1
|
Xu L, Xiang W, Yang J, Gao J, Wang X, Meng L, Ye K, Zhao XH, Zhang XD, Jin L, Ye Y. PHB2 promotes SHIP2 ubiquitination via the E3 ligase NEDD4 to regulate AKT signaling in gastric cancer. J Exp Clin Cancer Res 2024; 43:17. [PMID: 38200519 PMCID: PMC10782615 DOI: 10.1186/s13046-023-02937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Prohibitin 2 (PHB2) exhibits opposite functions of promoting or inhibiting tumour across various cancer types. In this study, we aim to investigate its functions and underlying mechanisms in the context of gastric cancer (GC). METHODS PHB2 protein expression levels in GC and normal tissues were examined using western blot and immunohistochemistry. PHB2 expression level associations with patient outcomes were examined through Kaplan-Meier plotter analysis utilizing GEO datasets (GSE14210 and GSE29272). The biological role of PHB2 and its subsequent regulatory mechanisms were elucidated in vitro and in vivo. GC cell viability and proliferation were assessed using MTT cell viability analysis, clonogenic assays, and BrdU incorporation assays, while the growth of GC xenografted tumours was measured via IHC staining of Ki67. The interaction among PHB2 and SHIP2, as well as between SHIP2 and NEDD4, was identified through co-immunoprecipitation, GST pull-down assays, and deletion-mapping experiments. SHIP2 ubiquitination and degradation were assessed using cycloheximide treatment, plasmid transfection and co-immunoprecipitation, followed by western blot analysis. RESULTS Our analysis revealed a substantial increase in PHB2 expression in GC tissues compared to adjacent normal tissues. Notably, higher PHB2 levels correlated with poorer patient outcomes, suggesting its clinical relevance. Functionally, silencing PHB2 in GC cells significantly reduced cell proliferation and retarded GC tumour growth, whereas overexpression of PHB2 further enhanced GC cell proliferation. Mechanistically, PHB2 physically interacted with Src homology 2-containing inositol 5-phosphatase 2 (SHIP2) in the cytoplasm of GC cells, thus leading to SHIP2 degradation via its novel E3 ligase NEDD4. It subsequently activated the PI3K/Akt signaling pathway and thus promoted GC cell proliferation. CONCLUSIONS Our findings highlight the importance of PHB2 upregulation in driving GC progression and its association with adverse patient outcomes. Understanding the functional impact of PHB2 on GC growth contributes valuable insights into the molecular underpinnings of GC and may pave the way for the development of targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Liang Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Wanying Xiang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiezhen Yang
- Department of Pathology, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen, 361015, China
| | - Jing Gao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xinyue Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Li Meng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Kaihong Ye
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-Coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-Coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450053, Henan, China
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, 2308, Australia.
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-Coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-Coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450053, Henan, China.
| | - Lei Jin
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-Coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-Coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450053, Henan, China.
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia.
