1
|
Sun Y, Wu J, Sun W, Liu C, Shi X. Novel insights into the interaction between IGF2BPs and ncRNAs in cancers. Cancer Cell Int 2024; 24:437. [PMID: 39732659 DOI: 10.1186/s12935-024-03591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/28/2024] [Indexed: 12/30/2024] Open
Abstract
Insulin-like growth factor II mRNA-binding proteins (IGF2BPs), a family of RNA-binding proteins, are pivotal in regulating RNA dynamics, encompassing processes such as localization, metabolism, stability, and translation through the formation of ribonucleoprotein complexes. First identified in 1999 for their affinity to insulin-like growth factor II mRNA, IGF2BPs have been implicated in promoting tumor malignancy behaviors, including proliferation, metastasis, and the maintenance of stemness, which are associated with unfavorable outcomes in various cancers. Additionally, non-coding RNAs (ncRNAs), particularly long non-coding RNAs, circular RNAs, and microRNAs, play critical roles in cancer progression through intricate protein-RNA interactions. Recent studies, predominantly from 2018 onward, indicate that IGF2BPs can recognize and modulate ncRNAs via N6-methyladenosine (m6A) modifications, enriching the regulatory landscape of RNA-protein interactions in the context of cancer. This review explores the latest insights into the interplay between IGF2BPs and ncRNAs, emphasizing their potential influence on cancer biology.
Collapse
Affiliation(s)
- Yaya Sun
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Junjie Wu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Weimin Sun
- Department of General Surgery, Xuyi People's Hospital, Huai'an, 211700, China.
| | - Congxing Liu
- Department of General Surgery, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China.
| | - Xin Shi
- Department of General Surgery, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Luo X, Shi J, Wang S, Jin X. The role of circular RNA targeting IGF2BPs in cancer-a potential target for cancer therapy. J Mol Med (Berl) 2024; 102:1297-1314. [PMID: 39287635 DOI: 10.1007/s00109-024-02488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/01/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Circular RNAs (circRNAs) are an interesting class of conserved single-stranded RNA molecules derived from exon or intron sequences produced by the reverse splicing of precursor mRNA. CircRNAs play important roles as microRNA sponges, gene splicing and transcriptional regulators, RNA-binding protein sponges, and protein/peptide translation factors. Abnormal functions of circRNAs and RBPs in tumor progression have been widely reported. Insulin-like growth factor-2 mRNA-binding proteins (IGF2BPs) are a highly conserved family of RBPs identified in humans that function as post-transcriptional fine-tuners of target transcripts. Emerging evidence suggests that IGF2BPs regulate the processing and metabolism of RNA, including its stability, translation, and localization, and participate in a variety of cellular functions and pathophysiology. In this review, we have summarized the roles and molecular mechanisms of circRNAs and IGF2BPs in cancer development and progression. In addition, we briefly introduce the role of other RNAs and IGF2BPs in cancer, discuss the current clinical applications and challenges faced by circRNAs and IGF2BPs, and propose future directions for this promising research field.
Collapse
Affiliation(s)
- Xia Luo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jiaxin Shi
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Siyuan Wang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Zheng X, Zhang S, Ma H, Dong Y, Zheng J, Zeng L, Liu J, Dai Y, Yin Q. Replenishment of TCA cycle intermediates and long-noncoding RNAs regulation in breast cancer. Mol Cell Endocrinol 2024; 592:112321. [PMID: 38936596 DOI: 10.1016/j.mce.2024.112321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/13/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The tricarboxylic acid (TCA) cycle is an essential interface that coordinates cellular metabolism and is as a primary route determining the fate of a variety of fuel sources, including glucose, fatty acid and glutamate. The crosstalk of nutrients replenished TCA cycle regulates breast cancer (BC) progression by changing substrate levels-induced epigenetic alterations, especially the methylation, acetylation, succinylation and lactylation. Long non-coding RNAs (lncRNA) have dual roles in inhibiting or promoting energy reprogramming, and so altering the metabolic flux of fuel sources to the TCA cycle, which may regulate epigenetic modifications at the cellular level of BC. This narrative review discussed the central role of the TCA cycle in interconnecting numerous fuels and the induced epigenetic modifications, and the underlying regulatory mechanisms of lncRNAs in BC.
Collapse
Affiliation(s)
- Xuewei Zheng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - ShunShun Zhang
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - HaoDi Ma
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Yirui Dong
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jiayu Zheng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Li Zeng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jiangbo Liu
- Department of General Surgery, First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yanzhenzi Dai
- Animal Science, School of Biosciences, University of Nottingham, UK.
| | - Qinan Yin
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
4
|
Li F, Li W. Readers of RNA Modification in Cancer and Their Anticancer Inhibitors. Biomolecules 2024; 14:881. [PMID: 39062595 PMCID: PMC11275166 DOI: 10.3390/biom14070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer treatment has always been a challenge for humanity. The inadequacies of current technologies underscore the limitations of our efforts against this disease. Nevertheless, the advent of targeted therapy has introduced a promising avenue, furnishing us with more efficacious tools. Consequently, researchers have turned their attention toward epigenetics, offering a novel perspective in this realm. The investigation of epigenetics has brought RNA readers to the forefront, as they play pivotal roles in recognizing and regulating RNA functions. Recently, the development of inhibitors targeting these RNA readers has emerged as a focal point in research and holds promise for further strides in targeted therapy. In this review, we comprehensively summarize various types of inhibitors targeting RNA readers, including non-coding RNA (ncRNA) inhibitors, small-molecule inhibitors, and other potential inhibitors. We systematically elucidate their mechanisms in suppressing cancer progression by inhibiting readers, aiming to present inhibitors of readers at the current stage and provide more insights into the development of anticancer drugs.
Collapse
Affiliation(s)
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
5
|
Tian H, Tang L, Yang Z, Xiang Y, Min Q, Yin M, You H, Xiao Z, Shen J. Current understanding of functional peptides encoded by lncRNA in cancer. Cancer Cell Int 2024; 24:252. [PMID: 39030557 PMCID: PMC11265036 DOI: 10.1186/s12935-024-03446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
Dysregulated gene expression and imbalance of transcriptional regulation are typical features of cancer. RNA always plays a key role in these processes. Human transcripts contain many RNAs without long open reading frames (ORF, > 100 aa) and that are more than 200 bp in length. They are usually regarded as long non-coding RNA (lncRNA) which play an important role in cancer regulation, including chromatin remodeling, transcriptional regulation, translational regulation and as miRNA sponges. With the advancement of ribosome profiling and sequencing technologies, increasing research evidence revealed that some ORFs in lncRNA can also encode peptides and participate in the regulation of multiple organ tumors, which undoubtedly opens a new chapter in the field of lncRNA and oncology research. In this review, we discuss the biological function of lncRNA in tumors, the current methods to evaluate their coding potential and the role of functional small peptides encoded by lncRNA in cancers. Investigating the small peptides encoded by lncRNA and understanding the regulatory mechanisms of these functional peptides may contribute to a deeper understanding of cancer and the development of new targeted anticancer therapies.
Collapse
Affiliation(s)
- Hua Tian
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, China
| | - Lu Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Zihan Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China, 646000
| | - Yanxi Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Qi Min
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mengshuang Yin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Huili You
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China.
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, China.
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
6
|
Liu C, Zhuo Y, Yang X, Yang C, Shu M, Hou B, Hou J, Chen X, Wang L, Wu X. Epigenetically associated IGF2BP3 upregulation promotes cell proliferation by regulating E2F1 expression in hepatocellular carcinoma. Sci Rep 2024; 14:16051. [PMID: 38992083 PMCID: PMC11239653 DOI: 10.1038/s41598-024-67021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
RNA-binding proteins (RBPs) are a class of proteins that primarily function by interacting with different types of RNAs and play a critical role in regulating the transcription and translation of cancer-related genes. However, their role in the progression of hepatocellular carcinoma (HCC) remains unclear. In this study, we analyzed RNA sequencing data and the corresponding clinical information of patients with HCC to screen for prognostic RBPs. Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) was identified as an independent prognostic factor for liver cancer. It is upregulated in HCC and is associated with a poor prognosis. Elevated IGF2BP3 expression was validated via immunohistochemical analysis using a tissue microarray of patients with HCC. IGF2BP3 knockdown inhibited the proliferation of Hep3B and HepG2 cells, whereas IGF2BP3 overexpression promoted the expansion of HuH-7 and MHCC97H cells. Mechanistically, IGF2BP3 modulates cell proliferation by regulating E2F1 expression. DNA hypomethylation of the IGF2BP3 gene may increase the expression of IGF2BP3, thereby enhancing cell proliferation in HCC. Therefore, IGF2BP3 may act as a novel prognostic biomarker and a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Chenghao Liu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yicheng Zhuo
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiaofeng Yang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Chen Yang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Min Shu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Bowen Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jun Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xueling Chen
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lianghai Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Xiangwei Wu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
7
|
Liang Y, Ye F, Luo D, Long L, Wang Y, Jin Y, Wang L, Li Y, Han D, Chen B, Zhao W, Wang L, Yang Q. Exosomal circSIPA1L3-mediated intercellular communication contributes to glucose metabolic reprogramming and progression of triple negative breast cancer. Mol Cancer 2024; 23:125. [PMID: 38849860 PMCID: PMC11161950 DOI: 10.1186/s12943-024-02037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Breast cancer is the most common malignant tumor, and metastasis remains the major cause of poor prognosis. Glucose metabolic reprogramming is one of the prominent hallmarks in cancer, providing nutrients and energy to support dramatically elevated tumor growth and metastasis. Nevertheless, the potential mechanistic links between glycolysis and breast cancer progression have not been thoroughly elucidated. METHODS RNA-seq analysis was used to identify glucose metabolism-related circRNAs. The expression of circSIPA1L3 in breast cancer tissues and serum was examined by qRT-PCR, and further assessed its diagnostic value. We also evaluated the prognostic potential of circSIPA1L3 by analyzing a cohort of 238 breast cancer patients. Gain- and loss-of-function experiments, transcriptomic analysis, and molecular biology experiments were conducted to explore the biological function and regulatory mechanism of circSIPA1L3. RESULTS Using RNA-seq analysis, circSIPA1L3 was identified as the critical mediator responsible for metabolic adaption upon energy stress. Gain- and loss-of-function experiments revealed that circSIPA1L3 exerted a stimulative effect on breast cancer progression and glycolysis, which could also be transported by exosomes and facilitated malignant behaviors among breast cancer cells. Significantly, the elevated lactate secretion caused by circSIPA1L3-mediated glycolysis enhancement promoted the recruitment of tumor associated macrophage and their tumor-promoting roles. Mechanistically, EIF4A3 induced the cyclization and cytoplasmic export of circSIPA1L3, which inhibited ubiquitin-mediated IGF2BP3 degradation through enhancing the UPS7-IGF2BP3 interaction. Furthermore, circSIPA1L3 increased mRNA stability of the lactate export carrier SLC16A1 and the glucose intake enhancer RAB11A through either strengthening their interaction with IGF2BP3 or sponging miR-665, leading to enhanced glycolytic metabolism. Clinically, elevated circSIPA1L3 expression indicated unfavorable prognosis base on the cohort of 238 breast cancer patients. Moreover, circSIPA1L3 was highly expressed in the serum of breast cancer patients and exhibited high diagnostic value for breast cancer patients. CONCLUSIONS Our study highlights the oncogenic role of circSIPA1L3 through mediating glucose metabolism, which might serve as a promising diagnostic and prognostic biomarker and potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, 250012, P.R. China
| | - Fangzhou Ye
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, 250012, P.R. China
| | - Dan Luo
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, 250012, P.R. China
| | - Li Long
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, 250012, P.R. China
- Department of Breast Surgery, Mianyang Central Hospital, Mianyang, Sichuan, 621000, P.R. China
| | - Yajie Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, 250012, P.R. China
| | - Yuhan Jin
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, 250012, P.R. China
| | - Lei Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, 250012, P.R. China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, 250012, P.R. China
| | - Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, 250012, P.R. China
| | - Bing Chen
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Wenjing Zhao
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Lijuan Wang
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, 250012, P.R. China.
