025-13526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Not all breast cancer (BC) patients can benefit from neoadjuvant therapy (NAT). A poor response may result in patients missing the best opportunity for treatment, ultimately leading to a poor prognosis. Thus, to identify an effective predictor that can assess and predict patient response at early time points, we focused on circulating tumor DNA (ctDNA), which is a vital noninvasive liquid biopsy biomarker. We performed a meta-analysis to explore the predictive value of response by monitoring ctDNA at four time points of NAT using pathologic complete response (pCR) and residual cancer burden (RCB). METHODS By searching Embase, PubMed, the Cochrane Library, and the Web of Science until December 24, 2023, we selected studies concerning the relationship between ctDNA and response or prognosis. We analysed the results at the following various time points: baseline (T0), first cycle of NAT (T1), mid-treatment (MT), and end of NAT (EOT). pCR and RCB were used to evaluate the response as the primary endpoint. The secondary endpoint was to investigate the relationship between ctDNA and prognosis. Odds ratios (ORs) and hazard ratios (HRs) were used as effect indicators. RESULTS Thirteen reports from twelve studies were eligible for inclusion in this meta-analysis. The results demonstrated that ctDNA negativity was associated with pCR at T1 (OR = 0.34; 95% CI: 0.21-0.57), MT (OR = 0.35; 95% CI: 0.20-0.60), and EOT (OR = 0.38; 95% CI: 0.22-0.66). When RCB was used to evaluate responses, ctDNA negativity was associated with RCB-0/I at the MT (OR = 0.34; 95% CI: 0.21-0.55) and EOT (OR = 0.26; 95% CI: 0.15-0.46). Furthermore, ctDNA positivity at T1 predicted a worse prognosis for patients (HR = 2.73; 95% CI: 1.29-5.75). We also performed a subgroup analysis to more accurately assess the predictive value of ctDNA for triple-negative breast cancer. CONCLUSIONS Our meta-analysis suggested that the ctDNA status at the early stage of NAT can predict patient response, which provides evidence for adjusting personalized treatment strategies and improving patient survival. PROSPERO REGISTRATION NUMBER CRD42024496465.
Collapse
Affiliation(s)
- Shuyi Niu
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Tie Sun
- The Third Department of General Surgery, People's Hospital of China Medical University (Liaoning Provincial People's Hospital), Shenyang, Liaoning, 110001, China
| | - Mozhi Wang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Litong Yao
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Tianyi He
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yusong Wang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Hengjun Zhang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xiang Li
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Yingying Xu
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
2
|
Embaby A, Huijberts SCFA, Wang L, Leite de Oliveira R, Rosing H, Nuijen B, Sanders J, Hofland I, van Steenis C, Kluin RJC, Lieftink C, Smith CG, Blank CU, van Thienen JV, Haanen JBAG, Steeghs N, Opdam FL, Beijnen JH, Huitema ADR, Bernards R, Schellens JHM, Wilgenhof S. A Proof-of-Concept Study of Sequential Treatment with the HDAC Inhibitor Vorinostat following BRAF and MEK Inhibitors in BRAFV600-Mutated Melanoma. Clin Cancer Res 2024; 30:3157-3166. [PMID: 38739109 DOI: 10.1158/1078-0432.ccr-23-3171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/15/2023] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE The development of resistance limits the clinical benefit of BRAF and MEK inhibitors (BRAFi/MEKi) in BRAFV600-mutated melanoma. It has been shown that short-term treatment (14 days) with vorinostat was able to initiate apoptosis of resistant tumor cells. We aimed to assess the antitumor activity of sequential treatment with vorinostat following BRAFi/MEKi in patients with BRAFV600-mutated melanoma who progressed after initial response to BRAFi/MEKi. PATIENTS AND METHODS Patients with BRAFi/MEKi-resistant BRAFV600-mutated melanoma were treated with vorinostat 360 mg once daily for 14 days followed by BRAFi/MEKi. The primary endpoint was an objective response rate of progressive lesions of at least 30% according to Response Evaluation Criteria in Solid Tumors 1.1. Secondary endpoints included progression-free survival, overall survival, safety, pharmacokinetics of vorinostat, and translational molecular analyses using ctDNA and tumor biopsies. RESULTS Of the 26 patients with progressive BRAFi/MEKi-resistant BRAFV600-mutated melanoma receiving treatment with vorinostat, 22 patients were evaluable for response. The objective response rate was 9%, with one complete response for 31.2 months and one partial response for 14.9 months. Median progression-free survival and overall survival were 1.4 and 5.4 months, respectively. Common adverse events were fatigue (23%) and nausea (19%). ctDNA analysis showed emerging secondary mutations in NRAS and MEK in eight patients at the time of BRAFi/MEKi resistance. Elimination of these mutations by vorinostat treatment was observed in three patients. CONCLUSIONS Intermittent treatment with vorinostat in patients with BRAFi/MEKi-resistant BRAFV600-mutated melanoma is well tolerated. Although the primary endpoint of this study was not met, durable antitumor responses were observed in a minority of patients (9%).
Collapse
Affiliation(s)
- Alaa Embaby
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sanne C F A Huijberts
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rodrigo Leite de Oliveira
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- CEMM, Oncode Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bastiaan Nuijen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ingrid Hofland
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Charlaine van Steenis
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roelof J C Kluin
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Christian U Blank
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Johannes V van Thienen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - John B A G Haanen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Frans L Opdam
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos H Beijnen
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | | | - Sofie Wilgenhof
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Fischer RA, Ryan I, De La Torre K, Barnett C, Sehgal VS, Levy JB, Luke JJ, Poklepovic AS, Hurlbert MS. US physician perspective on the use of biomarker and ctDNA testing in patients with melanoma. Crit Rev Oncol Hematol 2024; 196:104289. [PMID: 38341119 DOI: 10.1016/j.critrevonc.2024.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
New treatments have increased survival of patients with melanoma, and methods to monitor patients throughout the disease process are needed. Circulating tumor DNA (ctDNA) is a predictive and prognostic biomarker that may allow routine, real-time monitoring of disease status. We surveyed 44 US physicians to understand their preferences and practice patterns for biomarker and ctDNA testing in their patients with melanoma. Tumor biomarker testing was often ordered in stage IIIA-IV patients. Barriers to biomarker testing include insufficient tissue (60%) and lack of insurance coverage (54%). ctDNA testing was ordered by 16-18% of physicians for stages II-IV. Reasons for not using ctDNA testing included lack of prospective data (41%), ctDNA testing used for research only (18%), and others. Physicians (≥74%) believed that ctDNA assays could help with monitoring and treatment selection throughout the disease process. Physicians consider ctDNA testing potentially valuable for clinical decision-making but cited concerns that should be addressed.
Collapse
Affiliation(s)
- Rachel A Fischer
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA
| | - Isabel Ryan
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA
| | | | - Cody Barnett
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA
| | - Viren S Sehgal
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA
| | - Joan B Levy
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA
| | - Jason J Luke
- Cancer Immunotherapeutics Center, University of Pittsburgh Medical Center, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Andrew S Poklepovic
- Virginia Commonwealth University Health System Massey Cancer Center, 401 College Street, Richmond, VA 23298-0037, USA
| | - Marc S Hurlbert
- Melanoma Research Alliance, 730 15th St NW, Washington, DC 20005, USA.
| |
Collapse
|
4
|
Scaini MC, Catoni C, Poggiana C, Pigozzo J, Piccin L, Leone K, Scarabello I, Facchinetti A, Menin C, Elefanti L, Pellegrini S, Aleotti V, Vidotto R, Schiavi F, Fabozzi A, Chiarion-Sileni V, Rosato A. A multiparameter liquid biopsy approach allows to track melanoma dynamics and identify early treatment resistance. NPJ Precis Oncol 2024; 8:78. [PMID: 38548846 PMCID: PMC10978909 DOI: 10.1038/s41698-024-00567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Melanoma heterogeneity is a hurdle in metastatic disease management. Although the advent of targeted therapy has significantly improved patient outcomes, the occurrence of resistance makes monitoring of the tumor genetic landscape mandatory. Liquid biopsy could represent an important biomarker for the real-time tracing of disease evolution. Thus, we aimed to correlate liquid biopsy dynamics with treatment response and progression by devising a multiplatform approach applied to longitudinal melanoma patient monitoring. We conceived an approach that exploits Next Generation Sequencing (NGS) and droplet digital PCR, as well as the FDA-cleared platform CellSearch, to analyze circulating tumor DNA (ctDNA) trend and circulating melanoma cell (CMC) count, together with their customized genetic and copy number variation analysis. The approach was applied to 17 stage IV melanoma patients treated with BRAF/MEK inhibitors, followed for up to 28 months. BRAF mutations were detected in the plasma of 82% of patients. Single nucleotide variants known or suspected to confer resistance were identified in 70% of patients. Moreover, the amount of ctDNA, both at baseline and during response, correlated with the type and duration of the response itself, and the CMC count was confirmed to be a prognostic biomarker. This work provides proof of principle of the power of this approach and paves the way for a validation study aimed at evaluating early ctDNA-guided treatment decisions in stage IV melanoma. The NGS-based molecular profile complemented the analysis of ctDNA trend and, together with CMC analysis, revealed to be useful in capturing tumor evolution.
Collapse
Affiliation(s)
- Maria Chiara Scaini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy.
| | - Cristina Catoni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Cristina Poggiana
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy.
| | - Jacopo Pigozzo
- Medical Oncology 2, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Luisa Piccin
- Medical Oncology 2, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Kevin Leone
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Ilaria Scarabello
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Antonella Facchinetti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), Oncology Section, University of Padua, Padua, Italy
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Lisa Elefanti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Stefania Pellegrini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Valentina Aleotti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Riccardo Vidotto
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Francesca Schiavi
- Familial Cancer Clinic, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Alessio Fabozzi
- Oncology Unit 3, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | | | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), Oncology Section, University of Padua, Padua, Italy
| |
Collapse
|
5
|
Weber JS, Carlino MS, Khattak A, Meniawy T, Ansstas G, Taylor MH, Kim KB, McKean M, Long GV, Sullivan RJ, Faries M, Tran TT, Cowey CL, Pecora A, Shaheen M, Segar J, Medina T, Atkinson V, Gibney GT, Luke JJ, Thomas S, Buchbinder EI, Healy JA, Huang M, Morrissey M, Feldman I, Sehgal V, Robert-Tissot C, Hou P, Zhu L, Brown M, Aanur P, Meehan RS, Zaks T. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet 2024; 403:632-644. [PMID: 38246194 DOI: 10.1016/s0140-6736(23)02268-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Checkpoint inhibitors are standard adjuvant treatment for stage IIB-IV resected melanoma, but many patients recur. Our study aimed to evaluate whether mRNA-4157 (V940), a novel mRNA-based individualised neoantigen therapy, combined with pembrolizumab, improved recurrence-free survival and distant metastasis-free survival versus pembrolizumab monotherapy in resected high-risk melanoma. METHODS We did an open-label, randomised, phase 2b, adjuvant study of mRNA-4157 plus pembrolizumab versus pembrolizumab monotherapy in patients, enrolled from sites in the USA and Australia, with completely resected high-risk cutaneous melanoma. Patients with completely resected melanoma (stage IIIB-IV) were assigned 2:1 to receive open-label mRNA-4157 plus pembrolizumab or pembrolizumab monotherapy. mRNA-4157 was administered intramuscularly (maximum nine doses) and pembrolizumab intravenously (maximum 18 doses) in 3-week cycles. The primary endpoint was recurrence-free survival in the intention-to-treat population. This ongoing trial is registered at ClinicalTrials.gov, NCT03897881. FINDINGS From July 18, 2019, to Sept 30, 2021, 157 patients were assigned to mRNA-4157 plus pembrolizumab combination therapy (n=107) or pembrolizumab monotherapy (n=50); median follow-up was 23 months and 24 months, respectively. Recurrence-free survival was longer with combination versus monotherapy (hazard ratio [HR] for recurrence or death, 0·561 [95% CI 0·309-1·017]; two-sided p=0·053), with lower recurrence or death event rate (24 [22%] of 107 vs 20 [40%] of 50); 18-month recurrence-free survival was 79% (95% CI 69·0-85·6) versus 62% (46·9-74·3). Most treatment-related adverse events were grade 1-2. Grade ≥3 treatment-related adverse events occurred in 25% of patients in the combination group and 18% of patients in the monotherapy group, with no mRNA-4157-related grade 4-5 events. Immune-mediated adverse event frequency was similar for the combination (37 [36%]) and monotherapy (18 [36%]) groups. INTERPRETATION Adjuvant mRNA-4157 plus pembrolizumab prolonged recurrence-free survival versus pembrolizumab monotherapy in patients with resected high-risk melanoma and showed a manageable safety profile. These results provide evidence that an mRNA-based individualised neoantigen therapy might be beneficial in the adjuvant setting. FUNDING Moderna in collaboration with Merck Sharp & Dohme, a subsidiary of Merck & Co, Rahway, NJ, USA.
