1
|
Cuenca-Escalona J, Bödder J, Subtil B, Sánchez-Sánchez M, Vidal-Manrique M, Sweep MWD, Fauerbach JA, Cambi A, Flórez-Grau G, de Vries JM. EP2/EP4 targeting prevents tumor-derived PGE2-mediated immunosuppression in cDC2s. J Leukoc Biol 2024; 116:1554-1567. [PMID: 39041661 DOI: 10.1093/jleuko/qiae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/11/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024] Open
Abstract
Tumor-derived prostaglandin E2 (PGE2) impairs antitumor immunity by priming suppressive functions on various immune cell types, including dendritic cells (DCs). In this way, tumors mediate DC dysfunction and hamper their antitumoral activity. PGE2 is known to modulate DC function via signaling through the E-type prostanoid receptor 2 (EP2) and EP4. Preclinical studies have demonstrated the therapeutic value of targeting EP2/4 receptor signaling in DCs. Ongoing phase 1 clinical trials with EP antagonists have shown immunomodulation in cancer patients. However, the systemic drug administration leads to off-target events and subsequent side effects. To limit the off-target effects of EP targeting, EP2 and EP4 antagonists were encapsulated in polymeric nanoparticles (NPs). In this study, we evaluated the efficacy of EP2/4-specific antagonists encapsulated in NPs to protect conventional type 2 DCs (cDC2s) from suppressive effects of tumor-derived PGE2 in different tumor models. We show that tumor-derived PGE2 signals via EP2/4 to mediate the acquisition of a suppressive phenotype of cDC2s. EP2/4 antagonists encapsulated in NPs impaired the conversion of cDC2s toward a suppressive state and inhibited the occurrence of suppressive features such as interleukin-10 production or the ability to expand regulatory T cells. Importantly, the NPs abolished the transition toward this suppressive state in different tumor models: melanoma-conditioned media, ascites fluid derived from ovarian cancer patients (2-dimensional), and upon coculture with colorectal cancer patient-derived organoids (3-dimensional). We propose that targeting the PGE2-EP2/4 axis using NPs can achieve immunomodulation in the immune system of cancer patients, alleviate tumor-derived suppression, and thus facilitate the development of potent antitumor immunity in cancer patients.
Collapse
MESH Headings
- Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Dinoprostone/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/drug effects
- Animals
- Mice
- Cell Line, Tumor
- Female
- Humans
- Mice, Inbred C57BL
- Immune Tolerance/drug effects
- Nanoparticles/chemistry
Collapse
Affiliation(s)
- Jorge Cuenca-Escalona
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Johanna Bödder
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Beatriz Subtil
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Marta Sánchez-Sánchez
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Marcos Vidal-Manrique
- Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Mark W D Sweep
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
- Department of Medical Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Jonathan A Fauerbach
- R&D Reagents, Chemical Biology Department; Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Alessandra Cambi
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Georgina Flórez-Grau
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Jolanda M de Vries
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Alvear-Hernandez NP, Hernández-Ramírez VI, Villegas-Pineda JC, Osorio-Trujillo JC, Guzmán-Mendoza JJ, Gallardo-Rincón D, Toledo-Leyva A, Talamás-Rohana P. Overexpression of Fut 2, 4, and 8, and nuclear localization of Fut 4 in ovarian cancer cell lines induced by ascitic fluids from epithelial ovarian cancer patients. Cell Biol Int 2024; 48:610-625. [PMID: 38263584 DOI: 10.1002/cbin.12132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
Fucosyltransferases (Fut) regulate the fucosylation process associated with tumorogenesis in different cancer types. Ascitic fluid (AF) from patients diagnosed with advanced stage of epithelial ovarian cancer (EOC) is considered as a dynamic tumor microenvironment associated with poor prognosis. Previous studies from our laboratory showed increased fucosylation in SKOV-3 and OVCAR-3, cancer-derived cell lines, when these cells were incubated with AFs derived from patients diagnosed with EOC. In the present work we studied three fucosyltransferases (Fut 2, Fut 4, and Fut 8) in SKOV-3, OVCAR-3 and CAOV-3 cell lines in combination with five different AFs from patients diagnosed with this disease, confirming that all tested AFs increased fucosylation. Then, we demonstrate that mRNAs of these three enzymes were overexpressed in the three cell lines under treatment with AFs. SKOV-3 showed the higher overexpression of Fut 2, Fut 4, and Fut 8 in comparison with the control condition. We further confirmed, in the SKOV-3 cell line, by endpoint PCR, WB, and confocal microscopy, that the three enzymes were overexpressed, being Fut 4 the most overexpressed enzyme compared to Fut 2 and Fut 8. These enzymes were concentrated in vesicular structures with a homogeneous distribution pattern throughout the cytoplasm. Moreover, we found that among the three enzymes, only Fut 4 was located inside the nuclei. The nuclear location of Fut 4 was confirmed for the three cell lines. These results allow to propose Fut 2, Fut 4, and Fut 8 as potential targets for EOC treatment or as diagnostic tools for this disease.