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China.
- Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, 250012, P.R. China.
| |
Collapse
|
8
|
Hu C, Fu X, Li S, Chen C, Zhao X, Peng J. Chidamide inhibits cell glycolysis in acute myeloid leukemia by decreasing N6-methyladenosine-related GNAS-AS1. Daru 2024; 32:11-24. [PMID: 37926762 PMCID: PMC11087453 DOI: 10.1007/s40199-023-00482-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/10/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematopoietic malignancy. Chidamide has shown anti-cancer effect in different malignancies. The function of Chidamide in glycolysis in AML cells remains unclear. METHODS AML cells were treated with 1000 nM Chidamide for 48 h. The levels of long non-coding RNA-GNAS-AS1, miR-34a-5p, glycolysis-related proteins, and Ras homolog gene family (RhoA)/Rho-associated protein kinase (ROCK) signaling-related proteins were detected by qRT-PCR or western blot. Cell viability and apoptosis were measured by CCK-8 and flow cytometry. Glycolysis levels were measured by assay kits. GNAS-AS1 N6-methyladenosine (m6A) modification level was detected by methylated RNA immunoprecipitation sequencing. The combined targets of miR-34a-5p were validated using a dual-luciferase reporter assay. BALB/C nude mice were selected for subcutaneous tumor validation. Chidamide at a dosage of 25 mg/kg was used in the animal study. RESULTS GNAS-AS1 promoted glycolysis in AML cells by upregulating the expression of glycolysis-related proteins and increasing glucose consumption, lactate production, ATP generation, and the extracellular acidification rate. Chidamide treatment suppressed WT1-associated protein (WTAP)-mediated RNA m6A modification of GNAS-AS1. Chidamide downregulated GNAS-AS1 to inhibit glycolysis in AML cells. GNAS-AS1 targeted miR-34a-5p to promote insulin-like growth factor 2 mRNA-binding protein (IGF2BP2) expression. IGF2BP2 inhibition reversed the promoting effect of miR-34a-5p knockdown on glycolysis and RhoA/ROCK pathway in Chidamide-treated cells. GNAS-AS1 overexpression abolished the inhibitory effect of Chidamide on AML tumorigenesis in vivo by modulating the RhoA/ROCK pathway. CONCLUSION Chidamide inhibited glycolysis in AML by repressing WTAP-mediated GNAS-AS1 m6A modification and then regulating the miR-34a-5p/IGF2BP2 axis.
Collapse
Affiliation(s)
- Changmei Hu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, 139 Mid RenMin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Xiao Fu
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Shujun Li
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Cong Chen
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Xielan Zhao
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jie Peng
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
9
|
Mehmood R. Ramifications of m6A Modification on ncRNAs in Cancer. Curr Genomics 2024; 25:158-170. [PMID: 39087001 PMCID: PMC11288162 DOI: 10.2174/0113892029296712240405053201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 08/02/2024] Open
Abstract
N6-methyladenosine (m6A) is an RNA modification wherein the N6-position of adenosine is methylated. It is one of the most prevalent internal modifications of RNA and regulates various aspects of RNA metabolism. M6A is deposited by m6A methyltransferases, removed by m6A demethylases, and recognized by reader proteins, which modulate splicing, export, translation, and stability of the modified mRNA. Recent evidence suggests that various classes of non- coding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long con-coding RNAs (lncRNAs), are also targeted by this modification. Depending on the ncRNA species, m6A may affect the processing, stability, or localization of these molecules. The m6A- modified ncRNAs are implicated in a number of diseases, including cancer. In this review, the author summarizes the role of m6A modification in the regulation and functions of ncRNAs in tumor development. Moreover, the potential applications in cancer prognosis and therapeutics are discussed.
Collapse
Affiliation(s)
- Rashid Mehmood
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Long Q, Li Z, Yang W, Huang K, Du G. Necroptosis-related lncRNA-based novel signature to predict the prognosis and immune landscape in soft tissue sarcomas. J Cancer Res Clin Oncol 2024; 150:203. [PMID: 38635069 PMCID: PMC11026213 DOI: 10.1007/s00432-024-05682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Necroptosis-related long noncoding RNAs (lncRNAs) play crucial roles in cancer initiation and progression. Nevertheless, the role and mechanism of necroptosis-related lncRNAs in soft tissue sarcomas (STS) is so far unknown and needs to be explored further. METHODS Clinical and genomic data were obtained from the UCSC Xena database. All STS patients' subclusters were performed by unsupervised consensus clustering method based on the prognosis-specific lncRNAs, and then assessed their survival advantage and immune infiltrates. In addition, we explored the pathways and biological processes in subclusters through gene set enrichment analysis. At last, we established the necroptosis-related lncRNA-based risk signature (NRLncSig) using the least absolute shrinkage and selection operator (LASSO) method, and explored the prediction performance and immune microenvironment of this signature in STS. RESULTS A total of 911 normal soft tissue samples and 259 STS patients were included in current study. 39 prognosis-specific necroptosis-related lncRNAs were selected. Cluster 2 had a worse survival than the cluster 1 and characterized by different immune landscape in STS. A worse outcome in the high-risk group was observed by survival analysis and indicated an immunosuppressive microenvironment. The ROC curve analyses illustrated that the NRLncSig performing competitively in prediction of prognosis for STS patients. In addition, the nomogram presents excellent performance in predicting prognosis, which may be more beneficial towards STS patients' treatment. CONCLUSIONS Our result indicated that the NRLncSig could be a good independent predictor of prognosis, and significantly connected with immune microenvironment, thereby providing new insights into the roles of necroptosis-related lncRNAs in STS.
Collapse
Affiliation(s)
- Qiuzhong Long
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhengtian Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wenkang Yang
- Guangxi Medical University, Nanning, Guangxi, China
| | - Ke Huang
- Wuming Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Gang Du
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
11
|
Duan M, Liu H, Xu S, Yang Z, Zhang F, Wang G, Wang Y, Zhao S, Jiang X. IGF2BPs as novel m 6A readers: Diverse roles in regulating cancer cell biological functions, hypoxia adaptation, metabolism, and immunosuppressive tumor microenvironment. Genes Dis 2024; 11:890-920. [PMID: 37692485 PMCID: PMC10491980 DOI: 10.1016/j.gendis.2023.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 09/12/2023] Open
Abstract
m6A methylation is the most frequent modification of mRNA in eukaryotes and plays a crucial role in cancer progression by regulating biological functions. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BP) are newly identified m6A 'readers'. They belong to a family of RNA-binding proteins, which bind to the m6A sites on different RNA sequences and stabilize them to promote cancer progression. In this review, we summarize the mechanisms by which different upstream factors regulate IGF2BP in cancer. The current literature analyzed here reveals that the IGF2BP family proteins promote cancer cell proliferation, survival, and chemoresistance, inhibit apoptosis, and are also associated with cancer glycolysis, angiogenesis, and the immune response in the tumor microenvironment. Therefore, with the discovery of their role as 'readers' of m6A and the characteristic re-expression of IGF2BPs in cancers, it is important to elucidate their mechanism of action in the immunosuppressive tumor microenvironment. We also describe in detail the regulatory and interaction network of the IGF2BP family in downstream target RNAs and discuss their potential clinical applications as diagnostic and prognostic markers, as well as recent advances in IGF2BP biology and associated therapeutic value.
Collapse
Affiliation(s)
- Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Haiyang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Shasha Xu
- Department of Gastroendoscopy, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Fusheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Guang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Yutian Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Shan Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110002, China
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| |
Collapse
|
12
|
Liu J, Zhu Y, Wang H, Han C, Wang Y, Tang R. LINC00629, a HOXB4-downregulated long noncoding RNA, inhibits glycolysis and ovarian cancer progression by destabilizing c-Myc. Cancer Sci 2024; 115:804-819. [PMID: 38182548 PMCID: PMC10920983 DOI: 10.1111/cas.16049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024] Open
Abstract
Ovarian cancer (OC) cells typically reprogram their metabolism to promote rapid proliferation. However, the role of long noncoding RNAs (lncRNAs) in the metabolic reprogramming of ovarian cancer, especially in glucose metabolic reprogramming, remains largely unknown. LINC00629 has been reported in our previous study to promote osteosarcoma progression. Upregulated LINC00629 was found to enhance the growth-suppressive effect of apigenin on oral squamous cell carcinoma. However, the precise function of LINC00629 in ovarian cancer development remains poorly understood. In this study, we found that LINC00629 was significantly downregulated in OC tissues and that low LINC00629 expression was associated with poor survival. Inhibition of LINC00629 was required for increased glycolysis activity and cell proliferation in ovarian cancer. In vivo, overexpression of LINC00629 dramatically inhibited tumor growth and lung metastasis. Mechanistically, LINC00629 interacted with and destabilized c-Myc, leading to its ubiquitination and proteasome degradation, further resulting in increased expression of downstream glycolysis-related genes and glucose metabolic reprogramming in OC. Interestingly, HOXB4 bound to the LINC00629 promoter and inhibited its transcription, indicating that LINC00629 is a transcriptional target of HOXB4. Collectively, these findings establish a direct role for LINC00629 in suppressing glucose metabolism, and HOXB4/LINC00629/c-Myc might serve as a potential biomarker and an effective therapeutic strategy for OC cancer treatment.