Collapse
Affiliation(s)
- Jeffrey S Weber
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA.
| | - Matteo S Carlino
- Westmead and Blacktown Hospitals, Melanoma Institute Australia, Sydney, NSW, Australia
| | - Adnan Khattak
- Hollywood Private Hospital, Perth, WA, Australia; Edith Cowan University, Perth, WA, Australia
| | - Tarek Meniawy
- Saint John of God Subiaco Hospital, Subiaco, WA, Australia
| | - George Ansstas
- Washington University School of Medicine, St Louis, MO, USA
| | - Matthew H Taylor
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Kevin B Kim
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Meredith McKean
- Sarah Cannon Research Institute at Tennessee Oncology, Nashville, TN, USA
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Ryan J Sullivan
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Faries
- The Angeles Clinic and Research Institute, a Cedars-Sinai affiliate, Los Angeles, CA, USA
| | - Thuy T Tran
- Smilow Cancer Center at Yale New Haven Hospital, New Haven, CT, USA
| | | | - Andrew Pecora
- Hackensack University Medical Center, Hackensack, NJ, USA
| | - Montaser Shaheen
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | - Geoffrey T Gibney
- Georgetown-Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Warburton L, Reid A, Amanuel B, Calapre L, Millward M, Gray E. Detectable ctDNA at the time of treatment cessation of ipilimumab and nivolumab for toxicity predicts disease progression in advanced melanoma patients. Front Oncol 2023; 13:1280730. [PMID: 38179171 PMCID: PMC10766351 DOI: 10.3389/fonc.2023.1280730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Background Immune checkpoint inhibition (ICI) has led to unprecedented outcomes for melanoma patients but is associated with toxicity. ICI resumption after high grade irAEs poses a significant challenge in the clinical management of melanoma patients and there are no biomarkers that can help identify patients that might benefit from resuming treatment. This study aims to determine if circulating tumor DNA (ctDNA) levels at the time of treatment-limiting irAE could guide treatment decisions in this clinical context. Methods This is a retrospective exploratory biomarker study from 34 patients treated with combination ICI for stage IV melanoma. Patients had a treatment-limiting toxicity and a baseline plasma collection prior to commencing ICI and within 6 weeks of stopping therapy. Blood samples were tested for ctDNA at baseline and cessation therapy. Results Median progression free survival (PFS) and overall survival (OS) have not been reached (24-month PFS rate 54% and OS rate 72.3%). PD occurred in 47% (16/34) of patients. Median PFS with detectable ctDNA from plasma collected at the time of toxicity was 6.5 months while not reached (NR) with undetectable levels (HR: 4.0, 95% CI 0.95-17.5, p=0.0023). Median OS with detectable ctDNA at cessation for toxicity was 19.4 months and NR for undetectable ctDNA (HR: 3.9, 95%CI 20.8-18.6, p=0.024). Positive ctDNA at the time of cessation was highly specific (specificity 0.94, 95% CI 0.74-0.99, PPV 0.88, 95% CI 0.53-0.99). However, ctDNA negativity has low sensitivity as a predictor of ongoing disease control (sensitivity 0.437, 95% CI 0.23-0.67). Notably, 4/9 (44%) ctDNA negative patients who had disease progression had brain only disease progression. Conclusions Undetectable ctDNA and CR on imaging after stopping immunotherapy for toxicity results in high rates of long-term durable control. For patients with immunotherapy related toxicity, who have persistent ctDNA at 8 - 12 weeks, the risk of disease progression is significant.
Collapse
Affiliation(s)
- Lydia Warburton
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Anna Reid
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Benhur Amanuel
- Anatomical Pathology, PathWest, Queen Elizabeth II (QEII) Medical Centre, Nedlands, WA, Australia
- School of Biomedical Science, University of Western Australia, Crawley, WA, Australia
| | - Leslie Calapre
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Michael Millward
- School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Elin Gray
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
7
|
Adeuyan O, Gordon ER, Kenchappa D, Bracero Y, Singh A, Espinoza G, Geskin LJ, Saenger YM. An update on methods for detection of prognostic and predictive biomarkers in melanoma. Front Cell Dev Biol 2023; 11:1290696. [PMID: 37900283 PMCID: PMC10611507 DOI: 10.3389/fcell.2023.1290696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023] Open
Abstract
The approval of immunotherapy for stage II-IV melanoma has underscored the need for improved immune-based predictive and prognostic biomarkers. For resectable stage II-III patients, adjuvant immunotherapy has proven clinical benefit, yet many patients experience significant adverse events and may not require therapy. In the metastatic setting, single agent immunotherapy cures many patients but, in some cases, more intensive combination therapies against specific molecular targets are required. Therefore, the establishment of additional biomarkers to determine a patient's disease outcome (i.e., prognostic) or response to treatment (i.e., predictive) is of utmost importance. Multiple methods ranging from gene expression profiling of bulk tissue, to spatial transcriptomics of single cells and artificial intelligence-based image analysis have been utilized to better characterize the immune microenvironment in melanoma to provide novel predictive and prognostic biomarkers. In this review, we will highlight the different techniques currently under investigation for the detection of prognostic and predictive immune biomarkers in melanoma.
Collapse
Affiliation(s)
- Oluwaseyi Adeuyan
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Emily R. Gordon
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Divya Kenchappa
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yadriel Bracero
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ajay Singh
- Albert Einstein College of Medicine, Bronx, NY, United States
| | | | - Larisa J. Geskin
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, United States
| | | |
Collapse
|
8
|
Castellani G, Buccarelli M, Arasi MB, Rossi S, Pisanu ME, Bellenghi M, Lintas C, Tabolacci C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers (Basel) 2023; 15:4026. [PMID: 37627054 PMCID: PMC10452867 DOI: 10.3390/cancers15164026] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is an aggressive form of skin cancer resulting from the malignant transformation of melanocytes. Recent therapeutic approaches, including targeted therapy and immunotherapy, have improved the prognosis and outcome of melanoma patients. BRAF is one of the most frequently mutated oncogenes recognised in melanoma. The most frequent oncogenic BRAF mutations consist of a single point mutation at codon 600 (mostly V600E) that leads to constitutive activation of the BRAF/MEK/ERK (MAPK) signalling pathway. Therefore, mutated BRAF has become a useful target for molecular therapy and the use of BRAF kinase inhibitors has shown promising results. However, several resistance mechanisms invariably develop leading to therapeutic failure. The aim of this manuscript is to review the role of BRAF mutational status in the pathogenesis of melanoma and its impact on differentiation and inflammation. Moreover, this review focuses on the mechanisms responsible for resistance to targeted therapies in BRAF-mutated melanoma and provides an overview of circulating biomarkers including circulating tumour cells, circulating tumour DNA, and non-coding RNAs.
Collapse
Affiliation(s)
- Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Bellenghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| |
Collapse
|
9
|
Kumar RR, Kumar A, Chuang CH, Shaikh MO. Recent Advances and Emerging Trends in Cancer Biomarker Detection Technologies. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Rajkumar Rakesh Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Amit Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Muhammad Omar Shaikh
- Sustainability Science and Management, Tunghai University, Taichung 407224, Taiwan
| |
Collapse
|
10
|
Iftikhar FJ, Shah A, Wali Q, Kokab T. Advancements in Nanofiber-Based Electrochemical Biosensors for Diagnostic Applications. BIOSENSORS 2023; 13:bios13040416. [PMID: 37185491 PMCID: PMC10136113 DOI: 10.3390/bios13040416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
Biosensors are analytical tools that can be used as simple, real-time, and effective devices in clinical diagnosis, food analysis, and environmental monitoring. Nanoscale functional materials possess unique properties such as a large surface-to-volume ratio, making them useful for biomedical diagnostic purposes. Nanoengineering has resulted in the increased use of nanoscale functional materials in biosensors. Various types of nanostructures i.e., 0D, 1D, 2D, and 3D, have been intensively employed to enhance biosensor selectivity, limit of detection, sensitivity, and speed of response time to display results. In particular, carbon nanotubes and nanofibers have been extensively employed in electrochemical biosensors, which have become an interdisciplinary frontier between material science and viral disease detection. This review provides an overview of the current research activities in nanofiber-based electrochemical biosensors for diagnostic purposes. The clinical applications of these nanobiosensors are also highlighted, along with a discussion of the future directions for these materials in diagnostics. The aim of this review is to stimulate a broader interest in developing nanofiber-based electrochemical biosensors and improving their applications in disease diagnosis. In this review, we summarize some of the most recent advances achieved in point of care (PoC) electrochemical biosensor applications, focusing on new materials and modifiers enabling biorecognition that have led to improved sensitivity, specificity, stability, and response time.
Collapse
Affiliation(s)
- Faiza Jan Iftikhar
- School of Applied Sciences & Humanities, National University of Technology, Islamabad 44000, Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Qamar Wali
- School of Applied Sciences & Humanities, National University of Technology, Islamabad 44000, Pakistan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Tayyaba Kokab
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
11
|
Metastatic Melanoma: Liquid Biopsy as a New Precision Medicine Approach. Int J Mol Sci 2023; 24:ijms24044014. [PMID: 36835424 PMCID: PMC9962821 DOI: 10.3390/ijms24044014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Precision medicine has driven a major change in the treatment of many forms of cancer. The discovery that each patient is different and each tumor mass has its own characteristics has shifted the focus of basic and clinical research to the singular individual. Liquid biopsy (LB), in this sense, presents new scenarios in personalized medicine through the study of molecules, factors, and tumor biomarkers in blood such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), exosomes and circulating tumor microRNAs (ct-miRNAs). Moreover, its easy application and complete absence of contraindications for the patient make this method applicable in a great many fields. Melanoma, given its highly heterogeneous characteristics, is a cancer form that could significantly benefit from the information linked to liquid biopsy, especially in the treatment management. In this review, we will focus our attention on the latest applications of liquid biopsy in metastatic melanoma and possible developments in the clinical setting.
Collapse
|
12
|
Utility of ctDNA Liquid Biopsies from Cancer Patients: An Institutional Study of 285 ctDNA Samples. Cancers (Basel) 2022; 14:cancers14235859. [PMID: 36497340 PMCID: PMC9739663 DOI: 10.3390/cancers14235859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Liquid biopsy has improved significantly over the last decade and is attracting attention as a tool that can complement tissue biopsy to evaluate the genetic landscape of solid tumors. In the present study, we evaluated the usefulness of liquid biopsy in daily oncology practice in different clinical contexts. We studied ctDNA and tissue biopsy to investigate EGFR, KRAS, NRAS, and BRAF mutations from 199 cancer patients between January 2016 and March 2021. The study included 114 male and 85 female patients with a median age of 68 years. A total of 122 cases were lung carcinoma, 53 were colorectal carcinoma, and 24 were melanoma. Liquid biopsy was positive for a potentially druggable driver mutation in 14 lung and colorectal carcinoma where tissue biopsy was not performed, and in two (3%) lung carcinoma patients whose tissue biopsy was negative. Liquid biopsy identified nine (45%) de novo EGFR-T790M mutations during TKI-treatment follow-up in lung carcinoma. BRAF-V600 mutation resurgence was detected in three (12.5%) melanoma patients during follow-up. Our results confirm the value of liquid biopsy in routine clinical oncologic practice for targeted therapy, diagnosis of resistance to treatment, and cancer follow-up.
