1
|
Yang D, Zhang P, Yang Z, Hou G, Yang Z. miR-4461 inhibits liver cancer stem cells expansion and chemoresistance via regulating SIRT1. Carcinogenesis 2024; 45:463-474. [PMID: 36437743 DOI: 10.1093/carcin/bgac093] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/11/2022] [Accepted: 11/27/2022] [Indexed: 02/17/2024] Open
Abstract
MicroRNAs (miRNAs) were involved in tumorigenesis, progression, recurrence and drug resistance of hepatocellular carcinoma (HCC). However, few miRNAs have been identified and entered clinical practice. We show here that miR-4461 expression is reduced in liver cancer stem cells (CSCs) and predicts the poor prognosis of HCC patients. Knockdown of miR-4461 enhances the self-renewal and tumorigenicity of liver CSCs. Conversely, forced miR-4461 expression inhibits liver CSCs self-renewal and tumorigenesis. Mechanically, miR-4461 directly targets sirtuin 1 (SIRT1) via binding to its 3' untranslated region in liver CSCs. The correlation of miR-4461 and SIRT1 was confirmed in human HCC patients' tissues. Additionally, we found that miR-4461 overexpression hepatoma cells are more sensitive to cisplatin treatment. Patient-derived xenografts also showed that miR-4461 high HCC xenografts are sensitive to cisplatin treatment. Clinical cohort analysis further confirmed that HCC patients with high miR-4461 benefited more from transcatheter arterial chemoembolization treatment. In conclusion, our findings revealed the crucial role of miR-4461 in liver CSCs expansion and cisplatin response, rendering miR-4461 as an optimal target for the prevention and intervention of HCC.
Collapse
Affiliation(s)
- Daji Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Xinmin Street, Changchun 130021, China
| | - Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Xinmin Street, Changchun 130021, China
| | - Ziting Yang
- Department of Emergency, The 964th Hospital of the Chinese People's Liberation Army, Changchun, China
| | - Guojun Hou
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China
| | - Ziyu Yang
- Department of Integrative Medicine, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China
| |
Collapse
|
2
|
Arefnezhad R, Ashna S, Rezaei-Tazangi F, Arfazadeh SM, Seyedsalehie SS, Yeganeafrouz S, Aghaei M, Sanandaji M, Davoodi R, Abadi SRK, Vosough M. Noncoding RNAs and programmed cell death in hepatocellular carcinoma: Significant role of epigenetic modifications in prognosis, chemoresistance, and tumor recurrence rate. Cell Biol Int 2024; 48:556-576. [PMID: 38411312 DOI: 10.1002/cbin.12145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer with a high death rate in the world. The molecular mechanisms related to the pathogenesis of HCC have not been precisely defined so far. Hence, this review aimed to address the potential cross-talk between noncoding RNAs (ncRNAs) and programmed cell death in HCC. All related papers in the English language up to June 2023 were collected and screened. The searched keywords in scientific databases, including Scopus, PubMed, and Google Scholar, were HCC, ncRNAs, Epigenetic, Programmed cell death, Autophagy, Apoptosis, Ferroptosis, Chemoresistance, Tumor recurrence, Prognosis, and Prediction. According to the reports, ncRNAs, comprising long ncRNAs, microRNAs, circular RNAs, and small nucleolar RNAs can affect cell proliferation, migration, invasion, and metastasis, as well as cell death-related processes, such as autophagy, ferroptosis, necroptosis, and apoptosis in HCC by regulating cancer-associated genes and signaling pathways, for example, phosphoinositide 3-kinase/Akt, extracellular signal-regulated kinase/MAPK, and Wnt/β-catenin signaling pathways. It seems that ncRNAs, as epigenetic regulators, can be utilized as biomarkers in diagnosis, prognosis, survival and recurrence rates prediction, chemoresistance, and evaluation of therapeutic response in HCC patients. However, more scientific evidence is suggested to be accomplished to confirm these results.
Collapse
Affiliation(s)
- Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Ashna
- Student Research Committee, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Seyede Shabnam Seyedsalehie
- Department of Pediatrics, Faculty of Medicine, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran
| | - Shaghayegh Yeganeafrouz
- Department of Medical Science, Faculty of Medicine, Islamic Azad University, Medical branch, Tehran, Iran
| | - Melika Aghaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mandana Sanandaji
- Department of Physical Education and Sport Sciences, Tehran University, Tehran, Iran
| | | | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Institution for Laboratory Medicine, Karolinska Institutet, Experimental Cancer Medicine, Huddinge, Sweden
| |
Collapse
|
3
|
Zhang R, Zhan Y, Lang Z, Li Y, Zhang W, Zheng J. LncRNA-SNHG5 mediates activation of hepatic stellate cells by regulating NF2 and Hippo pathway. Commun Biol 2024; 7:266. [PMID: 38438584 PMCID: PMC10912598 DOI: 10.1038/s42003-024-05971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
Long noncoding RNA small nucleolar RNA host gene 5 (SNHG5) is an oncogene found in various human cancers. However, it is unclear what role SNHG5 plays in activating hepatic stellate cells (HSCs) and liver fibrosis. In this study, SNHG5 was found to be upregulated in activated HSCs in vitro and in primary HSCs isolated from fibrotic liver in vivo, and inhibition of SNHG5 suppressed HSC activation. Notably, Neurofibromin 2 (NF2), the main activator for Hippo signalling, was involved in the effects of SNHG5 on HSC activation. The interaction between SNHG5 and NF2 protein was further confirmed, and preventing the combination of the two could effectively block the effects of SNHG5 inhibition on EMT process and Hippo signaling. Additionally, higher SNHG5 was found in chronic hepatitis B patients and associated with the fibrosis stage. Altogether, we demonstrate that SNHG5 could serve as an activated HSCs regulator via regulating NF2 and Hippo pathway.
Collapse
Affiliation(s)
- Rongrong Zhang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yating Zhan
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhichao Lang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yifei Li
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weizhi Zhang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianjian Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
4
|
Zhao L, Zang Q, Liang G, Yao X. LncRNA CECR7 boosts hepatocellular carcinoma progression by recruiting RNA binding protein U2AF2 to enhance the stability of EXO1 mRNA. Heliyon 2023; 9:e19862. [PMID: 37809785 PMCID: PMC10559240 DOI: 10.1016/j.heliyon.2023.e19862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Objective As an important factor tumor regulator,long non-coding RNAs (lncRNAs) have aroused extensive attention via the diverse functional mechanisms that were associated with the pathological and physiological processes of HCC. Here, the main purpose of this study was to provide a clear understanding about the expression, functions and potential mechanism of lncRNA CECR7 (Cat Eye Syndrome Chromosome Region, Candidate 7) in HCC. Methods RT-qPCR analysis and TCGA database analysis were applied to investigate the expression of CECR7 in HCC cell lines and tissues. Chi-squared Test was employed to explore the correlation between CECR7 expression and HCC clinicopathological features. Besides, Kaplan-Meier curves were constructed to test the effects of CECR7 expression on the prognosis of HCC patients. Transwell assays, MTT assay EdU assay and animal experiments were applied to explore the effects of CECR7 expression on HCC cells migration, invasion, and growth. Furthermore, RNA-seq analysis, luciferase reporter assay and mRNA decay rates assessment were utilized to investigate the mechanism whereby CECR7 regulated EXO1 mRNA. And, rescue experiments were used to determine whether EXO1 was an essential mediator for CECR7 to accelerate HCC cells migration, invasion, and growth. Results CECR7 was determined to be significantly overexpressed in HCC cell lines and tissues. CECR7 expression was closely correlated with the tumor size, venous infiltration, TNM stage, 5-year overall survival and disease-free survival of HCC. And, CECR7 played a catalytic role in HCC cells migration, invasion, and growth. Furthermore, CECR7 enhanced the stability of EXO1 mRNA by recruiting RNA binding protein U2AF2. And, EXO1 was determined to be an essential mediator for CECR7 to accelerate HCC cells migration, invasion, and growth. Conclusion In a word, our findings demonstrates that the cancer-promoting gene lncRNA CECR7 motivates HCC metastasis and growth through enhanced mRNA stability of EXO1 mediated by U2AF2, proposing a new insight for targeted therapy of HCC.