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
2
|
Zhou X, Li Y, Liu J, Lu W, Liu S, Li J, He Q. Pan-cancer Analysis Combined with Experiments Deciphers PHB Regulation for Breast Cancer Cell Survival and Predicts Biomarker Function. Comb Chem High Throughput Screen 2024; 27:2753-2763. [PMID: 37957856 DOI: 10.2174/0113862073266248231024113533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Breast carcinoma has become the leading fatal disease among women. The location of prohibitin in the chromosome is close to the breast cancer susceptibility gene 1 (BRCA1). Accumulated research reported that prohibitin could interact with a variety of transcription factors and cell cycle-regulating proteins. OBJECTIVE This present study aims to comprehensively explore and reveal the biological functions of prohibitin on breast cancer via The Cancer Genome Atlas (TCGA) and validation experiment in vitro. METHODS Exploring the expression level of prohibitin across 27 tumors based on the TGGA database by bioinformatic methods and its relationship with tumor immune infiltration. Furthermore, we thus analyzed the biological roles of prohibitin on human breast cancer cell line MCF- 7 with pEGFP-prohibitin overexpression plasmid by western blotting and transwell-assay. RESULTS Firstly, we found prohibitin is overexpressed in most tumors based on The Cancer Genome Atlas database, and the negative relationships between prohibitin and tumors infiltrating lymphocytes including B lymphocyte, CD4 T lymphocyte, CD8 T lymphocyte, Neutrophil, Macrophage and Dendritic, and its significant correlation with the prognosis of human cancer. In vitro, expression not only inhibited cell viability and invasive abilities but also increased the apoptosis percentage of cells with a decreased percentage of the S phase and an increased G2 phase. The reduction of Bcl-2 was observed when prohibitin was upregulated, although the expression of E2F-1 did not change. CONCLUSION Although prohibitin is over-expressed in various cancer types, it functions as an important tumor suppressor that may suppress breast cancer cell proliferation and the invasive ability of MCF-7 by influencing its DNA synthesis and promoting cell apoptosis. All these may be likely associated with P53, erbB-2, and Bcl-2.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Yue Li
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Jiali Liu
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Wei Lu
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Sanyuan Liu
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Jing Li
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Qian He
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Fernandez-Abascal J, Artal-Sanz M. Prohibitins in neurodegeneration and mitochondrial homeostasis. FRONTIERS IN AGING 2022; 3:1043300. [PMID: 36404989 PMCID: PMC9674034 DOI: 10.3389/fragi.2022.1043300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
The incidence of age-related neurodegenerative disorders has risen with the increase of life expectancy. Unfortunately, the diagnosis of such disorders is in most cases only possible when the neurodegeneration status is already advanced, and symptoms are evident. Although age-related neurodegeneration is a common phenomenon in living animals, the cellular and molecular mechanisms behind remain poorly understood. Pathways leading to neurodegeneration usually diverge from a common starting point, mitochondrial stress, which can serve as a potential target for early diagnosis and treatments. Interestingly, the evolutionarily conserved mitochondrial prohibitin (PHB) complex is a key regulator of ageing and metabolism that has been associated with neurodegenerative diseases. However, its role in neurodegeneration is still not well characterized. The PHB complex shows protective or toxic effects in different genetic and physiological contexts, while mitochondrial and cellular stress promote both up and downregulation of PHB expression. With this review we aim to shed light into the complex world of PHB’s function in neurodegeneration by putting together the latest advances in neurodegeneration and mitochondrial homeostasis associated with PHB. A better understanding of the role of PHB in neurodegeneration will add knowledge to neuron deterioration during ageing and help to identify early molecular markers of mitochondrial stress. This review will deepen our understanding of age-related neurodegeneration and provide questions to be addressed, relevant to human health and to improve the life quality of the elderly.
Collapse
Affiliation(s)
- Jesus Fernandez-Abascal
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
- *Correspondence: Jesus Fernandez-Abascal, ; Marta Artal-Sanz,
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
- *Correspondence: Jesus Fernandez-Abascal, ; Marta Artal-Sanz,
| |
Collapse
|
4
|
Prohibitins: A Key Link between Mitochondria and Nervous System Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7494863. [PMID: 35847581 PMCID: PMC9286927 DOI: 10.1155/2022/7494863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022]
Abstract
Prohibitins (PHBs) are conserved proteins in eukaryotic cells, which are mainly located in the inner mitochondrial membrane (IMM), cell nucleus, and cell membrane. PHBs play crucial roles in various cellular functions, including the cell cycle regulation, tumor suppression, immunoglobulin M receptor binding, and aging. In addition, recent in vitro and in vivo studies have revealed that PHBs are important in nervous system diseases. PHBs can prevent apoptosis, inflammation, mitochondrial dysfunction, and autophagy in neurological disorders through different molecules and pathways, such as OPA-1, PINK1/Parkin, IL6/STAT3, Tau, NO, LC3, and TDP43. Therefore, PHBs show great promise in the protection of neurological disorders. This review summarizes the relevant studies on the relationship between PHBs and neurological disorders and provides an update on the molecular mechanisms of PHBs in nervous system diseases.