Collapse
|
13
|
Paris A, Tardif N, Baietti FM, Berra C, Leclair HM, Leucci E, Galibert M, Corre S. The AhR-SRC axis as a therapeutic vulnerability in BRAFi-resistant melanoma. EMBO Mol Med 2022; 14:e15677. [PMID: 36305167 PMCID: PMC9728058 DOI: 10.15252/emmm.202215677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022] Open
Abstract
The nongenetic mechanisms required to control tumor phenotypic plasticity and shape drug-resistance remain unclear. We show here that the Aryl hydrocarbon Receptor (AhR) transcription factor directly regulates the gene expression program associated with the acquisition of resistance to BRAF inhibitor (BRAFi) in melanoma. In addition, we show in melanoma cells that canonical activation of AhR mediates the activation of the SRC pathway and promotes the acquisition of an invasive and aggressive resistant phenotype to front-line BRAFi treatment in melanoma. This nongenetic reprogramming identifies a clinically compatible approach to reverse BRAFi resistance in melanoma. Using a preclinical BRAFi-resistant PDX melanoma model, we demonstrate that SRC inhibition with dasatinib significantly re-sensitizes melanoma cells to BRAFi. Together we identify the AhR/SRC axis as a new therapeutic vulnerability to trigger resistance and warrant the introduction of SRC inhibitors during the course of the treatment in combination with front-line therapeutics to delay BRAFi resistance.
Collapse
Affiliation(s)
- Anaïs Paris
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance
| | - Nina Tardif
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance
| | - Francesca M Baietti
- Laboratory for RNA Cancer Biology, Department of OncologyLKI, KU LeuvenLeuvenBelgium,Trace PDX Platform, Department of OncologyLKI, KU LeuvenLeuvenBelgium
| | - Cyrille Berra
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance,Department of Molecular Genetics and GenomicsHospital University of Rennes (CHU Rennes)RennesFrance
| | - Héloïse M Leclair
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of OncologyLKI, KU LeuvenLeuvenBelgium,Trace PDX Platform, Department of OncologyLKI, KU LeuvenLeuvenBelgium
| | - Marie‐Dominique Galibert
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance,Department of Molecular Genetics and GenomicsHospital University of Rennes (CHU Rennes)RennesFrance
| | - Sébastien Corre
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance
| |
Collapse
|
14
|
Catoni C, Poggiana C, Facchinetti A, Pigozzo J, Piccin L, Chiarion-Sileni V, Rosato A, Minervini G, Scaini MC. Investigating the Retained Inhibitory Effect of Cobimetinib against p.P124L Mutated MEK1: A Combined Liquid Biopsy and in Silico Approach. Cancers (Basel) 2022; 14:cancers14174153. [PMID: 36077693 PMCID: PMC9454486 DOI: 10.3390/cancers14174153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The systemic treatment of metastatic melanoma has radically changed, due to an improvement in the understanding of its genetic landscape and the advent of targeted therapy. However, the response to BRAF/MEK inhibitors is transitory, and big efforts were made to identify the mechanisms underlying the resistance. We exploited a combined approach, encompassing liquid biopsy analysis and molecular dynamics simulation, for tracking tumor evolution, and in parallel defining the best treatment option. The samples at different time points were collected from a BRAF-mutant melanoma patient who developed an early resistance to dabrafenib/trametinib. The analysis of the circulating tumor DNA (ctDNA) identified the MEK1 p.P124L mutation that confers resistance to trametinib. With an in silico modeling, we identified cobimetinib as an alternative MEK inhibitor, and consequently suggested a therapy switch to vemurafenib/cobimetinib. The patient response was followed by ctDNA tracking and circulating melanoma cell (CMC) count. The cobimetinib administration led to an important reduction in the BRAF p.V600E and MEK1 p.P124L allele fractions and in the CMC number, features suggestive of a putative response. In summary, this study emphasizes the usefulness of a liquid biopsy-based approach combined with in silico simulation, to track real-time tumor evolution while assessing the best treatment option.
Collapse
Affiliation(s)
- Cristina Catoni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
| | - Cristina Poggiana
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
| | - Antonella Facchinetti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
| | - Jacopo Pigozzo
- Melanoma Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy
| | - Luisa Piccin
- Melanoma Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy
| | - Vanna Chiarion-Sileni
- Melanoma Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
- Correspondence: (A.R.); (M.C.S.)
| | - Giovanni Minervini
- Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Maria Chiara Scaini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
- Correspondence: (A.R.); (M.C.S.)
| |
Collapse
|
15
|
Promising Blood-Based Biomarkers for Melanoma: Recent Progress of Liquid Biopsy and Its Future Perspectives. Curr Treat Options Oncol 2022; 23:562-577. [PMID: 35298769 DOI: 10.1007/s11864-022-00948-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Abstract
OPINION STATEMENT Because the recent success of novel therapeutic approaches has dramatically changed the clinical management of melanoma, less invasive and repeatable monitoring tools that can predict the disease status, drug resistance, and the development of side effects are increasingly needed. As liquid biopsy has enabled us to diagnose and monitor disease status less invasively, substantial attention has been directed toward this technique, which is gaining importance as a diagnostic and/or prognostic tool. It is evident that microRNA, cell-free DNA, and circulating tumor cells obtained via liquid biopsy are promising diagnostic and prognostic tools for melanoma, and they also have utility for monitoring the disease status and predicting drug effects. Although current challenges exist for each biomarker, such as poor sensitivity and/or specificity and technical problems, recent technical advances have increasingly improved these aspects. For example, next-generation sequencing technology for detecting microRNAs or cell-free DNA enabled high-throughput analysis and provided significantly higher sensitivity. In particular, cancer personalized profiling by deep sequencing for quantifying cell-free DNA is a promising method for high-throughput analysis that provides real-time comprehensive data for patients at various disease stages. For wide clinical implementation, it is necessary to increase the sensitivity for the markers and standardize the assay procedures to make them reproducible, valid, and inexpensive; however, the broad clinical application of liquid biopsy could occur quickly. This review focuses on the significance of liquid biopsy, particularly related to the use of blood samples from patients with melanoma, and discusses its future perspectives.
Collapse
|
16
|
Rentroia-Pacheco B, Tjien-Fooh FJ, Quattrocchi E, Kobic A, Wever R, Bellomo D, Meves A, Hieken TJ. Clinicopathologic models predicting non-sentinel lymph node metastasis in cutaneous melanoma patients: Are they useful for patients with a single positive sentinel node? J Surg Oncol 2021; 125:516-524. [PMID: 34735719 PMCID: PMC8799494 DOI: 10.1002/jso.26736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/03/2022]
Abstract
Background and Objectives Of clinically node‐negative (cN0) cutaneous melanoma patients with sentinel lymph node (SLN) metastasis, between 10% and 30% harbor additional metastases in non‐sentinel lymph nodes (NSLNs). Approximately 80% of SLN‐positive patients have a single positive SLN. Methods To assess whether state‐of‐the‐art clinicopathologic models predicting NSLN metastasis had adequate performance, we studied a single‐institution cohort of 143 patients with cN0 SLN‐positive primary melanoma who underwent subsequent completion lymph node dissection. We used sensitivity (SE) and positive predictive value (PPV) to characterize the ability of the models to identify patients at high risk for NSLN disease. Results Across Stage III patients, all clinicopathologic models tested had comparable performances. The best performing model identified 52% of NSLN‐positive patients (SE = 52%, PPV = 37%). However, for the single SLN‐positive subgroup (78% of cohort), none of the models identified high‐risk patients (SE > 20%, PPV > 20%) irrespective of the chosen probability threshold used to define the binary risk labels. Thus, we designed a new model to identify high‐risk patients with a single positive SLN, which achieved a sensitivity of 49% (PPV = 26%). Conclusion For the largest SLN‐positive subgroup, those with a single positive SLN, current model performance is inadequate. New approaches are needed to better estimate nodal disease burden of these patients.
Collapse
Affiliation(s)
| | | | | | - Ajdin Kobic
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Renske Wever
- Division of Bioinformatics, SkylineDx B.V., Rotterdam, The Netherlands
| | - Domenico Bellomo
- Division of Bioinformatics, SkylineDx B.V., Rotterdam, The Netherlands
| | - Alexander Meves
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tina J Hieken
- Division of Breast and Melanoma Surgical Oncology, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
17
|
Kamińska P, Buszka K, Zabel M, Nowicki M, Alix-Panabières C, Budna-Tukan J. Liquid Biopsy in Melanoma: Significance in Diagnostics, Prediction and Treatment Monitoring. Int J Mol Sci 2021; 22:9714. [PMID: 34575876 PMCID: PMC8468624 DOI: 10.3390/ijms22189714] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Liquid biopsy is a common term referring to circulating tumor cells and other biomarkers, such as circulating tumor DNA (ctDNA) or extracellular vesicles. Liquid biopsy presents a range of clinical advantages, such as the low invasiveness of the blood sample collection and continuous control of the tumor progression. In addition, this approach enables the mechanisms of drug resistance to be determined in various methods of cancer treatment, including immunotherapy. However, in the case of melanoma, the application of liquid biopsy in patient stratification and therapy needs further investigation. This review attempts to collect all of the relevant and recent information about circulating melanoma cells (CMCs) related to the context of malignant melanoma and immunotherapy. Furthermore, the biology of liquid biopsy analytes, including CMCs, ctDNA, mRNA and exosomes, as well as techniques for their detection and isolation, are also described. The available data support the notion that thoughtful selection of biomarkers and technologies for their detection can contribute to the development of precision medicine by increasing the efficacy of cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Paula Kamińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Karolina Buszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Maciej Zabel
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France;
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, 34000 Montpellier, France
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| |
Collapse
|
18
|
Revythis A, Shah S, Kutka M, Moschetta M, Ozturk MA, Pappas-Gogos G, Ioannidou E, Sheriff M, Rassy E, Boussios S. Unraveling the Wide Spectrum of Melanoma Biomarkers. Diagnostics (Basel) 2021; 11:diagnostics11081341. [PMID: 34441278 PMCID: PMC8391989 DOI: 10.3390/diagnostics11081341] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
The use of biomarkers in medicine has become essential in clinical practice in order to help with diagnosis, prognostication and prediction of treatment response. Since Alexander Breslow’s original report on “melanoma and prognostic values of thickness”, providing the first biomarker for melanoma, many promising new biomarkers have followed. These include serum markers, such as lactate dehydrogenase and S100 calcium-binding protein B. However, as our understanding of the DNA mutational profile progresses, new gene targets and proteins have been identified. These include point mutations, such as mutations of the BRAF gene and tumour suppressor gene tP53. At present, only a small number of the available biomarkers are being utilised, but this may soon change as more studies are published. The aim of this article is to provide a comprehensive review of melanoma biomarkers and their utility for current and, potentially, future clinical practice.
Collapse
Affiliation(s)
- Antonios Revythis
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Sidrah Shah
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Mikolaj Kutka
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Michele Moschetta
- CHUV, Lausanne University Hospital, Rue du Bugnon, 21 CH-1011 Lausanne, Switzerland;
| | - Mehmet Akif Ozturk
- Department of Internal Medicine, School of Medicine, Bahcesehir University, Istanbul 34353, Turkey;
| | - George Pappas-Gogos
- Department of Surgery, University Hospital of Ioannina, 45111 Ioannina, Greece;
| | - Evangelia Ioannidou
- Department of Paediatrics and Child Health, West Suffolk Hospital NHS Foundation Trust, Hardwick Lane, Bury St Edmunds IP33 2QZ, UK;
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK;
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy Institut, 94805 Villejuif, France;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
- Correspondence: or or
| |
Collapse
|
19
|
Characterization and Clinical Utility of BRAFV600 Mutation Detection Using Cell-Free DNA in Patients with Advanced Melanoma. Cancers (Basel) 2021; 13:cancers13143591. [PMID: 34298804 PMCID: PMC8305047 DOI: 10.3390/cancers13143591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary The choice of cancer drug(s) for the treatment of advanced melanoma is based on the types of gene alterations that are present in the patient’s tumor(s). Sometimes, the tumor sample that is obtained from surgery may be degraded, and the test does not provide a reliable result, leading to the selection of the wrong treatment, and, consequently, poor outcomes for the patient. Surgery to obtain fresh tumor samples is inconvenient. In recent years, scientists have learned that fragments of genes from dying cells, including tumors, are constantly being released into the blood. This study shows that the presence of altered genes can be reliably determined using easy-to-obtain blood samples. The study also shows that, while there is a small rate of error with the commonly used tests based on the tumor tissue sample, retests using blood samples may be a less invasive and rapid alternative for identifying the BRAF mutation status and selecting the right treatment for these patients. Abstract Tissue-based tests for BRAFV600 mutation-positive melanoma involve invasive biopsy procedures, and can lead to an erroneous diagnosis when the tumor samples degrade. Herein, we explored a minimally invasive, cell-free deoxyribonucleic acid (cfDNA)-based platform, to retest patients for BRAFV600 mutations. This phase 2 study enrolled adult patients with unresectable/metastatic melanoma. A prescreening testing phase evaluated the concordance between a prior tissue-based BRAFV600 mutation test result and a subsequent plasma cfDNA-based test result. A treatment phase evaluated the patients who were confirmed as BRAFV600 mutation-positive, and were treated with cobimetinib plus vemurafenib. It was found that 35/54 patients (64.8%) with a mutant BRAF status by prior tissue test had a positive BRAFV600 mutation with the cfDNA test. Further, 7/118 patients (5.9%) with a wild-type BRAF status had a positive BRAFV600 mutation cfDNA test; tissue retests on archival samples confirmed BRAFV600 mutation positivity in 5/7 patients (71.4%). One of these patients received BRAF pathway-targeted therapy (cobimetinib plus vemurafenib), and had progression-free survival commensurate with previous experience. In the overall cobimetinib plus vemurafenib-treated population, 29/36 patients (80.6%) had an objective response. The median progression-free survival was 13.6 months (95% confidence interval, 9.5–16.5). Cell-free DNA–based tests may be a fast and convenient option to identify BRAF mutation status in melanoma patients, and help inform treatment decisions.
