1
|
Zhao Y, Zhao L, Jin H, Xie Y, Chen L, Zhang W, Dong L, Zhang L, Huang Y, Wan K, Yang Q, Wang S. Plasma methylated GNB4 and Riplet as a novel dual-marker panel for the detection of hepatocellular carcinoma. Epigenetics 2024; 19:2299044. [PMID: 38154055 PMCID: PMC10761049 DOI: 10.1080/15592294.2023.2299044] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
Early detection of hepatocellular carcinoma (HCC) can greatly improve the survival rate of patients. We aimed to develop a novel marker panel based on cell-free DNA (cfDNA) methylation for the detection of HCC. The differentially methylated CpG sites (DMCs) specific for HCC blood diagnosis were selected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, then validated by the whole genome bisulphite sequencing (WGBS) of 12 paired HCC and paracancerous tissues. The clinical performance of the panel was evaluated using tissue samples [32 HCC, chronic liver disease (CLD), and healthy individuals] and plasma cohorts (173 HCC, 199 CLD, and 98 healthy individuals). The combination of G protein subunit beta 4 (GNB4) and Riplet had the optimal area under the curve (AUC) in seven candidates through TCGA, GEO, and WGBS analyses. In tissue validation, the GNB4 and Riplet showed an AUC of 100% with a sensitivity and specificity of 100% for detecting any-stage HCC. In plasma, it demonstrated a high sensitivity of 84.39% at 91.92% specificity, with an AUC of 92.51% for detecting any-stage HCC. The dual-marker panel had a higher sensitivity of 78.26% for stage I HCC than alpha-fetoprotein (AFP) of 47.83%, and a high sensitivity of 70.27% for detecting a single tumour (size ≤3 cm). In conclusion, we developed a novel dual-marker panel that demonstrates high accuracy in detecting HCC, surpassing the performance of AFP testing.
Collapse
Affiliation(s)
- Yanteng Zhao
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Zhao
- Plastic maxillofacial surgery, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Huifang Jin
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Xie
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liyinghui Chen
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Zhang
- Research and development department, Wuhan Ammunition Life-tech Company, Ltd., Wuhan, Hubei, China
| | - Lanlan Dong
- Research and development department, Wuhan Ammunition Life-tech Company, Ltd., Wuhan, Hubei, China
| | - Lianglu Zhang
- Research and development department, Wuhan Ammunition Life-tech Company, Ltd., Wuhan, Hubei, China
| | - Yue Huang
- Research and development department, Wuhan Ammunition Life-tech Company, Ltd., Wuhan, Hubei, China
| | - Kangkang Wan
- Research and development department, Wuhan Ammunition Life-tech Company, Ltd., Wuhan, Hubei, China
| | - Qiankun Yang
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shaochi Wang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Mirhadi E, Butler AE, Kesharwani P, Sahebkar A. Utilizing stimuli-responsive nanoparticles to deliver and enhance the anti-tumor effects of bilirubin. Biotechnol Adv 2024; 77:108469. [PMID: 39427964 DOI: 10.1016/j.biotechadv.2024.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Bilirubin (BR) is among the most potent endogenous antioxidants that originates from the heme catabolic pathway. Despite being considered as a dangerous and cytotoxic waste product at high concentrations, BR has potent antioxidant effects leading to the reduction of oxidative stress and inflammation, which play an important role in the development and progression of cancer. The purpose of this study is to introduce PEGylated BR nanoparticles (NPs), themselves or in combination with other anti-cancer agents. BR is effective when loaded into various nanoparticles and used in cancer therapy. Interestingly, BRNPs can be manipulated to create stimuli-responsive carriers providing a sustained and controlled, as well as on-demand, release of drug in response to internal or external factors such as reactive oxygen species, glutathione, light, enzymes, and acidic pH. This review suggests that BRNPs have the potential as tumor microenvironment-responsive delivery systems for effective targeting of various types of cancers.
Collapse
Affiliation(s)
- Elaheh Mirhadi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Mao X, Zhu X, Pan T, Liu Z, Shangguan P, Zhang Y, Liu Y, Jiang X, Zhang Q. Apelin (APLN) is a biomarker contributing to the diagnosis and prognosis of hepatocellular carcinoma. Sci Rep 2024; 14:20441. [PMID: 39227683 PMCID: PMC11371925 DOI: 10.1038/s41598-024-71495-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
Liver cancer, classified as a malignant hepatic tumor, can be divided into two categories: primary, originating within the liver, and secondary, resulting from metastasis to the liver from other organs. Hepatocellular carcinoma (HCC) is the main form of primary liver cancer and the third leading cause of cancer-related deaths. The diagnosis and prognosis of HCC using current methods still face numerous challenges. This study aims to develop novel diagnostic and prognostic models while identifying new biomarkers for improved HCC treatment. Diagnostic and prognostic models for HCC were constructed using traditional binary classification methods and machine learning algorithms based on the TCGA database (Downloaded in August 2023). The mechanisms by which APLN (Apelin) affects HCC were investigated using single-cell sequencing data sourced from the GEO database (GSE149614). The diagnostic models yielded by various algorithms could effectively distinguished HCC samples from normal ones. The prognostic model, composed of four genes, was constructed using LASSO and Cox regression algorithms, demonstrating good performance in predicting the three-year survival rate of HCC patients. The HCC biomarker Apelin (APLN) was identified in this study. APLN in liver cancer tissues mainly comes from endothelial cells and is associated with the carcinogenesis of these cells. APLN expression is significantly upregulated in liver cancer tissues, marking it as a viable indicator of endothelial cell malignancy in HCC. Furthermore, APLN expression was determined to be an independent predictor of tumor endothelial cell carcinogenesis, unaffected by its modifications such as single nucleotide variation, copy number variation, and methylation. Additionally, liver cancers characterized by high APLN expression are likely to progress rapidly after T2 stage. Our study presents diagnostic and prognostic models for HCC with appreciably improved accuracy and reliability compared to previous reports. APLN is a reliable HCC biomarker and contributes to the establishment of our models.
Collapse
Affiliation(s)
- Xi Mao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xiaoya Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tong Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zehui Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pingping Shangguan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| | - Xiwen Jiang
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Gharibkandi NA, Wawrowicz K, Walczak R, Majkowska-Pilip A, Wierzbicki M, Bilewicz A. 109Pd/ 109mAg in-vivo generator in the form of nanoparticles for combined β - - Auger electron therapy of hepatocellular carcinoma. EJNMMI Radiopharm Chem 2024; 9:59. [PMID: 39136900 PMCID: PMC11322470 DOI: 10.1186/s41181-024-00293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Convenient therapeutic protocols for hepatocellular carcinoma (HCC) are often ineffective due to late diagnosis and high tumor heterogeneity, leading to poor long-term outcomes. However, recently performed studies suggest that using nanostructures in liver cancer treatment may improve therapeutic effects. Inorganic nanoparticles represent a unique material that tend to accumulate in the liver when introduced in-vivo. Typically, this is a major drawback that prevents the therapeutic use of nanoparticles in medicine. However, in HCC tumours, this may be advantageous because nanoparticles may accumulate in the target organ, where the leaky vasculature of HCC causes their accumulation in tumour cells via the EPR effect. On the other hand, recent studies have shown that combining low- and high-LET radiation emitted from the same radionuclide, such as 161Tb, can increase the effectiveness of radionuclide therapy. Therefore, to improve the efficacy of radionuclide therapy for hepatocellular carcinoma, we suggest utilizing radioactive palladium nanoparticles in the form of 109Pd/109mAg in-vivo generator that simultaneously emits β- particles and Auger electrons. RESULTS Palladium nanoparticles with a size of 5 nm were synthesized using 109Pd produced through neutron irradiation of natural palladium or enriched 108Pd. Unlike the 109Pd-cyclam complex, where the daughter radionuclide diffuses away from the molecules, 109mAg remains within the nanoparticles after the decay of 109Pd. In vitro cell studies using radioactive 109Pd nanoparticles revealed that the nanoparticles accumulated inside cells, reaching around 50% total uptake. The 109Pd-PEG nanoparticles exhibited high cytotoxicity, even at low levels of radioactivity (6.25 MBq/mL), resulting in almost complete cell death at 25 MBq/mL. This cytotoxic effect was significantly greater than that of PdNPs labeled with β- (131I) and Auger electron emitters (125I). The metabolic viability of HCC cells was found to be correlated with cell DNA DSBs. Also, successful radioconjugate anticancer activity was observed in three-dimensional tumor spheroids, resulting in a significant treatment response. CONCLUSION The results indicate that nanoparticles labeled with 109Pd can be effectively used for combined β- - Auger electron-targeted radionuclide therapy of HCC. Due to the decay of both components (β- and Auger electrons), the 109Pd/109mAg in-vivo generator presents a unique potential in this field.
Collapse
Affiliation(s)
- Nasrin Abbasi Gharibkandi
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St, Warsaw, 03-195, Poland
| | - Kamil Wawrowicz
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Rafał Walczak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St, Warsaw, 03-195, Poland
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St, Warsaw, 03-195, Poland.
- Department of Nuclear Medicine, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 St, Warsaw, 02-507, Poland.
| | - Mateusz Wierzbicki
- Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8 St, Warsaw, 02-786, Poland
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St, Warsaw, 03-195, Poland.
| |
Collapse
|
5
|
Zhang J, Zhang L, Yang X, Zheng Y, Xu H, Du S, Mao Y, Sang X, Zhao H, Xu Y, Lu X. Liver fibrosis as a predictor of liver failure and outcome following ALPPS among patients with primary liver cancer. Sci Rep 2024; 14:15827. [PMID: 38982109 PMCID: PMC11233615 DOI: 10.1038/s41598-024-65924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
The influence of liver fibrosis on the rate of liver regeneration and complications following ALPPS has yet to be fully understood. This study aimed to scrutinize the effects of liver fibrosis on the postoperative complications, and prognosis subsequent to ALPPS. Clinical data were collected from patients with primary liver cancer who underwent ALPPS at Peking Union Medical College Hospital between May 2014 and October 2022. The degree of liver fibrosis was assessed using haematoxylin-eosin staining and Sirius red staining. This study encompassed thirty patients who underwent ALPPS for primary liver cancer, and there were 23 patients with hepatocellular carcinoma, 5 with cholangiocarcinoma, and 2 with combined hepatocellular-cholangiocarcinoma. The impact of severe liver fibrosis on the rate of liver regeneration was not statistically significant (P = 0.892). All patients with severe complications belonged to the severe liver fibrosis group. Severe liver fibrosis exhibited a significant association with 90 days mortality (P = 0.014) and overall survival (P = 0.012). Severe liver fibrosis emerges as a crucial risk factor for liver failure and perioperative mortality following the second step of ALPPS. Preoperative liver function impairment is an important predictive factor for postoperative liver failure.
Collapse
Affiliation(s)
- Junwei Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lei Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaobo Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yongchang Zheng
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Haifeng Xu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Shunda Du
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yilei Mao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xinting Sang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yiyao Xu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Xin Lu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Huang S, He L, Zhao Y, Wei Y, Wang Q, Gao Y, Jiang X. TREM1 + tumor-associated macrophages secrete CCL7 to promote hepatocellular carcinoma metastasis. J Cancer Res Clin Oncol 2024; 150:320. [PMID: 38914803 PMCID: PMC11196310 DOI: 10.1007/s00432-024-05831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Tumor-associated macrophages (TAMs) play a critical role in hepatocellular carcinoma (HCC) progression and metastasis. Systematic investigation of the cross-talk between TAMs and HCC may help in searching for the critical target to guard against HCC metastasis. METHODS AND RESULTS Herein, we found that TREM1 highly expressed in HCC tissue by analyzing the data obtain from GEO database. Interestingly, the results indicated that TREM1 was primarily expressed by monocytes. Immune infiltration studies further validated that TREM1 expression was positively related with increased infiltration of macrophages in HCC tissues. In vitro, we observed that TREM1 knockdown significantly abrogated the effect of TAMs in promoting the metastasis and epithelial-mesenchymal transition (EMT) of HCC cells. Additionally, cytokine array detection identified CCL7 as the main responsive cytokine following with TREM1 knockdown in TAMs. CONCLUSION Taken together, our findings strongly suggested that high expression of TREM1 was positively associated with metastasis and poor prognosis of HCC. Furthermore, TAMs expressing TREM1 contribute to EMT-based metastasis through secreting CCL7. These results provide a novel insight into the potential development of targeting the TREM1/CCL7 pathway for preventing metastatic HCC.