Collapse
|
5
|
Vannamahaxay S, Sornpet B, Pringproa K, Patchanee P, Chuammitri P. Transcriptome analysis of infected Crandell Rees Feline Kidney (CRFK) cells by canine parvovirus type 2c Laotian isolates. Gene X 2022; 822:146324. [PMID: 35182681 DOI: 10.1016/j.gene.2022.146324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/22/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
The advent of RNA sequencing technology provides insight into the dynamic nature of tremendous transcripts within Crandell-Reese feline kidney (CRFK) cells in response to canine parvovirus (CPV-2c) infection. A total of 1,603 genes displayed differentially expressed genes (DEGs), including 789 up-regulated genes and 814 downregulated genes in the infected cells. Gene expression profiles have shown a subtle pattern of defense mechanism and immune response to CPV through significant DEGs when extensively examined via Gene Ontology (GO) and pathway analysis. Prospective GO analysis was performed and identified several enriched GO biological process terms with significant participating roles in the immune system process and defense response to virus pathway. A Gene network was constructed using the 22 most significantly enriched genes of particular interests in defense response to virus pathways to illustrate the key pathways. Eleven genes (C1QBP, CD40, HYAL2, IFNB1, IFNG, IL12B, IL6, IRF3, LSM14A, MAVS, NLRC5) were identified, which are directly related to the defense response to the virus. Results of transcriptome profiling permit us to understand the heterogeneity of DEGs during in vitro experimental study of CPV infection, reflecting a unique transcriptome signature for the CPV virus. Our findings also demonstrate a distinct scenario of enhanced CPV responses in CRFK cells for viral clearance that involved multistep and perplexity of biological processes. Collectively, our data have given a fundamental role in anti-viral immunity as our highlights of this study, thus providing outlooks on future research priorities to be important in studying CPV.
Collapse
Affiliation(s)
- Soulasack Vannamahaxay
- Department of Veterinary Medicine, Faculty of Agriculture, National University of Laos, Vientiane, Lao Democratic People's Republic
| | - Benjaporn Sornpet
- Central Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Prapas Patchanee
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Integrative Research Center for Veterinary Preventive Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phongsakorn Chuammitri
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
6
|
Prohibitin plays a role in the functional plasticity of macrophages. Mol Immunol 2022; 144:152-165. [DOI: 10.1016/j.molimm.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/11/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
|
7
|
Flook M, Escalera-Balsera A, Gallego-Martinez A, Espinosa-Sanchez JM, Aran I, Soto-Varela A, Lopez-Escamez JA. DNA Methylation Signature in Mononuclear Cells and Proinflammatory Cytokines May Define Molecular Subtypes in Sporadic Meniere Disease. Biomedicines 2021; 9:1530. [PMID: 34829759 PMCID: PMC8615058 DOI: 10.3390/biomedicines9111530] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Meniere Disease (MD) is a multifactorial disorder of the inner ear characterized by vertigo attacks associated with sensorineural hearing loss and tinnitus with a significant heritability. Although MD has been associated with several genes, no epigenetic studies have been performed on MD. Here we performed whole-genome bisulfite sequencing in 14 MD patients and six healthy controls, with the aim of identifying an MD methylation signature and potential disease mechanisms. We observed a high number of differentially methylated CpGs (DMC) when comparing MD patients to controls (n= 9545), several of them in hearing loss genes, such as PCDH15, ADGRV1 and CDH23. Bioinformatic analyses of DMCs and cis-regulatory regions predicted phenotypes related to abnormal excitatory postsynaptic currents, abnormal NMDA-mediated receptor currents and abnormal glutamate-mediated receptor currents when comparing MD to controls. Moreover, we identified various DMCs in genes previously associated with cochleovestibular phenotypes in mice. We have also found 12 undermethylated regions (UMR) that were exclusive to MD, including two UMR in an inter CpG island in the PHB gene. We suggest that the DNA methylation signature allows distinguishing between MD patients and controls. The enrichment analysis confirms previous findings of a chronic inflammatory process underlying MD.