Collapse
Affiliation(s)
- Nayely Paulina Alvear-Hernandez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Gustavo A Madero, Mexico
| | | | - Julio César Villegas-Pineda
- Departamento de Microbiología y, Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Juan Carlos Osorio-Trujillo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Gustavo A Madero, Mexico
| | - José Jesús Guzmán-Mendoza
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Gustavo A Madero, Mexico
| | | | - Alfredo Toledo-Leyva
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Instituto Nacional de Salud, Ciudad de México, Mexico
| | - Patricia Talamás-Rohana
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Gustavo A Madero, Mexico
| |
Collapse
|
3
|
Yunianto I, Currie M, Chitcholtan K, Sykes P. Potential drug repurposing of ruxolitinib to inhibit the JAK/STAT pathway for the treatment of patients with epithelial ovarian cancer. J Obstet Gynaecol Res 2023; 49:2563-2574. [PMID: 37565583 DOI: 10.1111/jog.15761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
AIM This review aimed to describe the potential for therapeutic targeting of the JAK/STAT signaling pathway by repurposing the clinically-approved JAK inhibitor ruxolitinib in the patients with epithelial ovarian cancer (OC) setting. METHODS We reviewed publications that focus on the inhibition of the JAK/STAT pathway in hematological and solid malignancies including OC. RESULTS Preclinical studies showed that ruxolitinib effectively reduces OC cell viability and metastasis and enhances the anti-tumor activity of chemotherapy drugs. There are a number of recent clinical trials exploring the role of JAK/STAT inhibition in solid cancers including OC. Early results have not adequately supported efficacy in solid tumors. However, there are preclinical data and clinical studies supporting the use of ruxolitinib in combination with both chemotherapy and other targeted drugs in OC setting. CONCLUSION Inflammatory conditions and persistent activation of the JAK/STAT pathway are associated with tumourigenesis and chemoresistance, and therapeutic blockade of this pathway shows promising results. For women with OC, clinical investigation exploring the role of ruxolitinib in combination with chemotherapy agents or other targeted therapeutics is warranted.
Collapse
Affiliation(s)
- Irfan Yunianto
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
- Department of Biology Education, Universitas Ahmad Dahlan, Indonesia
| | - Margaret Currie
- Department of Pathology and Biomedical Sciences, University of Otago, Christchurch, New Zealand
| | - Kenny Chitcholtan
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
| | - Peter Sykes
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
| |
Collapse
|
4
|
Zhu J, Wang L, Yang Y, Han M, Yang Y, Feng R, Hu Y. Bruceine D and afatinib combination inhibits ovarian cancer cells proliferation and migration through DNA damage repair and EGFR pathway. J Investig Med 2023; 71:511-525. [PMID: 36859802 DOI: 10.1177/10815589231158043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Owing to the high rates of relapse and migration, ovarian cancer (OC) has been recognized as the most lethal gynecological malignancy worldwide. The activity of the epidermal growth factor receptor (EGFR) signaling pathway is frequently associated with OC cell proliferation and migration. Despite this knowledge, inhibition of EGFR signaling in OC patients failed to achieve satisfactory therapeutic effects. In this study, we identified that bruceine D (BD) and EGFR inhibitor, afatinib, combination resulted in synergistic anti-OC effects. The results indicated that compared with one of both drugs alone, the combination of BD and afatinib slowed the DNA replication rate, inhibition of cell viability, and proliferation and clone formation. This resulted in cell cycle arrest and cell apoptosis. In addition, the combination of BD and afatinib possessed a stronger ability to inhibit the OC cell adhesion and migration than treatment with BD or afatinib alone. Mechanistically, the combined treatment triggered intense DNA damage, suppressed DNA damage repair, and enhanced the inhibition of the EGFR pathway. These results demonstrated that compared with each pathway inhibition, combined blocking of both DNA damage repair and the EGFR pathway appears to more effective against OC treatment. The results support the potential of BD and afatinib combination as a therapeutic strategy for OC patients.