Collapse
Affiliation(s)
- Jia Liu
- Department of GynecologyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangChina
| | - Yuan Zhu
- Department of GynecologyWomen's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare HospitalNanjingChina
| | - Huan Wang
- Department of GynecologyWomen's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare HospitalNanjingChina
| | - Chuanchun Han
- The Second Affiliated Hospital and Institute of Cancer Stem CellDalian Medical UniversityDalianLiaoningChina
| | - Yongpeng Wang
- Department of GynecologyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangChina
| | - Ranran Tang
- Department of GynecologyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangChina
- Department of GynecologyWomen's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare HospitalNanjingChina
| |
Collapse
|
13
|
Zhang M, Wu Y, Mou J, Yao Y, Wen P, Liu X, Shang S, Kang X, Tian J, Liu Y, Lv E, Wang L. The global landscape of immune-derived lncRNA signature in colorectal cancer. Heliyon 2024; 10:e25568. [PMID: 38420407 PMCID: PMC10900961 DOI: 10.1016/j.heliyon.2024.e25568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly heterogeneous cancer. This heterogeneity has an impact on the efficacy of immunotherapy. Long noncoding RNAs (lncRNAs) have been found to play regulatory functions in cancer immunity. However, the global landscape of immune-derived lncRNA signatures has not yet been explored in colorectal cancer. METHODS In this study, we applied DESeq2 to identify differentially expressed lncRNAs in colon cancer. Next, we performed an integrative analysis to globally identify immune-driven lncRNA markers in CRC, including immune-associated pathways, tumor immunogenomic features, tumor-infiltrating immune cells, immune checkpoints, microsatellite instability (MSI) and tumor mutation burden (TMB). RESULTS We also identified dysregulated lncRNAs, such as LINC01354 and LINC02257, and their clinical relevance in CRC. Our findings revealed that the differentially expressed lncRNAs were closely associated with immune pathways. In addition, we found that RP11-354P11.3 and RP11-545G3.1 had the highest association with the immunogenomic signature. As a result, these signatures could serve as markers to assess immunogenomic activity in CRC. Among the immune cells, resting mast cells and M0 macrophages had the highest association with lncRNAs in CRC. The AC006129.2 gene was significantly associated with several immune checkpoints, for example, programmed cell death protein 1 (PD-1) and B and T lymphocyte attenuator (BTLA). Therefore, the AC006129.2 gene could be targeted to regulate the condition of immune cells or immune checkpoints to enhance the efficacy of immunotherapy in CRC patients. Finally, we identified 15 immune-related lncRNA-generated open reading frames (ORFs) corresponding to 15 cancer immune epitopes. CONCLUSION In conclusion, we provided a genome-wide immune-driven lncRNA signature for CRC that might provide new insights into clinical applications and immunotherapy.
Collapse
Affiliation(s)
- Mengying Zhang
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yifei Wu
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingyi Mou
- Department of Clinical Medicine, School of 1st Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Yang Yao
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pengbo Wen
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Liu
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shipeng Shang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xingxing Kang
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaqi Tian
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Liu
- School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Enhui Lv
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Division of Microbiology and Immunology, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- School of Agriculture and Food Sustainability, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Han C, Hu C, Liu T, Sun Y, Hu F, He Y, Zhang J, Chen J, Ding J, Fan J, Zhang X, Wang J, Qiao X, Jiang D, Yang K, Yang S. IGF2BP3 enhances lipid metabolism in cervical cancer by upregulating the expression of SCD. Cell Death Dis 2024; 15:138. [PMID: 38355626 PMCID: PMC10867090 DOI: 10.1038/s41419-024-06520-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Cervical cancer (CC) is the most common gynecologic malignancy, which seriously threatens the health of women. Lipid metabolism is necessary for tumor proliferation and metastasis. However, the molecular mechanism of the relationship between CC and lipid metabolism remains poorly defined. We revealed the expression of IGF2BP3 in CC exceeded adjacent tissues, and was positively associated with tumor stage using human CC tissue microarrays. The Cell Counting Kit-8, colony formation assay, 5-ethynyl-2'-deoxyuridine assay, transwell assays, wound-healing assays, and flow cytometry assessed the role of IGF2BP3 in proliferation and metastasis of CC cells. Besides, exploring the molecular mechanism participating in IGF2BP3-driven lipid metabolism used RNA-seq, which determined SCD as the target of IGF2BP3. Further, lipid droplets, cellular triglyceride (TG) contents, and fatty acids were accessed to discover that IGF2BP3 can enhance lipid metabolism in CC. Moreover, RIP assay and methylated RNA immunoprecipitation experiments seeked the aimed-gene-binding specificity. Lastly, the IGF2BP3 knockdown restrained CC growth and lipid metabolism, after which SCD overexpression rescued the influence in vitro and in vivo using nude mouse tumor-bearing model. Mechanistically, IGF2BP3 regulated SCD mRNA m6A modifications via IGF2BP3-METTL14 complex, thereby enhanced CC proliferation, metastasis, and lipid metabolism. Our study highlights IGF2BP3 plays a crucial role in CC progression and represents a therapeutic latent strategy. It is a potential tactic that blocks the metabolic pathway relevant to IGF2BP3 with the purpose of treating CC.
Collapse
Affiliation(s)
- Chenying Han
- Department of Immunology, the Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Chenchen Hu
- Department of Immunology, the Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Tianyue Liu
- Department of Immunology, the Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Yuanjie Sun
- Department of Immunology, the Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Feiming Hu
- Department of Immunology, the Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Yuanli He
- Department of Immunology, the Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Jiaxing Zhang
- Department of Immunology, the Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Jiaxi Chen
- Department of Immunology, the Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Jiaqi Ding
- Department of Immunology, the Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, Shaanxi, China
| | - Jiangjiang Fan
- Department of Immunology, the Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China
| | - Xiyang Zhang
- Military Medical Innovation Center, the Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Jing Wang
- Department of Immunology, the Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Xupeng Qiao
- Department of Immunology, the Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Dongbo Jiang
- Department of Immunology, the Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Kun Yang
- Department of Immunology, the Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.
- Department of Rheumatology and Immunology, Tangdu Hospital of the Air Force Medical University, 710038, Xi'an, Shaanxi, China.
| | - Shuya Yang
- Department of Immunology, the Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
15
|
Yang F, Yang Y, Qiu Y, Tang L, Xie L, Guan X. Long Non-Coding RNAs as Regulators for Targeting Breast Cancer Stem Cells and Tumor Immune Microenvironment: Biological Properties and Therapeutic Potential. Cancers (Basel) 2024; 16:290. [PMID: 38254782 PMCID: PMC10814583 DOI: 10.3390/cancers16020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer stem cells (BCSCs) is a subpopulation of cancer cells with self-renewal and differentiation capacity, have been suggested to give rise to tumor heterogeneity and biologically aggressive behavior. Accumulating evidence has shown that BCSCs play a fundamental role in tumorigenesis, progression, and recurrence. The development of immunotherapy, primarily represented by programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors, has greatly changed the treatment landscape of multiple malignancies. Recent studies have identified pervasive negative associations between cancer stemness and anticancer immunity. Stemness seems to play a causative role in the formation of cold tumor immune microenvironment (TIME). The multiple functions of long non-coding RNAs (lncRNAs) in regulating stemness and immune responses has been recently highlighted in breast cancer. The review focus on lncRNAs and keys pathways involved in the regulation of BCSCs and TIME. Potential clinical applications using lncRNAs as biomarkers or therapies will be discussed.
Collapse
Affiliation(s)
- Fang Yang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (F.Y.); (Y.Y.); (Y.Q.)
- Clinical Cancer Institute, Nanjing University, Nanjing 210008, China
| | - Yiqi Yang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (F.Y.); (Y.Y.); (Y.Q.)
- Clinical Cancer Institute, Nanjing University, Nanjing 210008, China
| | - Yuling Qiu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (F.Y.); (Y.Y.); (Y.Q.)
- Clinical Cancer Institute, Nanjing University, Nanjing 210008, China
| | - Lin Tang
- Department of Rheumatology and Immunology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China;
| | - Li Xie
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (F.Y.); (Y.Y.); (Y.Q.)
- Clinical Cancer Institute, Nanjing University, Nanjing 210008, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
16
|
Gu J, Cao H, Chen X, Zhang XD, Thorne RF, Liu X. RNA m6A modifications regulate crosstalk between tumor metabolism and immunity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1829. [PMID: 38114887 DOI: 10.1002/wrna.1829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
In recent years, m6A modifications in RNA transcripts have arisen as a hot topic in cancer research. Indeed, a number of independent studies have elaborated that the m6A modification impacts the behavior of tumor cells and tumor-infiltrating immune cells, altering tumor cell metabolism along with the differentiation and functional activity of immune cells. This review elaborates on the links between RNA m6A modifications, tumor cell metabolism, and immune cell behavior, discussing this topic from the viewpoint of reciprocal regulation through "RNA m6A-tumor cell metabolism-immune cell behavior" and "RNA m6A-immune cell behavior-tumor cell metabolism" axes. In addition, we discuss the various factors affecting RNA m6A modifications in the tumor microenvironment, particularly the effects of hypoxia associated with cancer cell metabolism along with immune cell-secreted cytokines. Our analysis proposes the conclusion that RNA m6A modifications support widespread interactions between tumor metabolism and tumor immunity. With the current viewpoint that long-term cancer control must tackle cancer cell malignant behavior while strengthening anti-tumor immunity, the recognition of RNA m6A modifications as a key factor provides a new direction for the targeted therapy of tumors. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jinghua Gu
- School of Life Sciences, Anhui Medical University, Hefei, China
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Huake Cao
- School of Life Sciences, Anhui Medical University, Hefei, China
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Xiaoli Chen
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
| | - Xu Dong Zhang
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Rick F Thorne
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Xiaoying Liu
- School of Life Sciences, Anhui Medical University, Hefei, China
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
| |
Collapse
|
17
|
Ge L, Jin T, Zhang W, Zhang Z, Zhang Y, Hu X, Zhang W, Song F, Huang P. Identification of potential pseudogenes for predicting the prognosis of hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:14255-14269. [PMID: 37553422 DOI: 10.1007/s00432-023-05241-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) remains a highly deadly malignant tumor with high recurrence and metastasis rates. Cancer stem cells (CSCs) are involved in tumor metastasis, recurrence, and resistance to drugs, which have attracted widespread attention in recent years. Research has shown that pseudogenes may regulate stemness to promote the progression of HCC, but its specific mechanisms and impact on prognosis remain unclear. METHODS In this study, clinical prognosis information of HCC was first downloaded from The Cancer Genome Atlas (TCGA) database. Then we calculated the mRNA expression-based stemness index (mRNAsi) of HCC. We also screened the differentially expressed pseudogene (DEPs) and conducted univariate Cox regression analysis to investigate their effect on the prognosis of HCC. Further, genomic mutation frequency analysis and weighted gene co-expression network analysis (WGCNA) were performed to compare the role of pseudogenes and stemness in promoting the progression of HCC. Finally, we conducted the correlation analysis to examine the potential mechanism of pseudogenes regulating stemness to promote the progression of HCC and detected the possible pathways through the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. RESULTS Herein, we revealed that the high stemness of HCC correlated with an unfavorable prognosis. We obtained 31 up-regulated and 8 down-regulated DEPs in HCC and screened CTB-63M22.1, a poor prognostic indicator of HCC. In addition, CTB-63M22.1 had a mutation frequency similar to mRNAsi and acted in a module similar to that of mRNAsi on HCC. We then screened two RNA-binding proteins (RBPs) LIN28B and NOP56 with the highest correlation with stemness. We also discovered that they were primarily enriched in the biological process as examples of mitotic nuclear division and cell cycle. CONCLUSIONS Collectively, these results revealed that pseudogenes CTB-63M22.1 may regulate cancer stemness by regulating RBPs, suggesting that CTB-63M22.1 may serve as an innovative therapeutic target and a reliable prognostic marker for HCC.