Collapse
Affiliation(s)
- Simin Huang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
- Liver Cancer Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Longguang He
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangdong Guangzhou, 510282, China
- Department of Hepatobiliary Surgery, Gaozhou People's Hospital, Guangdong Gaozhou, 525000, China
| | - Yufei Zhao
- Department of Gastrointestinal Surgery, Lab of Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yuxuan Wei
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
- Liver Cancer Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Qiwen Wang
- Department of Gastrointestinal Surgery, Lab of Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangdong Guangzhou, 510282, China.
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
- Liver Cancer Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
7
|
Huang X, Li G, Li H, Zhong W, Jiang G, Cai J, Xiong Q, Wu C, Su K, Huang R, Xu S, Liu Z, Wang M, Wang H. Glycyrrhetinic Acid as a Hepatocyte Targeting Ligand-Functionalized Platinum(IV) Complexes for Hepatocellular Carcinoma Therapy and Overcoming Multidrug Resistance. J Med Chem 2024; 67:8020-8042. [PMID: 38727048 DOI: 10.1021/acs.jmedchem.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Promising targeted therapy options to overcome drug resistance and side effects caused by platinum(II) drugs for treatment in hepatocellular carcinoma are urgently needed. Herein, six novel multifunctional platinum(IV) complexes through linking platinum(II) agents and glycyrrhetinic acid (GA) were designed and synthesized. Among them, complex 20 showed superior antitumor activity against tested cancer cells including cisplatin resistance cells than cisplatin and simultaneously displayed good liver-targeting ability. Moreover, complex 20 can significantly cause DNA damage and mitochondrial dysfunction, promote reactive oxygen species generation, activate endoplasmic reticulum stress, and eventually induce apoptosis. Additionally, complex 20 can effectively inhibit cell migration and invasion and trigger autophagy and ferroptosis in HepG-2 cells. More importantly, complex 20 demonstrated stronger tumor inhibition ability than cisplatin or the combo of cisplatin/GA with almost no systemic toxicity in HepG-2 or A549 xenograft models. Collectively, complex 20 could be developed as a potential anti-HCC agent for cancer treatment.
Collapse
Affiliation(s)
- Xiaochao Huang
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Guimei Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Huifang Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Wentian Zhong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Guiyang Jiang
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jinyuan Cai
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qingping Xiong
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Chuang Wu
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Kangning Su
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Rizhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Shiliu Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Zhikun Liu
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Meng Wang
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
8
|
Leng M, Jiang H, Zhang S, Bao Y. Green Synthesis of Gold Nanoparticles from Polygahatous Polysaccharides and Their Anticancer Effect on Hepatic Carcinoma through Immunoregulation. ACS OMEGA 2024; 9:21144-21151. [PMID: 38764635 PMCID: PMC11097183 DOI: 10.1021/acsomega.4c01025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Hepatic carcinoma is one of the leading causes of morbidity and mortality among all cancers, but no effective treatment measures have been developed. Herein, polystyrene polysaccharide (PSP) extracted from Polygonatum was used to synthesize gold nanoparticles (PSP-AuNPs) by heating and reduction methods, and the characteristics of the PSP-AuNPs were detected after successful synthesis. In vitro, the immunoregulatory effects of PSP-AuNPs were studied by testing the concentrations of NO, TNF-α, and IL-12p70 in the culture media of PSP-AuNPs-treated RAW264.7 macrophages, and the effect of biocompatibility on the viability of RAW264.7 macrophages and L02 cells was studied via a CCK-8 assay. In vivo, tumor-bearing mice were established and treated with PSP-AuNPs, and the anticancer effects were studied by detecting trends in tumor volume, tumor inhibition rate, and tumor cell proliferation index. Immunoregulation was assessed by evaluating the serum levels of TNF-α and IL-10, the CD4+/CD8+ lymphocyte ratio in peripheral blood and the spleen and thymus indices; toxicity was investigated by measuring body weight, liver and renal function indices. The results showed that PSP-AuNPs could regulate immune function both in vitro and in vivo with almost no toxicity. PSP-AuNPs exhibited excellent anticancer effects on hepatic carcinoma in vivo. The anticancer effect could be strengthened, and the toxicity could be reduced by the combined use of PSP-AuNPs and ADM. In conclusion, PSP-AuNPs could be effective as a therapy and adjuvant therapy for treating hepatic carcinoma, providing potential treatment strategies for this disease.
Collapse
Affiliation(s)
- Maodong Leng
- Department
of Clinical Laboratory, The Second Affiliated
Hospital of Chongqing Medical University, Chongqing 400010, China
- Department
of Clinical Laboratory, Zhengzhou Key Laboratory of Children’s
Infection and Immunity, Children’s
Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450018, China
| | - Huiqin Jiang
- Innovation
Center of Basic Research for Metabolic-Associated Fatty Liver Disease,
Ministry of Education of China, Tianjian Laboratory of Advanced Biomedical
Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Sitong Zhang
- Department
of Clinical Laboratory, The Second Affiliated
Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yixi Bao
- Department
of Clinical Laboratory, The Second Affiliated
Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
9
|
Bi CQ, Kang T, Qian YK, Kang M, Zeng XH, Li LC. Upregulation of LHPP by saRNA inhibited hepatocellular cancer cell proliferation and xenograft tumor growth. PLoS One 2024; 19:e0299522. [PMID: 38696452 PMCID: PMC11065268 DOI: 10.1371/journal.pone.0299522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/13/2024] [Indexed: 05/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer worldwide and no pharmacological treatment is available that can achieve complete remission of HCC. Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) is a recently identified HCC tumor suppressor gene which plays an important role in the development of HCC and its inactivation and reactivation has been shown to result in respectively HCC tumorigenesis and suppression. Small activating RNAs (saRNAs) have been used to achieve targeted activation of therapeutic genes for the restoration of their encoded protein through the RNAa mechanism. Here we designed and validated saRNAs that could activate LHPP expression at both the mRNA and protein levels in HCC cells. Activation of LHPP by its saRNAs led to the suppression of HCC proliferation, migration and the inhibition of Akt phosphorylation. When combined with targeted anticancer drugs (e.g., regorafenib), LHPP saRNA exhibited synergistic effect in inhibiting in vitro HCC proliferation and in vivo antitumor growth in a xenograft HCC model. Findings from this study provides further evidence for a tumor suppressor role of LHPP and potential therapeutic value of restoring the expression of LHPP by saRNA for the treatment of HCC.
Collapse
Affiliation(s)
- Chuan-Qian Bi
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Tao Kang
- Ractigen Therapeutics, Nantong, Jiangsu, China
| | - Yu-Kang Qian
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Moorim Kang
- Ractigen Therapeutics, Nantong, Jiangsu, China
| | - Xu-Hui Zeng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Long-Cheng Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Ractigen Therapeutics, Nantong, Jiangsu, China
| |
Collapse
|
10
|
Wang M, Liu Z, Liu C, He W, Qin D, You M. DNAzyme-based ultrasensitive immunoassay: Recent advances and emerging trends. Biosens Bioelectron 2024; 251:116122. [PMID: 38382271 DOI: 10.1016/j.bios.2024.116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Immunoassay, as the most commonly used method for protein detection, is simple to operate and highly specific. Sensitivity improvement is always the thrust of immunoassays, especially for the detection of trace quantities. The emergence of artificial enzyme, i.e., DNAzyme, provides a novel approach to improve the detection sensitivity of immunoassay. Simultaneously, its advantages of simple synthesis and high stability enable low cost, broad applicability and long shelf life for immunoassay. In this review, we summarized the recent advances in DNAzyme-based immunoassay. First, we summarized the existing different DNAzymes based on their catalytic activities. Next, the common signal amplification strategies used for DNAzyme-based immunoassays were reviewed to cater to diverse detection requirements. Following, the wide applications in disease diagnosis, environmental monitoring and food safety were discussed. Finally, the current challenges and perspectives on the future development of DNAzyme-based immunoassays were also provided.
Collapse
Affiliation(s)
- Meng Wang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhe Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Chang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Wanghong He
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, PR China
| | - Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China.
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
11
|
Yang S, Chu G, Wu J, Zhang G, Du L, Lin R. Enrichment and Evaluation of Antitumor Properties of Total Flavonoids from Juglans mandshurica Maxim. Molecules 2024; 29:1976. [PMID: 38731467 PMCID: PMC11085465 DOI: 10.3390/molecules29091976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 05/13/2024] Open
Abstract
Flavonoids are important secondary metabolites found in Juglans mandshurica Maxim., which is a precious reservoir of bioactive substances in China. To explore the antitumor actions of flavonoids (JMFs) from the waste branches of J. mandshurica, the following optimized purification parameters of JMFs by macroporous resins were first obtained. The loading concentration, flow rate, and loading volume of raw flavonoid extracts were 1.4 mg/mL, 2.4 BV/h, and 5 BV, respectively, and for desorption, 60% ethanol (4 BV) was selected to elute JMFs-loaded AB-8 resin at a flow rate of 2.4 BV/h. This adsorption behavior can be explained by the pseudo-second-order kinetic model and Langmuir isotherm model. Subsequently, JMFs were identified using Fourier transform infrared combined with high-performance liquid chromatography and tandem mass spectrometry, and a total of 156 flavonoids were identified. Furthermore, the inhibitory potential of JMFs on the proliferation, migration, and invasion of HepG2 cells was demonstrated. The results also show that exposure to JMFs induced apoptotic cell death, which might be associated with extrinsic and intrinsic pathways. Additionally, flow cytometry detection found that JMFs exposure triggered S phase arrest and the generation of reactive oxygen species in HepG2 cells. These findings suggest that the JMFs purified in this study represent great potential for the treatment of liver cancer.
Collapse
Affiliation(s)
- Shuli Yang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Guodong Chu
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, No. 2888, Xincheng Street, Changchun 130118, China
| | - Jiacheng Wu
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Guofeng Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Linna Du
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, No. 2888, Xincheng Street, Changchun 130118, China
| | - Ruixin Lin
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| |
Collapse
|
12
|
Veiga RN, de Azevedo ALK, de Oliveira JC, Gradia DF. Targeting EphA2: a promising strategy to overcome chemoresistance and drug resistance in cancer. J Mol Med (Berl) 2024; 102:479-493. [PMID: 38393661 DOI: 10.1007/s00109-024-02431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/24/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Erythropoietin-producing hepatocellular A2 (EphA2) is a vital member of the Eph tyrosine kinase receptor family and has been associated with developmental processes. However, it is often overexpressed in tumors and correlates with cancer progression and worse prognosis due to the activation of its noncanonical signaling pathway. Throughout cancer treatment, the emergence of drug-resistant tumor cells is relatively common. Since the early 2000s, researchers have focused on understanding the role of EphA2 in promoting drug resistance in different types of cancer, as well as finding efficient and secure EphA2 inhibitors. In this review, the current knowledge regarding induced resistance by EphA2 in cancer treatment is summarized, and the types of cancer that lead to the most cancer-related deaths are highlighted. Some EphA2 inhibitors were also investigated. Regardless of whether the cancer treatment has reached a drug-resistance stage in EphA2-overexpressing tumors, once EphA2 is involved in cancer progression and aggressiveness, targeting EphA2 is a promising therapeutic strategy, especially in combination with other target-drugs for synergistic effect. For that reason, monoclonal antibodies against EphA2 and inhibitors of this receptor should be investigated for efficacy and drug toxicity.
Collapse
Affiliation(s)
- Rafaela Nasser Veiga
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics. Department of Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Alexandre Luiz Korte de Azevedo
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics. Department of Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Jaqueline Carvalho de Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics. Department of Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics. Department of Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil.
| |
Collapse
|
13
|
Deng Q, Zhang X, Wan X, Zheng X, Wang H, Zhao J, Wang HQ, Yang W. The chemokine CCL20 can assist AFP in serological diagnosis of hepatocellular carcinoma. Heliyon 2024; 10:e26774. [PMID: 38439882 PMCID: PMC10909724 DOI: 10.1016/j.heliyon.2024.e26774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/28/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
The chemokine 20 (CCL20) is a member of the CC chemokine family and plays a role in tumor immunity and autoimmune disease. This work investigated the value of CCL20 as a serum diagnostic marker for primary hepatocellular carcinoma (HCC). Based on the data of hepatocellular carcinoma patients in the TCGA database, the up-regulated genes encoding secretory proteins were analyzed in each pathological stage, and the candidate marker CCL20 gene was selected. Serum concentrations of CCL20 in patients with primary HCC, benign liver disease, and healthy subjects were analyzed by enzyme-linked immunosorbent assay (ELISA). The ROC curve evaluated the efficacy of CCL20 alone or in combination with AFP in the diagnosis of HCC. It was found the expression of CCL20 in HCC patients was significantly higher than that in the benign liver disease group and healthy controls (P < 0.05); The AUC of ROC curve to distinguish HCC patients from healthy controls was 0.859, the sensitivity was 73.42%, and the specificity was 86.84%. After combination with AFP, the AUC increased to 0.968, the sensitivity was 88.16%, and the specificity was 97.37%. Although CCL20 was increased in the serum of patients with benign liver diseases, combined with AFP, the AUC to distinguish HCC patients from non-HCC cohorts (benign liver disease group and healthy control group) was 0.902, with a sensitivity of 91.67% and a specificity of 75.26%. Collectively, serum CCL20 is closely related to the occurrence of HCC, and detection of serum CCL20 can assist AFP in improving the diagnostic sensitivity of HCC.