Collapse
Affiliation(s)
- Liang Zhao
- Department of General Surgery, Gansu Gem Flower Hospital, Lanzhou 730060, Gansu, China
| | - Qing Zang
- Department of Emergency, Gansu Gem Flower Hospital, Lanzhou 730060, Gansu, China
| | - Guodong Liang
- Department of Emergency, Gansu Gem Flower Hospital, Lanzhou 730060, Gansu, China
| | - Xiaobin Yao
- Department of General Surgery, Gansu Gem Flower Hospital, Lanzhou 730060, Gansu, China
| |
Collapse
|
5
|
A Water-Soluble Hydrogen Sulfide Donor Suppresses the Growth of Hepatocellular Carcinoma via Inhibiting the AKT/GSK-3 β/ β-Catenin and TGF- β/Smad2/3 Signaling Pathways. JOURNAL OF ONCOLOGY 2023; 2023:8456852. [PMID: 36925651 PMCID: PMC10014162 DOI: 10.1155/2023/8456852] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
Hepatocellular carcinoma (HCC) is a disease with high morbidity, high mortality, and low cure rate. Hyaluronic acid (HA) is widely adopted in tissue engineering and drug delivery. 5-(4-Hydroxyphenyl)-3H-1, 2-dithiol-3-thione (ADT-OH) is one of commonly used H2S donors. In our previous study, HA-ADT was designed and synthesized via coupling of HA and ADT-OH. In this study, compared with sodium hydrosulfide (NaHS, a fast H2S-releasing donor) and morpholin-4-ium (4-methoxyphenyl)-morpholin-4-ylsulfanylidenesulfido-λ5-phosphane (GYY4137, a slow H2S-releasing donor), HA-ADT showed stronger inhibitory effect on the proliferation, migration, invasion, and cell cycle of human HCC cells. HA-ADT promoted apoptosis by suppressing the expressions of phospho (p)-protein kinase B (PKB/AKT), p-glycogen synthase kinase-3β (GSK-3β), p-β-catenin, and also inhibited autophagy via the downregulation of the protein levels of p-Smad2, p-Smad3, and transforming growth factor-β (TGF-β) in human HCC cells. Moreover, HA-ADT inhibited HCC xenograft tumor growth more effectively than both NaHS and GYY4137. Therefore, HA-ADT can suppress the growth of HCC cells by blocking the AKT/GSK-3β/β-catenin and TGF-β/Smad2/3 signaling pathways. HA-ADT and its derivatives may be developed as promising antitumor drugs.
Collapse
|
6
|
Jiang T, Zhu Z, Zhang J, Chen M, Chen S. Role of tumor-derived exosomes in metastasis, drug resistance and diagnosis of clear cell renal cell carcinoma. Front Oncol 2022; 12:1066288. [PMID: 36620603 PMCID: PMC9810999 DOI: 10.3389/fonc.2022.1066288] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Renal cancer is one of the most extensively studied human tumors today, with clear cell renal cell carcinoma accounting for approximately 80% of all cases. Despite recent advances in research on clear cell renal cell carcinoma, advanced distant metastasis of the disease, delay in diagnosis, as well as drug resistance remain major problems. In recent years, as an important mediator of material and information exchange between cells in the tumor microenvironment, exosomes have attracted widespread attention for their role in tumor development. It has been reported that tumor-derived exosomes may act as regulators and have an important effect on the metastasis, drug resistance formation, and providing targets for early diagnosis of clear cell renal cell carcinoma. Therefore, the extensive study of tumour-derived exosomes will provide a meaningful reference for the development of the diagnostic and therapeutic field of clear cell renal cell carcinoma. This article reviews the biological role and research progress of tumor-derived exosomes in different aspects of premetastatic niche formation, tumor angiogenesis, and epithelial-mesenchymal transition during the progression of clear cell renal cell carcinoma. In addition, the role of tumor-derived exosomes in the development of drug resistance in clear cell renal cell carcinoma is also addressed in this review. Furthermore, recent studies have found that cargoes of exosomes in serum and urine, for example, a series of miRNAs, have the potential to be biological markers of clear cell renal cell carcinoma and provide meaningful targets for early diagnosis and monitoring of tumors, which is also covered in this article.
Collapse
Affiliation(s)
- Tiancheng Jiang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Department of Medical College, Southeast University, Nanjing, China
| | - Zepeng Zhu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Department of Medical College, Southeast University, Nanjing, China
| | - Jiawei Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Department of Medical College, Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Department of Medical College, Southeast University, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Department of Medical College, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Li Y, Hu J, Guo D, Ma W, Zhang X, Zhang Z, Lu G, He S. LncRNA SNHG5 promotes the proliferation and cancer stem cell-like properties of HCC by regulating UPF1 and Wnt-signaling pathway. Cancer Gene Ther 2022; 29:1373-1383. [PMID: 35338348 PMCID: PMC9576592 DOI: 10.1038/s41417-022-00456-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/10/2022] [Accepted: 03/04/2022] [Indexed: 12/22/2022]
Abstract
The role of long noncoding RNA (lncRNAs) had been demonstrated in different types of cancer, including hepatocellular carcinoma. This study was intended to investigate the role of lncRNA small nucleolar RNA host gene 5 (SNHG5) in HCC proliferation and the liver CSC-like properties. Through functional experiments, we determined that knockdown of SNHG5 repressed HCC cell proliferation and CSC-like properties, while over-expression of SNHG5 promoted cell growth. At the same time, CSC markers (CD44, CD133, and ALDH1) and related transcription factors (OCT4, SOX2, and NANOG) were downregulated when SNHG5 was knocked down. Mechanically, RNA immunoprecipitation (RIP) and RNA pulldown assay showed that SNHG5 regulated the proliferation and CSC-like properties of HCC by binding UPF1. Further investigations showed that expression of critical components of Wnt/β-catenin pathway (β-catenin, TCF4, c-myc, cyclinD1, and c-Jun) were upregulated with depletion of UPF1 in liver CSCs, which were downregulated with depletion of SNHG5. After use of the inhibitor of Wnt/β-catenin pathway, the formation of liver CSCs sphere decreased. Taken together, SNHG5 plays a critical role to promote HCC cell proliferation and cancer stem cell-like properties via UPF1 and Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yarui Li
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Junbi Hu
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Dan Guo
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Wenhui Ma
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Xu Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Zhiyong Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Guifang Lu
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Shuixiang He
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China.
| |
Collapse
|
8
|
Song H, Huang XF, Hu SY, Lu LL, Yang XY. The LINC00261/MiR105-5p/SELL axis is involved in dysfunction of B cell and is associated with overall survival in hepatocellular carcinoma. PeerJ 2022; 10:e12588. [PMID: 35702258 PMCID: PMC9188773 DOI: 10.7717/peerj.12588] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/11/2021] [Indexed: 01/11/2023] Open
Abstract
Background Previous studies have been reported the immune dysfunction of various live tissues. However, the potential molecular mechanism of post-transcriptional regulation of immune related genes in hepatocellular carcinoma (HCC) is still not clear. We tried to identify crucial immune related biomarkers associated with HCC patients' outcomes and to reveal the transcriptional regulation. Method The fractions of 22 immune cells in tumor and adjacent tissues were estimated by CIBERSORT. Kruskal-Wallis test and differentially expressed analyzes were used for comparative studies. Cox proportional hazard regression model, Kaplan-Meier estimates and Log-rank test were used for survival analyses. Results From The Cancer Genome Atlas (TCGA), the gene, lncRNA and miRNA expression profiles of 379 HCC samples with clinical information were used for comparative studies. Eleven adaptive and innate immune cell types were significantly altered in HCC samples, including B cell memory, regulatory T cells and follicular helper T cells. Differentially expressed competing endogenous RNA (ceRNA) network associated with patients' overall survival was identified. Then, the novel pathway, including LINC00261, MiR105-5p and selectin L(SELL) was found and may be potential novel biomarkers for patients' outcomes and immunotherapy. Furthermore, SELL was significantly positively correlated (correlation coefficients: 0.47-0.69) with 12 known gene signatures of immunotherapy except for programmed cell death 1 (PDCD1). Conclusions Our findings could provide insights into the selection of novel LINC00261/MiR105-5p/SELL pathway which is associated with overall survival and may impact on efficacy of immunotherapy in HCC.
Collapse
Affiliation(s)
- Hao Song
- Department of Organ Transplantation, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xing-Feng Huang
- Department of Organ Transplantation, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Shu-yang Hu
- Department of Organ Transplantation, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | | | - Xiao-Yu Yang
- Department of Organ Transplantation, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
9
|
Zhang M, Liu G, Zhang Y, Chen T, Feng S, Cai R, Lu C. The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes. Int J Mol Sci 2022; 23:ijms23115903. [PMID: 35682583 PMCID: PMC9180208 DOI: 10.3390/ijms23115903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Riboswitches are regulatory noncoding RNAs found in bacteria, fungi and plants, that modulate gene expressions through structural changes in response to ligand binding. Understanding how ligands interact with riboswitches in solution can shed light on the molecular mechanisms of this ancient regulators. Previous studies showed that riboswitches undergo global conformation changes in response to ligand binding to relay information. Here, we report conformation switching models of the recently discovered tetrahydrofolic acid-responsive second class of tetrahydrofolate (THF-II) riboswitches in response to ligand binding. Using a combination of selective 2′-hydroxyl acylation, analyzed by primer extension (SHAPE) assay, 3D modeling and small-angle X-ray scattering (SAXS), we found that the ligand specifically recognizes and reshapes the THF-II riboswitch loop regions, but does not affect the stability of the P3 helix. Our results show that the THF-II riboswitch undergoes only local conformation changes in response to ligand binding, rearranging the Loop1-P3-Loop2 region and rotating Loop1 from a ~120° angle to a ~75° angle. This distinct conformation changes suggest a unique regulatory mechanism of the THF-II riboswitch, previously unseen in other riboswitches. Our findings may contribute to the fields of RNA sensors and drug design.
Collapse
Affiliation(s)
- Minmin Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.Z.); (Y.Z.); (T.C.); (S.F.)
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
| | - Yunlong Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.Z.); (Y.Z.); (T.C.); (S.F.)
| | - Ting Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.Z.); (Y.Z.); (T.C.); (S.F.)
| | - Shanshan Feng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.Z.); (Y.Z.); (T.C.); (S.F.)
| | - Rujie Cai
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Correspondence: (R.C.); (C.L.); Tel.: +86-21-6779-2740 (C.L.)
| | - Changrui Lu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.Z.); (Y.Z.); (T.C.); (S.F.)