Collapse
Affiliation(s)
- Luqi Ge
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tiefeng Jin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wanli Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhentao Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wen Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
18
|
Zhang X, Xu X, Song J, Xu Y, Qian H, Jin J, Liang ZF. Non-coding RNAs' function in cancer development, diagnosis and therapy. Biomed Pharmacother 2023; 167:115527. [PMID: 37751642 DOI: 10.1016/j.biopha.2023.115527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
While previous research on cancer biology has focused on genes that code for proteins, in recent years it has been discovered that non-coding RNAs (ncRNAs)play key regulatory roles in cell biological functions. NcRNAs account for more than 95% of human transcripts and are an important entry point for the study of the mechanism of cancer development. An increasing number of studies have demonstrated that ncRNAs can act as tumor suppressor genes or oncogenes to regulate tumor development at the epigenetic level, transcriptional level, as well as post-transcriptional level. Because of the importance of ncRNAs in cancer, most clinical trials have focused on ncRNAs to explore whether ncRNAs can be used as new biomarkers or therapies. In this review, we focus on recent studies of ncRNAs including microRNAs (miRNAs), long ncRNAs (lncRNAs), circle RNAs (circRNAs), PIWI interacting RNAs (piRNAs), and tRNA in different types of cancer and explore the application of these ncRNAs in the development of cancer and the identification of relevant therapeutic targets and tumor biomarkers. Graphical abstract drawn by Fidraw.
Collapse
Affiliation(s)
- XinYi Zhang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Xiaoqing Xu
- Nanjing Renpin ENT Hospital, Nanjing 210000, Jiangsu, China
| | - Jiajia Song
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Yumeng Xu
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China.
| | - Zhao Feng Liang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
19
|
Xue L, Wang B, Li X, Zhu J, Wang W, Huang F, Wang X, Jin Y, Xiong C, Tao L, Xu K, Wang J, Guo Y, Xu J, Yang X, Wang N, Gao N, Wang Y, Li K, Li M, Geng Y. Comprehensive analysis of serum exosome-derived lncRNAs and mRNAs from patients with rheumatoid arthritis. Arthritis Res Ther 2023; 25:201. [PMID: 37845777 PMCID: PMC10577909 DOI: 10.1186/s13075-023-03174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Serum exosomes play important roles in intercellular communication and are promising biomarkers of several autoimmune diseases. However, the biological functions and potential clinical importance of long non-coding RNAs (lncRNAs) and mRNAs from serum exosomes in rheumatoid arthritis (RA) have not yet been studied. METHODS Serum exosomal lncRNAs and mRNAs were isolated from patients with RA and osteoarthritis (OA) and healthy controls. The differentially expressed lncRNAs (DE-lncRNAs) and mRNA profiles in the serum exosomes of patients with RA were analysed using high-throughput sequencing, and their functions were predicted using Gene Ontologyenrichment, Kyoto Encyclopedia of Genes and Genomes pathway, and gene set enrichment analysis. We constructed a DE-lncRNA-mRNA network and a protein-protein interaction network of differentially expressed mRNAs (DE-mRNAs) in RA using the Cytoscape software. The expression of several candidate a DE-lncRNAs and DE-mRNAs in the serum of patients with RA, patients with OA, and healthy controls was confirmed by qRT-PCR. We assessed the diagnostic ability of DE-lncRNAs and DE-mRNAs in patients with RA using receiver operating characteristic analysis. Furthermore, we analysed the characteristics of immune cell infiltration in RA by digital cytometry using the CIBERSORT algorithm and determined the correlation between immune cells and several DE-lncRNAs or DE-mRNAs in RA. RESULTS The profiles of serum exosomal lncRNAs and mRNAs in patients with RA were different from those in healthy controls and patients with OA. The functions of both DE-lncRNAs and DE-mRNAs in RA are associated with the immune response and cellular metabolic processes. The RT-PCR results show that NONHSAT193357.1, CCL5, and MPIG6B were downregulated in patients with RA. The combination of three DE-mRNAs, CCL5, MPIG6B, and PFKP, had an area under the curve of 0.845 for differentiating RA from OA. Digital cytometry using the CIBERSORT algorithm showed that the neutrophil counts were higher in patients with RA than those in healthy controls and patients with OA. CONCLUSIONS These findings help to elucidate the role of serum exosomal lncRNAs and mRNAs in the specific mechanisms underlying RA.
Collapse
Affiliation(s)
- Li Xue
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Centre for Rheumatology and Connective Tissue Diseases, Division of Medicine, University College London, London, NW3 2PF, UK
- Clinical Research Center for Endemic Disease of Shaanxi Province, Xi'an, 710004, China
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xueyi Li
- Department of Rheumatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jianhong Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, Xi'an, 710004, China
| | - Wei Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Fang Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaofei Wang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Cell Biology and Genetics, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yaofeng Jin
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Chaoliang Xiong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Li Tao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ke Xu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710049, China
| | - Jing Wang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ying Guo
- National Local Joint Engineering Research Centre of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jing Xu
- Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xin Yang
- Department of Rheumatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Na Wang
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ning Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yan Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ke Li
- National Local Joint Engineering Research Centre of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Ming Li
- Department of Emergency, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Yan Geng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
20
|
Kansara S, Singh A, Badal AK, Rani R, Baligar P, Garg M, Pandey AK. The emerging regulatory roles of non-coding RNAs associated with glucose metabolism in breast cancer. Semin Cancer Biol 2023; 95:1-12. [PMID: 37364663 DOI: 10.1016/j.semcancer.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 04/20/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Altered energy metabolism is one of the hallmarks of tumorigenesis and essential for fulfilling the high demand for metabolic energy in a tumor through accelerating glycolysis and reprogramming the glycolysis metabolism through the Warburg effect. The dysregulated glucose metabolic pathways are coordinated not only by proteins coding genes but also by non-coding RNAs (ncRNAs) during the initiation and cancer progression. The ncRNAs are responsible for regulating numerous cellular processes under developmental and pathological conditions. Recent studies have shown that various ncRNAs such as microRNAs, circular RNAs, and long noncoding RNAs are extensively involved in rewriting glucose metabolism in human cancers. In this review, we demonstrated the role of ncRNAs in the progression of breast cancer with a focus on outlining the aberrant expression of glucose metabolic pathways. Moreover, we have discussed the existing and probable future applications of ncRNAs to regulate energy pathways along with their importance in the prognosis, diagnosis, and future therapeutics for human breast carcinoma.
Collapse
Affiliation(s)
- Samarth Kansara
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Agrata Singh
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Abhishesh Kumar Badal
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Reshma Rani
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India; National Institute of Pharmaceutical Education and Research, Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
21
|
Sun Y, Zhang H, Ma R, Guo X, Zhang G, Liu S, Zhu W, Liu H, Gao P. ETS-1-activated LINC01016 over-expression promotes tumor progression via suppression of RFFL-mediated DHX9 ubiquitination degradation in breast cancers. Cell Death Dis 2023; 14:507. [PMID: 37550275 PMCID: PMC10406855 DOI: 10.1038/s41419-023-06016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 08/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) are key regulators during the development of breast cancer (BC) and thus may be viable treatment targets. In this study, we found that the expression of the long intergenic non-coding RNA 01016 (LINC01016) was significantly higher in BC tissue samples with positive lymph node metastasis. LINC01016, which is activated by the transcription factor ETS-1, contributes to the overt promotion of cell proliferation activity, enhanced cell migratory ability, S phase cell cycle arrest, and decreased apoptosis rate. By RNA pull-down assays and mass spectrometry analyses, we determined that LINC01016 competitively bound and stabilized DHX9 protein by preventing the E3 ubiquitin ligase RFFL from binding to DHX9, thereby inhibiting DHX9 proteasomal degradation. This ultimately led to an increase in intracellular DHX9 expression and activated PI3K/AKT signaling, with p-AKT, Bcl-2, and MMP-9 involvement. This is the first study to reveal that the LINC01016/DHX9/PI3K/AKT axis plays a critical role in the progression of BC, and thus, LINC01016 may serve as a potential therapeutic target for patients with BC.
Collapse
Affiliation(s)
- Ying Sun
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Department of Medical Oncology, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, PR China
| | - Hui Zhang
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Ranran Ma
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiangyu Guo
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Guohao Zhang
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Sen Liu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Wenjie Zhu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
| | - Haiting Liu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
| | - Peng Gao
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
22
|
Hu X, Zhao M, Hu S, Liu Q, Liao W, Wan L, Wei F, Su F, Guo Y, Zeng J. LINC00853 contributes to tumor stemness of gastric cancer through FOXP3-mediated transcription of PDZK1IP1. Biol Proced Online 2023; 25:20. [PMID: 37403034 DOI: 10.1186/s12575-023-00213-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The incidence and mortality of gastric cancer (GC) are high worldwide. Tumor stemness is a major contributor to tumorigenesis and development of GC, in which long non-coding RNAs (lncRNAs) are deeply involved. The purpose of this study was to investigate the influences and mechanisms of LINC00853 in the progression and stemness of GC. METHODS The level of LINC00853 was assessed based on The Cancer Genome Atlas (TCGA) database and GC cell lines by RT-PCR and in situ hybridization. An evaluation of biological functions of LINC00853 including cell proliferation, migration, and tumor stemness was conducted via gain-and loss-of-function experiments. Furthermore, RNA pull-down and RNA immunoprecipitation (RIP) assay were utilized to validate the connection between LINC00853 and the transcription factor Forkhead Box P3 (FOXP3). Nude mouse xenograft model was used to identify the impacts of LINC00853 on tumor development. RESULTS We identified the up-regulated levels of lncRNA-LINC00853 in GC, and its overexpression correlates with poor prognosis in GC patients. Further study indicated that LINC00853 promoted cell proliferation, migration and cancer stemness while suppressed cell apoptosis. Mechanistically, LINC00853 directly bind to FOXP3 and promoted FOXP3-mediated transcription of PDZK1 interacting protein 1(PDZK1IP1). Alterations of FOXP3 or PDZK1IP1 reversed the LINC00853-induced biological effects on cell proliferation, migration and stemness. Moreover, xenograft tumor assay was used to investigate the function of LINC00853 in vivo. CONCLUSIONS Taken together, these findings revealed the tumor-promoting activity of LINC00853 in GC, expanding our understanding of lncRNAs regulation on GC pathogenesis.