Collapse
Affiliation(s)
- Jufan Zhu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Luo Wang
- Medical College of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuanjun Yang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengfei Han
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiheng Yang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Renqian Feng
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Hu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Czogalla B, Dötzer K, Sigrüner N, von Koch FE, Brambs CE, Anthuber S, Frangini S, Burges A, Werner J, Mahner S, Mayer B. Combined Expression of HGFR with Her2/neu, EGFR, IGF1R, Mucin-1 and Integrin α2β1 Is Associated with Aggressive Epithelial Ovarian Cancer. Biomedicines 2022; 10:2694. [PMID: 36359213 PMCID: PMC9687566 DOI: 10.3390/biomedicines10112694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 09/10/2023] Open
Abstract
Hepatocyte growth factor receptor (HGFR), also known as c-mesenchymal-epithelial transition factor (c-MET), plays a crucial role in the carcinogenesis of epithelial ovarian cancer (EOC). In contrast, the mechanisms contributing to aberrant expression of HGFR in EOC are not fully understood. In the present study, the expression of HGFR with its prognostic and predictive role was evaluated immunohistochemically in a cohort of 42 primary ovarian cancer patients. Furthermore, we analyzed the dual expression of HGFR and other druggable biomarkers. In the multivariate Cox regression analysis, high HGFR expression was identified as an independent prognostic factor for a shorter progression-free survival (PFS) (hazard ratio (HR) 2.99, 95% confidence interval (CI95%) 1.01-8.91, p = 0.049) and overall survival (OS) (HR 5.77, CI95% 1.56-21.34, p = 0.009). In addition, the combined expression of HGFR, human epidermal growth factor receptor 2 (Her2/neu), epithelial growth factor receptor (EGFR), insulin-like growth factor 1 (IGF1R), Mucin-1 and Integrin α2β1 further significantly impaired PFS, platinum-free interval (PFI) and OS. Protein co-expression analyses were confirmed by transcriptomic data in a large, independent cohort of patients. In conclusion, new biomarker-directed treatment targets were identified to fight poor prognosis of primary EOC.
Collapse
Affiliation(s)
- Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
| | - Katharina Dötzer
- Department of General, Visceral and Transplant Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Nicole Sigrüner
- Department of General, Visceral and Transplant Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Franz Edler von Koch
- Gynecology and Obstetrics Clinic, Klinikum Dritter Orden, Menzinger Straße 44, 80638 Munich, Germany
| | - Christine E. Brambs
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University Munich, Ismaninger Straße 22, 81675 Munich, Germany
| | - Sabine Anthuber
- Department of Obstetrics and Gynecology, Starnberg Hospital, Oßwaldstraße 1, 82319 Starnberg, Germany
| | - Sergio Frangini
- Department of Obstetrics and Gynecology, Munich Clinic Harlaching, Sanatoriumsplatz 2, 81545 Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
| | - Jens Werner
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
- Department of General, Visceral and Transplant Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
| | - Barbara Mayer
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
- Department of General, Visceral and Transplant Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| |
Collapse
|
6
|
Dunn E, Chitcholtan K, Sykes P, Garrill A. The Anti-Proliferative Effect of PI3K/mTOR and ERK Inhibition in Monolayer and Three-Dimensional Ovarian Cancer Cell Models. Cancers (Basel) 2022; 14:cancers14020395. [PMID: 35053555 PMCID: PMC8773481 DOI: 10.3390/cancers14020395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In ovarian cancer patients the PI3K/AKT/mTOR and RAS/RAF/MEK/ERK kinase signaling pathways are frequently dysregulated, making them potential targets of therapeutic inhibitors. In this study, we used four human ovarian cancer cell lines grown in two- and three-dimensional models to investigate the potential efficacy of combining two inhibitors, which target these pathways, against ovarian cancer. The inhibitor combination was found to have cell line- and model-dependent synergistic antiproliferative effect. Abstract Most ovarian cancer patients are diagnosed with advanced stage disease, which becomes unresponsive to chemotherapeutic treatments. The PI3K/AKT/mTOR and the RAS/RAF/MEK/ERK kinase signaling pathways are attractive targets for potential therapeutic inhibitors, due to the high frequency of mutations to PTEN, PIK3CA, KRAS and BRAF in several ovarian cancer subtypes. However, monotherapies targeting one of these pathways have shown modest effects in clinical trials. This limited efficacy of the agents could be due to upregulation and increased signaling via the adjacent alternative pathway. In this study, the efficacy of combined PI3K/mTOR (BEZ235) and ERK inhibition (SCH772984) was investigated in four human ovarian cancer cell lines, grown as monolayer and three-dimensional cell aggregates. The inhibitor combination reduced cellular proliferation in a synergistic manner in OV-90 and OVCAR8 monolayers and in OV-90, OVCAR5 and SKOV3 aggregates. Sensitivity to the inhibitors was reduced in three-dimensional cell aggregates in comparison to monolayers. OV-90 cells cultured in large spheroids were sensitive to the inhibitors and displayed a robust synergistic antiproliferative response to the inhibitor combination. In contrast, OVCAR8 spheroids were resistant to the inhibitors. These findings suggest that combined PI3K/mTOR and ERK inhibition could be a useful strategy for overcoming treatment resistance in ovarian cancer and warrants further preclinical investigation. Additionally, in some cell lines the use of different three-dimensional models can influence cell line sensitivity to PI3K/mTOR and RAS/RAF/MEK/ERK pathway inhibitors.