- Correspondence: (R.C.); (C.L.); Tel.: +86-21-6779-2740 (C.L.)
| |
Collapse
|
10
|
Li D, Fan X, Li Y, Yang J, Lin H. The paradoxical functions of long noncoding RNAs in hepatocellular carcinoma: Implications in therapeutic opportunities and precision medicine. Genes Dis 2022; 9:358-369. [PMID: 35224152 PMCID: PMC8843871 DOI: 10.1016/j.gendis.2020.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/22/2020] [Accepted: 11/24/2020] [Indexed: 11/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most aggressive and lethal diseases with poor prognosis, worldwide. However, the mechanisms underlying HCC have not been comprehensively elucidated. With the recent application of high-throughput sequencing techniques, a diverse catalogue of differentially expressed long non-coding RNAs (lncRNA) in cancer have been shown to participate in HCC. Rather than being "transcriptional noise," they are emerging as important regulators of many biological processes, including chromatin remodelling, transcription, alternative splicing, translational and post-translational modification. Moreover, lncRNAs have dual effects in the development and progression of HCC, including oncogenic and tumour-suppressive roles. Collectively, recently data point to lncRNAs as novel diagnostic and prognostic biomarkers with satisfactory sensitivity and specificity, as well as being therapeutic targets for HCC patients. In this review, we highlight recent progress of the molecular patterns of lncRNAs and discuss their potential clinical application in human HCC.
Collapse
Affiliation(s)
- Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| |
Collapse
|
11
|
Zheng W, Shen GL, Xu KY, Yin QQ, Hui TC, Zhou ZW, Xu CA, Wang SH, Wu WH, Shi LF, Pan HY. Lnc524369 promotes hepatocellular carcinoma progression and predicts poor survival by activating YWHAZ-RAF1 signaling. World J Gastrointest Oncol 2022; 14:253-264. [PMID: 35116115 PMCID: PMC8790426 DOI: 10.4251/wjgo.v14.i1.253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver cancer is one of the most highly malignant cancers, characterized by easy metastasis and chemoradiotherapy resistance. Emerging evidence indicates that long noncoding RNAs (LncRNAs), including Lnc524369, are highly involved in the initiation, progression, radioresistance, and chemoresistance of hepatocellular carcinoma (HCC). However, the function of Lnc524369 remains unclear.
AIM To explore the function of Lnc524369 in HCC.
METHODS To investigate the effect of Lnc524369, tissue from 41 HCC patients were analyzed using CCK8, migration, and invasion assays. Lnc524369 and YWHAZ (also named 14-3-3ζ) mRNA were detected by qPCR, and YWHAZ and RAF1 proteins were detected by western blot in liver cancer cell lines and human HCC tissues. The Cancer Cell Line Encyclopedia (CCLE) databases, STRING database, Human Protein Atlas database, and the TCGA database were used for bioinformatic analysis.
RESULTS Lnc524369 was significantly upregulated in the nucleus of liver cancer cells and human HCC tissues. Overexpression of Lnc524369 was associated with the proliferation, migration, and invasion of liver cancer cells. YWHAZ and RAF1 proteins and YWHAZ mRNA were overexpressed in liver cancer, which could be attenuated by overexpression of Lnc524369. Lnc524369 and its downstream target YWHAZ and RAF1 proteins were negatively associated with overall survival time.
CONCLUSION Lnc524369 might be a promising target of HCC as it can enhance liver cancer progression and decrease the overall survival time of HCC by activating the YWHAZ/RAF1 pathway.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou 215006, Jiangsu Province, China
- Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Guo-Liang Shen
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Ke-Yang Xu
- School of Chinese Medicine, Hongkong Baptist university, Hong Kong 999777, China
| | - Qiao-Qiao Yin
- Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Tian-Chen Hui
- Department of Graduate School, Bengbu Medical College, Bengbu 233030, Anhui Province, China
| | - Zhe-Wen Zhou
- Department of Graduate School, Bengbu Medical College, Bengbu 233030, Anhui Province, China
| | - Cheng-An Xu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Shou-Hao Wang
- Medical Department of Qingdao University, Qingdao University, Qingdao 266071, Shandong, China
| | - Wen-Hao Wu
- Medical Department of Qingdao University, Qingdao University, Qingdao 266071, Shandong, China
| | - Ling-Fei Shi
- Diagnosis and Treatment Center of Osteoporosis, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hang Zhou 310014, Zhejiang Province, China
| | - Hong-Ying Pan
- Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| |
Collapse
|
12
|
Gu H, Yan C, Wan H, Wu L, Liu J, Zhu Z, Gao D. Mesenchymal stem cell-derived exosomes block malignant behaviors of hepatocellular carcinoma stem cells through a lncRNA C5orf66-AS1/microRNA-127-3p/DUSP1/ERK axis. Hum Cell 2021; 34:1812-1829. [PMID: 34431063 DOI: 10.1007/s13577-021-00599-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 01/15/2023]
Abstract
Mesenchymal stem cell (MSCs)-derived exosomes have been frequently used as useful tools in disease control. This research aimed to study the function of MSC-derived exosomes (Exo) in the stemness of cancer stem cells (CSCs) of hepatocellular carcinoma (HCC) and the molecular mechanism. Exo from the procured human bone marrow-MSCs were extracted and identified. CSCs from HCC cell lines were collected. The CSCs were treated with Exo, and then the proliferation, migration, invasion, angiogenesis-stimulating and self-renewal abilities of the Hep3B-CSCs and HuH7-CSCs were significantly reduced. C5orf66-AS1 was found as the most upregulated long noncoding RNAs (lncRNAs) in CSCs after Exo treatment. The integrated bioinformatic analyses and luciferase assays suggested that C5orf66-AS1 upregulated DUSP1 expression through sequestering microRNA-127-3p (miR-127-3p). Either artificial overexpression of miR-127-3p or silencing of DUSP1 blocked the inhibitory functions of Exo in the CSCs. DUSP1 inhibition increased the phosphorylation of ERK. Similar results were reproduced in vivo where Exo reduced the growth of xenograft formed by CSCs in nude mice, and this reduction was blocked upon miR-127-3p overexpression or DUSP1 silencing. To conclude, this research reported that MSC-derived Exo block malignant behaviors of HCC-sourced CSCs through a C5orf66-AS1/miR-127-3p/DUSP1/ERK axis.
Collapse
Affiliation(s)
- Hao Gu
- Department of Liver·Laparoscopic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Chao Yan
- Department of Radiation Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, Shandong, People's Republic of China
| | - Haijun Wan
- Department of Gastroenterology and Hepatology, Jinling Hospital Affiliated to Nanjing University School of Medicine, No. 305, East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China.
| | - Lin Wu
- Department of Gastroenterology and Hepatology, Jinling Hospital Affiliated to Nanjing University School of Medicine, No. 305, East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China
| | - Junjie Liu
- Department of Liver·Laparoscopic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Zhiqiang Zhu
- Department of Anorectal Surgery, Yantai Affiliated Hospital, Binzhou Medical College, Yantai, 264117, Shandong, People's Republic of China
| | - Dazhi Gao
- Department of Radiology Intervention, Jinling Hospital Affiliated to Nanjing University School of Medicine, No. 305, East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China
| |
Collapse
|
13
|
Schwerdtfeger M, Desiderio V, Kobold S, Regad T, Zappavigna S, Caraglia M. Long non-coding RNAs in cancer stem cells. Transl Oncol 2021; 14:101134. [PMID: 34051619 PMCID: PMC8176362 DOI: 10.1016/j.tranon.2021.101134] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Long non coding RNAs are involved in the regulation of multiple cellular processes. Cancer stemness and escape from immunological anti-cancer mechanisms are important mechanisms of resistance to anti-cancer agents and are pivotal in controlling cancer development and metastases. Long non coding RNAs have deep effects on the immune-modulation and on the control of cancer stem cells. Several pathways involved in immunological escape and cancer stemness are modulated by long non coding RNAs. Targeting long non coding RNAs is a potential new strategy to control tumor development and metastases.
In recent years, it has been evidenced that the human transcriptome includes several types of non-coding RNAs (ncRNAs) that are mainly involved in the regulation of different cellular processes. Among ncRNAs, long-non-coding RNAs (lncRNAs) are defined as longer than 200 nucleotides and have been shown to be involved in several physiological and pathological events, including immune system regulation and cancer. Cancer stem cells (CSCs) are defined as a population of cancer cells that possess characteristics, such as resistance to standard treatments, cancer initiation, ability to undergo epithelial-to-mesenchymal transition, and the ability to invade, spread, and generate metastases. The cancer microenvironment, together with genetic and epigenetic factors, is fundamental for CSC maintenance and tumor growth and progression. Unsurprisingly, lncRNAs have been involved in both CSC biology and cancer progression, prognosis and recurrence. Here we review the most recent literature on IncRNAs involvement in CSC biology and function.