Collapse
|
20
|
Assessment of Circulating Nucleic Acids in Cancer: From Current Status to Future Perspectives and Potential Clinical Applications. Cancers (Basel) 2021; 13:cancers13143460. [PMID: 34298675 PMCID: PMC8307284 DOI: 10.3390/cancers13143460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Current approaches for cancer detection and characterization are based on radiological procedures coupled with tissue biopsies, despite relevant limitations in terms of overall accuracy and feasibility, including relevant patients' discomfort. Liquid biopsies enable the minimally invasive collection and analysis of circulating biomarkers released from cancer cells and stroma, representing therefore a promising candidate for the substitution or integration in the current standard of care. Despite the potential, the current clinical applications of liquid biopsies are limited to a few specific purposes. The lack of standardized procedures for the pre-analytical management of body fluids samples and the detection of circulating biomarkers is one of the main factors impacting the effective advancement in the applicability of liquid biopsies to clinical practice. The aim of this work, besides depicting current methods for samples collection, storage, quality check and biomarker extraction, is to review the current techniques aimed at analyzing one of the main circulating biomarkers assessed through liquid biopsy, namely cell-free nucleic acids, with particular regard to circulating tumor DNA (ctDNA). ctDNA current and potential applications are reviewed as well.
Collapse
|
21
|
Longitudinal Relationship between Idylla Plasma ctBRAF V600 Mutation Detection and Tumor Burden in Patients with Metastatic Melanoma. Mol Diagn Ther 2021; 25:361-371. [PMID: 33970440 DOI: 10.1007/s40291-021-00528-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) may complement radiography for interim assessment of patients with cancer. OBJECTIVE Our objective was to explore the relationship between changes in plasma ctDNA versus radiographic imaging among patients with metastatic melanoma. METHODS Using the Idylla system, we measured B-Raf proto-oncogene (BRAF) V600 ctDNA in plasma from 15 patients with BRAF V600E/K-positive primary tumors undergoing standard-of-care monitoring, including cross-sectional computed tomography (CT) imaging. BRAF V600 mutant allele frequency (%MAF) was calculated from the Idylla Cq values and directly measured using droplet digital polymerase chain reaction (ddPCR). RESULTS The Idylla ctDNA assay demonstrated 91% sensitivity, 96% specificity, 91% positive predictive value, and 96% negative predictive value for the presence of > 93 mm metastatic disease. Qualitative ctDNA results corresponded to changes in RECIST (Response Evaluation Criteria in Solid Tumors) 1.1 status determined by CT imaging in 11 of 15 subjects (73%). Calculated %MAF results correlated with ddPCR (R2 = 0.94) and provided evidence of progressive disease 55 and 97 days in advance of CT imaging for two subjects with persistently positive qualitative results. CONCLUSIONS Overall, interim ctDNA results provided evidence of partial response or progressive disease an average of 82 days before radiography. This pilot study supports the feasibility of using the Idylla plasma BRAF V600 ctDNA assay as a complement to CT scanning for routine monitoring of therapeutic response. Somatic mutation quantification based on Cq values shows promise for identifying disease progression and warrants further validation.
Collapse
|
22
|
Zheng Y, Sun H, Cong L, Liu C, Sun Q, Wu N, Cong X. Prognostic Value of ctDNA Mutation in Melanoma: A Meta-Analysis. JOURNAL OF ONCOLOGY 2021; 2021:6660571. [PMID: 34035810 PMCID: PMC8116156 DOI: 10.1155/2021/6660571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE Melanoma is the most aggressive form of skin cancer. Circulating tumor DNA (ctDNA) is a diagnostic and prognostic marker of melanoma. However, whether ctDNA mutations can independently predict survival remains controversial. This meta-analysis assessed the prognostic value of the presence or change in ctDNA mutations in melanoma patients. METHODS We identified studies from the PubMed, EMBASE, Web of Science, and Cochrane databases. We estimated the combined hazard ratios (HRs) for overall survival (OS) and progression-free survival (PFS) using either fixed-effect or random-effect models based on heterogeneity. RESULTS Sixteen studies including 1,781 patients were included. Both baseline and posttreatment detectable ctDNA were associated with poor OS (baseline detectable vs. undetectable, pooled HR = 1.97, 95% CI = 1.64-2.36, P < 0.00001; baseline undetectable vs. detectable, pooled HR = 0.19, 95% CI = 0.11-0.36, P < 0.00001; posttreatment detectable vs. undetectable, pooled HR = 2.36, 95% CI = 1.30-4.28, P=0.005). For PFS, baseline detectable ctDNA may be associated with adverse PFS (baseline detectable vs. undetectable, pooled HR = 1.41, 95% CI = 0.84-2.37, P=0.19; baseline undetectable vs. detectable, pooled HR = 0.43, 95% CI = 0.19-0.95, P=0.04) and baseline high ctDNA and increased ctDNA were significantly associated with adverse PFS (baseline high vs. low/undetectable, pooled HR = 3.29, 95% CI = 1.73-6.25, P=0.0003; increase vs. decrease, pooled HR = 4.48, 95% CI = 2.45-8.17, P < 0.00001). The baseline BRAFV600 ctDNA mutation-positive group was significantly associated with adverse OS compared with the baseline ctDNA-negative group (pooled HR = 1.90, 95% CI = 1.58-2.29, P < 0.00001). There were no significant differences in PFS between the baseline BRAFV600 ctDNA mutation-detectable group and the undetectable group (pooled HR = 1.02, 95% CI = 0.72-1.44, P=0.92). CONCLUSION The presence or elevation of ctDNA mutation or BRAFV600 ctDNA mutation was significantly associated with worse prognosis in melanoma patients.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyan Sun
- Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lele Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chenlu Liu
- Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qian Sun
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Nan Wu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianling Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Kaneko A, Kanemaru H, Kajihara I, Mijiddorj T, Miyauchi H, Kuriyama H, Kimura T, Sawamura S, Makino K, Miyashita A, Aoi J, Makino T, Masuguchi S, Fukushima S, Ihn H. Liquid biopsy-based analysis by ddPCR and CAPP-Seq in melanoma patients. J Dermatol Sci 2021; 102:158-166. [PMID: 34049769 DOI: 10.1016/j.jdermsci.2021.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The development of BRAF/MEK inhibitors in patients with metastatic melanoma harboring BRAF mutations has garnered attention for liquid biopsy to detect BRAF mutations in cell-free DNA (cfDNA) using droplet digital PCR (ddPCR) or next-generation sequencing methods. OBJECTIVE To investigate gene mutations in tumor DNA and cfDNA collected from 43 melanoma patients and evaluate their potential as biomarkers. METHODS ddPCR and CAncer Personalized Profiling by deep Sequencing (CAPP-Seq) techniques were performed to detect gene mutations in plasma cfDNA obtained from patients with metastatic melanoma. RESULTS Gene variants, including BRAF, NRAS, TP53, GNAS, and MET, were detectable in the plasma cfDNA, and the results were partially consistent with the results of those identified in the tissues. Among the variants examined, copy numbers of MET mutations were consistent with the disease status in two melanoma patients. CONCLUSION Liquid biopsy using CAPP-Seq and ddPCR has the potential to detect tumor presence and mutations, especially when tissue biopsies are unavailable. MET mutations in cfDNA may be a potential biomarker in patients with metastatic melanoma.
Collapse
Affiliation(s)
- Akira Kaneko
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hisashi Kanemaru
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Ikko Kajihara
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tselmeg Mijiddorj
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitomi Miyauchi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruka Kuriyama
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshihiro Kimura
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Soichiro Sawamura
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunari Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Azusa Miyashita
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Aoi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takamitsu Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinichi Masuguchi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
24
|
Perillo A, Agbaje Olufemi MV, De Robbio J, Mancuso RM, Roscigno A, Tirozzi M, Scognamiglio IR. Liquid biopsy in NSCLC: a new challenge in radiation therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:156-173. [PMID: 36046142 PMCID: PMC9400754 DOI: 10.37349/etat.2021.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most common cancer and the leading cause of cancer mortality worldwide. To date, tissue biopsy has been the gold standard for the diagnosis and the identification of specific molecular mutations, to guide choice of therapy. However, this procedure has several limitations. Liquid biopsy could represent a solution to the intrinsic limits of traditional biopsy. It can detect cancer markers such as circulating tumor DNA or RNA (ctDNA, ctRNA), and circulating tumor cells, in plasma, serum or other biological fluids. This procedure is minimally invasive, reproducible and can be used repeatedly. The main clinical applications of liquid biopsy in non-small cell lung cancer (NSCLC) patients are the early diagnosis, stratification of the risk of relapse, identification of mutations to guide application of targeted therapy and the evaluation of the minimum residual disease. In this review, the current role of liquid biopsy and associated markers in the management of NSCLC patients was analyzed, with emphasis on ctDNA and CTCs, and radiotherapy.
Collapse
Affiliation(s)
- Annarita Perillo
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Mohamed Vincenzo Agbaje Olufemi
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Jacopo De Robbio
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Rossella Margherita Mancuso
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Anna Roscigno
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Maddalena Tirozzi
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Ida Rosalia Scognamiglio
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| |
Collapse
|
25
|
Blood-Based Detection of BRAF V600E in Gliomas and Brain Tumor Metastasis. Cancers (Basel) 2021; 13:cancers13061227. [PMID: 33799709 PMCID: PMC7998685 DOI: 10.3390/cancers13061227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The BRAF V600E mutation has been identified as a key driver in brain tumors and brain tumor metastasis. The ability to detect this mutation in a minimally invasive plasma assay offers advantages over traditional tissue-based biopsy for the disease diagnosis and monitoring. The aim of this study was to develop an assay for the detection of BRAF V600E in the plasma of patients with brain tumors and brain tumor metastasis. We demonstrate BRAF V600E detection using a novel plasma-based ddPCR assay. We detect the mutation in circulating nucleic acids in 4/5 patients with mutant gliomas and metastatic melanoma. We also show correlation between plasma BRAF V600E and clinical status. This proof of principle study is important in the context of application of liquid biopsy in plasma to the neuro-oncologic field. The assay may be useful as a diagnostic adjunct, prognostication tool, and method for monitoring of disease and treatment response. Abstract Liquid biopsy provides a minimally invasive platform for the detection of tumor-derived information, including hotspot mutations, such as BRAF V600E. In this study, we provide evidence of the technical development of a ddPCR assay for the detection of BRAF V600E mutations in the plasma of patients with glioma or brain metastasis. In a small patient cohort (n = 9, n = 5 BRAF V600E, n = 4 BRAF WT, n = 4 healthy control), we were able to detect the BRAF V600E mutation in the plasma of 4/5 patients with BRAF V600E-tissue confirmed mutant tumors, and none of the BRAF WT tumors. We also provide evidence in two metastatic patients with longitudinal monitoring, where the plasma-based BRAF V600E mutation correlated with clinical disease status. This proof of principle study demonstrates the potential of this assay to serve as an adjunctive tool for the detection, monitoring, and molecular characterization of BRAF mutant gliomas and brain metastasis.