Collapse
Affiliation(s)
- Marisa Flook
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, 18016 Granada, Spain; (M.F.); (A.E.-B.); (A.G.-M.); (J.M.E.-S.)
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18014 Granada, Spain
| | - Alba Escalera-Balsera
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, 18016 Granada, Spain; (M.F.); (A.E.-B.); (A.G.-M.); (J.M.E.-S.)
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18014 Granada, Spain
| | - Alvaro Gallego-Martinez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, 18016 Granada, Spain; (M.F.); (A.E.-B.); (A.G.-M.); (J.M.E.-S.)
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18014 Granada, Spain
| | - Juan Manuel Espinosa-Sanchez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, 18016 Granada, Spain; (M.F.); (A.E.-B.); (A.G.-M.); (J.M.E.-S.)
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18014 Granada, Spain
| | - Ismael Aran
- Department of Otolaryngology, Complexo Hospitalario de Pontevedra, 36071 Pontevedra, Spain;
| | - Andres Soto-Varela
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, 15706 Santiago de Compostela, Spain;
| | - Jose Antonio Lopez-Escamez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, 18016 Granada, Spain; (M.F.); (A.E.-B.); (A.G.-M.); (J.M.E.-S.)
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18014 Granada, Spain
- Division of Otolaryngology, Department of Surgery, University of Granada, 18011 Granada, Spain
| |
Collapse
|
8
|
Devarbhavi P, Telang L, Vastrad B, Tengli A, Vastrad C, Kotturshetti I. Identification of key pathways and genes in polycystic ovary syndrome via integrated bioinformatics analysis and prediction of small therapeutic molecules. Reprod Biol Endocrinol 2021; 19:31. [PMID: 33622336 PMCID: PMC7901211 DOI: 10.1186/s12958-021-00706-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
To enhance understanding of polycystic ovary syndrome (PCOS) at the molecular level; this investigation intends to examine the genes and pathways associated with PCOS by using an integrated bioinformatics analysis. Based on the expression profiling by high throughput sequencing data GSE84958 derived from the Gene Expression Omnibus (GEO) database, the differentially expressed genes (DEGs) between PCOS samples and normal controls were identified. We performed a functional enrichment analysis. A protein-protein interaction (PPI) network, miRNA- target genes and TF - target gene networks, were constructed and visualized, with which the hub gene nodes were identified. Validation of hub genes was performed by using receiver operating characteristic (ROC) and RT-PCR. Small drug molecules were predicted by using molecular docking. A total of 739 DEGs were identified, of which 360 genes were up regulated and 379 genes were down regulated. GO enrichment analysis revealed that up regulated genes were mainly involved in peptide metabolic process, organelle envelope and RNA binding and the down regulated genes were significantly enriched in plasma membrane bounded cell projection organization, neuron projection and DNA-binding transcription factor activity, RNA polymerase II-specific. REACTOME pathway enrichment analysis revealed that the up regulated genes were mainly enriched in translation and respiratory electron transport and the down regulated genes were mainly enriched in generic transcription pathway and transmembrane transport of small molecules. The top 10 hub genes (SAA1, ADCY6, POLR2K, RPS15, RPS15A, CTNND1, ESR1, NEDD4L, KNTC1 and NGFR) were identified from PPI network, miRNA - target gene network and TF - target gene network. The modules analysis showed that genes in modules were mainly associated with the transport of respiratory electrons and signaling NGF, respectively. We find a series of crucial genes along with the pathways that were most closely related with PCOS initiation and advancement. Our investigations provide a more detailed molecular mechanism for the progression of PCOS, detail information on the potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Praveenkumar Devarbhavi
- Department of Endocrinology and Metabolism, Subbaiah Institute of Medical Sciences and Research Centre, Shimoga, Karnataka, 577201, India
| | - Lata Telang
- Department of Gynaecology and Obstetrics, Subbaiah Institute of Medical Sciences and Research Centre, Shimoga, Karnataka, 577201, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka, 582103, India
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karanataka, 580001, India.