Collapse
Affiliation(s)
- Melanie Schwerdtfeger
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy; Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL); German Center for Translational Cancer Research (DKTK), Partner site Munich, Munich, Germany
| | - Tarik Regad
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
14
|
LncRNA HOXA-AS2 promotes the progression of prostate cancer via targeting miR-509-3p/PBX3 axis. Biosci Rep 2021; 40:225235. [PMID: 32519740 PMCID: PMC7426630 DOI: 10.1042/bsr20193287] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) act as crucial modulators during the development of diverse cancers. Although various types of lncRNAs in prostate cancer (PCa) have been explored, quantities of lncRNAs still wait to be exploited. The present study is to probe the functions and mechanism of lncRNA HOXA cluster antisense RNA 2 (HOXA-AS2) in PCa. In the present study, we discovered that HOXA-AS2 was highly expressed in PCa tissues and cells. HOXA-AS2 depletion obviously influenced cell proliferation, migration, invasion, as well as epithelial-to-mesenchymal transition (EMT) progression. In addition, miR-509-3p had low expression in PCa cells and inversely modulated by HOXA-AS2. Cutting down HOXA-AS2 expression was capable of up-regulating miR-509-3p expression. In addition, HOXA-AS2 served as a competing endogenous RNA (ceRNA) through sponging miR-509-3p to release pre-B-cell leukemia homeobox 3 (PBX3) expression. The expression of PBX3 was noticeably high in tumor tissues. And PBX3 expression level was down-regulated markedly with the knockdown of HOXA-AS2. Rescue experiments certified the facilitated role of HOXA-AS2-miR-509-3p-PBX3 axis in regulating the progress of PCa. The present study may provide clues for exploration of novel therapeutic targets for PCa patients.
Collapse
|
15
|
Targeting Hedgehog signalling in CD133-positive hepatocellular carcinoma: improving Lenvatinib therapeutic efficiency. Med Oncol 2021; 38:41. [PMID: 33730237 DOI: 10.1007/s12032-021-01487-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Lenvatinib has been approved as a first-line treatment for advanced hepatocellular carcinoma (HCC) in recent years. However, Lenvatinib resistance hinders its therapeutic effect, and the underlying mechanism of action of Lenvatinib needs to be better understood. Increasing studies have suggested that cancer stem cells (CSCs) are an important driving force. Hedgehog signalling is important for the maintenance of hepatocellular carcinoma stemness. In the present study, we investigated the therapeutic role of the Hedgehog signalling inhibitor in reversing Lenvatinib resistance in CD133-positive HCC cells. First, we examined the inhibitory impact of Lenvatinib against CD133 expression in HCC cell lines through Western blot. The CCK8 assay showed that GANT61, a Hedgehog signalling inhibitor, has a suppression advantage over other CSCs-related signalling inhibitors regarding cell viability. Moreover, Lenvatinib and GANT61 combined had better inhibitory effects on cell viability and malignant properties, both in vivo and in vitro. In addition, GANT61 reversed the upregulation of CD133 and Hedgehog signalling caused by Lenvatinib in SK-Hep-1 and MHCC97H. Thus, our results suggested that GANT61 reversed Lenvatinib resistance by suppressing Hedgehog signalling in HCC cells, especially in CD133-positive cells and combining Lenvatinib with Hedgehog signalling inhibitors could improve its therapeutic efficacy in HCC patients with high CD133 expression levels.
Collapse
|
16
|
Huang G, Li L, Liang C, Yu F, Teng C, Pang Y, Wei T, Song J, Wang H, Liao X, Li Y, Yang J. Upregulated UCA1 contributes to oxaliplatin resistance of hepatocellular carcinoma through inhibition of miR-138-5p and activation of AKT/mTOR signaling pathway. Pharmacol Res Perspect 2021; 9:e00720. [PMID: 33565716 PMCID: PMC7874507 DOI: 10.1002/prp2.720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) inevitably developed oxaliplatin (OXA) resistance after long-term treatment, but the mechanism remains unclear. Here, we found that LncRNA UCA1 was upregulated in most of OXA-resistant HCC tissues and cells (HepG2/OXA and SMMC-7721/OXA). Follow-up analysis and online Kaplan-Meier Plotter revealed that HCC patients with high UCA1 level had a shorter survival compared with those with low expression. Overexpression of UCA1 increased OXA IC50 in HepG2 and SMMC-7721 cells, whereas knockdown of UCA1 decreased OXA IC50 in resistant counterparts. Moreover, dual luciferase reporter assay showed that co-transfection of UCA1-WT plasmid with miR-138-5p mimics enhanced fluorescence signals, whereas co-transfection of UCA1-Mut plasmid and miR-138-5p mimics did not induce any changes. Consistently, UCA1 levels in HepG2/OXA and SMMC-7721/OXA cells were downregulated after transfected with miR-138-5p mimics. UCA1 silencing or transfection of miR-138-5p mmics inhibited the activation of AKT and mTOR in HepG2/OXA and SMMC-7721/OXA cells, whereas UCA1 overexpression increased the phosphorylated AKT and mTOR levels in parental counterparts. Rapamycin or miR-138-5p mimics similarly suppressed the activation of AKT and mTOR, whereas UCA1 overexpression exert opposite roles. Interestingly, administration of rapamycin or miR-138-5p mimics apparently antagonized the effects of UCA1 on AKT and mTOR activation. Besides, depletion of UCA1 triggered more dramatic regression of HepG2 xenografts than that of HepG2/OXA xenografts with OXA treatment and impaired the p-AKT and p-mTOR levels in vivo. In conclusion, our findings provide the evidence that UCA1 may contribute to OXA resistance via miR-138-5p-mediated AK /mTOR activation, suggesting that UCA1 is a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Guolin Huang
- Department of PharmacologySchool of PharmacyGuangxi Medical UniversityNanningGuangxiPeople’s Republic of China
| | - Li Li
- Department of PharmacologySchool of PharmacyGuangxi Medical UniversityNanningGuangxiPeople’s Republic of China
| | - Chaoyong Liang
- Department of ChemotherapyAffiliated Cancer HospitalGuangxi Medical UniversityNanningGuangxiPeople’s Republic of China
| | - Fei Yu
- Department of PharmacologySchool of PharmacyGuangxi Medical UniversityNanningGuangxiPeople’s Republic of China
| | - Cuifang Teng
- Department of PharmacologySchool of PharmacyGuangxi Medical UniversityNanningGuangxiPeople’s Republic of China
| | - Yingxing Pang
- Department of PharmacologySchool of PharmacyGuangxi Medical UniversityNanningGuangxiPeople’s Republic of China
| | - Tongtong Wei
- Department of PharmacologySchool of PharmacyGuangxi Medical UniversityNanningGuangxiPeople’s Republic of China
| | - Jinjing Song
- Department of PharmacologySchool of PharmacyGuangxi Medical UniversityNanningGuangxiPeople’s Republic of China
| | - Hanlin Wang
- Department of Internal MedicineFirst Affiliated HospitalGuangxi Medical UniversityNanningGuangxiPeople’s Republic of China
| | - Xiaoli Liao
- Department of ChemotherapyAffiliated Cancer HospitalGuangxi Medical UniversityNanningGuangxiPeople’s Republic of China
| | - Yongqiang Li
- Department of ChemotherapyAffiliated Cancer HospitalGuangxi Medical UniversityNanningGuangxiPeople’s Republic of China
| | - Jie Yang
- Department of PharmacologySchool of PharmacyGuangxi Medical UniversityNanningGuangxiPeople’s Republic of China
| |
Collapse
|
17
|
Xie C, Li SY, Fang JH, Zhu Y, Yang JE. Functional long non-coding RNAs in hepatocellular carcinoma. Cancer Lett 2020; 500:281-291. [PMID: 33129957 DOI: 10.1016/j.canlet.2020.10.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent human malignancy with high morbidity worldwide. Hepatocarcinogenesis is a complex multistep process, and its underlying molecular mechanisms remain largely unknown. Recently, long non-coding RNAs (lncRNAs), a class of newly discovered molecules, have been revealed as essential regulators in the development of HCC. HCC-associated lncRNAs affect multiple malignant phenotypes by modulating gene expression or protein activity. Moreover, the dysregulation of lncRNAs in the liver is also associated with diseases predisposing to HCC, such as chronic viral infection, nonalcoholic steatohepatitis, and liver fibrosis/cirrhosis. A deeper understanding of the lncRNA regulatory network in the multistep processes of HCC development will provide new insights into the diagnosis and treatment of HCC. In this review, we introduce the biogenesis and function of lncRNAs and summarize recent knowledge on how lncRNAs regulate the malignant hallmarks of HCC, such as uncontrolled cell proliferation, resistance to cell death, metabolic reprogramming, immune escape, angiogenesis, and metastasis. We also review emerging insights into the role of lncRNAs in HCC-associated liver diseases. Finally, we discuss the potential applications of lncRNAs as early diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Chen Xie
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou 510275, PR China
| | - Song-Yang Li
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou 510275, PR China
| | - Jian-Hong Fang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou 510275, PR China
| | - Ying Zhu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou 510275, PR China
| | - Jin-E Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou 510275, PR China.