Collapse
|
26
|
A supersensitive silicon nanowire array biosensor for quantitating tumor marker ctDNA. Biosens Bioelectron 2021; 181:113147. [PMID: 33773219 DOI: 10.1016/j.bios.2021.113147] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/20/2022]
Abstract
Cancer has become one of the major diseases threatening human health and life. Circulating tumor DNA (ctDNA) testing, as a practical liquid biopsy technique, is a promising method for cancer diagnosis, targeted therapy and prognosis. Here, for the first time, a field effect transistor (FET) biosensor based on uniformly sized high-response silicon nanowire (SiNW) array was studied for real-time, label-free, super-sensitive detection of PIK3CA E542K ctDNA. High-response 120-SiNWs array was fabricated on a (111) silicon-on-insulator (SOI) by the complementary metal oxide semiconductor (CMOS)-compatible microfabrication technology. To detecting ctDNA, we modified the DNA probe on the SiNWs array through silanization. The experimental results demonstrated that the as-fabricated biosensor had significant superiority in ctDNA detection, which achieved ultralow detection limit of 10 aM and had a good linearity under the ctDNA concentration range from 0.1 fM to 100 pM. This biosensor can recognize complementary target ctDNA from one/two/full-base mismatched DNA with high selectivity. Furthermore, the fabricated SiNW-array FET biosensor successfully detected target ctDNA in human serum samples, indicating a good potential in clinical applications in the future.
Collapse
|
27
|
Adam T, Becker TM, Chua W, Bray V, Roberts TL. The Multiple Potential Biomarkers for Predicting Immunotherapy Response-Finding the Needle in the Haystack. Cancers (Basel) 2021; 13:cancers13020277. [PMID: 33451015 PMCID: PMC7828488 DOI: 10.3390/cancers13020277] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are being increasingly utilised in a variety of advanced malignancies. Despite promising outcomes in certain patients, the majority will not derive benefit and are at risk of potentially serious immune-related adverse events (irAEs). The development of predictive biomarkers is therefore critical to personalise treatments and improve outcomes. A number of biomarkers have shown promising results, including from tumour (programmed cell death ligand 1 (PD-L1), tumour mutational burden (TMB), stimulator of interferon genes (STING) and apoptosis-associated speck-like protein containing a CARD (ASC)), from blood (peripheral blood mononuclear cells (PBMCs), circulating tumour DNA (ctDNA), exosomes, cytokines and metal chelators) and finally the microbiome.
Collapse
Affiliation(s)
- Tamiem Adam
- Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia; (T.M.B.); (W.C.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2170, Australia
- Liverpool Cancer Therapy Centre, Corner of Goulburn and Elizabeth Streets, Liverpool, NSW 2170, Australia;
- Correspondence: (T.A.); (T.L.R.)
| | - Therese M. Becker
- Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia; (T.M.B.); (W.C.)
- University of New South Wales, Sydney, NSW 2170, Australia
| | - Wei Chua
- Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia; (T.M.B.); (W.C.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2170, Australia
- Liverpool Cancer Therapy Centre, Corner of Goulburn and Elizabeth Streets, Liverpool, NSW 2170, Australia;
| | - Victoria Bray
- Liverpool Cancer Therapy Centre, Corner of Goulburn and Elizabeth Streets, Liverpool, NSW 2170, Australia;
| | - Tara L. Roberts
- Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia; (T.M.B.); (W.C.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2170, Australia
- University of New South Wales, Sydney, NSW 2170, Australia
- Correspondence: (T.A.); (T.L.R.)
| |
Collapse
|
28
|
Carreira B, Acúrcio RC, Matos AI, Peres C, Pozzi S, Vaskovich‐Koubi D, Kleiner R, Bento M, Satchi‐Fainaro R, Florindo HF. Nanomedicines as Multifunctional Modulators of Melanoma Immune Microenvironment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ana I. Matos
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Daniella Vaskovich‐Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Mariana Bento
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| |
Collapse
|
29
|
Marsavela G, Johansson PA, Pereira MR, McEvoy AC, Reid AL, Robinson C, Warburton L, Khattak MA, Meniawy TM, Amanuel B, Millward M, Hayward NK, Ziman MR, Gray ES, Calapre L. The Prognostic Impact of Circulating Tumour DNA in Melanoma Patients Treated with Systemic Therapies-Beyond BRAF Mutant Detection. Cancers (Basel) 2020; 12:E3793. [PMID: 33339135 PMCID: PMC7765660 DOI: 10.3390/cancers12123793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
In this study, we evaluated the predictive value of circulating tumour DNA (ctDNA) to inform therapeutic outcomes in metastatic melanoma patients receiving systemic therapies. We analysed 142 plasma samples from metastatic melanoma patients prior to commencement of systemic therapy: 70 were treated with BRAF/MEK inhibitors and 72 with immunotherapies. Patient-specific droplet digital polymerase chain reaction assays were designed for ctDNA detection. Plasma ctDNA was detected in 56% of patients prior to first-line anti-PD1 and/or anti-CTLA-4 treatment. The detection rate in the immunotherapy cohort was comparably lower than those with BRAF inhibitors (76%, p = 0.0149). Decreasing ctDNA levels within 12 weeks of treatment was strongly concordant with treatment response (Cohen's k = 0.798, p < 0.001) and predictive of longer progression free survival. Notably, a slower kinetic of ctDNA decline was observed in patients treated with immunotherapy compared to those on BRAF/MEK inhibitors. Whole exome sequencing of ctDNA was also conducted in 9 patients commencing anti-PD-1 therapy to derive tumour mutational burden (TMB) and neoepitope load measurements. The results showed a trend of high TMB and neoepitope load in responders compared to non-responders. Overall, our data suggest that changes in ctDNA can serve as an early indicator of outcomes in metastatic melanoma patients treated with systemic therapies and therefore may serve as a tool to guide treatment decisions.
Collapse
Affiliation(s)
- Gabriela Marsavela
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia; (G.M.); (M.R.P.); (A.C.M.); (A.L.R.); (L.W.); (M.A.K.); (T.M.M.); (B.A.); (M.R.Z.); (L.C.)
| | - Peter A. Johansson
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; (P.A.J.); (N.K.H.)
| | - Michelle R. Pereira
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia; (G.M.); (M.R.P.); (A.C.M.); (A.L.R.); (L.W.); (M.A.K.); (T.M.M.); (B.A.); (M.R.Z.); (L.C.)
| | - Ashleigh C. McEvoy
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia; (G.M.); (M.R.P.); (A.C.M.); (A.L.R.); (L.W.); (M.A.K.); (T.M.M.); (B.A.); (M.R.Z.); (L.C.)
| | - Anna L. Reid
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia; (G.M.); (M.R.P.); (A.C.M.); (A.L.R.); (L.W.); (M.A.K.); (T.M.M.); (B.A.); (M.R.Z.); (L.C.)
| | - Cleo Robinson
- Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia 6009, Australia;
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Lydia Warburton
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia; (G.M.); (M.R.P.); (A.C.M.); (A.L.R.); (L.W.); (M.A.K.); (T.M.M.); (B.A.); (M.R.Z.); (L.C.)
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6010, Australia;
| | - Muhammad A. Khattak
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia; (G.M.); (M.R.P.); (A.C.M.); (A.L.R.); (L.W.); (M.A.K.); (T.M.M.); (B.A.); (M.R.Z.); (L.C.)
- School of Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, Western Australia 6150, Australia
| | - Tarek M. Meniawy
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia; (G.M.); (M.R.P.); (A.C.M.); (A.L.R.); (L.W.); (M.A.K.); (T.M.M.); (B.A.); (M.R.Z.); (L.C.)
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6010, Australia;
- School of Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Benhur Amanuel
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia; (G.M.); (M.R.P.); (A.C.M.); (A.L.R.); (L.W.); (M.A.K.); (T.M.M.); (B.A.); (M.R.Z.); (L.C.)
- Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia 6009, Australia;
- School of Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Michael Millward
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6010, Australia;
- School of Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Nicholas K. Hayward
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; (P.A.J.); (N.K.H.)
| | - Melanie R. Ziman
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia; (G.M.); (M.R.P.); (A.C.M.); (A.L.R.); (L.W.); (M.A.K.); (T.M.M.); (B.A.); (M.R.Z.); (L.C.)
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Elin S. Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia; (G.M.); (M.R.P.); (A.C.M.); (A.L.R.); (L.W.); (M.A.K.); (T.M.M.); (B.A.); (M.R.Z.); (L.C.)
| | - Leslie Calapre
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia; (G.M.); (M.R.P.); (A.C.M.); (A.L.R.); (L.W.); (M.A.K.); (T.M.M.); (B.A.); (M.R.Z.); (L.C.)
| |
Collapse
|
30
|
Emelyanova MA, Telysheva EN, Orlova KV, Ryabaya OO, Snigiryova GP, Abramov IS, Mikhailovich VM. Microarray-based analysis of the BRAF V600 mutations in circulating tumor DNA in melanoma patients. Cancer Genet 2020; 250-251:25-35. [PMID: 33249369 DOI: 10.1016/j.cancergen.2020.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) holds great potential for cancer therapy and can provide diagnostic and prognostic information before and during treatment. METHODS Plasma DNA samples from 97 melanoma patients, 20 healthy donors and 3 patients with benign skin tumors were analyzed by microarray analysis and droplet digital PCR (ddPCR). RESULTS A microarray for simultaneous detection of six BRAF V600 mutations in ctDNA has been developed. The method allows the detection of 0.05% mutated DNA from WT DNA background. For paired samples (pre-surgery plasma and tumor tissue) isolated from 74 patients, the concordance of genotypes between tumor DNA and ctDNA was 65% (48/74). BRAF mutations in ctDNA were detected in 27/50 patients with BRAF-positive tumors and in 3/24 patients with BRAF wild-type tumors. The presence of ctDNA BRAF mutations in 23 plasma samples from melanoma patients undergoing therapy correlated significantly with tumor progression (P=0.005). The increase in cell-free DNA levels measured by ddPCR also correlated with disease progression (P=0.02). The concordance of results obtained by microarray identification of BRAF mutations and those obtained by ddPCR was 91%. CONCLUSION The novel microarray-based approach can be a useful non-invasive tool for accurate identification of ctDNA BRAF mutations to monitor disease progression.
Collapse
Affiliation(s)
- Marina A Emelyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, 32 Vavilova St., Russian Federation
| | - Ekaterina N Telysheva
- Russian Scientific Center of Roentgen Radiology, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Profsoyuznaya St. 86, Russian Federation
| | - Kristina V Orlova
- N.N. Blokhin National Medical Research Center for Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Kashirskoye shosse 24, Russian Federation
| | - Oxana O Ryabaya
- N.N. Blokhin National Medical Research Center for Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Kashirskoye shosse 24, Russian Federation
| | - Galina P Snigiryova
- Russian Scientific Center of Roentgen Radiology, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Profsoyuznaya St. 86, Russian Federation
| | - Ivan S Abramov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, 32 Vavilova St., Russian Federation
| | - Vladimir M Mikhailovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, 32 Vavilova St., Russian Federation.