Collapse
Affiliation(s)
- Xia Hu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Maoyuan Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Shuangyuan Hu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Qingsong Liu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Wenhao Liao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lina Wan
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Feng Wei
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Fangting Su
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yu Guo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
23
|
Zhang N, Sun Y, Mei Z, He Z, Gu S. Novel insights into mutual regulation between N 6-methyladenosine modification and LncRNAs in tumors. Cancer Cell Int 2023; 23:127. [PMID: 37365581 DOI: 10.1186/s12935-023-02955-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
N6-methyladenosine (m6A), one of the most common RNA methylation modifications, has emerged in recent years as a new layer of the regulatory mechanism controlling gene expression in eukaryotes. As a reversible epigenetic modification, m6A not only occurs on mRNAs but also on Long non-coding RNAs (LncRNAs). As we all known, despite LncRNAs cannot encode proteins, they affect the expression of proteins by interacting with mRNAs or miRNAs, thus playing important roles in the occurrence and development of a variety of tumors. Up to now, it has been widely accepted that m6A modification on LncRNAs affects the fate of the corresponding LncRNAs. Interestingly, levels and functions of m6A modifications are also mediated by LncRNAs through affecting the m6A methyltransferases (METTL3, METTL14, WTAP, METTL16, etc.), demethylases (FTO, ALKBH5) and methyl-binding proteins (YTHDFs, YTHDCs, IGF2BPs, HNRNPs, etc.), which are collectively referred to as "m6A regulators". In this review, we summarized the mutual regulation mechanisms between N6-methyladenosine modification and LncRNAs in cancer progression, metastasis, invasion and drug resistance. In detail, we focus on the specific mechanisms of m6A modification, which is mediated by methyltransferases and demethylases, involves in the regulation of LncRNA levels and functions in the first part. And section two intensively displays the mediation roles of LncRNAs in m6A modification via changing the regulatory proteins. At last part, we described the interaction effects between LncRNAs and methyl-binding proteins of m6A modification during various tumor occurrence and development.
Collapse
Affiliation(s)
- Nan Zhang
- School of Public Health, Institute of Preventive Medicine, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China
| | - Yifei Sun
- School of Public Health, Institute of Preventive Medicine, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China
| | - Zongqin Mei
- School of Public Health, Institute of Preventive Medicine, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China
| | - Zuoshun He
- School of Public Health, Institute of Preventive Medicine, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China.
| | - Shiyan Gu
- School of Public Health, Institute of Preventive Medicine, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China.
| |
Collapse
|
24
|
Xing B, Shen C, Yang Q, Wang Z, Tan W. miR-144-3p represses hepatocellular carcinoma progression by affecting cell aerobic glycolysis via FOXK1. Int J Exp Pathol 2023; 104:117-127. [PMID: 36806218 PMCID: PMC10182365 DOI: 10.1111/iep.12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 02/22/2023] Open
Abstract
Aerobic glycolysis is a unique mark of cancer cells, which enables therapeutic intervention in cancer. Forkhead box K1 (FOXK1) is a transcription factor that facilitates the progression of multiple cancers including hepatocellular carcinoma (HCC). Nevertheless, it is unclear whether or not FOXK1 can affect HCC cell glycolysis. This study attempted to study the effect of FOXK1 on HCC cell glycolysis. Expression of mature miRNAs and mRNAs, as well as clinical data, was downloaded from The Cancer Genome Atlas-Liver hepatocellular carcinoma (TCGA-LIHC) dataset. FOXK1 and miR-144-3p levels were assessed through quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Targeting of the relationship between miR-144-3p and FOXK1 was verified via a dual-luciferase assay. Pathway enrichment analysis of FOXK1 was performed by Gene Set Enrichment Analysis (GSEA). Cell function assays revealed the glycolytic ability, cell viability, migration, invasion, cell cycle, and apoptosis of HCC cells in each treatment group. Bioinformatics analysis suggested that FOXK1 was upregulated in tissues of HCC patients, while the upstream miR-144-3p was downregulated in tumour tissues. Dual-luciferase assay implied a targeting relationship between miR-144-3p and FOXK1. Cellular experiments implied that silencing FOXK1 repressed HCC cell glycolysis, which in turn inhibited the HCC malignant progression. Rescue assay confirmed that miR-144-3p repressed glycolysis in HCC cells by targeting FOXK1, and then repressed HCC malignant progression. miR-144-3p/FOXK1 axis repressed malignant progression of HCC via affecting the aerobic glycolytic process of HCC cells. miR-144-3p and FOXK1 have the potential to become new therapeutic targets for HCC, which provide new insights for HCC treatment.
Collapse
Affiliation(s)
- Binyu Xing
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Cunyi Shen
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Qinling Yang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zheng Wang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Wenjun Tan
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
25
|
Lee Q, Song R, Phan DAV, Pinello N, Tieng J, Su A, Halstead JM, Wong ACH, van Geldermalsen M, Lee BSL, Rong B, Cook KM, Larance M, Liu R, Lan F, Tiffen JC, Wong JJL. Overexpression of VIRMA confers vulnerability to breast cancers via the m 6A-dependent regulation of unfolded protein response. Cell Mol Life Sci 2023; 80:157. [PMID: 37208522 DOI: 10.1007/s00018-023-04799-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Virilizer-like m6A methyltransferase-associated protein (VIRMA) maintains the stability of the m6A writer complex. Although VIRMA is critical for RNA m6A deposition, the impact of aberrant VIRMA expression in human diseases remains unclear. We show that VIRMA is amplified and overexpressed in 15-20% of breast cancers. Of the two known VIRMA isoforms, the nuclear-enriched full-length but not the cytoplasmic-localised N-terminal VIRMA promotes m6A-dependent breast tumourigenesis in vitro and in vivo. Mechanistically, we reveal that VIRMA overexpression upregulates the m6A-modified long non-coding RNA, NEAT1, which contributes to breast cancer cell growth. We also show that VIRMA overexpression enriches m6A on transcripts that regulate the unfolded protein response (UPR) pathway but does not promote their translation to activate the UPR under optimal growth conditions. Under stressful conditions that are often present in tumour microenvironments, VIRMA-overexpressing cells display enhanced UPR and increased susceptibility to death. Our study identifies oncogenic VIRMA overexpression as a vulnerability that may be exploited for cancer therapy.
Collapse
Affiliation(s)
- Quintin Lee
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Dang Anh Vu Phan
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Natalia Pinello
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Jessica Tieng
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Anni Su
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - James M Halstead
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Alex C H Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Michelle van Geldermalsen
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Bob S-L Lee
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | - Bowen Rong
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Kristina M Cook
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Mark Larance
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Renjing Liu
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jessamy C Tiffen
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Melanoma Epigenetics Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Justin J-L Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia.
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- , Locked Bag 6, Newtown, NSW, 2042, Australia.
| |
Collapse
|
26
|
Liang J, Ye C, Chen K, Gao Z, Lu F, Wei K. Non-coding RNAs in breast cancer: with a focus on glucose metabolism reprogramming. Discov Oncol 2023; 14:72. [PMID: 37204526 DOI: 10.1007/s12672-023-00687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023] Open
Abstract
Breast cancer is the tumor with the highest incidence in women worldwide. According to research, the poor prognosis of breast cancer is closely related to abnormal glucose metabolism in tumor cells. Changes in glucose metabolism in tumor cells are an important feature. When sufficient oxygen is available, cancer cells tend to undergo glycolysis rather than oxidative phosphorylation, which promotes rapid proliferation and invasion of tumor cells. As research deepens, targeting the glucose metabolism pathway of tumor cells is seen as a promising treatment. Non-coding RNAs (ncRNAs), a recent focus of research, are involved in the regulation of enzymes of glucose metabolism and related cancer signaling pathways in breast cancer cells. This article reviews the regulatory effect and mechanism of ncRNAs on glucose metabolism in breast cancer cells and provides new ideas for the treatment of breast cancer.
Collapse
Affiliation(s)
- Junjie Liang
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chun Ye
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Kaiqin Chen
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zihan Gao
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fangguo Lu
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ke Wei
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Hunan Province Key Laboratory of Integrative Pathogen Biology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
27
|
Huang Y, Mo W, Ding X, Ding Y. Long non-coding RNAs in breast cancer stem cells. Med Oncol 2023; 40:177. [PMID: 37178429 DOI: 10.1007/s12032-023-02046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Breast cancer, one of the most commonly diagnosed cancers worldwide, is a heterogeneous disease with high rates of recurrence and metastasis that contribute to its high mortality rate. Breast cancer stem cells (BCSCs) are a small but significant subset of heterogeneous breast cancer cells that possess stem cell characteristics such as self-renewal and differentiation abilities that may drive metastasis and recurrence. Long non-coding RNAs (lncRNAs) are a class of RNAs that are longer than 200 nucleotides in length and do not possess protein-coding properties. An increasing number of studies have shown that some lncRNAs are abnormally expressed in BCSCs, and have great biological significance in the occurrence, progression, invasion, and metastasis of various cancers. However, the importance of lncRNAs, as well as the molecular mechanisms that regulate and promote the stemness of BCSCs, are still poorly understood. In the current review, we aim to summarize recent studies that highlight the role of lncRNAs in tumor occurrence and progression through BCSCs. In addition, the utility of lncRNAs as biomarkers of breast cancer progression, and their potential use as therapeutic targets for treatment of breast cancer, will be discussed.
Collapse
Affiliation(s)
- Yuting Huang
- Department of Oncology, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Wenju Mo
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xiaowen Ding
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Yuqin Ding
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
28
|
Wang L, Tang Y. N6-methyladenosine (m6A) in cancer stem cell: From molecular mechanisms to therapeutic implications. Biomed Pharmacother 2023; 163:114846. [PMID: 37167725 DOI: 10.1016/j.biopha.2023.114846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
The emergence of drug resistance and metastasis has long been a difficult problem for cancer treatment. Recent studies have shown that cancer stem cell populations are key factors in the regulation of cancer aggressiveness, relapse and drug resistance. Cancer stem cell (CSC) populations are highly plastic and self-renewing, giving them unique metabolic, metastatic, and chemotherapy resistance properties. N6-methyladenosine (m6A) is the most abundant internal modification of mRNA and is involved in a variety of cell growth and development processes, including RNA transcription, alternative splicing, degradation, and translation. It has also been linked to the development of various cancers. At present, the important role of m6A in tumour progression is gradually attracting attention, especially in the tumour stemness regulation process. Abnormal m6A modifications regulate tumour metastasis, recurrence and drug resistance. This paper aims to explore the regulatory mechanism of m6A in CSCs and clinical therapy, clarify its regulatory network, and provide theoretical guidance for the development of clinical targets and improvement of therapeutic effects.