| |
Collapse
|
18
|
Zheng S, Guo Y, Dai L, Liang Z, Yang Q, Yi S. Long intergenic noncoding RNA01134 accelerates hepatocellular carcinoma progression by sponging microRNA-4784 and downregulating structure specific recognition protein 1. Bioengineered 2020; 11:1016-1026. [PMID: 32970959 PMCID: PMC8291876 DOI: 10.1080/21655979.2020.1818508] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of long noncoding RNAs (lncRNAs) has been suggested to foster the carcinogenesis of hepatocellular carcinoma (HCC). To date, the role of long intergenic noncoding RNA01134 (LINC01134) in HCC have never been researched yet. Herein, we found that LINC01134 was highly expressed in HCC tissues in comparison with the matched normal liver tissues and increased LINC01134 expression correlated with shorter overall survival of patients with HCC. Additionally, we demonstrated LINC01134 downregulation significantly suppressed the proliferation ability and colony formation capacity of HCC cells. Furthermore, we revealed that LINC01134 functioned as a competitive endogenous RNA (ceRNA) for miR-4784 to upregulate structure-specific recognition protein 1 (SSRP1) in HCC cells. Meanwhile, miR-4784 inhibitor or restoration of SSRP1 could markedly attenuate the inhibitory effect of LINC01134 downregulation on HCC cells. Taken together, LINC01134 may promote the carcinogenesis of HCC at least partly via the miR-4784/SSRP1 axis. Therefore, LINC01134/miR-4784/SSRP1 axis should be developed as the promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Shiyang Zheng
- Department of thyroid and breast surgery, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China.,Department of breast surgery, The Third Affiliated Hospital of Guangzhou medical college , Guangzhou, China
| | - Yan Guo
- Department of Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Lizhen Dai
- Department of Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Ziming Liang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Qing Yang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Shuhong Yi
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| |
Collapse
|
19
|
Yao B, Niu Y, Li Y, Chen T, Wei X, Liu Q. High-matrix-stiffness induces promotion of hepatocellular carcinoma proliferation and suppression of apoptosis via miR-3682-3p-PHLDA1-FAS pathway. J Cancer 2020; 11:6188-6203. [PMID: 33033502 PMCID: PMC7532500 DOI: 10.7150/jca.45998] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) with malignant behaviors related to death causes distant metastasis and is the fourth primary cancer in the whole world, which has taken millions lives in Asian countries such as China. The novel miR-3682-3p involving high-expression-related poor prognosis in HCC tissues and cell lines indicate oncogenesis functions in vitro and in vivo. According to TCGA database, our group find several none-coding RNAs showing abnormal expression including miR-3682-3p, thus we originally confirmed the inhibition of proliferation and acceleration of apoptosis are enhanced in miR-3682-3p knock-down cell lines. Then, in nude mice transplantation assays, we found the suppressor behaviors, smaller nodules and lower speed of tumor expansion in model of injection of cell cultured and transfected shRNA-miR-3682-3p. A combination of databases (Starbase, Targetscan and MiRgator) illustrates miR-3682-3p targets PHLDA1, which shows negative correlation demonstrated by dual-luciferase reporter system. To make functional verification of PHLDA1, we upregulate the gene and rescue tests are established to confirm that miR-3682-3p suppresses PHLDA1 to promotion of cell growth. Rescue experiments finish making confirmation of relation of miR-3682-3p and PHLDA1 subsequently. Cirrhotic tissues illustrate strong correlation to higher miR-3682-3p and clinical features make the hint that high-extracellular-matrix-stiffness environment promotes such miRNA. Functional tests on different stiffness provide the proof of underlying mechanism. In conclusion, the overexpression of miR-3682-3p mediates PHLDA1 inhibition could impede apoptosis and elevate proliferation of HCC through high-extracellular-matrix-stiffness environment potentially.
Collapse
Affiliation(s)
- Bowen Yao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Yongshen Niu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Yazhao Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Xinyu Wei
- Medicine college, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| |
Collapse
|
20
|
Shi C, Yang J, Hu L, Liao B, Qiao L, Shen W, Xie F, Zhu G. Glycochenodeoxycholic acid induces stemness and chemoresistance via the STAT3 signaling pathway in hepatocellular carcinoma cells. Aging (Albany NY) 2020; 12:15546-15555. [PMID: 32756004 PMCID: PMC7467378 DOI: 10.18632/aging.103751] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/06/2020] [Indexed: 12/20/2022]
Abstract
The poor prognosis of hepatocellular carcinoma (HCC) is primarily attributed to its high frequency of recurrence and resistance to chemotherapy. Epithelial-to-mesenchymal transition (EMT) and the acquisition of cancer stem cells (CSCs) are the fundamental drivers of chemoresistance in HCC. Glycochenodeoxycholic acid (GCDC), a component of bile acid (BA), has been reported to induce necrosis in primary human hepatocytes. In the present work, we investigated the function of GCDC in HCC chemoresistance. We found that GCDC promoted chemoresistance in HCC cells by down-regulating and up-regulating the expression of apoptotic and anti-apoptotic genes, respectively. Furthermore, GCDC induced the EMT phenotype and stemness in HCC cells and activated the STAT3 signaling pathway. These findings reveal that GCDC promotes chemoresistance in HCC by inducing stemness via the STAT3 pathway and could be a potential target in HCC chemotherapy.
Collapse
Affiliation(s)
- Changying Shi
- Department of Hepatology, Eastern Hepatobiliary Surgery Hospital, Affiliated to Second Military Medical University, Shanghai, China
| | - Jiamei Yang
- Department of Hepatology, Eastern Hepatobiliary Surgery Hospital, Affiliated to Second Military Medical University, Shanghai, China
| | - Longmiao Hu
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Boyi Liao
- Department of Hepatology, Eastern Hepatobiliary Surgery Hospital, Affiliated to Second Military Medical University, Shanghai, China
| | - Liang Qiao
- Department of Hepatology, Eastern Hepatobiliary Surgery Hospital, Affiliated to Second Military Medical University, Shanghai, China
| | - Weifeng Shen
- Department of Hepatology, Eastern Hepatobiliary Surgery Hospital, Affiliated to Second Military Medical University, Shanghai, China
| | - Feng Xie
- Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Affiliated to Second Military Medical University, Shanghai, China
| | - Guoqing Zhu
- Department of Interventional Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Yao B, Li Y, Niu Y, Wang L, Chen T, Guo C, Liu Q. Hypoxia-induced miR-3677-3p promotes the proliferation, migration and invasion of hepatocellular carcinoma cells by suppressing SIRT5. J Cell Mol Med 2020; 24:8718-8731. [PMID: 32596968 PMCID: PMC7412699 DOI: 10.1111/jcmm.15503] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 05/08/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC), with life‐threatening malignant behaviours, often develops distant metastases and is the fourth most common primary cancer in the world, having taken millions of lives in Asian countries such as China. The novel miR‐3677‐3p is involved in a high‐expression‐related poor prognosis in HCC tissues and cell lines, indicating oncogenesis functions in vitro and in vivo. Initially, we confirmed the inhibition of proliferation, migration and invasion in miR‐3677‐3p knock‐down MHCC‐97H and SMMC‐7721 cell lines, which are well known for their high degree of invasiveness. Then, we reversed the functional experiments in the low‐miR‐3677‐3p‐expression Hep3B cell line via overexpressing miR‐3677‐3p. In nude mice xenograft and lung metastasis assays, we found suppressor behaviours, smaller nodules and low density of organ spread, after injection of cells transfected with shRNA‐miR‐3677‐3p. A combination of databases (Starbase, TargetScan and MiRgator) illustrated miR‐3677‐3p targets, and it was shown to suppress the expression of SIRT5 in a dual‐luciferase reporter system. To clarify the conclusions of previous ambiguous research, we up‐regulated SIRT5 in Hep3B cells, and rescue tests were established for confirmation that miR‐3677‐3p suppresses SIRT5 to enhance the migration and invasion of HCC. Interestingly, we discovered hypoxia‐induced miR‐3677‐3p up‐regulation benefited HCC malignancy and invasiveness. In conclusion, the overexpression of miR‐3677‐3p mediated SIRT5 inhibition, which could increase proliferation, migration and invasion of HCC in hypoxic microenvironments.
Collapse
Affiliation(s)
- Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yazhao Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yongshen Niu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cheng Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
22
|
Li S, Chen S, Wang B, Zhang L, Su Y, Zhang X. The long noncoding RNA LINC00341 suppresses colorectal carcinoma by preventing cell migration and apoptosis. Cell Biochem Funct 2020; 38:266-274. [PMID: 32067238 PMCID: PMC7318321 DOI: 10.1002/cbf.3473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/20/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022]
Abstract
Long noncoding RNAs (lncRNAs) are ubiquitous transcripts that play key roles in regulating gene expression at the levels of transcription, RNA processing, and translation. Aberrant expression and mutations of lncRNAs represent a driving force behind oncogenesis and development of tumours. However, most of the lncRNAs are still being undiscovered, and conclusive experimental evidence for their functional relevance continues to be lacking for most malignancies. We have found that lncRNA long intergenic non–protein‐coding RNA 341 (LINC00341) is aberrantly downregulated by microarray‐based screenings on nonmetastatic and metastatic colorectal carcinoma (CRC) specimens; LINC00341 is a novel long intergenic non–protein‐coding RNA with unknown functions. LINC00341 overexpression restricts tumour growth and promotes its apoptosis. Instead, LINC00341 silencing accelerates CRC cell proliferation and migration. RNA‐pulldown assay identifies LINC00341 physically binds to HMGB2 and stabilizes the localization of HMGB2 in the cytoplasm. Notably, LINC00341 knockdown leads to the shift of HMGB2 into nuclear, in which it triggers epithelial to mesenchymal transition (EMT) programming. Moreover, LINC00341 can also promote apoptosis. Significance of the study LncRNAs are ubiquitous transcripts that play key roles in regulating gene expression at the levels of transcription, RNA processing, and translation. Aberrant expression and mutations of lncRNAs represent a driving force behind oncogenesis and development of tumours. However, the function of lncRNA still needs further exploration. Our study has revealed a new noncoding RNA‐mediated regulatory network that highly likely protects colorectal carcinoma by preventing migration and apoptosis. The results will help further explore the molecular details about the progression of colorectal carcinoma and stimulate efforts to develop effective therapies.