| | - Iranna Kotturshetti
- Department of Ayurveda, Rajiv Gandhi Education Society's Ayurvedic Medical College, Ron, Karanataka, 562209, India
| |
Collapse
|
9
|
Abstract
The last three decades have seen a growing interest in research in the field of immunometabolism, likely because of promising discoveries made in this field. This includes demonstration of the crucial roles of cellular metabolism in the regulation of functional plasticity of various immune cells, their cross talk with major metabolic tissues (and consequently in the regulation of metabolic homeostasis) at the systemic level, and their potential in improving the efficacy of current immunotherapy or developing new therapeutics for a variety of metabolic and immune diseases (Lee YS, Wollam J, Olefsky JM, Cell 172:22-40, 2018). Surprisingly, sex differences, which are integral to metabolic and immune health and disease, have received a short shrift from researchers in this field. The purpose of this chapter in this protocols book in the Immunometabolism: Methods in Molecular Biology series is to bring attention to this understudied, but crucial, feature of immunometabolism within the scientific community. Sex differences in adipose (and by extension, metabolic) and immune functions are pervasive in metabolic and immune health and disease; it is likely that a better insight into them may open new research directions to better capitalize on the promising discoveries made in this field, and thereby contribute to the development of sex-based precision medicine. It is counterintuitive to ignore a fundamental aspect of immunometabolism, and thereby limit our ability to capitalize on its promising features in improving or maintaining health, and for the therapeutic targeting of associated diseases. Here we briefly discuss the potential drivers and touch upon some unanswered questions in sex differences in immunometabolism, especially those that require attention from the scientific community.
Collapse
Affiliation(s)
- Suresh Mishra
- Faculty of Health Sciences, Department of Internal Medicine, College of Medicine, University of Manitoba, Winnipeg, Canada. .,Faculty of Health Sciences, Department of Physiology and Pathophysiology, College of Medicine, University of Manitoba, Winnipeg, Canada.
| | - Geetika Bassi
- Faculty of Health Sciences, Department of Physiology and Pathophysiology, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Yang Xin Zi Xu
- Faculty of Health Sciences, Department of Physiology and Pathophysiology, College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
10
|
Bentayeb H, Aitamer M, Petit B, Dubanet L, Elderwish S, Désaubry L, de Gramont A, Raymond E, Olivrie A, Abraham J, Jauberteau MO, Troutaud D. Prohibitin (PHB) expression is associated with aggressiveness in DLBCL and flavagline-mediated inhibition of cytoplasmic PHB functions induces anti-tumor effects. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:450. [PMID: 31684984 PMCID: PMC6830009 DOI: 10.1186/s13046-019-1440-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diffuse large B-cell lymphomas (DLBCLs) are aggressive lymphomas accounting for approximately a third of non-Hodgkin lymphomas. Prohibitin 1 (PHB1) and prohibitin 2 (PHB2) are scaffold proteins that promote mitochondria homeostasis and consequently cell survival, but biological functions of cytoplasmic PHBs remain largely unknown in DLBCL. METHODS PHB expression was analyzed in 82 DLBCL biopsies and five DLBCL cell lines by immunohistochemistry (IHC) and Western blotting. Pharmacological inhibition of PHB using the synthetic flavagline FL3 was realized in vitro to gain insight PHB cellular functions. Effects of FL3 on DLBCL cell line viability, apoptosis, C-Raf-ERK-MNK-eIF4E signaling pathway and eIF4F complex formation and activity were evaluated by XTT assay, annexin V-FITC/PI dual staining and Western blotting respectively. Subcutaneous DLBCL xenograft model in SCID mice was also performed to determine in vivo FL3 effect. RESULTS As in DLBCL cell lines, PHB1 and PHB2 were expressed in germinal center B-cell-like (GCB) and activated B-cell-like (ABC) subtypes. In patient samples, high PHB levels were associated with higher serum LDH (PHB1 and PHB2), IPIaa (PHB2), and Ki-67 (PHB2) expression. Higher PHB1 expression tends to be associated with shorter event-free survival (EFS) in patients, especially in male patients. FL3 induced apoptosis of DLBCL cell lines that was associated with inhibition of the ERK-MNK-eIF4E signaling pathway, including aggressive double/triple-hit DLBCL cell lines. This resulted in altered eIF4F complex formation and activity leading to a reduction of Bcl-2 and c-Myc expression levels. Moreover, FL3 strongly downregulated DLBCL cellular levels of Akt protein and AKT mRNA. FL3 antitumor activity was also confirmed in vivo in a murine xenograft model. CONCLUSION Our data indicate that PHB overexpression is associated with markers of tumor aggressiveness in DLBCL, and that targeting PHBs may be a therapeutic option, notably in aggressive subtypes.