Collapse
Affiliation(s)
- Qingmei Deng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xinhui Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiaofeng Wan
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xin Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jingyu Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hong-Qiang Wang
- Biological Molecular Information System Laboratory, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wulin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
14
|
Kang X, Liu X, Li Y, Yuan W, Xu Y, Yan H. Development and evaluation of nomograms and risk stratification systems to predict the overall survival and cancer-specific survival of patients with hepatocellular carcinoma. Clin Exp Med 2024; 24:44. [PMID: 38413421 PMCID: PMC10899391 DOI: 10.1007/s10238-024-01296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/13/2024] [Indexed: 02/29/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, and patients with HCC have a poor prognosis and low survival rates. Establishing a prognostic nomogram is important for predicting the survival of patients with HCC, as it helps to improve the patient's prognosis. This study aimed to develop and evaluate nomograms and risk stratification to predict overall survival (OS) and cancer-specific survival (CSS) in HCC patients. Data from 10,302 patients with initially diagnosed HCC were extracted from the Surveillance, Epidemiology, and End Results (SEER) database between 2010 and 2017. Patients were randomly divided into the training and validation set. Kaplan-Meier survival, LASSO regression, and Cox regression analysis were conducted to select the predictors of OS. Competing risk analysis, LASSO regression, and Cox regression analysis were conducted to select the predictors of CSS. The validation of the nomograms was performed using the concordance index (C-index), the Akaike information criterion (AIC), the Bayesian information criterion (BIC), Net Reclassification Index (NRI), Discrimination Improvement (IDI), the receiver operating characteristic (ROC) curve, calibration curves, and decision curve analyses (DCAs). The results indicated that factors including age, grade, T stage, N stage, M stage, surgery, surgery to lymph node (LN), Alpha-Fetal Protein (AFP), and tumor size were independent predictors of OS, whereas grade, T stage, surgery, AFP, tumor size, and distant lymph node metastasis were independent predictors of CSS. Based on these factors, predictive models were built and virtualized by nomograms. The C-index for predicting 1-, 3-, and 5-year OS were 0.788, 0.792, and 0.790. The C-index for predicting 1-, 3-, and 5-year CSS were 0.803, 0.808, and 0.806. AIC, BIC, NRI, and IDI suggested that nomograms had an excellent predictive performance with no significant overfitting. The calibration curves showed good consistency of OS and CSS between the actual observation and nomograms prediction, and the DCA showed great clinical usefulness of the nomograms. The risk stratification of OS and CSS was built that could perfectly classify HCC patients into three risk groups. Our study developed nomograms and a corresponding risk stratification system predicting the OS and CSS of HCC patients. These tools can assist in patient counseling and guiding treatment decision making.
Collapse
Affiliation(s)
- Xichun Kang
- Department of Epidemiology and Health Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiling Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yaoqi Li
- Department of Epidemiology and Health Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wenfang Yuan
- Department of the Sixth Infection, The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050021, China
| | - Yi Xu
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050021, China
| | - Huimin Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China.
- Clinical Research Center, The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050021, China.
| |
Collapse
|
15
|
Xu H, Shen P, Fang J, Jiang J, Shi Y, Xu P, Jiang R, Wang Z. LINC00624 affects hepatocellular carcinoma proliferation and apoptosis through the miR-342-3p/DNAJC5 axis. J Biochem Mol Toxicol 2024; 38:e23650. [PMID: 38348704 DOI: 10.1002/jbt.23650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
LINC00624 is a long noncoding RNA (lncRNA) which was seldom investigated before. The goal of our study is to clarify the expression and underlying network of LINC00624 in hepatocellular carcinoma (HCC). Here, both HCC and normal living cell lines were employed. Real-time quantitative PCR and western blot were used to determine the pattern of genes and proteins. Colony formation, flow cytometry and western blot tests were used to determine cell proliferation and apoptosis, respectively. Dual luciferase was used to verify molecule-molecule interactions. LINC00624 expression was increased in HCC cell lines and miR-342-3p was decreased. Elimination of LINC00624 increased proliferation while decreasing cell apoptosis. LINC00624 acted as a molecular sponge for miR-342-3p, hence facilitating DNAJC5 expression. Functional tests demonstrated that miR-342-3p suppression could reverse the effect of LINC00624 silence and overexpression of DNAJC5 significantly mitigated the biological consequences of miR-342-3p. These finding demonstrated that LINC00624 aggravated HCC progression by modulating proliferation and apoptosis via targeting miR-342-3p/DNAJC5 axis. These data support that inhibition of LINC00624 may a potential treatment strategies of HCC.
Collapse
Affiliation(s)
- Huawei Xu
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Peng Shen
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jian Fang
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jihua Jiang
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yinsheng Shi
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Pengcheng Xu
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Renya Jiang
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Zhengfei Wang
- Department of Hepatobiliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
16
|
Han B, An Z, Gong T, Pu Y, Liu K. LCN2 Promotes Proliferation and Glycolysis by Activating the JAK2/STAT3 Signaling Pathway in Hepatocellular Carcinoma. Appl Biochem Biotechnol 2024; 196:717-728. [PMID: 37178251 DOI: 10.1007/s12010-023-04520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
This study aimed to explore the molecular mechanism of LCN2 regulating aerobic glycolysis on abnormal proliferation of HCC cells. Based on the prediction of GEPIA database, the expression levels of LCN2 in hepatocellular carcinoma tissues were detected by RT-qPCR analysis, western blot, and immunohistochemical staining, respectively. In addition, CCK-8 kit, clone formation, and EdU staining were used to analyze the effect of LCN2 on the proliferation of hepatocellular carcinoma cells. Glucose uptake and lactate production were detected using kits. In addition, western blot was used to detect the expressions of aerobic glycolysis-related proteins. Finally, western blot was used to detect the expressions of phosphorylation of JAK2 and STAT3. We found LCN2 was upregualted in hepatocellular carcinoma tissues. CCK-8 kit, clone formation, and EdU staining results showed that LCN2 could promote the proliferation in hepatocellular carcinoma cells (Huh7 and HCCLM3 cells). Western blot results and kits confirmed that LCN2 significantly promotes aerobic glycolysis in hepatocellular carcinoma cells. Western blot results showed that LCN2 could significantly upregulate the phosphorylation of JAK2 and STAT3. Our results indicated that LCN2 activated the JAK2/STAT3 signaling pathway, promoted aerobic glycolysis, and accelerated malignant proliferation of hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Baojun Han
- Department of Hepatobiliary Surgery, Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Zhiming An
- Department of Hepatobiliary Surgery, Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Teng Gong
- Department of Hepatobiliary Surgery, Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Yu Pu
- Department of Hepatobiliary Surgery, Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Ke Liu
- General Surgery, Santai County Hospital of Traditional Chinese Medicine, Tongchuan Town, Santai County, Mianyang, 621100, Sichuan Province, China.
| |
Collapse
|
17
|
Li M, Fan X, Zhao J, Wang D. Establishment and Validation of a Four-stress Granule-related Gene Signature in Hepatocellular Carcinoma. J Clin Transl Hepatol 2024; 12:1-14. [PMID: 38250470 PMCID: PMC10794267 DOI: 10.14218/jcth.2023.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 01/23/2024] Open
Abstract
Background and Aims Stress granules (SGs) as membrane-less cytoplasmic foci formed in response to unfavorable external stimuli could promote cancer cells to adapt to hostile environments. Hepatocellular carcinoma (HCC) is prone to be highly aggressive once diagnosed, which markedly reduces patient survival time. Therefore, it is crucial to develop valid diagnostic markers to prognosticate HCC patient prognosis, which promotes individualized precision therapeutics in HCC. Considering the pro-tumorigenic activity of SGs, it is of great potential value to construct a prognostic tool for HCC based on the expression profiles of SG-related genes (SGGs). Methods Bioinformatic analysis was employed to establish an SGG-based prognostic signature. Western blotting and real-time polymerase chain reaction assays were used to assess the expression patterns of the related SGGs. Loss-of-function experiments were performed to analyze the effect of the SGGs on SG formation and cell survival. Results A four-SGG signature (KPNA2, MEX3A, WDR62, and SFN) targeting HCC was established and validated to exhibit a robust performance in predicting HCC prognosis. Consistently, all four genes were further found to be highly expressed in human HCC tissues. More important, we demonstrated that individually knocking down the four SGGs significantly reduced HCC cell proliferation and metastasis by compromising the SG formation process. Conclusions We developed an SGG-based predictive signature that can be used as an independent prognostic tool for HCC. The strong predictive power of this signature was further elucidated by the carcinogenic activity of KPNA2, MEX3A, WDR62, and SFN in HCC cells by regulating SG formation.
Collapse
Affiliation(s)
- Mengzhu Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Xiude Fan
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Jiajun Zhao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Dawei Wang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
| |
Collapse
|
18
|
Chen Y, Zhang X, Zhang M, Fan W, Lin Y, Li G. UTP11 promotes the growth of hepatocellular carcinoma by enhancing the mRNA stability of Oct4. BMC Cancer 2024; 24:93. [PMID: 38233795 PMCID: PMC10795422 DOI: 10.1186/s12885-023-11794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/24/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Several publications suggest that UTP11 may be a promising gene engaged for involvement of hepatocellular carcinoma (HCC) pathology. However, there are extremely limited biological, mechanistic and clinical studies of UTP11 in HCC. METHODS To anayze the UTP11 mRNA expression in HCC and normal clinical samples and further investigate the correlation between UTP11 expression and pathology and clinical prognosis via the Cancer Tissue Gene Atlas (TCGA) database. The protein levels of UTP11 were checked using the Human Protein Atlas (HPA) database. GO-KEGG enrichment was performed from Cancer Cell Line Encyclopedia (CCLE) database and TCGA dataset. The levels of UTP11 were tested with qRT-PCR and western blotting assays. Cell viability, immunofluorescence and flow cytometry assays and animal models were used to explore the potential involvement of UTP11 in regulating HCC growth in vitro and in vivo. The correlation of UTP11 and tumor stemness scores and stemness-associated proteins from TCGA database. The mRNA stability was treated with Actinomycin D, followed by testing the mRNA expression using qRT-PCR assay. RESULTS UTP11 was highly expressed in HCC samples compared to normal tissues from TCGA database. Similarly, UTP11 protein expression levels were obviously elevated in HCC tissue samples from HPA database. Furthermore, UTP11 levels were correlated with poor prognosis in HCC patient samples in TCGA dataset. In addition, the UTP11 mRNA levels was notably enhanced in different HCC cell lines than in normal liver cells and knocking down UTP11 was obviously reduced the viability and cell death of HCC cells. UTP11 knockdown suppressed the tumor growth of HCC in vivo experiment and extended the mice survival time. GO-KEEG analysis from CCLE and TCGA database suggested that UTP11 might involve in RNA splicing and the stability of mRNA. Further, UTP11 was positively correlated with tumor stemness scores and stemness-associated proteins from TCGA database. Knockdown of UTP11 was reduced the expression of stem cell-related genes and regulated the mRNA stability of Oct4. CONCLUSIONS UTP11 is potentially a diagnostic molecule and a therapeutic candidate for treatment of HCC.