Collapse
Affiliation(s)
- Shuyuan Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shuo Chen
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Boxue Wang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Lin Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yinan Su
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Although extensively studied for over a decade, gene expression programs established at the epigenetic and/or transcriptional levels do not fully characterize cancer stem cells (CSC). This review will highlight the latest advances regarding the functional relevance of different key post-transcriptional regulations and how they are coordinated to control CSC homeostasis. RECENT FINDINGS In the past 2 years, several groups have identified master post-transcriptional regulators of CSC genetic programs, including RNA modifications, RNA-binding proteins, microRNAs and long noncoding RNAs. Of particular interest, these studies reveal that different post-transcriptional mechanisms are coordinated to control key signalling pathways and transcription factors to either support or suppress CSC homeostasis. SUMMARY Deciphering molecular mechanisms coordinating plasticity, survival and tumourigenic capacities of CSCs in adult and paediatric cancers is essential to design new antitumour therapies. An entire field of research focusing on post-transcriptional gene expression regulation is currently emerging and will significantly improve our understanding of the complexity of the molecular circuitries driving CSC behaviours and of druggable CSC weaknesses.
Collapse
|
24
|
Ma XL, Hu B, Tang WG, Xie SH, Ren N, Guo L, Lu RQ. CD73 sustained cancer-stem-cell traits by promoting SOX9 expression and stability in hepatocellular carcinoma. J Hematol Oncol 2020; 13:11. [PMID: 32024555 PMCID: PMC7003355 DOI: 10.1186/s13045-020-0845-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background Aberrant AKT activation contributes to cancer stem cell (CSC) traits in hepatocellular carcinoma (HCC). We previously reported that CD73 activated AKT signaling via the Rap1/P110β cascade. Here, we further explored the roles of CD73 in regulating CSC characteristics of HCC. Methods CD73 expression modulations were conducted by lentiviral transfections. CD73+ fractions were purified by magnetic-based sorting, and fluorescent-activated cell sorting was used to assess differentiation potentials. A sphere-forming assay was performed to evaluate CSC traits in vitro, subcutaneous NOD/SCID mice models were generated to assess in vivo CSC features, and colony formation assays assessed drug resistance capacities. Stemness-associated gene expression was also determined, and underlying mechanisms were investigated by evaluating immunoprecipitation and ubiquitylation. Results We found CD73 expression was positively associated with sphere-forming capacity and elevated in HCC spheroids. CD73 knockdown hindered sphere formation, Lenvatinib resistance, and stemness-associated gene expression, while CD73 overexpression achieved the opposite effects. Moreover, CD73 knockdown significantly inhibited the in vivo tumor propagation capacity. Notably, we found that CD73+ cells exhibited substantially stronger CSC traits than their CD73– counterparts. Mechanistically, CD73 exerted its pro-stemness activity through dual AKT-dependent mechanisms: activating SOX9 transcription via c-Myc, and preventing SOX9 degradation by inhibiting glycogen synthase kinase 3β. Clinically, the combined analysis of CD73 and SOX9 achieved a more accurate prediction of prognosis. Conclusions Collectively, CD73 plays a critical role in sustaining CSCs traits by upregulating SOX9 expression and enhancing its protein stability. Targeting CD73 might be a promising strategy to eradicate CSCs and reverse Lenvatinib resistance in HCC.
Collapse
Affiliation(s)
- Xiao-Lu Ma
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Bo Hu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei-Guo Tang
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Su-Hong Xie
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Ning Ren
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, 201100, China.
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China.
| | - Ren-Quan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
25
|
Farcas M, Gavrea AA, Gulei D, Ionescu C, Irimie A, Catana CS, Berindan-Neagoe I. SIRT1 in the Development and Treatment of Hepatocellular Carcinoma. Front Nutr 2019; 6:148. [PMID: 31608282 PMCID: PMC6773871 DOI: 10.3389/fnut.2019.00148] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Current treatment options for inoperable HCCs have decreased therapeutic efficacy and are associated with systemic toxicity and chemoresistance. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide–dependent enzyme that is frequently overexpressed in HCC, where it promotes tumorigenicity, metastasis, and chemoresistance. SIRT1 also maintains the tumorigenic and self-renewal proprieties of liver cancer stem cells. Multiple tumor-suppressive microRNAs (miRNAs) are downregulated in HCC and, as a consequence, permit SIRT1-induced tumorigenicity. However, either directly targeting SIRT1, combining conventional chemotherapy with SIRT1 inhibitors, or upregulating tumor-suppressive miRNAs may improve therapeutic efficacy and patient outcomes. Here, we present the interaction between SIRT1, miRNAs, and liver cancer stem cells and discuss the consequences of their interplay for the development and treatment of HCC.
Collapse
Affiliation(s)
- Marius Farcas
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei-Alexandru Gavrea
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Calin Ionescu
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,5th Surgical Department, Municipal Hospital, Cluj-Napoca, Romania
| | - Alexandru Irimie
- 11th Department of Oncological Surgery and Gynecological Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuţǎ", Cluj-Napoca, Romania
| | - Cristina S Catana
- Department of Medical Biochemistry, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuţǎ", Cluj-Napoca, Romania
| |
Collapse
|
26
|
Guo Y, Yao B, Zhu Q, Xiao Z, Hu L, Liu X, Li L, Wang J, Xu Q, Yang L, Huang D. MicroRNA-301b-3p contributes to tumour growth of human hepatocellular carcinoma by repressing vestigial like family member 4. J Cell Mol Med 2019; 23:5037-5047. [PMID: 31207037 PMCID: PMC6653225 DOI: 10.1111/jcmm.14361] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are key regulators in the tumour growth and metastasis of human hepatocellular carcinoma (HCC). Increasing evidence suggests that miR-301b-3p functions as a driver in various types of human cancer. However, the expression pattern of miR-301b-3p and its functional role as well as underlying molecular mechanism in HCC remain poorly known. Our study found that miR-301b-3p expression was significantly up-regulated in HCC tissues compared to adjacent non-tumour tissues. Clinical association analysis revealed that the high level of miR-301b-3p closely correlated with large tumour size and advanced tumour-node-metastasis stages. Importantly, the high miR-301b-3p level predicted a prominent poorer overall survival of HCC patients. Knockdown of miR-301b-3p suppressed cell proliferation, led to cell cycle arrest at G2/M phase and induced apoptosis of Huh7 and Hep3B cells. Furthermore, miR-301b-3p knockdown suppressed tumour growth of HCC in mice. Mechanistically, miR-301b-3p directly bond to 3'UTR of vestigial like family member 4 (VGLL4) and negatively regulated its expression. The expression of VGLL4 mRNA was down-regulated and inversely correlated with miR-301b-3p level in HCC tissues. Notably, VGLL4 knockdown markedly repressed cell proliferation, resulted in G2/M phase arrest and promoted apoptosis of HCC cells. Accordingly, VGLL4 silencing rescued miR-301b-3p knockdown attenuated HCC cell proliferation, cell cycle progression and apoptosis resistance. Collectively, our results suggest that miR-301b-3p is highly expressed in HCC. miR-301b-3p facilitates cell proliferation, promotes cell cycle progression and inhibits apoptosis of HCC cells by repressing VGLL4.