Collapse
Affiliation(s)
| | | | - Barbara Petit
- Laboratoire d'Anatomie-Pathologique, CHU de Limoges, Limoges, France
| | | | | | - Laurent Désaubry
- UMR 7203, CNRS - Université Paris Sorbonne, Paris, France.,Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | | | - Eric Raymond
- AFR Oncology, 1 place Paul Verlaine, Boulogne-Billancourt, France.,Groupe Hospitalier Saint-Joseph, Paris, France
| | - Agnès Olivrie
- Service d'Hématologie Clinique, CHU de Limoges, Limoges, France
| | - Julie Abraham
- Service d'Hématologie Clinique, CHU de Limoges, Limoges, France
| | - Marie-Odile Jauberteau
- EA3842, Université de Limoges, Limoges, France.,Service d'Immunologie, CHU Limoges, Limoges, France
| | | |
Collapse
|
11
|
Yang B, Chen R, Liang X, Shi J, Wu X, Zhang Z, Chen X. Estrogen Enhances Endometrial Cancer Cells Proliferation by Upregulation of Prohibitin. J Cancer 2019; 10:1616-1621. [PMID: 31205517 PMCID: PMC6548001 DOI: 10.7150/jca.28218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 01/13/2019] [Indexed: 12/12/2022] Open
Abstract
Estrogen plays an essential role in type I endometrial cancer cell proliferation. Despite great progresses in the etiology has been obtained in the past, however, the molecular mechanisms remain to be fully clarified. Prohibitin has been demonstrated involvement in multiple cancers' development. If it also contributes to estrogen-driven endometrial cancer proliferation is not clear. IHC assay result display that prohibitin overexpressed in endometrial cancer tissue and associated with the poor prognosis; Western blot assay detect that upregulated prohibitin expression with dose- and time-dependent manners. The cellular growth was monitored with SRB assay which demonstrate that knockdown prohibitin attenuated estrogen-induced proliferation. Ubiquitination assay finds estrogen increased prohibitin level through stabilizing prohibitin protein via inhibition of ubiquitination, while estrogen-induced protein expression was mediated by estrogen receptor. Our findings provide a new insight on the mechanism of estrogen-induced proliferation, implying the possibility of using prohibitin as a potential therapeutic target for the treatment of endometrial cancer.