Collapse
Affiliation(s)
- Liming Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Yuanxin Tang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P.R. China.
| |
Collapse
|
29
|
Chao C, Tang R, Zhao J, Di D, Qian Y, Wang B. Oncogenic roles and related mechanisms of the long non-coding RNA MINCR in human cancers. Front Cell Dev Biol 2023; 11:1087337. [PMID: 37215074 PMCID: PMC10196036 DOI: 10.3389/fcell.2023.1087337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play vital roles in regulating epigenetic mechanisms and gene expression levels, and their dysregulation is closely associated with a variety of diseases such as cancer. Several studies have demonstrated that lncRNAs are dysregulated during tumor progression. Recently, the MYC-induced long non-coding RNA MINCR, a newly identified lncRNA, has been demonstrated to act as an oncogene in different cancers, including gallbladder cancer, hepatocellular cancer, colorectal cancer, non-small cell lung cancer, oral squamous cell carcinoma, nasopharyngeal cancer, and glioma. Moreover, MINCR has been reported to act as a biomarker in the prognosis of patients with different cancers. In this review, we summarize and analyze the oncogenic roles of MINCR in a variety of human cancers in terms of its clinical significance, biological functions, cellular activities, and regulatory mechanism. Our analysis of the literature suggests that MINCR has potential as a novel biomarker and therapeutic target in human cancers.
Collapse
Affiliation(s)
- Ce Chao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Renzhe Tang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiamin Zhao
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dongmei Di
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yongxiang Qian
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bin Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
30
|
Hao R, Zhang L, Si Y, Zhang P, Wang Y, Li B, Hu J, Qi Y. A novel feedback regulated loop of circRRM2-IGF2BP1-MYC promotes breast cancer metastasis. Cancer Cell Int 2023; 23:54. [PMID: 36966311 PMCID: PMC10039515 DOI: 10.1186/s12935-023-02895-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/08/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Metastasis is the leading cause of mortality in patients with breast cancer (BC). Studies demonstrate that circular RNAs (circRNAs) were involved in BC progression, while the molecular mechanisms remain largely unclear. METHODS The microArray circRNA profiles were used to explore the differential expression circRNAs in BC and paracancerous normal tissues, and the quantitative reverse transcription-polymerase chain reaction was used to validate their expression level in clinical samples and cell lines. Nuclear/cytosolic fractionation and fluorescence in situ hybridization (FISH) assays were performed to examine circRRM2 (hsa_circ_0052582) subcellular location. The scratch wound healing and transwell assays were conducted to evaluate the impact of circRRM2 on BC cell migration and invasion. We predicted miRNAs that might bind with cricRRM2 and the downstream target genes using bioinformatics analysis and explored their expression levels and prognostic value in BC. FISH, RNA immunoprecipitation, Co-immunoprecipitation, Western blot, and rescue experiments were implemented to figure out circRRM2 function and underlying mechanisms in BC. RESULTS The present study revealed several aberrant circRNAs in BC tissues and observed that circRRM2 was upregulated in tumor tissues of 40 patients with BC. High circRRM2 was significantly associated with advanced N stage in patients with BC. Gain- and loss- of function experiments revealed that circRRM2 promoted the migration and invasion of cells and functioned as an oncogene in BC. Mechanism studies showed that circRRM2 competed with miR-31-5p/miR-27b-3p to upregulate the IGF2BP1 expression. Furthermore, IGF2BP1 upregulated the circRRM2 level via interacting with MYC, which functioned as the transcriptional factor of circRRM2. Thus, the positive feedback loop that was composed of circRRM2/IGF2BP1/MYC was identified. CONCLUSION This study confirms that upregulated circRRM2 functions an oncogenic role in BC metastasis. The positive feedback loop of circRRM2/IGF2BP1/MYC enforces the circRRM2 expression, which might offer a potential target for BC treatment.
Collapse
Affiliation(s)
- Ran Hao
- Institutes of Health Research, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lei Zhang
- Institutes of Health Research, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yangming Si
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Peng Zhang
- Institutes of Health Research, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Military Nursing, NCO School, Army Medical University, Shijiazhuang, Hebei, China
| | - Yipeng Wang
- Institutes of Health Research, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bangchao Li
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jie Hu
- Department of Science and Technology, Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Yixin Qi
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
31
|
Gholami M, Klashami ZN, Ebrahimi P, Mahboobipour AA, Farid AS, Vahidi A, Zoughi M, Asadi M, Amoli MM. Metformin and long non-coding RNAs in breast cancer. J Transl Med 2023; 21:155. [PMID: 36849958 PMCID: PMC9969691 DOI: 10.1186/s12967-023-03909-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/21/2023] [Indexed: 03/01/2023] Open
Abstract
Breast cancer (BC) is the second most common cancer and cause of death in women. In recent years many studies investigated the association of long non-coding RNAs (lncRNAs), as novel genetic factors, on BC risk, survival, clinical and pathological features. Recent studies also investigated the roles of metformin treatment as the firstline treatment for type 2 diabetes (T2D) played in lncRNAs expression/regulation or BC incidence, outcome, mortality and survival, separately. This comprehensive study aimed to review lncRNAs associated with BC features and identify metformin-regulated lncRNAs and their mechanisms of action on BC or other types of cancers. Finally, metformin affects BC by regulating five BC-associated lncRNAs including GAS5, HOTAIR, MALAT1, and H19, by several molecular mechanisms have been described in this review. In addition, metformin action on other types of cancers by regulating ten lncRNAs including AC006160.1, Loc100506691, lncRNA-AF085935, SNHG7, HULC, UCA1, H19, MALAT1, AFAP1-AS1, AC026904.1 is described.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeynab Nickhah Klashami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pirooz Ebrahimi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | | | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Vahidi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Zoughi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asadi
- Metabolomics and Genomics Research Center Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Huang W, Zhu L, Huang H, Li Y, Wang G, Zhang C. IGF2BP3 overexpression predicts poor prognosis and correlates with immune infiltration in bladder cancer. BMC Cancer 2023; 23:116. [PMID: 36732736 PMCID: PMC9896754 DOI: 10.1186/s12885-022-10353-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/22/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND IGF2BP3 expression is associated with poor prognosis in cancers of multiple tissue origins. However, the precise mechanism of its co-carcinogenic action in bladder cancer is unknown. METHODS We aimed to demonstrate the relationship between IGF2BP3 expression and pan-cancer using The Cancer Genome Atlas (TCGA) database. We next validated IGF2BP3 expression in the Gene Expression Omnibus (GEO) database (GSE3167). Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic values of IGF2BP3. Cox and logistic regression were used to explore the factors affecting the prognosis. Protein-protein interactions (PPIs) network was constructed by STRING. Enrichment analyses were performed to infer involved pathways and functional categories of IGF2BP3 using the cluster Profiler package. We applied single-sample gene set enrichment analysis (ssGSEA) algorithm and TIMER database to evaluate the expression level of immune genes. RESULTS Pan-cancer analyses reveal that IGF2BP3 was higher in most cancer types, including bladder cancer, and the same results were found in GSE3167. The area under the ROC curve of IGF2BP3 was 0.736, which indicated that IGF2BP3 may be a potential diagnostic biomarker. High IGF2BP3 expression was associated with poorer overall survival (OS) (P = 0.015). For validation, we collected 95 bladder cancer samples and found that IGF2BP3 expression was higher in bladder cancer tissues than that in non-tumor bladder tissues by immunohistochemistry staining. We found a positive correlation between the expression level of IGF2BP3 and the clinical stage of bladder cancer. Immunocyte infiltration analysis showed that high IGF2BP3 expression was correlated with regulating the infiltration level of immune cell, including neutrophil cells and macrophages. IGF2BP3 promotes migration and invasion of bladder cancer cells, while IGF2BP3 inhibition had the opposite effects. Higher IGF2BP3 expression was closely associated with advanced TNM stage. CONCLUSION IGF2BP3 overexpression was related to disease progression and poor prognosis, as well as infiltration of immune cells in bladder cancer. IGF2BP3 can be a promising independent prognostic biomarker and potential treatment target for bladder cancer.
Collapse
Affiliation(s)
- Wei Huang
- grid.412604.50000 0004 1758 4073Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China
| | - Lizhen Zhu
- grid.412604.50000 0004 1758 4073Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China
| | - Haoxuan Huang
- grid.412604.50000 0004 1758 4073Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China
| | - Yuanyuan Li
- grid.412604.50000 0004 1758 4073Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China
| | - Gongxian Wang
- grid.412604.50000 0004 1758 4073Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China
| | - Cheng Zhang
- grid.412604.50000 0004 1758 4073Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi China
| |
Collapse
|
33
|
Petri BJ, Klinge CM. m6A readers, writers, erasers, and the m6A epitranscriptome in breast cancer. J Mol Endocrinol 2023; 70:JME-22-0110. [PMID: 36367225 PMCID: PMC9790079 DOI: 10.1530/jme-22-0110] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
Epitranscriptomic modification of RNA regulates human development, health, and disease. The true diversity of the transcriptome in breast cancer including chemical modification of transcribed RNA (epitranscriptomics) is not well understood due to limitations of technology and bioinformatic analysis. N-6-methyladenosine (m6A) is the most abundant epitranscriptomic modification of mRNA and regulates splicing, stability, translation, and intracellular localization of transcripts depending on m6A association with reader RNA-binding proteins. m6A methylation is catalyzed by the METTL3 complex and removed by specific m6A demethylase ALKBH5, with the role of FTO as an 'eraser' uncertain. In this review, we provide an overview of epitranscriptomics related to mRNA and focus on m6A in mRNA and its detection. We summarize current knowledge on altered levels of writers, readers, and erasers of m6A and their roles in breast cancer and their association with prognosis. We summarize studies identifying m6A peaks and sites in genes in breast cancer cells.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS)
| |
Collapse
|
34
|
Identification of FGF13 as a Potential Biomarker and Target for Diagnosis of Impaired Glucose Tolerance. Int J Mol Sci 2023; 24:ijms24021807. [PMID: 36675322 PMCID: PMC9867186 DOI: 10.3390/ijms24021807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Early identification of pre-diabetes provides an opportunity for intervention and treatment to delay its progression to type 2 diabetes mellitus (T2DM). We aimed to identify the biomarkers of impaired glucose tolerance (IGT) through bioinformatics analysis. The GSE76896 dataset, including non-diabetic (ND), IGT, and T2DM clinical samples, was deeply analyzed to identify 309 Co-DEGs for IGT and T2DM. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that inflammatory responses and the PI3K-AKT signaling pathway are important patho-physiological features of IGT and T2DM. Protein-protein interaction (PPI) network analysis and cytoHubba technolgy identified seven hub genes: namely, CCL2, CXCL1, CXCL8, EDN1, FGF13, MMP1, and NGF. The expression and ROC curves of these hub genes were validated using the GSE38642 dataset. Through an immunofluorescence assay, we found that the expression of FGF13 in islets of mice in the HFD and T2DM groups was significantly lower than in the control group. Similarly, the level of FGF13 in the sera of IGT and T2DM patients was lower than that in the healthy group. Together, these results suggest that FGF13 can be treated as a novel biomarker of IGT, which may provide new targets for the diagnosis and treatment of pre-diabetes and T2DM.