Collapse
Affiliation(s)
- Yang Guo
- Graduate DepartmentBengBu Medical CollegeBengBuAnhui ProvinceChina
- Key Laboratory of Tumour Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)HangzhouZhejiang ProvinceChina
| | - Bowen Yao
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Qiaojuan Zhu
- Department of Second Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhouZhejiang ProvinceChina
| | - Zunqiang Xiao
- Department of Second Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhouZhejiang ProvinceChina
| | - Linjun Hu
- The Medical College of Qindao UniversityQindaoShandong ProvinceChina
| | - Xin Liu
- Key Laboratory of Tumour Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)HangzhouZhejiang ProvinceChina
| | - Lijie Li
- Key Laboratory of Tumour Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)HangzhouZhejiang ProvinceChina
| | - Jiahui Wang
- School of Basic Medical SciencesShandong UniversityJinanShandong ProvinceChina
| | - Qiuran Xu
- Key Laboratory of Tumour Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)HangzhouZhejiang ProvinceChina
| | - Liu Yang
- Key Laboratory of Tumour Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)HangzhouZhejiang ProvinceChina
| | - Dongsheng Huang
- Key Laboratory of Tumour Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College)HangzhouZhejiang ProvinceChina
| |
Collapse
|
27
|
Zhang L, Wang Y, Sun J, Ma H, Guo C. LINC00205 promotes proliferation, migration and invasion of HCC cells by targeting miR-122-5p. Pathol Res Pract 2019; 215:152515. [PMID: 31272761 DOI: 10.1016/j.prp.2019.152515] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/03/2019] [Accepted: 06/25/2019] [Indexed: 01/26/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as crucial regulators in the tumorigenesis and progression of hepatocellular carcinoma (HCC). Recently, long intergenic non-protein coding RNA 205 (LINC00205) has been identified as a prognostic biomarker in HCC. However, the biological role of LINC0205 and its potential molecular mechanism are poorly investigated. Here, we found that the expression of LINC00205 was dramatically up-regulated in HCC tissues compared to adjacent nontumor tissues. Furthermore, the level of LINC00205 in both Hep3B and Huh7 cells was prominently higher than that in normal hepatic cell line LO2. Notably, the high expression of LINC00205 was strongly correlated with tumor size ≥5 cm, venous infiltration and advanced tumor stages. Functionally, LINC00205 knockdown obviously repressed the proliferation, migration and invasion of Hep3B and Huh7 cells in vitro. An inverse correlation between LINC00205 and miR-122-5p was detected in HCC tissues. Interestingly, LINC00205 knockdown increased the level of miR-122-5p in both Hep3B and Huh7 cells. Mechanistically, luciferase reporter assay demonstrated LINC00205 acted as a competing endogenous RNA (ceRNA) by directly interacting with miR-122-5p. More importantly, miR-122-5p overexpression significantly restrained the proliferation, migration and invasion of HCC cells. Collectively, our study provides solid evidence to support the oncogenic role of LINC00205 in HCC, which may be benefit for the improvement of HCC therapy.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Yun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Jingjing Sun
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Hongye Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Cheng Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| |
Collapse
|
28
|
miR-1307-3p promotes tumor growth and metastasis of hepatocellular carcinoma by repressing DAB2 interacting protein. Biomed Pharmacother 2019; 117:109055. [PMID: 31176165 DOI: 10.1016/j.biopha.2019.109055] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing studies provide evidence to support that microRNAs (miRNAs) play important roles in regulating hepatocellular carcinoma (HCC) initiation and progression. However, whether miR-1307-3p is aberrantly expressed in HCC and affects malignant behaviors of cancer cells remain unknown. In this study, we found that miR-1307-3p expression was obviously up-regulated in HCC compared to adjacent nontumor tissues. Moreover, miR-1307-3p expression was prominently higher in HCC cells compared with the normal hepatic cell line LO2. Patients with venous infiltration, tumor size ≥5 cm and advanced tumor stages (III + IV) had significant higher levels of miR-1307-3p in HCC tissues. Notably, the high level of miR-1307-3p predicted poor clinical outcomes of HCC patients. Functionally, miR-1307-3p knockdown inhibited the proliferation, migration and invasion of MHCC97H and HCCLM3 cells, and suppressed the in vivo growth and metastasis of HCCLM3 cells. Conversely, overexpression of miR-1307-3p facilitated Hep3B cell proliferation, migration and invasion. Mechanistically, DAB2 interacting protein (DAB2IP) was screened as a direct target of miR-1307-3p. The expression of DAB2IP mRNA was down-regulated and inversely correlated with miR-1307-3p level in HCC tissues. miR-1307-3p knockdown increased the level of DAB2IP in HCC cells. Luciferase reporter assay confirmed the direct interaction between miR-1307-3p and 3'UTR of DAB2IP. Importantly, DAB2IP overexpression significantly suppressed the proliferation, migration and invasion of HCCLM3 cells. DAB2IP knockdown rescued miR-1307-3p silencing-attenuated HCC cell proliferation, migration and invasion. Taken together, our findings suggest that miR-1307-3p plays a driving role in HCC progression by targeting DAB2IP. Our study may provide new therapeutic targets for HCC treatment.
Collapse
|
29
|
Zhang Y, Sui R, Chen Y, Liang H, Shi J, Piao H. Long noncoding RNA MT1JP inhibits proliferation, invasion, and migration while promoting apoptosis of glioma cells through the activation of PTEN/Akt signaling pathway. J Cell Physiol 2019; 234:19553-19564. [PMID: 31066040 DOI: 10.1002/jcp.28553] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 01/10/2023]
Abstract
This study is carried out to elucidate the role of long noncoding RNAs (lncRNAs) MT1JP in proliferation, invasion, migration, and apoptosis of glioma cells through the regulation of PTEN/Akt signaling pathway. The expression of MT1JP in 80 normal brain tissues and 138 glioma tissues, as well as glioma cell lines, was detected by quantitative reverse-transcription polymerase chain reaction. Besides, glioma cells with overexpression and low expression of MT1JP were constructed to confirm the role of MT1JP in proliferation, invasion, migration, and apoptosis of glioma cells and the growth of glioma cells in vivo through the regulation of PTEN/Akt signaling pathway. MT1JP expression was downregulated in glioma tissues and cells. The low expression of MT1JP was considered as an independent risk factor for predicting overall survival in gliomas. After transfection of MT1JP overexpression plasmid, glioma cells showed decreased proliferation, migration and invasion ability, increased apoptosis rate, and decreased the tumorigenic ability of nude mice. The trends were opposite in glioma cells transfected with MT1JP poor expression plasmid. Collectively, our study suggests that lncRNA MT1JP is responsible for inhibiting proliferation, invasion, and migration while promoting apoptosis of glioma cells through the activation of PTEN/Akt signaling pathway.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Neurosurgery, Liaoning Cancer Hospital & Insititute, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Rui Sui
- Department of Neurosurgery, Liaoning Cancer Hospital & Insititute, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yi Chen
- Department of Neurosurgery, Liaoning Cancer Hospital & Insititute, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Hanyang Liang
- Department of Neurosurgery, Liaoning Cancer Hospital & Insititute, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Ji Shi
- Department of Neurosurgery, Liaoning Cancer Hospital & Insititute, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital & Insititute, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
30
|
Tan A, Li Q, Chen L. CircZFR promotes hepatocellular carcinoma progression through regulating miR-3619-5p/CTNNB1 axis and activating Wnt/β-catenin pathway. Arch Biochem Biophys 2018; 661:196-202. [PMID: 30468709 DOI: 10.1016/j.abb.2018.11.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/27/2022]
Abstract
Circular RNAs (circRNAs) have been discovered to exert essential roles in human cancers, including hepatocellular carcinoma. Although circZFR has been reported to facilitate the growth of papillary thyroid cancer, the role of circZFR in hepatocellular carcinoma (HCC) are largely unknown. In this study, bioinformatics analysis showed that circZFR was closely related with hepatocellular carcinoma. We then detect the expression of circZFR in HCC tissues using qRT-PCR. Furthermore, Kaplan-Meier method and log rank test revealed that high expression of circZFR was associated with the poor prognosis of patients with HCC. Subsequently, loss-of-function assay indicated that circZFR knockdown significantly suppressed cell proliferation and epithelial-mesenchymal transition (EMT) in HCC. In addition, microarray analysis was utilized to identify the differentially expressed mRNAs in response to circZFR knockdown. Moreover, Gene Ontology (GO) analysis further showed that circZFR might regulate Wnt/β-catenin signaling pathway. The results were further confirmed by luciferase reporter assay and western blot assays. Then bioinformatics tools predicted that cicrZFR enhanced the CTNNB1 expression via sponging miR-3619-5p. In summary, our findings indicated that circZFR may exert carcinogenic role in HCC through regulating miR-3619-5p/CTNNB1 axis and activating Wnt/β-catenin pathway. These findings may provide a novel perspective for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Aichun Tan
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan, 410078, China
| | - Qiongxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan, 410078, China
| | - Lizhang Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
31
|
Wang X, Dong K, Jin Q, Ma Y, Yin S, Wang S. Upregulation of lncRNA FER1L4 suppresses the proliferation and migration of the hepatocellular carcinoma via regulating PI3K/AKT signal pathway. J Cell Biochem 2018; 120:6781-6788. [PMID: 30382631 DOI: 10.1002/jcb.27980] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/02/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVES This study aimed to investigate the potential function of FER1L4 in the progression of hepatocellular carcinoma and uncover its underlying molecular mechanism. METHODS In the current study, quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to determine the expression profile of FER1L4 in normal liver tissues and hepatocellular carcinoma tissues of human, as well as hepatocellular carcinoma (HCC) cell lines including HL-7702[L-02], HepG-2, Hep3b, and SMMC-7721. Then, HepG-2 cells were transfected with pcDNA3.1-FER1L4 (pcDNA3.1-empty as negative control) for gain-of-function analysis, followed with cell functional abnormality tests. Specifically, colony formation analysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide experiment were taken advantage to measure the cell proliferation, while cell migration and invasion were evaluated by wound healing assay and transwell experiment respectively. Additionally, cell apoptosis was detected by flow cytometry. Moreover, the effect of FER1L4 on PI3K/AKT signal pathway activation was investigated through analyzing phosphorylation of related proteins, p-AKT/AKT and p-PI3K/PI3K, via Western blot assay. RESULTS Downregulation of FER1L4 in hepatocellular carcinoma tissues and cells was demonstrated by qRT-PCR analysis. Besides, FER1L4 overexpression evidently attenuated the cell proliferation, migration and invasion, but prompted cell apoptosis. Importantly, Western blot assays revealed that PII3K/AKT signal pathway were involved in mediating the progression regulation role of FER1L4 in HCC cells. CONCLUSIONS Our study suggested that FER1L4 might alleviate progression of hepatocellular carcinoma via blocking PI3K/AKT pathway, which encourages a better understanding of the pathogenesis of HCC and may provide a novel potential therapeutic target for clinical treatment.