Collapse
Affiliation(s)
- Bin Yang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China.,Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
| | - Ruiying Chen
- Department of Cervical Diseases, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Xiaoyan Liang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China
| | - Jiayan Shi
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China
| | - Xiaomei Wu
- Reproductive Medicine, Department of Obstetrics and Gynecology,Shanghai First people's Hospital, Shanghai Jiaotong University, Shanghai, 201600,China.,Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 201600, China
| | - Zhenbo Zhang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China.,Jiangxi Medical College, Nanchang University, Nanchang, 330000, China.,Reproductive Medicine, Department of Obstetrics and Gynecology,Shanghai First people's Hospital, Shanghai Jiaotong University, Shanghai, 201600,China.,Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 201600, China
| | - Xiong Chen
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China.,Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
| |
Collapse
|
12
|
Mishra S, Nyomba BLG. Prohibitin: A hypothetical target for sex-based new therapeutics for metabolic and immune diseases. Exp Biol Med (Maywood) 2019; 244:157-170. [PMID: 30717609 PMCID: PMC6405819 DOI: 10.1177/1535370219828362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IMPACT STATEMENT Traditional sex-related biases in research are now obsolete, and it is important to identify the sex of humans, animals, and even cells in research protocols, due to the role of sex as a fundamental facet of biology, predisposition to disease, and response to therapy. Genetic sex, epigenetics and hormonal regulations, generate sex-dimorphisms. Recent investigations acknowledge sex differences in metabolic and immune health as well as chronic diseases. Prohibitin, an evolutionarily conserved molecule, has pleotropic functions in mitochondrial housekeeping, plasma membrane signaling, and nuclear genetic transcription. Studies in adipocytes, macrophages, and transgenic mice indicate that prohibitin interacts with sex steroids and plays a role in mediating sex differences in adipose tissues and immune cell types. Prohibitin may, depending on context, modulate predisposition to chronic metabolic diseases and malignancy and, because of these attributes, could be a target for sex-based therapies of metabolic and immune-related diseases as well as cancer.
Collapse
Affiliation(s)
- Suresh Mishra
- Department of Internal Medicine, University of Manitoba,
Manitoba R3A1R9, Canada
- Department of Physiology & Pathophysiology, University of
Manitoba, Manitoba R3E0J9, Canada
| | - BL Grégoire Nyomba
- Department of Internal Medicine, University of Manitoba,
Manitoba R3A1R9, Canada
| |
Collapse
|
13
|
Hernando-Rodríguez B, Artal-Sanz M. Mitochondrial Quality Control Mechanisms and the PHB (Prohibitin) Complex. Cells 2018; 7:cells7120238. [PMID: 30501123 PMCID: PMC6315423 DOI: 10.3390/cells7120238] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial functions are essential for life, critical for development, maintenance of stem cells, adaptation to physiological changes, responses to stress, and aging. The complexity of mitochondrial biogenesis requires coordinated nuclear and mitochondrial gene expression, owing to the need of stoichiometrically assemble the oxidative phosphorylation (OXPHOS) system for ATP production. It requires, in addition, the import of a large number of proteins from the cytosol to keep optimal mitochondrial function and metabolism. Moreover, mitochondria require lipid supply for membrane biogenesis, while it is itself essential for the synthesis of membrane lipids. To achieve mitochondrial homeostasis, multiple mechanisms of quality control have evolved to ensure that mitochondrial function meets cell, tissue, and organismal demands. Herein, we give an overview of mitochondrial mechanisms that are activated in response to stress, including mitochondrial dynamics, mitophagy and the mitochondrial unfolded protein response (UPRmt). We then discuss the role of these stress responses in aging, with particular focus on Caenorhabditis elegans. Finally, we review observations that point to the mitochondrial prohibitin (PHB) complex as a key player in mitochondrial homeostasis, being essential for mitochondrial biogenesis and degradation, and responding to mitochondrial stress. Understanding how mitochondria responds to stress and how such responses are regulated is pivotal to combat aging and disease.
Collapse
Affiliation(s)
- Blanca Hernando-Rodríguez
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, 41013 Seville, Spain.
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain.
| | - Marta Artal-Sanz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, 41013 Seville, Spain.
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain.
| |
Collapse
|
14
|
Chakrabarty S, Kabekkodu SP, Singh RP, Thangaraj K, Singh KK, Satyamoorthy K. Mitochondria in health and disease. Mitochondrion 2018; 43:25-29. [PMID: 29944924 DOI: 10.1016/j.mito.2018.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022]
|