Collapse
Affiliation(s)
- Yan Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Tai an City, China
| | - Xiaowei Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Tai an City, China
| | - Mingcheng Zhang
- Department of Endoscopy Center, The Second Affiliated Hospital of Shandong First Medical University, Tai an City, China
| | - Wenting Fan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Shandong First Medical University, 271000, Tai an City, China
| | - Yueyue Lin
- Department of Endoscopy Center, The Second Affiliated Hospital of Shandong First Medical University, Tai an City, China
| | - Guodong Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Shandong First Medical University, 271000, Tai an City, China.
| |
Collapse
|
19
|
Zhou X, Wu D, Zhu L, Li R, Yu H, Li W. Withaferin A Inhibits Liver Cancer Tumorigenesis by Suppressing Aerobic Glycolysis through the p53/IDH1/HIF-1α Signaling Axis. Curr Cancer Drug Targets 2024; 24:534-545. [PMID: 38804345 DOI: 10.2174/0115680096262915231026050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/22/2023] [Accepted: 10/03/2023] [Indexed: 05/29/2024]
Abstract
BACKGROUND The energy supply of certain cancer cells depends on aerobic glycolysis rather than oxidative phosphorylation. Our previous studies have shown that withaferin A (WA), a lactone compound derived from Withania somnifera, suppresses skin carcinogenesis at least partially by stabilizing IDH1 and promoting oxidative phosphorylation. Here, we have extended our studies to evaluate the anti-tumor effect of WA in liver cancer. METHODS Differential expression of glycolysis-related genes between liver cancer tissues and normal tissues and prognosis were verified using an online database. Glycolysis-related protein expression was detected using western blot after overexpression and knockdown of IDH1 and mitochondrial membrane potential assay based on JC-1, and mitochondrial complex I activity was also detected. The inhibitory effect of WA on the biological functions of HepG2 cells was detected along with cell viability using MTT assay, scratch assay, clone formation assay, glucose consumption and lactate production assay. Western blot and qRT-PCR were used to detect the expression of proteins and genes related to IDH1, p53 and HIF1α signaling pathways. RESULTS We first identified that IDH1 expression was downregulated in human liver cancer cells compared to normal liver cells. Next, we found that treatment of HepG2 cells with WA resulted in significantly increased protein levels of IDH1, accompanied by decreased levels of several glycolytic enzymes. Furthermore, we found that WA stabilized IDH1 proteins by inhibiting the degradation by the proteasome. The tumor suppressor p53 was also upregulated by WA treatment, which played a critical role in the upregulation of IDH1 and downregulation of the glycolysis-related genes. Under hypoxic conditions, glycolysis-related genes were induced, which was suppressed by WA treatment, and IDH1 expression was still maintained at higher levels under hypoxia. CONCLUSION Taken together, our results indicated that WA suppresses liver cancer tumorigenesis by p53-mediated IDH1 upregulation, which promotes mitochondrial respiration, thereby inhibiting the HIF-1α pathway and blocking aerobic glycolysis.
Collapse
Affiliation(s)
- Xiangyang Zhou
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China
| | - Di Wu
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China
| | - Linmiao Zhu
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
| | - Ruohan Li
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
| | - Haitao Yu
- Department of Biology Genetics, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Wenjuan Li
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China
| |
Collapse
|
20
|
Zhao Q, He W, Liu Z, Huang L, Yang X, Liu Y, Chen R, Min X, Yang Y. LASS2 enhances p53 protein stability and nuclear import to suppress liver cancer progression through interaction with MDM2/MDMX. Cell Death Discov 2023; 9:414. [PMID: 37963859 PMCID: PMC10646090 DOI: 10.1038/s41420-023-01709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
LASS2 functions as a tumor suppressor in hepatocellular carcinoma (HCC), the most common type of primary liver cancer, but the underlying mechanism of its action remains largely unknown. Moreover, details on its role and the downstream mechanisms in Cholangiocarcinoma (CCA) and hepatoblastoma (HB), are rarely reported. Herein, LASS2 overexpression was found to significantly inhibit proliferation, migration, invasion and induce apoptosis in hepatoma cells with wild-type (HB cell line HepG2) and mutated p53 (HCC cell line HCCLM3 and CCA cell line HuCCT1). Gene set enrichment analysis determined the enrichment of the differentially expressed genes caused by LASS2 in the p53 signaling pathway. Moreover, the low expression of LASS2 in HCC and CCA tumor tissues was correlated with the advanced tumor-node-metastasis (TNM) stage, and the protein expression of LASS2 positively correlated with acetylated p53 (Lys373) protein levels. At least to some extent, LASS2 exerts its tumor-suppressive effects in a p53-dependent manner, in which LASS2 interacts with MDM2/MDMX and causes dual inhibition to disrupt p53 degradation by MDM2/MDMX. In addition, LASS2 induces p53 phosphorylation at ser15 and acetylation at lys373 to promote translocation from cytoplasm to nucleus. These findings provide new insights into the LASS2-induced tumor suppression mechanism in liver cancer and suggest LASS2 could serve as a potential therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Qingqing Zhao
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei He
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhouheng Liu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Liangliang Huang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Xiaoli Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yong Liu
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Rui Chen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Yan Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
21
|
Li L, Cao Y, Zhang H, Zheng M, Xing J, Zheng C, Zhao Y, Yang X. Temperature sensitive nanogel-stabilized pickering emulsion of fluoroalkane for ultrasound guiding vascular embolization therapy. J Nanobiotechnology 2023; 21:413. [PMID: 37946199 PMCID: PMC10634024 DOI: 10.1186/s12951-023-02181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Various X-ray imaging technologies like computed tomography (CT) and digital subtraction angiography (DSA) are widely used in transcatheter arterial embolization (TAE) therapy for treating hepatocellular cancer (HCC) patients. Although they display high-contrast imaging, they have a few disadvantages, such as complex operation and exposure to ionizing radiation. Thus, ultrasound (US) imaging plays an important role in medical diagnosis because of its advantages, like simple and fast operation, no ionizing radiation exposure, and accurate real-time imaging. Subsequently, Poly N-isopropylacrylamide-co-2,2,3,4,4,4-Hexafluorobutyl methacrylate (PNF) nanogels were synthesized for stabilizing TGFPE, the Pickering emulsions of 2H, 3H-decafluoropentane (HDFP). These emulsions displayed dual abilities of thermosensitive sol-gel transition and long-term US imaging in vitro. Thus, it was concluded that these emulsions could achieve vascular embolization and long-term US imaging in vivo as per the TAE animal model results. The emulsion droplets' flow and accumulation were visualized under the US imaging guidance. In summary, the Pickering emulsions have the potential to be used as US-guided embolization material for mediating TAE surgeries.
Collapse
Affiliation(s)
- Ling Li
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technolog, Xianning, 437100, People's Republic of China
| | - Yanyan Cao
- Department of Radiology, Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haining Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan City, 430074, People's Republic of China
| | - Min Zheng
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technolog, Xianning, 437100, People's Republic of China
| | - Jun Xing
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technolog, Xianning, 437100, People's Republic of China
| | - Chuansheng Zheng
- Department of Radiology, Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yanbing Zhao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan City, 430074, People's Republic of China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan City, 430074, People's Republic of China.
| | - Xiangliang Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan City, 430074, People's Republic of China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan City, 430074, People's Republic of China.
| |
Collapse
|
22
|
Zhang Y, Zhang S, Liu J, Qin D. Label-Free Homogeneous Electrochemical Aptasensor Based on Size Exclusion/Charge-Selective Permeability of Nanochannel Arrays and 2D Nanorecognitive Probe for Sensitive Detection of Alpha-Fetoprotein. Molecules 2023; 28:6935. [PMID: 37836778 PMCID: PMC10574445 DOI: 10.3390/molecules28196935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The labeling-free and immobilization-free homogeneous aptamer sensor offers advantages including simple operation, low cost, and high sensitivity, demonstrating great potential in rapid detection of tumor biomarkers in biological samples. In this work, a labeling-free and immobilization-free homogeneous aptamer sensor was conveniently fabricated by combining size exclusion and charge-selective penetration of a nanochannel-modified electrode and two-dimensional (2D) nanorecognition probe which can realize selective and highly sensitive detection of alpha-fetoprotein (AFP) in serum. Vertically ordered mesoporous silica film (VMSF) with ultra-small, uniform, and vertically aligned nanochannels was easily grown on the simple, low-cost, and disposable indium tin oxide (ITO) electrode. Through π-π interaction and electrostatic force, the AFP aptamer (Apt) and electrochemical probe, tris(bipyridine)ruthenium(II) (Ru(bpy)32+), were coloaded onto graphene oxide (GO) through simple incubation, forming a 2D nanoscale recognition probe (Ru(bpy)32+/Apt@GO). Owing to the size exclusion effect of VMSF towards the 2D nanoscale probe, the electrochemical signal of Ru(bpy)32+/Apt@GO could not be detected. In the presence of AFP, the specific binding of AFP to the aptamer causes the dissociation of the aptamer and Ru(bpy)32+ from GO, resulting in their presence in the solution. The efficient electrostatic enrichment towards Ru(bpy)32+ by negatively charged VMSF allows for high electrochemical signals of free Ru(bpy)32+ in the solution. Linear determination of AFP ranged from 1 pg/mL to 1000 ng/mL and could be obtained with a low limit of detection (LOD, 0.8 pg/mL). The high specificity of the adapter endowed the constructed sensor with high selectivity. The fabricated probe can be applied in direct determination of AFP in serum.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Hepatology, Taiyuan Third People’s Hospital, Taiyuan 030012, China
| | - Shiyue Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiyang Liu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongyuan Qin
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| |
Collapse
|
23
|
Gu W, Yang Y, Liu J, Xue J, Zhao H, Mao L, Zhao S. Tumor-derived exosomes promote macrophages M2 polarization through miR-1-3p and regulate the progression of liver cancer. Mol Immunol 2023; 162:64-73. [PMID: 37657187 DOI: 10.1016/j.molimm.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
Hepatic carcinoma is one of the most life-threatening malignancies in the world. In the clinic, it is urgent to establish a clear mechanism of hepatic carcinoma development as the basis for intervention and treatment. The purpose of this study was to explore the regulatory effect of tumor-derived exosomes on the progression of hepatocellular carcinoma.qPCR was used to detect the expression of miR-1-3p. CCk-8 and EdU staining were used to detect the proliferation and activity of hepatocellular carcinoma cells under different conditions. Transwell assay was used to detect migration and invasion of hepatocellular carcinoma cells. The morphology and size of exosomes were detected by transmission electron microscope and nanoparticle tracking analysis. Western blot was used to detect the expression of markers of exosomes. Immunofluorescence staining was used to explore the location of exosomes in hepatocellular carcinoma cells.The results showed that the expression of miR-1-3p was significantly reduced in hepatocellular carcinoma cells, and the exosomes transfected with miR-1-3p could enter macrophages and express miR-1-3p in large quantities. Macrophages polarized to M2 type under the action of miR-1-3p. Polarized M2 macrophages further down-regulated the proliferation, migration and invasion of Huh-7 cells.In summary, miR-1-3p can enter macrophages through exosomes and affect their polarization, thus affecting the growth of hepatic carcinoma cells. miR-1-3p may be a potentially effective target for regulating liver cancer progression.
Collapse
Affiliation(s)
- Weiwei Gu
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, 226001 Nantong City, Jiangsu Province, China
| | - Yang Yang
- Department of Trauma Center, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, 226001 Nantong City, Jiangsu Province, China
| | - Jiajia Liu
- Department of Trauma Center, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, 226001 Nantong City, Jiangsu Province, China
| | - Jianhua Xue
- Department of Trauma Center, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, 226001 Nantong City, Jiangsu Province, China
| | - Hui Zhao
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, 226001 Nantong City, Jiangsu Province, China
| | - Lingyun Mao
- Department of General Practice, Nantong Third People's Hospital, Nantong University, No.60 Youth Middle Road, Chongchuan District, 226001 Nantong City, Jiangsu Province, China.
| | - Suming Zhao
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, 226001 Nantong City, Jiangsu Province, China.
| |
Collapse
|
24
|
Wang T, Xia K, Qiu T, Han S, Chen Z, Ma X, Zhang L, Zou J, Zhang Y, Yu B, Kong C, Guo J, Liu Y, Zhou J, Zheng S. A comprehensive survival and prognosis analysis of GPR55 expression in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:8930-8947. [PMID: 37688769 PMCID: PMC10522392 DOI: 10.18632/aging.205008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/20/2023] [Indexed: 09/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common subtype, accounting for about 90% of all primary liver cancers. The liver is rich in a large number of immune cells, thus forming a special immune microenvironment, which plays a key role in the occurrence and development of hepatocellular carcinoma. Nowadays, tumor immunotherapy has become one of the most promising cancer treatment methods. Immune checkpoint inhibitors (ICIs) combined with VEGF inhibitors are listed as first-line treatment options for advanced HCC. Therefore, the search for a potential biomarker to predict the response to immunotherapy in HCC patients is urgently needed. The G protein-coupled receptor 55 (GPR55), a lysophosphatidylinositol (LPI) receptor, has recently emerged as a potential new target for anti-tumor therapy. Previous studies have found that GPR55 is highly expressed in breast cancer, pancreatic cancer, skin cancer and cholangiocarcinoma, and is involved in tumor proliferation and migration. However, the role and mechanism of GPR55 in HCC has not been elucidated. Therefore, this article discusses the clinical significance of GPR55 in HCC and its correlation with the immune response of HCC patients, so as to provide theoretical basis for improving the prognosis of HCC.