Collapse
Affiliation(s)
- Xu Wang
- Department of No.2 Ward of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Ke Dong
- Department of No.2 Ward of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Qizhi Jin
- Department of No.2 Ward of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yujing Ma
- Department of No.2 Ward of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Shujun Yin
- Department of No.2 Ward of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Shan Wang
- Department of Echocardiography and Noninvasive Cardiology Laboratory, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
32
|
Long HD, Ma YS, Yang HQ, Xue SB, Liu JB, Yu F, Lv ZW, Li JY, Xie RT, Chang ZY, Lu GX, Xie WT, Fu D, Pang LJ. Reduced hsa-miR-124-3p levels are associated with the poor survival of patients with hepatocellular carcinoma. Mol Biol Rep 2018; 45:2615-2623. [PMID: 30341691 DOI: 10.1007/s11033-018-4431-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022]
Abstract
Hsa-MicroRNA-124a-3p (hsa-miR-124-3p) is involved in tumor progression in certain malignant tumors. However, its function and clinical implication in hepatocellular carcinoma (HCC) have not yet been illustrated. In this study, we explored the expression and prognostic value of hsa-miR-124-3p in patients with HCC. Hsa-miR-124-3p expression in HCC was analyzed in silico, which was subsequently confirmed by quantitative PCR in 155 HCC biopsy samples. Overall survival (OS) and disease-free survival in HCC patients was evaluated by Kaplan-Meier survival analysis, and univariate and multivariate Cox proportional hazard models were used. The in silico results demonstrated that hsa-miR-124-3p was reduced in cell lines and tissues of HCC, and hsa-miR-124-3p expression was lower in HCC tumor samples than in normal liver tissues. Moreover, a decrease in hsa-miR-124-3p expression was closely correlated with tumor diameter (≥ 5 cm) and number of lesions (multiple). Lower hsa-miR-124-3p expression was shown to be correlated with a shorter OS and poor prognosis in HCC. Our findings demonstrate that hsa-miR-124-3p might be a potential target for the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Hui-Deng Long
- Department of Pathology, Shihezi University School of Medicine, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, 832003, Xinjiang, China
| | - Yu-Shui Ma
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hui-Qiong Yang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Shao-Bo Xue
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ji-Bin Liu
- Cancer Institute of Nantong Tumor Hospital, Nantong, 226631, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhong-Wei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ji-Yu Li
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ru-Ting Xie
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zheng-Yan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Gai-Xia Lu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wen-Ting Xie
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Da Fu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Li-Juan Pang
- Department of Pathology, Shihezi University School of Medicine, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
33
|
Ma YS, Lv ZW, Yu F, Chang ZY, Cong XL, Zhong XM, Lu GX, Zhu J, Fu D. MicroRNA-302a/d inhibits the self-renewal capability and cell cycle entry of liver cancer stem cells by targeting the E2F7/AKT axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:252. [PMID: 30326936 PMCID: PMC6192354 DOI: 10.1186/s13046-018-0927-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND There is increasing evidence that liver cancer stem cells (LCSCs) contribute to hepatocellular carcinoma (HCC) initiation and progression. MicroRNA (miRNA) plays a significant functional role by directly regulating respective targets in LCSCs-triggered HCC, however, little is known about the function of the miRNA-302 family in LCSCs. METHODS MiRNAs microarray was used to detect the miRNAs involved in LCSCs maintenance and differentiation. Biological roles and the molecular mechanism of miRNA-302a/d and its target gene E2F7 were detected in HCC in vitro. The expression and correlation of miRNA-302a/d and E2F7 in HCC patients was evaluated by quantitative PCR and Kaplan-Meier survival analysis. RESULTS We found that the miRNA-302 family was downregulated during the spheroid formation of HCC cells and patients with lower miRNA-302a/d expression had shorter overall survival (OS) and progression-free survival (PFS). Moreover, E2F7 was confirmed to be directly targeted and inhibited by miRNA-302a/d. Furthermore, concomitant low expression of miRNA-302a/d and high expression of E2F7 correlated with a shorter median OS and PFS in HCC patients. Cellular functional analysis demonstrated that miRNA-302a/d negatively regulates self-renewal capability and cell cycle entry of liver cancer stem cells via suppression of its target gene E2F7 and its downstream AKT/β-catenin/CCND1 signaling pathway. CONCLUSIONS Our data provide the first evidence that E2F7 is a direct target of miRNA-302a/d and miRNA-302a/d inhibits the stemness of LCSCs and proliferation of HCC cells by targeting the E2F7/AKT/β-catenin/CCND1 signaling pathway.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhong-Wei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zheng-Yan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xian-Ling Cong
- Department of Biobank, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Xiao-Ming Zhong
- Department of Radiology, Jiangxi Provincial Tumor Hospital, Nanchang, 330029, China
| | - Gai-Xia Lu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jian Zhu
- Department of Digestive Surgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
34
|
Non-coding RNA in drug resistance of hepatocellular carcinoma. Biosci Rep 2018; 38:BSR20180915. [PMID: 30224380 PMCID: PMC6177555 DOI: 10.1042/bsr20180915] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/16/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has been one of the most highly lethal cancers. The acquisition of drug resistance accounts for the majority of poor effects of chemotherapy in HCC. Non-coding RNAs (ncRNAs) including miRNAs, long ncRNAs (lncRNAs), and circular RNA (circRNA) have been well-documented to participate in cancer occurrence and progression. Recently, multiple studies have highlighted the key roles of ncRNAs in chemoresistance of HCC. In addition, accumulating evidence has demonstrated that they can serve as biomarkers in diagnosis, treatment, and prognosis of HCC. In this review, we first overviewed up-to-date findings regarding miRNA and lncRNA in drug resistance of HCC, then summarized specific mechanisms that they modulate chemoresistance of HCC, and finally discussed their potential clinical application in overcoming the obstacle of HCC chemoresistance in the future.
Collapse
|
35
|
Xu M, Fang S, Song J, Chen M, Zhang Q, Weng Q, Fan X, Chen W, Wu X, Wu F, Tu J, Zhao Z, Ji J. CPEB1 mediates hepatocellular carcinoma cancer stemness and chemoresistance. Cell Death Dis 2018; 9:957. [PMID: 30237545 PMCID: PMC6148052 DOI: 10.1038/s41419-018-0974-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/01/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) are a subpopulation of cells within tumors that are believed to possess pluripotent properties and thought to be responsible for tumor initiation, progression, relapse and metastasis. Cytoplasmic polyadenylation element-binding protein 1 (CPEB1), a sequence-specific RNA-binding protein that regulates mRNA polyadenylation and translation, has been linked to cancer progression and metastasis. However, the involvement of CPEB1 in hepatocellular carcinoma (HCC) remains unclear. In this study, we have demonstrated that CPEB1 directly regulates sirtuin 1 (SIRT1) mRNA to mediate cancer stemness in HCC. Cancer stemness was analyzed by self-renewal ability, chemoresistance, metastasis, expression of stemness-related genes and CSC marker-positive cell populations. The results indicate that CPEB1 is downregulated in HCC. Overexpression of CPEB1 dramatically reduced HCC cell stemness, whereas silencing CPEB1 enhances it. Using site-directed mutagenesis, a luciferase reporter assay, and immunoprecipitation, we found that CPEB1 could directly target the 3′-UTR of SIRT1, control poly(A) tail length and suppress its translation to mediate cancer stemness in vitro and in vivo. Overall, our findings suggest that the negative regulation between CPEB1 and SIRT1 contributes to the suppression of cancer stemness in HCC. CPEB1 may have potential as a therapeutic target in HCC.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Jingjing Song
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Qianqian Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Xiaoxi Fan
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Xulu Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Fazong Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China. .,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China. .,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University, 323000, Lishui, China.
| |
Collapse
|
36
|
Xu WW, Li B, Zhao JF, Yang JG, Li JQ, Tsao SW, He QY, Cheung ALM. IGF2 induces CD133 expression in esophageal cancer cells to promote cancer stemness. Cancer Lett 2018; 425:88-100. [PMID: 29604392 DOI: 10.1016/j.canlet.2018.03.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/18/2022]
Abstract
Failure to eradicate cancer stem cells (CSC) during primary therapy may lead to cancer recurrence. We recently reported that CD133 is a functional biomarker for CSCs in esophageal squamous cell carcinoma (ESCC) but the molecular pathways critical for maintenance of CD133-positive CSCs are largely unknown. Here, we revealed that knockdown of IGF2 or treatment with PI3K/AKT inhibitors markedly inhibited the abilities of CD133-positive ESCC cells to self-renew, resist chemotherapeutic drugs, and form tumors. Further functional analysis identified miR-377 as a downstream regulator of PI3K/AKT signaling, and a mediator of the effects of IGF2 on CD133 expression and CSC properties. We found that the expression levels of IGF2 and CD133 were positively correlated with each other in primary ESCC, and that concurrent elevation of IGF2 and CD133 expression was significantly associated with poor patient survival. Furthermore, in vivo experiments demonstrated that IGF2-neutralizing antibody enhanced the sensitivity of tumor xenografts in nude mice to 5-fluorouracil treatment. This study underpins the importance of the IGF2-PI3K/AKT-miR-377-CD133 signaling axis in the maintenance of cancer stemness and in the development of novel therapeutic strategy for treatment of esophageal cancer.
Collapse
Affiliation(s)
- Wen Wen Xu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Bin Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Jian Fu Zhao
- Department of Oncology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Jing Ge Yang
- Department of General Surgery, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Jun Qi Li
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Annie L M Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|