Collapse
Affiliation(s)
- Elizabeth Dunn
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- Correspondence: (E.D.); (A.G.)
| | - Kenny Chitcholtan
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch 8011, New Zealand; (K.C.); (P.S.)
| | - Peter Sykes
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch 8011, New Zealand; (K.C.); (P.S.)
| | - Ashley Garrill
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- Correspondence: (E.D.); (A.G.)
| |
Collapse
|
7
|
Liu B, Liu Q, Pan S, Huang Y, Qi Y, Li S, Xiao Y, Jia L. The HOTAIR/miR-214/ST6GAL1 crosstalk modulates colorectal cancer procession through mediating sialylated c-Met via JAK2/STAT3 cascade. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:455. [PMID: 31694696 PMCID: PMC6836492 DOI: 10.1186/s13046-019-1468-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022]
Abstract
Background The regulatory non-coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), emerge as pivotal markers during tumor progression. Abnormal sialylated glycoprotein often leads to the malignancy of colorectal cancer (CRC). Methods Differential levels of HOTAIR and ST6GAL1 are analyzed by qRT-PCR. Functionally, CRC cell proliferation, aggressiveness and apoptosis are measured through relevant experiments, including CCK8 assay, colony formation assay, transwell assay, western blot and flow cytometry. Dual-luciferase reporter gene assay and RIP assay confirm the direct interaction between HOTAIR and miR-214. The lung metastasis, liver metatstasis and xenografts nude mice models are established to show the in vivo effect of HOATIR. Results Here, differential levels of HOTAIR and ST6GAL1 are primarily observed in CRC samples and cells. Upregulated HOTAIR and ST6GAL1 are crucial predictors for poor CRC prognosis. Altered level of ST6GAL1 modulates CRC malignancy. Furthermore, ST6GAL1 and HOTAIR are confirmed as the direct targets of miR-214, and ST6GAL1 is regulated by HOTAIR via sponging miR-214. ST6GAL1 induces the elevated metabolic sialylation of c-Met, which is co-mediated by HOTAIR and miR-214. Sialylated c-Met affects the activity of JAK2/STAT3 pathway. The regulatory role of HOTAIR/miR-214/ST6GAL1 axis also impacts CRC procession. In addition, HOTAIR mediates lung metastasis, liver metastasis and tumorigenesis in vivo. ShHOTAIR and AMG-208 are combined to inhibit tumorigenesis for successful drug development. Conclusion The HOTAIR/miR-214/ST6GAL1 axis commands the CRC malignancy by modifying c-Met with sialylation and activating JAK2/STAT3 pathway. Our study presents novel insights into CRC progression and provided prospective therapeutic target for CRC.
Collapse
Affiliation(s)
- Bing Liu
- College of Laboratory Medicine, Dalian Medical University, 9 Lushunnan Road Xiduan, Dalian, 116044, Liaoning Province, China
| | - Qianqian Liu
- College of Laboratory Medicine, Dalian Medical University, 9 Lushunnan Road Xiduan, Dalian, 116044, Liaoning Province, China
| | - Shimeng Pan
- College of Laboratory Medicine, Dalian Medical University, 9 Lushunnan Road Xiduan, Dalian, 116044, Liaoning Province, China
| | - Yiran Huang
- College of Laboratory Medicine, Dalian Medical University, 9 Lushunnan Road Xiduan, Dalian, 116044, Liaoning Province, China
| | - Yu Qi
- College of Laboratory Medicine, Dalian Medical University, 9 Lushunnan Road Xiduan, Dalian, 116044, Liaoning Province, China
| | - Shuangda Li
- College of Laboratory Medicine, Dalian Medical University, 9 Lushunnan Road Xiduan, Dalian, 116044, Liaoning Province, China
| | - Yang Xiao
- College of Laboratory Medicine, Dalian Medical University, 9 Lushunnan Road Xiduan, Dalian, 116044, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, 9 Lushunnan Road Xiduan, Dalian, 116044, Liaoning Province, China.
| |
Collapse
|