Collapse
Affiliation(s)
- Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kang Xia
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shangting Han
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongbao Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxiong Ma
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Long Zhang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jilin Zou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yalong Zhang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Yu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chenyang Kong
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiting Liu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shusen Zheng
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang, China
| |
Collapse
|
25
|
Yu Y, Shen X, Xiao X, Li L, Huang Y. Butyrate Modification Promotes Intestinal Absorption and Hepatic Cancer Cells Targeting of Ferroptosis Inducer Loaded Nanoparticle for Enhanced Hepatocellular Carcinoma Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301149. [PMID: 37165608 DOI: 10.1002/smll.202301149] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/02/2023] [Indexed: 05/12/2023]
Abstract
Sorafenib is an oral-administered first-line drug for hepatocellular carcinoma (HCC) treatment. However, the therapeutic efficacy of sorafenib is relatively low. Here, an oral delivery platform that increases sorafenib uptake by HCC and induces potent ferroptosis is designed. This platform is butyrate-modified nanoparticles separately encapsulated with sorafenib and salinomycin. The multifunctional ligand butyrate interacts with monocarboxylate transporter 1 (MCT-1) to facilitate transcytosis. Specifically, MCT-1 is differentially expressed on the apical and basolateral sides of the intestine, highly expressed on the surface of HCC cells but lowly expressed on normal hepatocytes. After oral administration, this platform is revealed to boost transepithelial transport effectively and continuously in the intestine, drug accumulation in the liver, and HCC cell uptake. Following drug release in cancer cells, sorafenib depletes glutathione peroxidase 4 and glutathione, consequently initiating ferroptosis. Meanwhile, salinomycin enhances intracellular iron and lipid peroxidation, thereby accelerating ferroptosis. In vivo experiments performed on the orthotopic HCC model demonstrate that this combination strategy induces pronounced ferroptosis damage and ignites a robust systemic immune response, leading to the effective elimination of tumors and establishment of systemic immune memory. This work provides a proof-of-concept demonstration that an oral delivery strategy for ferroptosis inducers may be beneficial for HCC treatment.
Collapse
Affiliation(s)
- Yinglan Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xinran Shen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xin Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
26
|
Yari A, Shokri F. Electrochemical biosensing based on folic acid-triazine-grafted reduced graphene oxide: a highly selective breast cancer cell sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4134-4141. [PMID: 37566402 DOI: 10.1039/d3ay00946g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Based on the results of this research, a new electrochemical sensor has been developed to detect human breast cancer cells (MCF-7). A folic acid (FA)-functionalized triazine-grafted reduced graphene oxide (RGOTrz) was used as the modifier of a glassy carbon electrode (GCE) for application as the sensing element. The composition of the resulting FA-RGOTrz/GCE was investigated using XRD (X-ray diffraction), FT-IR (Fourier-transform infrared) spectroscopy, SEM (scanning electron microscopy) and UV-vis spectroscopy studies. CV (cyclic voltammetry) and EIS (electrochemical impedance spectroscopy) techniques were also used to characterize the electrochemical proficiency of the new electrode. Further, MCF-7 cancer cells were examined in solutions of phosphate buffer and [Fe(CN)6]3-/4- as a suitable supporting electrolyte and a useful probe, respectively. The FA-RGOTrz/GCE provides a suitable substrate to reversible redox reactions and provides good electrochemical signals after binding to cancer cells. DPV (differential pulse voltammetry) results indicated that the binding of folate receptor (FR) in the MCF-7 cell to the RGOTrz-modified electrode, in the presence of [Fe(CN)6]3-/4-, reduced folic acid, diminished electron transfer and collapsed the current signal. During the measured flow, a detection limit of 50 human breast cancer cells per milliliter was obtained. The FA-RGOTrz/GCE, with its unique structural design, significantly increases the electron transfer and electrochemical activity towards the detection of MCF-7 cells. This FA-RGOTrz/GCE sensor, due to its special structure, shows high sensitivity to FR in MCF-7 cells and excellent, reliable and satisfactory performance and a great promise for use in industries and medical field.
Collapse
Affiliation(s)
- Abdollah Yari
- Faculty of Chemistry, Lorestan University, 68151-44316, Khorramabad, Iran.
| | - Foroozan Shokri
- Faculty of Chemistry, Lorestan University, 68151-44316, Khorramabad, Iran.
| |
Collapse
|
27
|
Zhu L, Wang F, Chen X, Dong Q, Xia N, Chen J, Li Z, Zhu C. Machine learning-based radiomics analysis of preoperative functional liver reserve with MRI and CT image. BMC Med Imaging 2023; 23:94. [PMID: 37460944 PMCID: PMC10353100 DOI: 10.1186/s12880-023-01050-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVE The indocyanine green retention rate at 15 min (ICG-R15) is a useful tool to evaluate the functional liver reserve before hepatectomy for liver cancer. Taking ICG-R15 as criteria, we investigated the ability of a machine learning (ML)-based radiomics model produced by Gd-EOB-DTPA-enhanced hepatic magnetic resonance imaging (MRI) or contrast-enhanced computed tomography (CT) image in evaluating functional liver reserve of hepatocellular carcinoma (HCC) patients. METHODS A total of 190 HCC patients with CT, among whom 112 also with MR, were retrospectively enrolled and randomly classified into a training dataset (CT: n = 133, MR: n = 78) and a test dataset (CT: n = 57, MR: n = 34). Then, radiomics features from Gd-EOB-DTPA MRI and CT images were extracted. The features associated with the ICG-R15 classification were selected. Five ML classifiers were used for the ML-model investigation. The accuracy (ACC) and the area under curve (AUC) of receiver operating characteristic (ROC) with 95% confidence intervals (CI) were utilized for ML-model performance evaluation. RESULTS A total of 107 different radiomics features were extracted from MRI and CT, respectively. The features related to ICG-R15 which was classified into 10%, 20% and 30% were selected. In MRI groups, classifier XGBoost performed best with its AUC = 0.917 and ACC = 0.882 when the threshold was set as ICG-R15 = 10%. When ICG-R15 = 20%, classifier Random Forest performed best with AUC = 0.979 and ACC = 0.882. When ICG-R15 = 30%, classifier XGBoost performed best with AUC = 0.961 and ACC = 0.941. For CT groups, the classifier XGBoost performed best when ICG-R15 = 10% with AUC = 0.822 and ACC = 0.842. When ICG-R15 = 20%, classifier SVM performed best with AUC = 0.860 and ACC = 0.842. When ICG-R15 = 30%, classifier XGBoost performed best with AUC = 0.938 and ACC = 0.965. CONCLUSIONS Both the MRI- and CT-based machine learning models are proved to be valuable noninvasive methods for functional liver reserve evaluation.
Collapse
Affiliation(s)
- Ling Zhu
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Feifei Wang
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xue Chen
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute for Digital Medicine and Computer-assisted Surgery in Qingdao University, Qingdao University, Qingdao, China
| | - Qian Dong
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nan Xia
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute for Digital Medicine and Computer-assisted Surgery in Qingdao University, Qingdao University, Qingdao, China
| | - Jingjing Chen
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zheng Li
- Qingdao Hisense Medical Equipment Co., Ltd, Qingdao, China
| | - Chengzhan Zhu
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
28
|
Zhang Y, Luo L, Fu C, Hu W, Li Y, Xiong J. CDC23 knockdown suppresses the proliferation, migration and invasion of liver cancer via the EMT process. Oncol Lett 2023; 26:291. [PMID: 37274472 PMCID: PMC10236262 DOI: 10.3892/ol.2023.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/29/2023] [Indexed: 06/06/2023] Open
Abstract
Liver cancer (LC) is a malignant tumour that is associated with high mortality rates worldwide. Cell division cycle 23 (CDC23) acts as an oncogene in papillary thyroid cancer. In addition, epithelial-mesenchymal transition (EMT) is frequently involved in the malignant metastasis of various cancer types. Therefore, we hypothesized that CDC23 may regulate the malignant biological behaviours of LC cells through EMT. Proliferation, colony formation and Transwell assays, western blotting and xenograft experiments were performed. The results of the present study showed that CDC23 was highly expressed in LC cell lines. In addition, it was found via multiple in vitro assays that CDC23 knockdown reduced the proliferation, migration and invasion of LC cell lines. Finally, an in vivo study confirmed that CDC23 knockdown inhibited the growth of xenograft LC in nude mice. More importantly, the changes in the levels of EMT-related marker proteins were analysed in the sh-CDC23 group compared with the sh-NC group of cells and xenografts. E-cadherin was upregulated, and N-cadherin and vimentin were significantly downregulated after CDC23 silencing. Taken together, these results revealed that the knockdown of CDC23 inhibits the progression of LC by regulating EMT and that CDC23 may be a novel therapeutic target for LC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Laboratory of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lianghua Luo
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Laboratory of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chengchao Fu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Laboratory of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wang Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Laboratory of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yong Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Laboratory of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianbo Xiong
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Laboratory of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
29
|
Huang X, Tan J, Chen M, Zheng W, Zou S, Ye X, Li Y, Wu M. Prognostic, Immunological, and Mutational Analysis of MTA2 in Pan-Cancer and Drug Screening for Hepatocellular Carcinoma. Biomolecules 2023; 13:883. [PMID: 37371463 DOI: 10.3390/biom13060883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Metastasis-associated protein 2 (MTA2) is a member of the metastasis-associated transcriptional regulator family and is a core component of the nucleosome remodeling and histone deacetylation complex. Despite growing evidence that MTA2 plays a crucial role in the tumorigenesis of certain cancers, no systematic pan-cancer analysis of MTA2 is available to date. Therefore, the aim of our study is to explore the prognostic value of MTA2 in 33 cancer types and to investigate its potential immune function. METHODS by comprehensive use of databases from TCGA, GTEx, GEO, UCSC xena, cBioPortal, comPPI, GeneMANIA, TCIA, MSigDB, and PDB, we applied various bioinformatics approaches to investigate the potential role of MTA2, including analyzing the association of MTA2 with MSI, prognosis, gene mutation, and immune cell infiltration in different tumors. We constructed a nomogram in TCGA-LIHC, performed single-cell sequencing (scRNA-seq) analysis of MTA2 in hepatocellular carcinoma (HCC), and screened drugs for the treatment of HCC. Finally, immunohistochemical experiments were performed to verify the expression and prognostic value of MTA2 in HCC. In vitro experiments were employed to observe the growth inhibition effects of MK-886 on the HCC cell line HepG2. RESULTS The results suggested that MTA2 was highly expressed in most cancers, and MTA2 expression was associated with the prognosis of different cancers. In addition, MTA2 expression was associated with Tumor Mutation Burden (TMB) in 12 cancer types and MSI in 8 cancer types. Immunoassays indicated that MTA2 positively correlated with activated memory CD4 T cells and M0 macrophage infiltration levels in HCC. ScRNA-seq analysis based on the GEO dataset discovered that MTA2 was significantly expressed in T cells in HCC. Finally, the eXtreme Sum (Xsum) algorithm was used to screen the antitumor drug MK-886, and the molecular docking technique was utilized to reveal the binding capacity between MK-886 and the MTA2 protein. The results demonstrated excellent binding sites between them, which bind to each other through Π-alkyl and alkyl interaction forces. An immunohistochemistry experiment showed that MTA2 protein was highly expressed in HCC, and high MTA2 expression was associated with poor survival in HCC patients. MK-886 significantly inhibited the proliferation and induced cell death of HepG2 cells in a dose-dependent manner. CONCLUSIONS Our study demonstrated that MTA2 plays crucial roles in tumor progression and tumor immunity, and it could be used as a prognostic marker for various malignancies. MK-886 might be a powerful drug for HCC.
Collapse
Affiliation(s)
- Xueshan Huang
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang 524000, China
| | - Jingyi Tan
- School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
- School of Basic Medicine, Guangdong Medical University, Zhanjiang 524000, China
| | - Mei Chen
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang 524000, China
| | - Weirang Zheng
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang 524000, China
| | - Shanyang Zou
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang 524000, China
| | - Xiaoxia Ye
- School of Basic Medicine, Guangdong Medical University, Zhanjiang 524000, China
| | - Yutong Li
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang 524000, China
| | - Minhua Wu
- School of Basic Medicine, Guangdong Medical University, Zhanjiang 524000, China
| |
Collapse
|
30
|
Wu J, Deng R, Yan J, Zhu B, Wang J, Xu Y, Gui S, Jin X, Lu X. A cell transmembrane peptide chimeric M(27-39)-HTPP targeted therapy for hepatocellular carcinoma. iScience 2023; 26:106766. [PMID: 37234089 PMCID: PMC10205784 DOI: 10.1016/j.isci.2023.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumor, with a growing incidence and death rate worldwide. The aims and challenges of treating HCC include targeting the tumor, entering the tumor tissue, inhibiting the spread and growth of tumor cells. M27-39 is a small peptide isolated from the antimicrobial peptide Musca domestica cecropin (MDC), whereas HTPP is a liver-targeting, cell-penetrating peptide obtained from the circumsporozoite protein (CSP) of Plasmodium parasites. In this study, M27-39 was modified by HTPP to form M(27-39)-HTPP, which targeted tumor penetration to treat HCC. Here, we revealed that M(27-39)-HTPP had a good ability to target and penetrate the tumor, effectively limit the proliferation, migration, and invasion, and induce the apoptosis in HCC. Notably, M(27-39)-HTPP demonstrated good biosecurity when administered at therapeutic doses. Accordingly, M(27-39)-HTPP could be used as a new, safe, and efficient therapeutic peptide for HCC.