Collapse
|
35
|
Zhang X, Chen Q, He Y, Shi Q, Yin C, Xie Y, Yu H, Bao Y, Wang X, Tang C, Dong Z. STRIP2 motivates non-small cell lung cancer progression by modulating the TMBIM6 stability through IGF2BP3 dependent. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:19. [PMID: 36639675 PMCID: PMC9837939 DOI: 10.1186/s13046-022-02573-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Striatin interacting protein 2 (STRIP2) is a core component of the striatin-interacting phosphatase and kinase (STRIPAK) complexes, which is involved in tumor initiation and progression via the regulation of cell contractile and metastasis. However, the underlying molecular mechanisms of STRIP2 in non-small cell lung cancer (NSCLC) progression remain largely unknown. METHODS The expressions of STRIP2 and IGF2BP3 in human NSCLC specimens and NSCLC cell lines were detected using quantitative RT-PCR, western blotting, and immunohistochemistry (IHC) analyses. The roles and molecular mechanisms of STRIP2 in promoting NSCLC progression were investigated in vitro and in vivo. RESULTS Here, we found that STRIP2 expression was significantly elevated in NSCLC tissues and high STRIP2 expression was associated with a poor prognosis. Knockdown of STRIP2 suppressed tumor growth and metastasis in vitro and in vivo, while STRIP2 overexpression obtained the opposite effect. Mechanistically, P300/CBP-mediated H3K27 acetylation activation in the promoter of STRIP2 induced STRIP2 transcription, which interacted with insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) and upregulated IGF2BP3 transcription. In addition, STRIP2-IGF2BP3 axis stimulated m6A modification of TMBIM6 mRNA and enhanced TMBIM6 stability. Consequently, TMBIM6 involved NSCLC cell proliferation, migration and invasion dependent on STRIP2 and IGF2BP3. In NSCLC patients, high co-expression of STRIP2, IGF2BP3 and TMBIM6 was associated with poor outcomes. CONCLUSIONS Our findings indicate that STRIP2 interacts with IGF2BP3 to regulate TMBIM6 mRNA stability in an m6A-dependent manner and may represent a potential prognostic biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xilin Zhang
- grid.411440.40000 0001 0238 8414Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Qiuqiang Chen
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Ying He
- grid.411440.40000 0001 0238 8414Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Qian Shi
- grid.411440.40000 0001 0238 8414Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Chengyi Yin
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Yanping Xie
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Huanming Yu
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Ying Bao
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Xiang Wang
- grid.411440.40000 0001 0238 8414Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Chengwu Tang
- grid.411440.40000 0001 0238 8414Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Zhaohui Dong
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| |
Collapse
|
36
|
Winkle M, Tayari MM, Kok K, Duns G, Grot N, Kazimierska M, Seitz A, de Jong D, Koerts J, Diepstra A, Dzikiewicz-Krawczyk A, Steidl C, Kluiver J, van den Berg A. The lncRNA KTN1-AS1 co-regulates a variety of Myc-target genes and enhances proliferation of Burkitt lymphoma cells. Hum Mol Genet 2022; 31:4193-4206. [PMID: 35866590 DOI: 10.1093/hmg/ddac159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in many normal and oncogenic pathways through a diverse repertoire of transcriptional and posttranscriptional regulatory mechanisms. LncRNAs that are under tight regulation of well-known oncogenic transcription factors such as c-Myc (Myc) are likely to be functionally involved in their disease-promoting mechanisms. Myc is a major driver of many subsets of B cell lymphoma and to date remains an undruggable target. We identified three Myc-induced and four Myc-repressed lncRNAs by use of multiple in vitro models of Myc-driven Burkitt lymphoma and detailed analysis of Myc binding profiles. We show that the top Myc-induced lncRNA KTN1-AS1 is strongly upregulated in different types of B cell lymphoma compared with their normal counterparts. We used CRISPR-mediated genome editing to confirm that the direct induction of KTN1-AS1 by Myc is dependent on the presence of a Myc E-box-binding motif. Knockdown of KTN1-AS1 revealed a strong negative effect on the growth of three BL cell lines. Global gene expression analysis upon KTN1-AS1 depletion shows a strong enrichment of key genes in the cholesterol biosynthesis pathway as well as co-regulation of many Myc-target genes, including a moderate negative effect on the levels of Myc itself. Our study suggests a critical role for KTN1-AS1 in supporting BL cell growth by mediating co-regulation of a variety of Myc-target genes and co-activating key genes involved in cholesterol biosynthesis. Therefore, KTN1-AS1 may represent a putative novel therapeutic target in lymphoma.
Collapse
Affiliation(s)
- Melanie Winkle
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.,Department of Translational Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mina M Tayari
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.,Department of Human Genetics, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Gerben Duns
- Department of Lymphoid Cancer Research, BC Cancer Center, Vancouver, BC, Canada
| | - Natalia Grot
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Marta Kazimierska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Annika Seitz
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Debora de Jong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Jasper Koerts
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | | | - Christian Steidl
- Department of Lymphoid Cancer Research, BC Cancer Center, Vancouver, BC, Canada
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| |
Collapse
|
37
|
Bryl R, Piwocka O, Kawka E, Mozdziak P, Kempisty B, Knopik-Skrocka A. Cancer Stem Cells-The Insight into Non-Coding RNAs. Cells 2022; 11:cells11223699. [PMID: 36429127 PMCID: PMC9688207 DOI: 10.3390/cells11223699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Since their initial identification three decades ago, there has been extensive research regarding cancer stem cells (CSCs). It is important to consider the biology of cancer stem cells with a particular focus on their phenotypic and metabolic plasticity, the most important signaling pathways, and non-coding RNAs (ncRNAs) regulating these cellular entities. Furthermore, the current status of therapeutic approaches against CSCs is an important consideration regarding employing the technology to improve human health. Cancer stem cells have claimed to be one of the most important group of cells for the development of several common cancers as they dictate features, such as resistance to radio- and chemotherapy, metastasis, and secondary tumor formation. Therapies which could target these cells may develop into an effective strategy for tumor eradication and a hope for patients for whom this disease remains uncurable.
Collapse
Affiliation(s)
- Rut Bryl
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Oliwia Piwocka
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Emilia Kawka
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
- Department of Human Morphology and Embryology, Division of Anatomy, Medical University of Wrocław, 50-367 Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland
- Correspondence: or
| | - Agnieszka Knopik-Skrocka
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
38
|
Ramesh-Kumar D, Guil S. The IGF2BP family of RNA binding proteins links epitranscriptomics to cancer. Semin Cancer Biol 2022; 86:18-31. [PMID: 35643219 DOI: 10.1016/j.semcancer.2022.05.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023]
Abstract
RNA binding proteins that act at the post-transcriptional level display a richness of mechanisms to modulate the transcriptional output and respond to changing cellular conditions. The family of IGF2BP proteins recognize mRNAs modified by methylation and lengthen their lifecycle in the context of stable ribonucleoprotein particles to promote cancer progression. They are emerging as key 'reader' proteins in the epitranscriptomic field, driving the fate of bound substrates under physiological and disease conditions. Recent developments in the field include the recognition that noncoding substrates play crucial roles in mediating the pro-growth features of IGF2BP family, not only as regulated targets, but also as modulators of IGF2BP function themselves. In this review, we summarize the regulatory roles of IGF2BP proteins and link their molecular role as m6A modification readers to the cellular phenotype, thus providing a comprehensive insight into IGF2BP function.
Collapse
Affiliation(s)
- Deepthi Ramesh-Kumar
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia 08916, Spain
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia 08916, Spain.
| |
Collapse
|
39
|
Shaath H, Vishnubalaji R, Elango R, Kardousha A, Islam Z, Qureshi R, Alam T, Kolatkar PR, Alajez NM. Long non-coding RNA and RNA-binding protein interactions in cancer: Experimental and machine learning approaches. Semin Cancer Biol 2022; 86:325-345. [PMID: 35643221 DOI: 10.1016/j.semcancer.2022.05.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023]
Abstract
Understanding the complex and specific roles played by non-coding RNAs (ncRNAs), which comprise the bulk of the genome, is important for understanding virtually every hallmark of cancer. This large group of molecules plays pivotal roles in key regulatory mechanisms in various cellular processes. Regulatory mechanisms, mediated by long non-coding RNA (lncRNA) and RNA-binding protein (RBP) interactions, are well documented in several types of cancer. Their effects are enabled through networks affecting lncRNA and RBP stability, RNA metabolism including N6-methyladenosine (m6A) and alternative splicing, subcellular localization, and numerous other mechanisms involved in cancer. In this review, we discuss the reciprocal interplay between lncRNAs and RBPs and their involvement in epigenetic regulation via histone modifications, as well as their key role in resistance to cancer therapy. Other aspects of RBPs including their structural domains, provide a deeper knowledge on how lncRNAs and RBPs interact and exert their biological functions. In addition, current state-of-the-art knowledge, facilitated by machine and deep learning approaches, unravels such interactions in better details to further enhance our understanding of the field, and the potential to harness RNA-based therapeutics as an alternative treatment modality for cancer are discussed.
Collapse
Affiliation(s)
- Hibah Shaath
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Radhakrishnan Vishnubalaji
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ramesh Elango
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ahmed Kardousha
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Rizwan Qureshi
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Prasanna R Kolatkar
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Nehad M Alajez
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
40
|
Ge T, Gu X, Jia R, Ge S, Chai P, Zhuang A, Fan X. Crosstalk between metabolic reprogramming and epigenetics in cancer: updates on mechanisms and therapeutic opportunities. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1049-1082. [PMID: 36266736 PMCID: PMC9648395 DOI: 10.1002/cac2.12374] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/19/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022]
Abstract
Reversible, spatial, and temporal regulation of metabolic reprogramming and epigenetic homeostasis are prominent hallmarks of carcinogenesis. Cancer cells reprogram their metabolism to meet the high bioenergetic and biosynthetic demands for vigorous proliferation. Epigenetic dysregulation is a common feature of human cancers, which contributes to tumorigenesis and maintenance of the malignant phenotypes by regulating gene expression. The epigenome is sensitive to metabolic changes. Metabolism produces various metabolites that are substrates, cofactors, or inhibitors of epigenetic enzymes. Alterations in metabolic pathways and fluctuations in intermediate metabolites convey information regarding the intracellular metabolic status into the nucleus by modulating the activity of epigenetic enzymes and thus remodeling the epigenetic landscape, inducing transcriptional responses to heterogeneous metabolic requirements. Cancer metabolism is regulated by epigenetic machinery at both transcriptional and post‐transcriptional levels. Epigenetic modifiers, chromatin remodelers and non‐coding RNAs are integral contributors to the regulatory networks involved in cancer metabolism, facilitating malignant transformation. However, the significance of the close connection between metabolism and epigenetics in the context of cancer has not been fully deciphered. Thus, it will be constructive to summarize and update the emerging new evidence supporting this bidirectional crosstalk and deeply assess how the crosstalk between metabolic reprogramming and epigenetic abnormalities could be exploited to optimize treatment paradigms and establish new therapeutic options. In this review, we summarize the central mechanisms by which epigenetics and metabolism reciprocally modulate each other in cancer and elaborate upon and update the major contributions of the interplays between epigenetic aberrations and metabolic rewiring to cancer initiation and development. Finally, we highlight the potential therapeutic opportunities for hematological malignancies and solid tumors by targeting this epigenetic‐metabolic circuit. In summary, we endeavored to depict the current understanding of the coordination between these fundamental abnormalities more comprehensively and provide new perspectives for utilizing metabolic and epigenetic targets for cancer treatment.