| |
Collapse
|
31
|
Wang Z, Ye CY, Zhou WL, Wang MM, Dai WP, Zheng J, Zang YS. The Role of Dynamic ctDNA Monitoring During Combination Therapies of BRAF V600E-Mutated Metastatic Colorectal Cancer: A Case Report. Onco Targets Ther 2020; 13:11849-11853. [PMID: 33235471 PMCID: PMC7680184 DOI: 10.2147/ott.s265725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND BRAF V600E mutation represents a group of colorectal carcinoma with poor prognosis. Although treatment strategies have been recommended after clinical investigations, the progression-free survival is short and unsatisfying. CASE PRESENTATION Here, we present the case of a 28-year-old male diagnosed with ascending colon adenocarcinoma with multiple liver metastases. Treatment with FOLFIRI plus cetuximab and vemurafenib achieved partial response, following which the patient received conversion surgery with clear resection margin. After disease recurrence, he received combination treatment of nivolumab and regorafenib. Until August 2020, the patient achieved a partial response with more than 12 months progression-free survival. Circulating tumor DNA (ctDNA) was monitored during the patient's treatment. His ctDNA fractions exhibited significant elevation two months before disease progression. As a comparison, the tumor markers were not elevated until the patient was confirmed PD through CT imaging. CONCLUSION This case exemplifies how liquid biopsy and ctDNA sequencing can aid in real-time molecular characterization of tumors.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai200003, People’s Republic of China
| | - Chen-Yang Ye
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai200003, People’s Republic of China
| | - Wen-Li Zhou
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai200003, People’s Republic of China
| | - Miao-Miao Wang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai200003, People’s Republic of China
| | - Wei-Ping Dai
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai200003, People’s Republic of China
| | - Jingjing Zheng
- Burning Rock Biotech, Guangzhou, People’s Republic of China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai200003, People’s Republic of China
| |
Collapse
|
32
|
Clark ME, Rizos H, Pereira MR, McEvoy AC, Marsavela G, Calapre L, Meehan K, Ruhen O, Khattak MA, Meniawy TM, Long GV, Carlino MS, Menzies AM, Millward M, Ziman M, Gray ES. Detection of BRAF splicing variants in plasma-derived cell-free nucleic acids and extracellular vesicles of melanoma patients failing targeted therapy therapies. Oncotarget 2020; 11:4016-4027. [PMID: 33216826 PMCID: PMC7646833 DOI: 10.18632/oncotarget.27790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
The analysis of plasma circulating tumour nucleic acids provides a non-invasive approach to assess disease burden and the genetic evolution of tumours in response to therapy. BRAF splicing variants are known to confer melanoma resistance to BRAF inhibitors. We developed a test to screen cell-free RNA (cfRNA) for the presence of BRAF splicing variants. Custom droplet digital PCR assays were designed for the detection of BRAF splicing variants p61, p55, p48 and p41 and then validated using RNA from cell lines carrying these variants. Evaluation of plasma from patients with reported objective response to BRAF/MEK inhibition followed by disease progression was revealed by increased circulating tumour DNA (ctDNA) in 24 of 38 cases at the time of relapse. Circulating BRAF splicing variants were detected in cfRNA from 3 of these 38 patients; two patients carried the BRAF p61 variant and one the p55 variant. In all three cases the presence of the splicing variant was apparent only at the time of progressive disease. BRAF p61 was also detectable in plasma of one of four patients with confirmed BRAF splicing variants in their progressing tumours. Isolation and analysis of RNA from extracellular vesicles (EV) from resistant cell lines and patient plasma demonstrated that BRAF splicing variants are associated with EVs. These findings indicate that in addition to plasma ctDNA, RNA carried by EVs can provide important tumour specific information.
Collapse
Affiliation(s)
- Michael E. Clark
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Biomedical Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Helen Rizos
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- Westmead Institute for Cancer Research, The University of Sydney, Sydney, New South Wales, Australia
- Melanoma Institute Australia, Sydney, New South Wales, Australia
| | - Michelle R. Pereira
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Ashleigh C. McEvoy
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Gabriela Marsavela
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Leslie Calapre
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Katie Meehan
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong
| | - Olivia Ruhen
- School of Biomedical Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Muhammad A. Khattak
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Tarek M. Meniawy
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Mater Hospital, North Sydney, New South Wales, Australia
| | - Matteo S. Carlino
- Westmead Institute for Cancer Research, The University of Sydney, Sydney, New South Wales, Australia
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Alexander M. Menzies
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Mater Hospital, North Sydney, New South Wales, Australia
| | - Michael Millward
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Melanie Ziman
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Biomedical Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Elin S. Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
33
|
Warburton L, Meniawy TM, Calapre L, Pereira M, McEvoy A, Ziman M, Gray ES, Millward M. Stopping targeted therapy for complete responders in advanced BRAF mutant melanoma. Sci Rep 2020; 10:18878. [PMID: 33139839 PMCID: PMC7606504 DOI: 10.1038/s41598-020-75837-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
BRAF inhibitors revolutionised the management of melanoma patients and although resistance occurs, there is a subgroup of patients who maintain durable disease control. For those cases with durable complete response (CR) it is not clear whether it is safe to cease therapy. Here we identified 13 patients treated with BRAF +/- MEK inhibitors, who cease therapy after prolonged CR (median = 34 months, range 20-74). Recurrence was observed in 3/13 (23%) patients. In the remaining 10 patients with sustained CR off therapy, the median follow up after discontinuation was 19 months (range 8-36). We retrospectively measured ctDNA levels using droplet digital PCR (ddPCR) in longitudinal plasma samples. CtDNA levels were undetectable in 11/13 cases after cessation and remained undetectable in patients in CR (10/13). CtDNA eventually became detectable in 2/3 cases with disease recurrence, but remained undetectable in 1 patient with brain only progression. Our study suggests that consideration could be given to ceasing targeted therapy in the context of prolonged treatment, durable response and no evidence of residual disease as measured by ctDNA.
Collapse
Affiliation(s)
- L Warburton
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - T M Meniawy
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
| | - L Calapre
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - M Pereira
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - A McEvoy
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - M Ziman
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- School of Biomedical Science, University of Western Australia, Crawley, WA, Australia
| | - E S Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| | - M Millward
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
34
|
Smith R, Geary SM, Salem AK. Silicon Nanowires and their Impact on Cancer Detection and Monitoring. ACS APPLIED NANO MATERIALS 2020; 3:8522-8536. [PMID: 36733606 PMCID: PMC9891666 DOI: 10.1021/acsanm.0c01572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Since the inception of silicon nanowires (SINWs)-based biosensors in 2001, SINWs employed in various detection schemes have routinely demonstrated label-free, real-time, sub femtomolar detection of both protein and nucleic acid analytes. This has allowed SiNW-based biosensors to integrate into the field of cancer detection and cancer monitoring and thus have the potential to be a paradigm shift in how cancer biomarkers are detected and monitored. Combining this with several promising fields such as liquid biopsies and targeted oncology, SiNW based biosensors represents an opportunity for cancer monitoring and treatment to be a more dynamic process. Such advances provide clinicians with more information on the molecular landscape of cancer patients which can better inform cancer treatment guidelines.
Collapse
Affiliation(s)
- Rasheid Smith
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242
| |
Collapse
|
35
|
Circulating Tumour DNAs and Non-Coding RNAs as Liquid Biopsies for the Management of Colorectal Cancer Patients. GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2030022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circulating tumour DNAs and non-coding RNAs present in body fluids have been under investigation as tools for cancer diagnosis, disease monitoring, and prognosis for many years. These so-called liquid biopsies offer the opportunity to obtain information about the molecular make-up of a cancer in a minimal invasive way and offer the possibility to implement theranostics for precision oncology. Furthermore, liquid biopsies could overcome the limitations of tissue biopsies in capturing the complexity of tumour heterogeneity within the primary cancer and among different metastatic sites. Liquid biopsies may also be implemented to detect early tumour formation or to monitor cancer relapse of response to therapy with greater sensitivity compared with the currently available protein-based blood biomarkers. Most colorectal cancers are often diagnosed at late stages and have a high mortality rate. Hence, biomolecules as nucleic acids present in liquid biopsies might have prognostic potential and could serve as predictive biomarkers for chemotherapeutic regimens. This review will focus on the role of circulating tumour DNAs and non-coding RNAs as diagnostic, prognostic, and predictive biomarkers in the context of colorectal cancer.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW To summarise diagnostic clinical/laboratory findings and highlight differences between classical hairy cell leukaemia (HCLc) and hairy cell leukaemia variant (HCLv). Discussion of prognosis and current treatment indications including novel therapies, linked to understanding of the underlying molecular pathogenesis. RECENT FINDINGS Improved understanding of the underlying pathogenesis of HCLc, particularly the causative mutation BRAF V600E, leading to constitutive activation of the MEK/ERK signalling pathway and increased cell proliferation. HCLc is caused by BRAF V600E mutation in most cases. Purine nucleoside analogue (PNA) therapy is the mainstay of treatment, with the addition of rituximab, improving response and minimal residual disease (MRD) clearance. Despite excellent responses to PNAs, many patients will eventually relapse, requiring further therapy. Rarely, patients are refractory to PNA therapy. In relapsed/refractory patients, novel targeted therapies include BRAF inhibitors (BRAFi), anti-CD22 immunoconjugate moxetumomab and Bruton tyrosine kinase inhibitors (BTKi). HCLv has a worse prognosis with median overall survival (OS), only 7-9 years, despite the combination of PNA/rituximab improving front-line response. Moxetumomab or ibrutinib may be a viable treatment but lacks substantial evidence.
Collapse
Affiliation(s)
- Matthew Cross
- The Royal Marsden Hospital and the Institute of Cancer Research, Sutton, UK
| | - Claire Dearden
- The Royal Marsden Hospital and the Institute of Cancer Research, Sutton, UK.
| |
Collapse
|
37
|
Boyer M, Cayrefourcq L, Dereure O, Meunier L, Becquart O, Alix-Panabières C. Clinical Relevance of Liquid Biopsy in Melanoma and Merkel Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12040960. [PMID: 32295074 PMCID: PMC7226137 DOI: 10.3390/cancers12040960] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022] Open
Abstract
Melanoma and Merkel cell carcinoma are two aggressive skin malignancies with high disease-related mortality and increasing incidence rates. Currently, invasive tumor tissue biopsy is the gold standard for their diagnosis, and no reliable easily accessible biomarker is available to monitor patients with melanoma or Merkel cell carcinoma during the disease course. In these last years, liquid biopsy has emerged as a candidate approach to overcome this limit and to identify biomarkers for early cancer diagnosis, prognosis, therapeutic response prediction, and patient follow-up. Liquid biopsy is a blood-based non-invasive procedure that allows the sequential analysis of circulating tumor cells, circulating cell-free and tumor DNA, and extracellular vesicles. These innovative biosources show similar features as the primary tumor from where they originated and represent an alternative to invasive solid tumor biopsy. In this review, the biology and technical challenges linked to the detection and analysis of the different circulating candidate biomarkers for melanoma and Merkel cell carcinoma are discussed as well as their clinical relevance.
Collapse
Affiliation(s)
- Magali Boyer
- Laboratory of Rare Human Circulating Cells, University Medical Centre of Montpellier, 34093 Montpellier, France; (M.B.); (L.C.)
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells, University Medical Centre of Montpellier, 34093 Montpellier, France; (M.B.); (L.C.)
| | - Olivier Dereure
- Department of Dermatology and INSERM 1058 Pathogenesis and Control of Chronic Infections, University of Montpellier, 34090 Montpellier, France;
| | - Laurent Meunier
- Department of Dermatology, University of Montpellier, 34090 Montpellier, France; (L.M.); (O.B.)
| | - Ondine Becquart
- Department of Dermatology, University of Montpellier, 34090 Montpellier, France; (L.M.); (O.B.)
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Centre of Montpellier, 34093 Montpellier, France; (M.B.); (L.C.)
- Correspondence: ; Tel.: +33-4-1175-99-31; Fax: +33-4-1175-99-33
| |
Collapse
|
38
|
Huijberts S, Wang L, de Oliveira RL, Rosing H, Nuijen B, Beijnen J, Bernards R, Schellens J, Wilgenhof S. Vorinostat in patients with resistant BRAFV600E mutated advanced melanoma: a proof of concept study. Future Oncol 2020; 16:619-629. [PMID: 32125175 DOI: 10.2217/fon-2020-0023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The clinical benefit of treatment with BRAF- and MEK-inhibitors in melanoma is limited due to resistance associated with emerging secondary mutations. Preclinical and clinical studies have shown that short-term treatment with the HDAC inhibitor vorinostat can eliminate cells harboring these secondary mutations causing resistance. This proof of concept study is to determine the efficacy of sequential treatment with vorinostat and BRAFi/MEKi in resistant BRAFV600E mutant melanoma. The primary aim is demonstrating anti-tumor response of progressive lesions according to RECIST 1.1. Secondary end points are to determine that emerging resistant clones with a secondary mutation in the MAPK pathway can be detected in circulating tumor DNA and purged by short-term vorinostat treatment. Exploratory end points include pharmacokinetic, pharmacodynamic and pharmacogenetic analyses (NCT02836548).
Collapse
Affiliation(s)
- Sanne Huijberts
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Rodrigo Leite de Oliveira
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Bastiaan Nuijen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Jos Beijnen
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands.,Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands.,Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands.,Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jan Schellens
- Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Sofie Wilgenhof
- Department of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
39
|
Detection of Gene Mutations in Liquid Biopsy of Melanoma Patients: Overview and Future Perspectives. Curr Treat Options Oncol 2020; 21:19. [PMID: 32048063 DOI: 10.1007/s11864-020-0708-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OPINION STATEMENT Liquid biopsies are still far from widely implanted in the clinical arena. Issues related to the added sensitivity of this test beyond conventional methods have not been fully resolved. Additionally, issues related to the specificity of these results especially as many cancers may share common mutation need further investigations. One way to resolve this may include the development and testing of large gene panels to add higher specificity. On the other hand, further studies are needed to support the idea that ctDNA or circulating tumor cells may constitute a better representation of the tumor subpopulation that is capable of metastasizing, which will strongly support its clinical value. Finally, survival studies showing a positive impact of this technology will also justify its widespread implementation in clinical practice.