Collapse
Affiliation(s)
- Jibin Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Rui Deng
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Jianling Yan
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Baokang Zhu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Jian Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Yinghua Xu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 102629, People’s Republic of China
| | - Shuiqing Gui
- Intensive Care Unit, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, People’s Republic of China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Xuemei Lu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People’s Republic of China
| |
Collapse
|
31
|
Zheng P, Xiao W, Zhang J, Zheng X, Jiang J. The role of AIM2 in human hepatocellular carcinoma and its clinical significance. Pathol Res Pract 2023; 245:154454. [PMID: 37060822 DOI: 10.1016/j.prp.2023.154454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND AIM2 (absent in melanoma 2) was first discovered as the gene which was not expressed in melanoma cells. It is established that the AIM2 inflammasome function as the double-stranded DNA (dsDNA) sensor, and it plays a crucial role in infectious disorders and cancer. Little is known about the AIM2 expression pattern and its clinical significance in human hepatocellular carcinoma (HCC), understating how AIM2 altered the HCC cells is of high clinical interest. METHODS Immunohistochemistry was performed to investigate the AIM2 expression in HCC tissues. Then we constructed the ectopic AIM2-expressed HCC cell line by lentiviral transduction. Biological functional assays were used to analyze the clinical significance of AIM2. RESULTS AIM2 expression was significantly decreased in human HCC tissues compared with adjacent normal tissues, and the overall survival of HCC patients with higher AIM2 expression was significantly better. Ectopic expression of AIM2 in HCC cells significantly inhibited migration and promoted apoptosis. Furthermore, our study revealed that the notch signaling pathway could be involved in the regulation of AIM2 in the cellular network in HCC cells. AIM2 delayed the tumor progression and correlated with immune cell infiltration. CONCLUSION In this study, we suggested AIM2 played an inhibitory role in regulating the growth and metastasis of HCC, which supported the notion that AIM2 could serve as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Panpan Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Wenlu Xiao
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215006, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China.
| |
Collapse
|
32
|
Cui L, Wang X, Liu Z, Li Z, Bai Z, Lin K, Yang J, Cui Y, Tian F. Metal-organic framework decorated with glycyrrhetinic acid conjugated chitosan as a pH-responsive nanocarrier for targeted drug delivery. Int J Biol Macromol 2023; 240:124370. [PMID: 37044320 DOI: 10.1016/j.ijbiomac.2023.124370] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Stimulus-responsive nanomaterials have become a hot spot in controllable drug delivery systems researches owing to their spatiotemporal controllable properties based on the differences between tumor microenvironment and normal tissue. Herein, iron (III) carboxylate metal-organic framework nanoparticles coated with glycyrrhetinic acid-chitosan conjugate (MIL-101/GA-CS) were successfully fabricated and acted as the pH-responsive and target-selective system to deliver doxorubicin (DOX) for hepatocellular carcinoma (HCC) therapy. The prepared nanocarrier possess the advantages of uniform size, comparable drug loading efficiency (28.89 %), and superior pH-dependent controlled drug release (DOX release of 2.74 % and 89.18 % within 72 h at pH 7.4 and 5.5, respectively). In vitro cytotoxicity assays showed that the drug-loaded nanocarriers exhibited excellent inhibitory effects on HepG2 cells due to the sustained release of DOX, while the nanocarriers showed no significant toxicity. Furthermore, cell uptake experiments demonstrated that MIL-101-DOX/GA-CS could target HepG2 cells based on receptor-dependent internalization of glycyrrhetinic acid-receptors-mediated (GA-receptors). In vitro 3D hepatoma cell microspheres experiments showed that MIL-101-DOX/GA-CS had excellent penetration and tumor killing ability. Therefore, MIL-101-DOX/GA-CS nanoparticles have a prospective application in cancer therapy as a pH-responsive controlled drug delivery system.
Collapse
Affiliation(s)
- Liu Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Zhaoyun Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziqi Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziwei Bai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Kui Lin
- Analytical Instrumentation Centre, Tianjin University, Tianjin 300072, PR China
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Yuanlu Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Fei Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
33
|
Chen Y, Yang X, Shao Y, Zhao H, Jiang J, Huang P, Lu Y, Xuan Z. Comparison of diagnostic performance of AFP, DCP and two diagnostic models in hepatocellular carcinoma: a retrospective study. Ann Hepatol 2023; 28:101099. [PMID: 37030571 DOI: 10.1016/j.aohep.2023.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 04/10/2023]
Abstract
INTRODUCTION AND OBJECTIVES Hepatocellular carcinoma (HCC) may be diagnosed using the GAAP and ASAP models; our goal was to verify and evaluate their diagnostic effectiveness compared to AFP, DCP, and AFP & DCP for both HCC and HCC caused by the hepatitis B virus (HBV). PATIENTS AND METHODS GAAP and ASAP models were validated and compared using a retrospective investigation of 938 patients from our hospital between July 2020 and July 2021. RESULTS Both the GAAP and ASAP models had better diagnostic efficacy than AFP, DCP, AFP & DCP. The GAAP model achieved better performance in section A for the detection of HCC and in section C for the detection of HBV-HCC than the ASAP model. The Hosmer-Lemeshow test showed that the GAAP and ASAP models were well-calibrated for the diagnoses of these two groups. To be more specific, the AUC of the GAAP model for HCC detection in section A was 0.862 [95% confidence interval (CI): 0.838-0.883], and that of the ASAP model was 0.850 [95% CI: 0.826-0.872]. The AUC of the GAAP model for HBV-HCC detection in section C was 0.897 [95% CI: 0.872-0.918], and that of the ASAP model was 0.878 [95% CI: 0.852-0.902]. CONCLUSIONS The GAAP model was more accurate and reliable than the AFP, DCP, AFP and DCP, as well as the ASAP model in section A for the detection of HCC and in section C for the detection of HBV-HCC.
Collapse
Affiliation(s)
- Yongwu Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Xiuli Yang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Yanfei Shao
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Hongying Zhao
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Jinying Jiang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Yi Lu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| | - Zixue Xuan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
34
|
Liu Y, Kong WY, Yu CF, Shao ZL, Lei QC, Deng YF, Cai GX, Zhuang XF, Sun WS, Wu SG, Wang R, Chen X, Chen GX, Huang HB, Liao YN. SNS-023 sensitizes hepatocellular carcinoma to sorafenib by inducing degradation of cancer drivers SIX1 and RPS16. Acta Pharmacol Sin 2023; 44:853-864. [PMID: 36261513 PMCID: PMC10043269 DOI: 10.1038/s41401-022-01003-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains challenging due to the lack of efficient therapy. Promoting degradation of certain cancer drivers has become an innovative therapy. The nuclear transcription factor sine oculis homeobox 1 (SIX1) is a key driver for the progression of HCC. Here, we explored the molecular mechanisms of ubiquitination of SIX1 and whether targeting SIX1 degradation might represent a potential strategy for HCC therapy. Through detecting the ubiquitination level of SIX1 in clinical HCC tissues and analyzing TCGA and GEPIA databases, we found that ubiquitin specific peptidase 1 (USP1), a deubiquitinating enzyme, contributed to the lower ubiquitination and high protein level of SIX1 in HCC tissues. In HepG2 and Hep3B cells, activation of EGFR-AKT signaling pathway promoted the expression of USP1 and the stability of its substrates, including SIX1 and ribosomal protein S16 (RPS16). In contrast, suppression of EGFR with gefitinib or knockdown of USP1 restrained EGF-elevated levels of SIX1 and RPS16. We further revealed that SNS-023 (formerly known as BMS-387032) induced degradation of SIX1 and RPS16, whereas this process was reversed by reactivation of EGFR-AKT pathway or overexpression of USP1. Consequently, inactivation of the EGFR-AKT-USP1 axis with SNS-032 led to cell cycle arrest, apoptosis, and suppression of cell proliferation and migration in HCC. Moreover, we showed that sorafenib combined with SNS-032 or gefitinib synergistically inhibited the growth of Hep3B xenografts in vivo. Overall, we identify that both SIX1 and RPS16 are crucial substrates for the EGFR-AKT-USP1 axis-driven growth of HCC, suggesting a potential anti-HCC strategy from a novel perspective.
Collapse
Affiliation(s)
- Yuan Liu
- Department of General Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wei-Yao Kong
- Department of General Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Cui-Fu Yu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhen-Long Shao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiu-Cheng Lei
- Department of Hepatopancreatic Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Yuan-Fei Deng
- Department of Pathology, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Geng-Xi Cai
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Xue-Fen Zhuang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wen-Shuang Sun
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shi-Gang Wu
- Department of Pathology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, China
| | - Rong Wang
- Department of General Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, China
| | - Xiang Chen
- Department of General Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, China
| | - Guo-Xing Chen
- Department of General Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, China.
| | - Hong-Biao Huang
- Department of General Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, China.
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Yu-Ning Liao
- Department of General Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, China.
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
35
|
Unresectable Hepatocellular Carcinoma: A Review of New Advances with Focus on Targeted Therapy and Immunotherapy. LIVERS 2023. [DOI: 10.3390/livers3010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
With an expected incidence of more than 1 million cases by 2025, liver cancer remains a problem for world health. With over 90% of cases, hepatocellular carcinoma (HCC) is the most prevalent kind of liver cancer. In this review, we presented the range of experimental therapeutics for patients with advanced HCC, the successes and failures of new treatments, areas for future development, the evaluation of dose-limiting toxicity in different drugs, and the safety profile in patients with liver dysfunction related to the underlying chronic liver disease. In addition to the unmet demand for biomarkers to guide treatment decisions and the burgeoning fields of immunotherapy and systemic therapy in hepatocellular carcinoma, the development of old and new drugs, including their failures and current advancements, has been reviewed. This review aims to evaluate the updated optimal clinical treatment of unresectable hepatocellular carcinomas in clinical practice, mainly through targeted therapy. Although surgical treatment can significantly enhance the survival probability of early and intermediate-stage patients, it is unsuitable for most HCC patients due to a lack of donors. Due to their severe toxicity, the few first-line anti-HCC drugs, such as sorafenib, are often reserved for advanced HCC patients for whom other therapies have failed. The second-line drugs are usually alternatives for patients with intolerance or resistance. Consequently, the ongoing growth of possible preclinical drugs and studies on miRNAs, lncRNAs, and numerous other signaling pathway targets for developing novel drugs may introduce additional treatment prospects for HCC.
Collapse
|
36
|
Betulinic acid inhibits growth of hepatoma cells through activating the NCOA4-mediated ferritinophagy pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
37
|
Integrated analysis of ferroptosis-related gene signature for overall survival prediction in Asian patients with hepatocellular carcinoma. Clin Transl Oncol 2023; 25:721-730. [PMID: 36319928 DOI: 10.1007/s12094-022-02977-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/07/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is one of the most prevalent types of cancers in Asia. Accumulating evidence suggests that ferroptosis is a non-apoptotic form of cell death, and has played an important role in cancer biology. METHODS Based on the manually curated ferroptosis-related gene set and TCGA-LIHC dataset of Asian patients, we used DESeq2, Kaplan-Meier analysis, and univariate Cox regression to identify differentially expressed ferroptosis-related genes with significantly prognostic capacity. A risk signature was constructed based on the selected genes for predicting the survival of HCC patients in Asia. The survival prediction accuracy was confirmed by the time-dependent receiver operating characteristic (ROC) curve analysis. Gene set variation analysis (GSVA) was used to explore the functional associations of the signature. Ferroptosis potential index (FPI) and xCell algorithm was applied to quantify ferroptosis and immune cell infiltration, respectively. Two independent datasets from the GEO and the ICGC database were used for external validation. RESULTS The ferroptosis-related signature could accurately predict the survival outcomes of HCC patients in Asian (p value < 0.0001). We showed that the signature was an independent factor and was beneficial in elevating risk stratification of current clinicopathologic features, such as the amount of alpha-fetoprotein (AFP) and residual tumor classification. Functional characterization showed that critical processes in tumorigenesis belonged to the high-risk groups, for example inflammatory response, which may be the main driver of HCC. The high-risk group had higher FPIs and infiltrations of macrophages and T-helper cells than the low-risk group. Furthermore, two independent cohorts confirmed the prognostic value of our signature. CONCLUSION Overall, our results demonstrated potential application of ferroptosis-related genes as independent biomarkers in Asian HCC patients. Targeting ferroptosis may be clinically useful beyond known clinicopathological factors and provide benefit in immunotherapy.
Collapse
|
38
|
Zhao Y, Liu Q, Qin Y, Cao Y, Zhao J, Zhang K, Cao Y. Ordered Labeling-Facilitated Electrochemical Assay of Alpha-Fetoprotein-L3 Ratio for Diagnosing Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6411-6419. [PMID: 36693188 DOI: 10.1021/acsami.2c19231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Serum alpha fetoprotein (AFP) is a "gold-standard" biomarker for the diagnosis of hepatocellular carcinoma (HCC). Available pieces of evidence suggest that the ratio of AFP-L3 isoform in the total AFP may provide more accurate prediction for the incidence of HCC. In this work, we design an electrochemical aptasensor for high-accuracy assay of AFP-L3 ratio based on differentiated labeling of AFP isoforms in an orderly fashion. Specifically, total AFP is first captured by an AFP aptamer-functionalized electrode and labeled with quantum dots-functionalized DNA probes via mild reduction. Then, AFP-L3 isoform that strongly binds to Lens culinaris agglutinin is labeled with silver nanoparticles after the exonuclease-catalyzed removal of DNA probes. By tracing the electrochemical responses of quantum dots and silver nanoparticles, respectively, the amounts of total AFP and AFP-L3 isoforms are determined and the AFP-L3 ratio is accordingly calculated to favor the accurate HCC diagnosis. Experimental results prove the high-accuracy assay of AFP-L3 ratio based on the AFP quantitation in a linear range of 0.0008-40 ng mL-1 and AFP-L3 quantitation in a linear range of 0.004-40 ng mL-1. The aptasensor also displays satisfactory specificity and good recoveries even in the complex serum samples. Therefore, the aptasensor may provide a valuable tool for the assay of the AFP-L3 ratio and have a great potential use in early warning of HCC for clinical application.
Collapse
Affiliation(s)
- Yingyan Zhao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qi Liu
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
- Department of Geriatric Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yujia Qin
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yue Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Kai Zhang
- Department of Geriatric Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Gastroenterology, Dongying People's Hospital, Dongying 257091, China
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
39
|
GSPT1 Functions as a Tumor Promoter in Human Liver Cancer. Curr Med Sci 2023; 43:104-114. [PMID: 36459303 DOI: 10.1007/s11596-022-2665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE This study analyzed the role of G1 to S phase transition 1 protein (GSPT1) in promoting progression of liver cancer cells. METHODS A bioinformatics database was used to analyze the expression levels of GSPT1 in liver cancer tissues and the prognosis of patients. Subsequently, Western blotting and quantitative PCR were used to verify the expression levels of GSPT1 between normal hepatocytes and hepatoma cells. We used a CRISPR/Cas9 system to construct knockouts of GSPT1 in HepG2 and HCCLM9 liver cancer cells. The effect of GSPT1 on liver cancer cell migration and invasion was analyzed using flow cytometry, migration, and tumor formation assays. RESULTS The Cancer Genome Atlas Liver Hepatocellular Carcinoma dataset indicated that GSPT1 expression was upregulated in liver cancer cell lines, and patients with liver cancer had poor prognosis. Knockout of GSPT1 in cells significantly inhibited tumor proliferation, cell migration, and growth in vivo. CONCLUSION In this study, we found that GSPT1 promotes the migration and invasion of liver cancer cells.
Collapse
|
40
|
Zhang P, Zhao JH, Chen L, Bian ZL, Ju LL, Wang HX, Cai WH. Expression and function of myelin expression factor 2 in hepatocellular carcinoma. BMC Gastroenterol 2023; 23:20. [PMID: 36658471 PMCID: PMC9854206 DOI: 10.1186/s12876-023-02644-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is one of the most common malignant tumours in the world and has a high mortality rate. However, the pathogenesis of HCC remains unclear. This study aimed to investigate the potential biomarkers of HCC. METHODS ONCOMINE, HCCDB and THE HUMAN PROTEIN ATLAS were used to identify myelin expression factor 2 (MYEF2) as a potential biomarker for HCC. The Cancer Genome Atlas database was used to further validate and analyse the value of MYEF2. Kaplan-Meier Plotter was used for the prognostic analysis. The COX regression model and Kaplan-Meier method were used to investigate the clinical value of MYEF2 in the prognosis of HCC by reviewing the survival status of patients. Fluorescent quantitative polymerase chain reaction (qPCR) and immunohistochemistry were used to detect the expressions of the MYEF2 mRNA and protein in HCC tissues and cell lines. qPCR and Western blotting were used to validate the efficiency of MYEF2 knockout and overexpression in HCC cells. The invasion and migration abilities regulated by MYEF2 were detected by performing transwell and wound healing assays. RESULTS MYEF2 is significantly upregulated in HCC and is mainly located in the nucleus of HCC cells. MYEF2 expression is significantly associated with the tumour stage, histological grade and TNM stage. High MYEF2 expression is an independent prognostic factor for patients with HCC. Functionally, elevated MYEF2 facilitated cell migration and invasion in vitro. In contrast, decreased MYEF2 inhibited cell migration and invasion. CONCLUSIONS MYEF2 may be a novel biomarker with potential diagnosis and prognosis values and as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Peng Zhang
- grid.260483.b0000 0000 9530 8833Medical School of Nantong University, Nantong Third People’s Hospital, Nantong, 226000 Jiangsu People’s Republic of China
| | - Jiang-Hua Zhao
- grid.260483.b0000 0000 9530 8833Medical School of Nantong University, Nantong Third People’s Hospital, Nantong, 226000 Jiangsu People’s Republic of China
| | - Lin Chen
- grid.260483.b0000 0000 9530 8833Nantong Institute of Liver Diseases, Nantong Third People’s Hospital, Nantong University, Nantong, 226000 Jiangsu People’s Republic of China
| | - Zhao-Lian Bian
- grid.260483.b0000 0000 9530 8833Nantong Institute of Liver Diseases, Nantong Third People’s Hospital, Nantong University, Nantong, 226000 Jiangsu People’s Republic of China
| | - Lin-Ling Ju
- grid.260483.b0000 0000 9530 8833Nantong Institute of Liver Diseases, Nantong Third People’s Hospital, Nantong University, Nantong, 226000 Jiangsu People’s Republic of China
| | - Hui-Xuan Wang
- grid.260483.b0000 0000 9530 8833Nantong Institute of Liver Diseases, Nantong Third People’s Hospital, Nantong University, Nantong, 226000 Jiangsu People’s Republic of China
| | - Wei-Hua Cai
- grid.260483.b0000 0000 9530 8833Nantong Institute of Liver Disease, Department of Hepatobiliary Surgery, Nantong Third People’s Hospital, Nantong University, Nantong, 226000 Jiangsu People’s Republic of China
| |
Collapse
|
41
|
Yin H, Fu X, Gao H, Gao H, Ma Y, Chen X, Zhang X, Du SS, Qi YK. Hybrid peptide NTP-217 triggers ROS-mediated rapid necrosis in liver cancer cells by induction of mitochondrial leakage. Front Oncol 2023; 12:1028600. [PMID: 36713538 PMCID: PMC9881410 DOI: 10.3389/fonc.2022.1028600] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Liver cancer is the third leading cause of cancer-associated mortality globally, and >830,000 patients with liver cancer undergoing treatment succumbed to the disease in 2020, which indicates the urgent need to develop a more effective anti-liver cancer drug. In our previous study, nucleus-targeting hybrid peptides obtained from the fusion of LTX-315 and the rhodamine B group possessed potent anti-adherent cancer cell activity. Hybrid peptides accumulated in the cell nucleus and damaged the nuclear membrane, resulting in the transfer of reactive oxygen species (ROS) from the cytoplasm to the nucleus and the induction of apoptosis. However, the source of the high concentration of ROS within the cytoplasm is unclear. Moreover, although our previous study demonstrated that hybrid peptides possessed potent anticancer activity against adherent cancer cells, their efficacy on liver cancer remained unexplored. The current study found that the hybrid peptide NTP-217 killed liver cancer cells after 4-h treatment with a half-maximal inhibitory concentration of 14.6-45.7 μM. NTP-217 could stably accumulate in the liver tumor tissue and markedly inhibited liver tumor growth in mice. Furthermore, NTP-217 destroyed mitochondria and induced the leakage of mitochondrial contents, resulting in the generation of a substantial quantity of ROS. Unlike the apoptosis induced by 24 h of treatment by NTP-217, 4 h of treatment caused ROS-mediated necrotic cell death. These findings suggested that short-time treatment with hybrid peptides could trigger ROS-mediated rapid necrosis in liver cancer cells, and provided a basis for the future development of hybrid peptides as anti-liver cancer agents.
Collapse
Affiliation(s)
- Hao Yin
- School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, China,*Correspondence: Hao Yin, ; Shan-Shan Du, ; Yun-Kun Qi,
| | - Xingyan Fu
- School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Hanyu Gao
- School of Stomatology, Jining Medical University, Jining, China
| | - Han Gao
- Department of Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Yannan Ma
- School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Xitong Chen
- School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Xueqi Zhang
- School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Shan-Shan Du
- School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, China,College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China,*Correspondence: Hao Yin, ; Shan-Shan Du, ; Yun-Kun Qi,
| | - Yun-Kun Qi
- School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, China,*Correspondence: Hao Yin, ; Shan-Shan Du, ; Yun-Kun Qi,
| |
Collapse
|
42
|
A Water-Soluble Hydrogen Sulfide Donor Suppresses the Growth of Hepatocellular Carcinoma via Inhibiting the AKT/GSK-3 β/ β-Catenin and TGF- β/Smad2/3 Signaling Pathways. JOURNAL OF ONCOLOGY 2023; 2023:8456852. [PMID: 36925651 PMCID: PMC10014162 DOI: 10.1155/2023/8456852] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
Hepatocellular carcinoma (HCC) is a disease with high morbidity, high mortality, and low cure rate. Hyaluronic acid (HA) is widely adopted in tissue engineering and drug delivery. 5-(4-Hydroxyphenyl)-3H-1, 2-dithiol-3-thione (ADT-OH) is one of commonly used H2S donors. In our previous study, HA-ADT was designed and synthesized via coupling of HA and ADT-OH. In this study, compared with sodium hydrosulfide (NaHS, a fast H2S-releasing donor) and morpholin-4-ium (4-methoxyphenyl)-morpholin-4-ylsulfanylidenesulfido-λ5-phosphane (GYY4137, a slow H2S-releasing donor), HA-ADT showed stronger inhibitory effect on the proliferation, migration, invasion, and cell cycle of human HCC cells. HA-ADT promoted apoptosis by suppressing the expressions of phospho (p)-protein kinase B (PKB/AKT), p-glycogen synthase kinase-3β (GSK-3β), p-β-catenin, and also inhibited autophagy via the downregulation of the protein levels of p-Smad2, p-Smad3, and transforming growth factor-β (TGF-β) in human HCC cells. Moreover, HA-ADT inhibited HCC xenograft tumor growth more effectively than both NaHS and GYY4137. Therefore, HA-ADT can suppress the growth of HCC cells by blocking the AKT/GSK-3β/β-catenin and TGF-β/Smad2/3 signaling pathways. HA-ADT and its derivatives may be developed as promising antitumor drugs.
Collapse
|
43
|
Construction of pH-responsive polydopamine coated magnetic layered hydroxide nanostructure for intracellular drug delivery. Eur J Pharm Biopharm 2023; 182:12-20. [PMID: 36462716 DOI: 10.1016/j.ejpb.2022.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/19/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
In recent years, using magnetic nanocomposites for controlled release of drugs and target-specific drug delivery has great potential in exploring a new method for cancer chemotherapy. Nevertheless, the low loading rate of insoluble drugs greatly restricts their efficacy and clinical application. Here, an efficient magnetic nanostructure combining Fe3O4 nanoparticles and layered double hydroxide (LDH) was developed and used for tumor cell inhibition. LDH was first deposited on Fe3O4 nanoparticles (Fe3O4@LDH), curcumin (Cur) was then loaded and polydopamine (PDA) eventually formed a PDA-coating on Fe3O4@Cur-LDH via self-polymerization. The Fe3O4@Cur-LDH/PDA nanostructure showed a suitable nano-meter size, excellent magnetic property, and high drug loading rate (up to 38 %). In vitro release results implied that Fe3O4@Cur-LDH/PDA nanostructure had good pH-responsive performance and excellent controlled-release behaviors due to the introduction of PDA. The cellular experiments demonstrated that Fe3O4@Cur-LDH/PDA nanostructure had good biocompatibility. In addition, Fe3O4@Cur-LDH/PDA entered into the cells mainly through endocytosis and had excellent inhibition on HepG2 cell viability in a concentration-dependent manner. Therefore, Fe3O4@Cur-LDH/PDA nanostructure has a prospective application in cancer therapy as a controlled drug delivery system.