Collapse
|
40
|
Biomarkers Predictive of Survival and Response to Immune Checkpoint Inhibitors in Melanoma. Am J Clin Dermatol 2020; 21:1-11. [PMID: 31602560 DOI: 10.1007/s40257-019-00475-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Immunotherapy has revolutionized the treatment of melanoma. Targeting of the immune checkpoints cytotoxic T-lymphocyte-associated protein 4 and programmed cell death protein 1 has led to improved survival in a subset of patients. Unfortunately, the use of immune checkpoint inhibitors is associated with significant side effects and many patients do not respond to treatment. Thus, there is an urgent need both for prognostic biomarkers to estimate risk and for predictive biomarkers to determine which patients are likely to respond to therapy. In this review, prognostic and predictive biomarkers that are an active area of research are outlined. Of note, certain transcriptomic signatures are already used in the clinic, albeit not routinely, to prognosticate patients. In the predictive setting, programmed cell death protein ligand 1 expression has been shown to correlate with benefit but is not precise enough to be used as an exclusionary biomarker. Future investigation will need to focus on biomarkers that are easily reproducible, cost effective, and accurate. The use of readily available clinical material, such as serum or hematoxylin and eosin-stained images, may offer one such path forward.
Collapse
|
41
|
Syeda MM, Wiggins JM, Corless B, Spittle C, Karlin-Neumann G, Polsky D. Validation of Circulating Tumor DNA Assays for Detection of Metastatic Melanoma. Methods Mol Biol 2020; 2055:155-180. [PMID: 31502151 DOI: 10.1007/978-1-4939-9773-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The detection of cell-free, circulating tumor DNA (ctDNA) in the blood of patients with solid tumors is often referred to as "liquid biopsy." ctDNA is particularly attractive as a candidate biomarker in the blood. It is relatively stable after blood collection, can be easily purified, and can be quantitatively measured with high sensitivity and specificity using advanced technologies. Current liquid biopsy research has focused on detecting and quantifying ctDNA to (1) diagnose and characterize mutations in a patient's cancer to help select the appropriate treatment; (2) predict clinical outcomes associated with different treatments; and (3) monitor the response and/or progression of a patient's disease. The diagnostic use of liquid biopsies is probably greatest in tumors where the difficulty and/or risk of obtaining a tissue specimen for molecular diagnostics is high (e.g., lung, colon). In metastatic melanoma, however, obtaining a tissue sample for molecular diagnostics is not typically a major obstacle to patient care plans; rather predicting treatment outcomes and monitoring a patient's disease course during therapy are considered the current priorities for this cancer type. In this chapter we describe an approach to the validation of ctDNA detection assays for melanoma, focusing primarily on analytical validation, and provide methods to guide the use of droplet digital PCR assays for measuring ctDNA levels in plasma samples.
Collapse
Affiliation(s)
- Mahrukh M Syeda
- The Ronald O. Perelman Department of Dermatology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York University School of Medicine, New York, NY, USA
| | - Jennifer M Wiggins
- The Ronald O. Perelman Department of Dermatology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York University School of Medicine, New York, NY, USA
| | - Broderick Corless
- The Ronald O. Perelman Department of Dermatology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York University School of Medicine, New York, NY, USA
| | | | | | - David Polsky
- The Ronald O. Perelman Department of Dermatology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
42
|
Zhao Y, He JY, Zou YL, Guo XS, Cui JZ, Guo L, Bu H. Evaluating the cerebrospinal fluid ctDNA detection by next-generation sequencing in the diagnosis of meningeal Carcinomatosis. BMC Neurol 2019; 19:331. [PMID: 31856745 PMCID: PMC6924020 DOI: 10.1186/s12883-019-1554-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Background Meningeal carcinomatosis (MC) is the most severe form of brain metastasis and causes significant morbidity and mortality. Currently, the diagnosis of MC is routinely confirmed on the basis of clinical manifestation, positive cerebrospinal fluid (CSF) cytology, and/or neuroimaging features. However, negative rate of CSF cytology and neuroimaging findings often result in a failure to diagnose MC from the patients who actually have the disease. Here we evaluate the CSF circulating tumor DNA (ctDNA) in the diagnosis of MC. Methods A total of 35 CSF samples were collected from 35 patients with MC for CSF cytology examination, CSF ctDNA extraction and cancer-associated gene mutations detection by next-generation sequencing (NGS) at the same time. Results The most frequent primary tumor in this study was lung cancer (26/35, 74%), followed by gastric cancer (2/35, 6%), breast cancer (2/35, 6%), prostatic cancer (1/35, 3%), parotid gland carcinoma (1/35, 3%) and lymphoma (1/35, 3%) while no primary tumor could be found in the remaining 2 patients in spite of using various inspection methods. Twenty-five CSF samples (25/35; 71%) were found neoplastic cells in CSF cytology examination while all of the 35 CSF samples (35/35; 100%) were revealed having detectable ctDNA in which cancer-associated gene mutations were detected. All of 35 patients with MC in the study underwent contrast-enhanced brain MRI and/or CT and 22 neuroimaging features (22/35; 63%) were consistent with MC. The sensitivity of the neuroimaging was 88% (95% confidence intervals [95% CI], 75 to 100) (p = 22/25) and 63% (95% CI, 47 to 79) (p = 22/35) compared to those of CSF cytology and CSF ctDNA, respectively. The sensitivity of the CSF cytology was 71% (95% CI, 56 to 86) (n = 25/35) compared to that of CSF ctDNA. Conclusions This study suggests a higher sensitivity of CSF ctDNA than those of CSF cytology and neuroimaging findings. We find cancer-associated gene mutations in ctDNA from CSF of patients with MC at 100% of our cohort, and utilizing CSF ctDNA as liquid biopsy technology based on the detection of cancer-associated gene mutations may give additional information to diagnose MC with negative CSF cytology and/or negative neuroimaging findings.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Jun-Ying He
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Yue-Li Zou
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Xiao-Su Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Jun-Zhao Cui
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China.
| | - Hui Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, China
| |
Collapse
|
43
|
Diefenbach RJ, Lee JH, Strbenac D, Yang JYH, Menzies AM, Carlino MS, Long GV, Spillane AJ, Stretch JR, Saw RPM, Thompson JF, Ch’ng S, Scolyer RA, Kefford RF, Rizos H. Analysis of the Whole-Exome Sequencing of Tumor and Circulating Tumor DNA in Metastatic Melanoma. Cancers (Basel) 2019; 11:cancers11121905. [PMID: 31795494 PMCID: PMC6966626 DOI: 10.3390/cancers11121905] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/31/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
The use of circulating tumor DNA (ctDNA) to monitor cancer progression and response to therapy has significant potential but there is only limited data on whether this technique can detect the presence of low frequency subclones that may ultimately confer therapy resistance. In this study, we sought to evaluate whether whole-exome sequencing (WES) of ctDNA could accurately profile the mutation landscape of metastatic melanoma. We used WES to identify variants in matched, tumor-derived genomic DNA (gDNA) and plasma-derived ctDNA isolated from a cohort of 10 metastatic cutaneous melanoma patients. WES parameters such as sequencing coverage and total sequencing reads were comparable between gDNA and ctDNA. The mutant allele frequency of common single nucleotide variants was lower in ctDNA, reflecting the lower read depth and minor fraction of ctDNA within the total circulating free DNA pool. There was also variable concordance between gDNA and ctDNA based on the total number and identity of detected variants and this was independent of the tumor biopsy site. Nevertheless, established melanoma driver mutations and several other melanoma-associated mutations were concordant between matched gDNA and ctDNA. This study highlights that WES of ctDNA could capture clinically relevant mutations present in melanoma metastases and that enhanced sequencing sensitivity will be required to identify low frequency mutations.
Collapse
Affiliation(s)
- Russell J. Diefenbach
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.J.D.); (J.H.L.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
| | - Jenny H. Lee
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.J.D.); (J.H.L.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
| | - Dario Strbenac
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (J.Y.H.Y.)
| | - Jean Y. H. Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (J.Y.H.Y.)
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alexander M. Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Matteo S. Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Crown Princess Mary Cancer Centre, Westmead and Blacktown Hospitals, Sydney, NSW 2145, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Andrew J. Spillane
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Jonathan R. Stretch
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
| | - Robyn P. M. Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - John F. Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Sydney Ch’ng
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Richard F. Kefford
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.J.D.); (J.H.L.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Correspondence: ; Tel.: +61-298-502-762
| |
Collapse
|
44
|
Forthun RB, Hovland R, Schuster C, Puntervoll H, Brodal HP, Namløs HM, Aasheim LB, Meza-Zepeda LA, Gjertsen BT, Knappskog S, Straume O. ctDNA detected by ddPCR reveals changes in tumour load in metastatic malignant melanoma treated with bevacizumab. Sci Rep 2019; 9:17471. [PMID: 31767937 PMCID: PMC6877652 DOI: 10.1038/s41598-019-53917-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 11/05/2019] [Indexed: 12/26/2022] Open
Abstract
Bevacizumab is included in an increasing number of clinical trials. To find biomarkers to predict and monitor treatment response, cancer and angiogenesis relevant mutations in tumour and circulating tumour DNA (ctDNA) were investigated in 26 metastatic melanoma patients treated with bevacizumab. Patients with >1% BRAF/NRAS ctDNA at treatment start had significantly decreased progression free survival (PFS) and overall survival (OS) (PFS: p = 0.019, median 54 vs 774 days, OS: p = 0.026, median 209 vs 1064 days). Patients with >1% BRAF/NRAS ctDNA during treatment showed similar results (PFS: p = 0.002, OS: p = 0.003). ≤1% BRAF/NRAS ctDNA and normal lactate dehydrogenase (LDH) levels both significantly predicted increased response to treatment, but BRAF/NRAS ctDNA was better at predicting response compared to LDH at treatment start (OR 16.94, p = 0.032 vs OR 4.57, p = 0.190), and at predicting PFS (HR 6.76, p = 0.002) and OS (HR 6.78, p = 0.002) during therapy. ctDNA BRAF p.V600D/E/K and NRAS p.G12V/p.Q61K/L/R were better biomarkers for response prediction than TERT promoter mutations (OR 1.50, p = 0.657). Next generation sequencing showed that all patients with ≥2 mutations in angiogenesis-relevant genes had progressive disease, but did not reveal other biomarkers identifying responders. To conclude, ctDNA and LDH are useful biomarkers for both monitoring and predicting response to bevacizumab.
Collapse
Affiliation(s)
- Rakel Brendsdal Forthun
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Randi Hovland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Department of Biosciences, University of Bergen, Bergen, Norway
| | - Cornelia Schuster
- Centre of Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Hanne Puntervoll
- Centre of Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hans Petter Brodal
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Heidi Maria Namløs
- Department of Tumour Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Lars Birger Aasheim
- Norwegian Cancer Genomics Consortium, Institute for Cancer Research, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway
| | - Leonardo A Meza-Zepeda
- Department of Tumour Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Norwegian Cancer Genomics Consortium, Institute for Cancer Research, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Oslo University Hospital, Oslo, Norway
| | - Bjørn Tore Gjertsen
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
- Centre of Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stian Knappskog
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Oddbjørn Straume
- Centre of Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
45
|
Wang HL, Liu PF, Yue J, Jiang WH, Cui YL, Ren H, Wang H, Zhuang Y, Liu Y, Jiang D, Dong Q, Zhang H, Mi JH, Xu ZM, Tian CJ, Zhang ZZ, Wang XW, Su MN, Lu W. Somatic gene mutation signatures predict cancer type and prognosis in multiple cancers with pan-cancer 1000 gene panel. Cancer Lett 2019; 470:181-190. [PMID: 31765737 DOI: 10.1016/j.canlet.2019.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
Most cancers are caused by somatic mutations. Some common mutations in the same cancer type can form a "signature" to specifically predict the prognosis or to distinguish it from other cancers. In this study, 710 somatic cell mutations were identified in 142 cases, including digestive, lung and urogenital cancers, and the digestive cancers were further divided into liver, stomach, intestinal, esophageal and cardia cancer. The above mutations were located in 166 genes. In addition, a group of high-frequency mutation genes with specific characteristics were screened to form predictive signatures for each cancer. Verification using TCGA suggested that the signatures could predict the stages, progression-free survival, and overall survival of digestive, intestinal, and liver cancers (P < 0.05). The validation cases further confirmed the predictive role of digestive and liver cancers signatures in diagnosis and prognosis. Overall, this study established predictive signatures for different cancer systems and their subtypes. These findings enable a better understanding in cancer genome, and contribute to the personalized diagnosis and treatment.
Collapse
Affiliation(s)
- Hai-Long Wang
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Peng-Fei Liu
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Jie Yue
- Department of Esophageal Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wen-Hua Jiang
- Department of Radiotherapy, Tianjin Medical University Second Hospital, Tianjin, China
| | - Yun-Long Cui
- Department of Hepatobiliary Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - He Ren
- Department of Pathology, Center of Tumour Immunology and Cytotherapy, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| | - Han Wang
- Department of Applied Statistics, College of Science, Hebei University of Technology, Tianjin, China
| | - Yan Zhuang
- Department of Colorectal Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yong Liu
- Department of Gastric Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Da Jiang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Dong
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Zhang
- Division of Biostatistics, Department of Prevebtive Medicine, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Jia-Hui Mi
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Zan-Mei Xu
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co.,Ltd, Tianjin, China
| | - Cai-Juan Tian
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co.,Ltd, Tianjin, China
| | - Zhen-Zhen Zhang
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co.,Ltd, Tianjin, China
| | - Xiao-Wei Wang
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co.,Ltd, Tianjin, China
| | - Mei-Na Su
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co.,Ltd, Tianjin, China
| | - Wei Lu
- Department of Hepatobiliary Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| |
Collapse
|
46
|
Calapre L, Warburton L, Millward M, Gray ES. Circulating tumour DNA (ctDNA) as a biomarker in metachronous melanoma and colorectal cancer- a case report. BMC Cancer 2019; 19:1109. [PMID: 31727009 PMCID: PMC6857141 DOI: 10.1186/s12885-019-6336-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/05/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Circulating tumour DNA (ctDNA) has emerged as a promising blood-based biomarker for monitoring disease status of patients with advanced cancers. The presence of ctDNA in the blood is a result of biological processes, namely tumour cell apoptosis and/or necrosis, and can be used to monitor different cancers by targeting cancer-specific mutation. CASE PRESENTATION We present the case of a 67 year old Caucasian male that was initially treated with BRAF inhibitors followed by anti-CTLA4 and then anti-PD1 immunotherapy for metastatic melanoma but later developed colorectal cancer. The kinetics of ctDNA derived from each cancer type were monitored targeting BRAF V600R (melanoma) and KRAS G13D (colon cancer), specifically reflected the status of the patient's tumours. In fact, the discordant pattern of BRAF and KRAS ctDNA was significantly correlated with the clinical response of melanoma to pembrolizumab treatment and progression of colorectal cancer noted by PET and/or CT scan. Based on these results, ctDNA can be used to specifically clarify disease status of patients with metachronous cancers. CONCLUSIONS Using cancer-specific mutational targets, we report here for the first time the efficacy of ctDNA to accurately provide a comprehensive outlook of the tumour status of two different cancers within one patient. Thus, ctDNA analysis has a potential clinical utility to delineate clinical information in patients with multiple cancer types.
Collapse
Affiliation(s)
- Leslie Calapre
- School of Medical Science, Edith Cowan University, Joondalup, WA Australia
| | - Lydia Warburton
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA Australia
| | - Michael Millward
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA Australia
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia Australia
| | - Elin S. Gray
- School of Biomedical Science, University of Western Australia, Crawley, WA Australia
| |
Collapse
|
47
|
Li L, Wang Y, Shi W, Zhu M, Liu Z, Luo N, Zeng Y, He Y. Serial ultra-deep sequencing of circulating tumor DNA reveals the clonal evolution in non-small cell lung cancer patients treated with anti-PD1 immunotherapy. Cancer Med 2019; 8:7669-7678. [PMID: 31692284 PMCID: PMC6912064 DOI: 10.1002/cam4.2632] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/25/2019] [Accepted: 10/07/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Immune-therapy with anti-PD1 inhibitors, such as pembrolizumab, is revolutionizing the treatment of non-small cell lung cancers (NSCLC). However, identifying patients for the potential therapeutic response and predicting therapy resistance and early relapse remains a challenge. METHODS Between 2016 and 2018, 60 patients were treated with pembrolizumab, among who 12 NSCLC patients had both baseline (before treatment) and serial (on treatment) periodical circulating tumor DNA (ctDNA) samples. Those samples were sequenced on a 329 pan cancer-related gene panel. Analyses of tumor burden, blood tumor mutational burden (bTMB), maximum somatic allele frequency (MSAF), and tumor clonal structure were performed in association with clinical response. Candidate resistance mutations involved in relapse and metastases were further investigated. RESULTS ctDNA was detected and mutational profiling was performed for each patient. Those with a high baseline bTMB level showed significantly improved progression-free survival (PFS) after pembrolizumab treatment. Tumor burden and therapeutic response significantly correlated with the MSAF instead of the bTMB. Clone analysis detected tumor progression about 2-4 months ahead of computed tomography (CT) scan. One mutation in gene PTCH1 (Protein patched homolog 1) and two acquired anti-PD1 candidate resistance mutations of gene B2M (β2 microglobulin) were identified in association with distant metastasis. The evolutionary tree of a representative patient was also described. CONCLUSION This pilot study showed that MSAF could be another good indicator of therapeutic response, and clonal analysis could be clinically useful in monitoring clonal dynamics and detecting remote metastasis and early relapse.
Collapse
Affiliation(s)
- Li Li
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yubo Wang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | | | - Mengxiao Zhu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhulin Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Nuo Luo
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | | | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
48
|
Single cell analysis to dissect molecular heterogeneity and disease evolution in metastatic melanoma. Cell Death Dis 2019; 10:827. [PMID: 31672982 PMCID: PMC6823362 DOI: 10.1038/s41419-019-2048-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/17/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023]
Abstract
Originally described as interpatient variability, tumour heterogeneity has now been demonstrated to occur intrapatiently, within the same lesion, or in different lesions of the same patient. Tumour heterogeneity involves both genetic and epigenetic changes. Intrapatient heterogeneity is responsible for generating subpopulations of cancer cells which undergo clonal evolution with time. Tumour heterogeneity develops also as a consequence of the selective pressure imposed by the immune system. It has been demonstrated that tumour heterogeneity and different spatiotemporal interactions between all the cellular compontents within the tumour microenvironment lead to cancer adaptation and to therapeutic pressure. In this context, the recent advent of single cell analysis approaches which are able to better study tumour heterogeneity from the genomic, transcriptomic and proteomic standpoint represent a major technological breakthrough. In this review, using metastatic melanoma as a prototypical example, we will focus on applying single cell analyses to the study of clonal trajectories which guide the evolution of drug resistance to targeted therapy.
Collapse
|
49
|
Lee EY, Kulkarni RP. Circulating biomarkers predictive of tumor response to cancer immunotherapy. Expert Rev Mol Diagn 2019; 19:895-904. [PMID: 31469965 DOI: 10.1080/14737159.2019.1659728] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: The advent of checkpoint blockade immunotherapy has revolutionized cancer treatment, but clinical response to immunotherapies is highly heterogeneous among individual patients and between cancer types. This represents a challenge to oncologists when choosing specific immunotherapies for personalized medicine. Thus, biomarkers that can predict tumor responsiveness to immunotherapies before and during treatment are invaluable. Areas covered: We review the latest advances in 'liquid biopsy' biomarkers for noninvasive prediction and in-treatment monitoring of tumor response to immunotherapy, focusing primarily on melanoma and non-small cell lung cancer. We concentrate on high-quality studies published within the last five years on checkpoint blockade immunotherapies, and highlight significant breakthroughs, identify key areas for improvement, and provide recommendations for how these diagnostic tools can be translated into clinical practice. Expert opinion: The first biomarkers proposed to predict tumor response to immunotherapy were based on PD1/PDL1 expression, but their predictive value is limited to specific cancers or patient populations. Recent advances in single-cell molecular profiling of circulating tumor cells and host cells using next-generation sequencing has dramatically expanded the pool of potentially useful predictive biomarkers. As immunotherapy moves toward personalized medicine, a composite panel of both genomic and proteomic biomarkers will have enormous utility in therapeutic decision-making.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, UCLA , Los Angeles , CA , USA.,Department of Dermatology, UCLA , Los Angeles , CA , USA.,UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| | - Rajan P Kulkarni
- Department of Dermatology, OHSU , Portland , OR , USA.,Cancer Early Detection and Advanced Research Center (CEDAR), Knight Cancer Institute (KCI), OHSU , Portland , OR , USA.,Division of Operative Care, Portland VA Medical Center (PVAMC) , Portland , OR , USA
| |
Collapse
|
50
|
Calbet-Llopart N, Potrony M, Tell-Martí G, Carrera C, Barreiro A, Aguilera P, Podlipnik S, Puig S, Malvehy J, Puig-Butillé JA. Detection of cell-free circulating BRAF V 600E by droplet digital polymerase chain reaction in patients with and without melanoma under dermatological surveillance. Br J Dermatol 2019; 182:382-389. [PMID: 31102256 DOI: 10.1111/bjd.18147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND The p.V600E mutation in the BRAF protein is the most frequent mutation in cutaneous melanoma and is a recurrent alteration found in common benign naevi. Analysis of the cell-free BRAF c.1799T>A, p.V600E mutation (cfBRAFV 600E ) in plasma has emerged as a biomarker for monitoring prognosis and treatment response in patients with melanoma. OBJECTIVES To quantify cfBRAFV 600E levels in plasma from patients with melanoma and from patients without melanoma undergoing regular follow-up of their melanocytic lesions, in order to assess the clinical significance of the test. METHODS We quantified cfBRAFV 600E by droplet digital polymerase chain reaction in plasma from 146 patients without melanoma undergoing continuous dermatological screening, from 26 stage III and seven stage IV patients with BRAF-mutant melanoma, and from 32 patients with melanoma who were free of disease for 3 or more years. RESULTS Among disease-free patients and individuals without melanoma, 52% presented a high naevus count (> 50) and 49% had clinically atypical naevi. cfBRAFV 600E was detected in 71% of patients with stage IV melanoma and 15% with stage III, and in 1·4% of individuals without melanoma. No cfBRAFV 600E mutation was detected in disease-free patients with melanoma. Individuals without melanoma had lower cfBRAFV 600E levels than patients with melanoma. We established a variant allelic frequency of 0·26% or 5 copies mL-1 of cfBRAFV 600E as the optimal cutoff value for identifying patients with melanoma with > 99% specificity. CONCLUSIONS This study suggests that naevus-related factors do not influence the detection of cfBRAFV 600E in individuals without melanoma, and supports the clinical diagnostic value of plasma cfBRAFV 600E quantification in patients with melanoma. What's already known about this topic? The analysis of the BRAF c.1799T>A (p.V600E) mutation in cell-free (cf)DNA has emerged as a potential biomarker for monitoring prognosis and treatment response in patients with metastatic BRAFV600E melanoma. The BRAFV600E alteration is a common genetic alteration found in benign proliferations such as melanocytic naevi. No information exists about the impact of the number of common acquired naevi or the presence of clinically atypical naevi in cfBRAFV600E detection in an individual. What does this study add? The cfBRAFV600E mutation is detected in plasma from a reduced number of individuals without melanoma undergoing continuous dermatological follow-up. A high number of naevi or the presence of clinically atypical naevi are factors that do not influence cfBRAFV600E detection in an individual. Both total cfBRAF concentration and cfBRAFV600E frequency are effective biomarkers in patients with advanced melanoma but not in patients at early stages or with micrometastases. What is the translational message? Detection of cfBRAFV600E in an individual is not influenced by naevus-related factors. cfBRAFV600E is a robust and reliable biomarker that can be used in dermatological surveillance programmes.
Collapse
Affiliation(s)
- N Calbet-Llopart
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - M Potrony
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - G Tell-Martí
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - C Carrera
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - A Barreiro
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - P Aguilera
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - S Podlipnik
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - S Puig
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - J Malvehy
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - J A Puig-Butillé
- Molecular Biology CORE Laboratory, Biochemistry and Molecular Genetics Department; Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|