Collapse
|
44
|
Si Y, Xu P, Xu A, Wang P, Zhao K. Geriatric nutritional risk index as a prognostic factor in patients with hepatocellular carcinoma following transarterial chemoembolization: A retrospective study. Medicine (Baltimore) 2022; 101:e32322. [PMID: 36595771 PMCID: PMC9794247 DOI: 10.1097/md.0000000000032322] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The geriatric nutritional risk index (GNRI) has been shown to be associated with the prognosis of cancer patients except for hepatocellular carcinoma (HCC) patients after transarterial chemoembolization (TACE). Our aim is to examine the association between the GNRI and long-term prognosis in patients with HCC who underwent TACE. Patients with HCC who underwent TACE were enrolled. The relationship between the patient characteristics and GNRI were compared, and the independent prognostic factors were investigated. Nomogram performance was assessed via the concordance index (C-index) and calibration plots. Decision curve analysis (DCA) was performed to evaluate the net benefit of the nomogram. A total of 235 patients met the inclusion criteria. Compared with the parameters of the high GNRI group, low GNRI was significantly associated with hypertension, ascites, body mass index, tumor size, anemia, Child-Turcotte-Pugh class. The univariate analysis demonstrated that overall survival (OS) was inferior when GNRI < 98, tumor size ≥ 5cm, vascular invasion, alpha-fetoprotein level ≥ 400, Barcelona clinical liver cancer stage B to C and TACE times < 3. The multivariate analysis revealed that GNRI < 98, tumor size ≥ 5cm, tumor number ≥ 2, alpha-fetoprotein level ≥ 400 and TACE times < 3 were independent predictors of a poor OS. In the validation step, OS was shown to be well calibrated (C-index = 0.724), and a satisfactory clinical utility was proven by DCA. Low GNRI score was associated with a shorter OS in patients undergoing TACE.
Collapse
Affiliation(s)
- Youjiao Si
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Peng Xu
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Aihua Xu
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Peiyuan Wang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Kaikai Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- * Correspondence: Kaikai Zhao, Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China (e-mail: )
| |
Collapse
|
45
|
Wang Z, Yang JY, Xia P, Zhu HH, Gai ZG. Misdiagnosis of hepatic cystic echinococcosis complicated with hepatocellular carcinoma: A case report. Medicine (Baltimore) 2022; 101:e32291. [PMID: 36595756 PMCID: PMC9794291 DOI: 10.1097/md.0000000000032291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RATIONALE Hepatic cystic echinococcosis (CE) is a common zoonotic parasitic disease caused by the entry of Echinococcus granulosus eggs into human body. Surgical resection is the optimal treatment choice for hepatic CE. However, Coexistence of CE and hepatocellular carcinoma (HCC) have been reported with a rare incidence rate, which led to unsatisfactory prognosis after the operation. PATIENT CONCERNS A 69-year-old male patient was admitted to hospital because of "Upper abdominal pain and discomfort for more than 1 month and an aggravation for 10 days." DIAGNOSIS An elderly male herder who was initially diagnosed as hepatic CE, and none of the preoperative imaging test revealed the existence of HCC. Co-existence of hepatic CE and HCC was confirmed by the postoperative pathological examination. INTERVENTIONS The patient underwent "combined hepatic segmental resection, portal vein thrombectomy, portal vein repairment, hepatic hydatid internal capsule removal and external subtotal resection, cholecystectomy". OUTCOMES During follow-up after discharge, the patient did not regularly review and get further treatment and died 8 months after operation. LESSONS May improve the clinicians' understanding of CE complicated with HCC, and reduce the misdiagnosis of similar case, as well as provide guidance for clinical treatment.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Graduate School, Qinghai University, Xining, Qinghai Province, China
| | - Jin-Yu Yang
- Department of General Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai Province, China
| | - Pan Xia
- Department of Graduate School, Qinghai University, Xining, Qinghai Province, China
| | - Hai-Hong Zhu
- Department of General Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai Province, China
- * Correspondence: Hai-Hong Zhu, Department of General Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai Province 810007, China (e-mail: )
| | - Zhi-Gang Gai
- Department of Graduate School, Qinghai University, Xining, Qinghai Province, China
| |
Collapse
|
46
|
Effect of PhenylEthanol Glycosides from Cistanche Tubulosa on Autophagy and Apoptosis in H22 Tumor-Bearing Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3993445. [DOI: 10.1155/2022/3993445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 12/13/2022]
Abstract
An effectual remedy for hepatocellular carcinoma (HCC) and knowledge of the mechanism are urgently needed. Researchers have found that CPhGs, an extract from Cistanche tubulosa (Schenk) Wight, had better antitumor effects, but its mechanism is still unknown. In the present study, using an H22 tumor-bearing mouse as a model, we investigated the antitumor effects of CPhGs and the effect of CPhGs on autophagy and apoptosis. Besides, we also discussed the role of autophagy with the help of HCQ and rapamycin. Our results show that CPhGs inhibit tumor growth and induce apoptosis and autophagy of tumor tissue. TUNEL staining displayed that tumor apoptosis rate increased after the intervention of CPhGs, and immunohistochemistry and western blot showed that cleaved-PARP and cleaved-caspase 3 were upregulated after the intervention of CPhGs, and these results were most pronounced in the high-dose group. Autophagy results revealed that CPhGs increased the number of autophagosomes, increased the level of LC3B-II, and decreased the level of p62. Finally, our results showed that excessive autophagy suppresses tumor growth, whereas inhibition of autophagy does the opposite, which indicated that CPhGs induced autophagic death in H22 hepatoma-bearing mice. These data altogether confirmed the involvement of apoptosis and autophagy in CPhGs treatment for HCC.
Collapse
|
47
|
Wei Q, Zhou H, Hou X, Liu X, Chen S, Huang X, Chen Y, Liu M, Duan Z. Current status of and barriers to the treatment of advanced-stage liver cancer in China: a questionnaire-based study from the perspective of doctors. BMC Gastroenterol 2022; 22:351. [PMID: 35871649 PMCID: PMC9310466 DOI: 10.1186/s12876-022-02425-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/13/2022] [Indexed: 12/05/2022] Open
Abstract
Background Liver cancer is a severe public health problem worldwide, and it creates a relatively higher disease burden in China than in the Western world. Despite achieving notable progress in China, potential differences in some aspects of medical services for liver cancer may persist across different regions and hospitals. This warrants serious consideration of the actual status of and barriers to liver cancer treatment. We intended to explore the present status of and obstacles in liver cancer treatment especially for advanced-stage liver cancer. Methods In February 2021, a national multicenter cross-sectional study was conducted among 1500 doctors from 31 provinces of mainland China using a self-administered online questionnaire. Participants completed the questionnaire about their general information, perspectives on the current status of liver cancer treatment, and expectations for future treatment. Chi-square and logistic regression analyses were performed to explore the differences associated with the regions, doctors’ professional ranks, and hospital levels. Results Treatment conditions, medications, and treatment strategies were inconsistent across different economic regions and hospital of different levels. With respect to obstacles in treatment, 76.6% of the doctors were unsatisfied with the current treatment for liver cancer. Important factors that influenced their satisfaction with the treatment for liver cancer included early diagnosis and the disclosure of true conditions to patients. Conclusions There persists differences in the treatment of liver cancer in China, besides barriers to treatment. More attention should be paid to the detection and treatment of liver cancer and the propagation of novel progress among doctors in underdeveloped areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02425-4.
Collapse
|
48
|
The Expression of Connexin 26 Regulates the Radiosensitivity of Hepatocellular Carcinoma Cells through a Mitogen-Activated Protein Kinases Signal Pathway. Int J Mol Sci 2022; 23:ijms232314644. [PMID: 36498978 PMCID: PMC9740976 DOI: 10.3390/ijms232314644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Connexin 26 (Cx26) is a protein that constitutes a gap junction and is widely expressed in the liver. Abnormal expression of Cx26 is one of the important mechanisms of liver cancer, and is closely related to the transmission of radiation damage signals between cells. In the present study, we investigated the radiosensitivity of hepatocellular carcinoma (HCC) cells HepG2, with low expression of Cx26, and SK-hep-1, with high expression of Cx26 after X-ray irradiation. The cell survival, micronucleus formation and protein expressions of the mitogen-activated protein kinases (MAPK) signaling pathway were detected. The expression level of Cx26 could affect the radiosensitivity of liver cancer cells by affecting the phosphorylation of p38 and ERK proteins and regulating the expression of downstream NF-κB. Cell lines with knock-out and overexpression of Cx26 were also built to confirm the findings. Our results suggested that Cx26 might play an important role in the radiosensitivity of liver cancer and could be a potential target for clinical radiotherapy of liver cancer.
Collapse
|
49
|
Bai W, Cheng L, Xiong L, Wang M, Liu H, Yu K, Wang W. Protein succinylation associated with the progress of hepatocellular carcinoma. J Cell Mol Med 2022; 26:5702-5712. [PMID: 36308411 PMCID: PMC9667522 DOI: 10.1111/jcmm.17507] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
Although post‐translational modification is critical to tumorigenesis, how succinylation modification of lysine sites influences hepatocellular carcinoma (HCC) remains obscure. 90 tumours and paired adjacent normal tissue of liver cancer were enrolled for succinylation staining. 423 HCC samples with 20 genes related to succinylation modification from TCGA were downloaded for model construction. Statistical methods were employed to analyse the data, including the Non‐Negative Matrix Factorization (NMF) algorithm, t‐Distributed Stochastic Neighbour Embedding (t‐SNE) algorithm, and Cox regression analysis. The staining pan‐succinyllysine antibody staining indicated that tumour tissues had a higher succinyllysine level than adjacent tissues (p < 0.001), which could be associated with a worse prognosis (p = 0.02). The survival was associated with pathological stage, tumour recurrence status and succinyllysine intensity in the univariate or multivariable cox survival analysis model. The risk model from 20 succinyllysine‐related genes had the best prognosis prediction. The high expression of succinylation modification in HCC contributed to the worse patient survival prognosis. Model construction of 20 genes related to succinylation modification (MEAF6, OXCT1, SIRT2, CREBBP, KAT5, SIRT4, SIRT6, SIRT7, CPT1A, GLYATL1, SDHA, SDHB, SDHC, SDHD, SIRT1, SIRT3, SIRT5, SUCLA2, SUCLG1 and SUCLG2) could be reliable in predicting prognosis in HCC.
Collapse
Affiliation(s)
- Wenhui Bai
- Department of Hepatobiliary Surgery, Eastern Campus Renmin Hospital of Wuhan University Wuhan China
| | - Li Cheng
- Department of Intensive Care Unit, Eastern Campus Renmin Hospital of Wuhan University Wuhan China
| | - Liangkun Xiong
- Department of Hepatobiliary Surgery, Eastern Campus Renmin Hospital of Wuhan University Wuhan China
| | - Maoming Wang
- Department of Hepatobiliary Surgery, Eastern Campus Renmin Hospital of Wuhan University Wuhan China
| | - Hao Liu
- Department of Hepatobiliary Surgery, Eastern Campus Renmin Hospital of Wuhan University Wuhan China
| | - Kaihuan Yu
- Department of Hepatobiliary Surgery, Eastern Campus Renmin Hospital of Wuhan University Wuhan China
| | - Weixing Wang
- Department of Hepatobiliary Surgery Renmin Hospital of Wuhan University Wuhan China
| |
Collapse
|
50
|
Tumor-Targeting Polymer–Drug Conjugate for Liver Cancer Treatment In Vitro. Polymers (Basel) 2022; 14:polym14214515. [PMID: 36365509 PMCID: PMC9653589 DOI: 10.3390/polym14214515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 12/02/2022] Open
Abstract
Bufalin (buf) has poor solubility in aqueous solution, poor tumor targeting, and many non-specific toxic and side effects. The advantages of high-molecular-weight polymer conjugates are that they can improve the water solubility of buf, prolong plasma half-life, and reduce non-specific toxicity. A novel water-soluble polymer–drug conjugate with buf and fluorescein pendants was prepared by the combination of reversible addition-fragmentation transfer (RAFT) polymerization and click chemistry. Its anticancer performance and cellular uptake behavior against liver cancer were investigated in vitro. The polymer–buf conjugates exhibit controlled release and tumor-targeting capabilities, showing promise for clinical applications.
Collapse
|