Collapse
Affiliation(s)
- Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| |
Collapse
|
41
|
Interplay between the m 6A Epitranscriptome and Tumor Metabolism: Mechanisms and Therapeutic Implications. Biomedicines 2022; 10:biomedicines10102589. [PMID: 36289851 PMCID: PMC9599308 DOI: 10.3390/biomedicines10102589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
N6-methyladenosine (m6A) modification of messenger RNA (mRNA) influences the stability and translation of the transcripts into functional proteins. Recent studies reveal the role of m6A modifications in regulating the metabolism of basic biomolecules such as glucose, lipids and amino acids. Such mechanisms are not only important for physiological functions of normal cells but also prove to be pivotal for the pathogenesis of cancers by driving dysregulated metabolism. M6A writers, readers and erasers function co-operatively to promote aberrant glucose, lipid and amino acid metabolism in cancer cells, which in turn support increased proliferative and metastatic potential. Better understanding of the relationship between m6A and metabolism in malignancy may unravel novel therapeutic targets as well as biomarkers in cancer. In this review, we summarize the recent evidence demonstrating the interplay between m6A modification and cancer metabolism and their therapeutic implications.
Collapse
|
42
|
Agostini M, Mancini M, Candi E. Long non-coding RNAs affecting cell metabolism in cancer. Biol Direct 2022; 17:26. [PMID: 36182907 PMCID: PMC9526990 DOI: 10.1186/s13062-022-00341-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/27/2021] [Indexed: 11/10/2022] Open
Abstract
Metabolic reprogramming is commonly recognized as one important hallmark of cancers. Cancer cells present significant alteration of glucose metabolism, oxidative phosphorylation, and lipid metabolism. Recent findings demonstrated that long non-coding RNAs control cancer development and progression by modulating cell metabolism. Here, we give an overview of breast cancer metabolic reprogramming and the role of long non-coding RNAs in driving cancer-specific metabolic alteration.
Collapse
Affiliation(s)
- Massimiliano Agostini
- Department Experimental Medicine, University of Rome "Tor Vergata", TOR, Via Montpellier,1, 00133, Rome, Italy
| | - Mara Mancini
- IDI-IRCCS, Via Monti di Creta 104, 00166, Rome, Italy
| | - Eleonora Candi
- Department Experimental Medicine, University of Rome "Tor Vergata", TOR, Via Montpellier,1, 00133, Rome, Italy. .,IDI-IRCCS, Via Monti di Creta 104, 00166, Rome, Italy.
| |
Collapse
|
43
|
Abedi-Gaballu F, Kamal Kazemi E, Salehzadeh SA, Mansoori B, Eslami F, Emami A, Dehghan G, Baradaran B, Mansoori B, Cho WC. Metabolic Pathways in Breast Cancer Reprograming: An Insight to Non-Coding RNAs. Cells 2022; 11:cells11192973. [PMID: 36230935 PMCID: PMC9563138 DOI: 10.3390/cells11192973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cells reprogram their metabolisms to achieve high energetic requirements and produce precursors that facilitate uncontrolled cell proliferation. Metabolic reprograming involves not only the dysregulation in glucose-metabolizing regulatory enzymes, but also the enzymes engaging in the lipid and amino acid metabolisms. Nevertheless, the underlying regulatory mechanisms of reprograming are not fully understood. Non-coding RNAs (ncRNAs) as functional RNA molecules cannot translate into proteins, but they do play a regulatory role in gene expression. Moreover, ncRNAs have been demonstrated to be implicated in the metabolic modulations in breast cancer (BC) by regulating the metabolic-related enzymes. Here, we will focus on the regulatory involvement of ncRNAs (microRNA, circular RNA and long ncRNA) in BC metabolism, including glucose, lipid and glutamine metabolism. Investigation of this aspect may not only alter the approaches of BC diagnosis and prognosis, but may also open a new avenue in using ncRNA-based therapeutics for BC treatment by targeting different metabolic pathways.
Collapse
Affiliation(s)
- Fereydoon Abedi-Gaballu
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Elham Kamal Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Seyed Ahmad Salehzadeh
- Department of Medicinal Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 175-14115, Iran
| | - Behnaz Mansoori
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 175-14115, Iran
| | - Farhad Eslami
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Ali Emami
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran
| | - Behzad Mansoori
- Cellular and Molecular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
- Correspondence: (B.M.); (W.C.C.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
- Correspondence: (B.M.); (W.C.C.)
| |
Collapse
|
44
|
Advances in Biomarkers and Endogenous Regulation of Breast Cancer Stem Cells. Cells 2022; 11:cells11192941. [PMID: 36230903 PMCID: PMC9562239 DOI: 10.3390/cells11192941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is one of the most common cancers. Even if breast cancer patients initially respond to treatment, developed resistance can lead to a poor prognosis. Cancer stem cells (CSCs) are a group of undifferentiated cells with self-renewal and multipotent differentiation characteristics. Existing evidence has shown that CSCs are one of the determinants that contribute to the heterogeneity of primary tumors. The emergence of CSCs causes tumor recurrence, metastasis, and therapeutic resistance. Previous studies indicated that different stemness-associated surface markers can identify other breast cancer stem cell (BCSC) subpopulations. Deciphering the critical signaling networks that are involved in the induction and maintenance of stemness is essential to develop novel BCSC-targeting strategies. In this review, we reviewed the biomarkers of BCSCs, critical regulators of BCSCs, and the signaling networks that regulate the stemness of BCSCs.
Collapse
|
45
|
Guo B, Zhao D, Feng J, Liu Y. LncRNA HEIH/miR-4500/IGF2BP1/c-Myc Feedback Loop Accelerates Bladder Cancer Cell Growth and Stemness. Bladder Cancer 2022; 8:255-267. [PMID: 38993687 PMCID: PMC11181846 DOI: 10.3233/blc-211544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/12/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Bladder cancer (BCa) is one of the most prevalent malignancies and more common in men. An aberrantly expressed long noncoding RNA (lncRNA) hepatocellular carcinoma up-regulated EZH2-associated lncRNA (HEIH) has been reported to be implicated in the progression of many cancers, but its role in BCa remains little known. Our study intended to uncover whether and how HEIH regulates BCa progression. MATERIALS AND METHODS Quantitative real-time polymerase chain reaction (RT-qPCR) was adopted to determine HEIH expression in BCa cell lines. Functional experiments were performed to examine the effects of HEIH on BCa cell proliferation, apoptosis, migration, invasion and stemness. Bioinformatics analysis and mechanism experiments were conducted to investigate the regulatory relationship between HEIH and related molecules in BCa. RESULTS HEIH expression was observed to be significantly increased in BCa cell lines. HEIH depletion significantly hindered BCa cell proliferation, migration and invasion. Besides, HEIH up-regulated MYC proto-oncogene, and bHLH transcription factor (c-Myc) expression to promote BCa cell stemness. Moreover, HEIH served as a sponge for miR-4500 to modulate insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) expression, thereby stabilizing c-Myc mRNA level. CONCLUSION Our study demonstrated a positive feedback loop of HEIH/miR-4500/IGF2BP1/c-Myc in BCa progression, offering a novel insight into a possible BCa therapy.
Collapse
Affiliation(s)
- Baowei Guo
- Department of Urology, Yidu Central Hospital of Weifang, Qingzhou City, Weifang, Shandong, China
| | - Dan Zhao
- Department of Urology, Yidu Central Hospital of Weifang, Qingzhou City, Weifang, Shandong, China
| | - Jiao Feng
- Department of Ophthalmology, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Yanmei Liu
- Clinical Laboratory, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| |
Collapse
|
46
|
lncRNAs: Key Regulators of Signaling Pathways in Tumor Glycolysis. DISEASE MARKERS 2022; 2022:2267963. [PMID: 36124026 PMCID: PMC9482549 DOI: 10.1155/2022/2267963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 12/01/2022]
Abstract
In response to overstimulation of growth factor signaling, tumor cells can reprogram their metabolism to preferentially utilize and metabolize glucose to lactate even in the presence of abundant oxygen, which is termed the “Warburg effect” or aerobic glycolysis. Long noncoding RNAs (lncRNAs) are a group of transcripts longer than 200 nucleotides and do not encode proteins. Accumulating evidence suggests that lncRNAs can affect aerobic glycolysis through multiple mechanisms, including the regulation of glycolytic transporters and key rate-limiting enzymes. In addition, maladjusted signaling pathways are critical for glycolysis. Therefore, this article mainly reviews the lncRNAs involved in the regulation of tumor glycolysis key signal pathways in recent years and provides an in-depth understanding of the role of differentially expressed lncRNAs in the key signal pathways of glucose metabolism, which may help to provide new therapeutic targets and new diagnostic and prognostic markers for human cancer.
Collapse
|
47
|
He Q, Hao P, He G, Mai H, Liu W, Zhang W, Zhang K, Zhong G, Guo R, Yu C, Li Y, Wong C, Chen Q, Chen Y. IGF2BP1-regulated expression of ERRα is involved in metabolic reprogramming of chemotherapy resistant osteosarcoma cells. Lab Invest 2022; 20:348. [PMID: 35918761 PMCID: PMC9344706 DOI: 10.1186/s12967-022-03549-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022]
Abstract
Doxorubicin (Dox) is the standard treatment approach for osteosarcoma (OS), while acquired drug resistance seriously attenuates its treatment efficiency. The present study aimed to investigate the potential roles of metabolic reprogramming and the related regulatory mechanism in Dox-resistant OS cells. The results showed that the ATP levels, lactate generation, glucose consumption and oxygen consumption rate were significantly increased in Dox-resistant OS cells compared with parental cells. Furthermore, the results revealed that the increased expression of estrogen-related receptor alpha (ERRα) was involved in metabolic reprogramming in chemotherapy resistant OS cells, since targeted inhibition of ERRα restored the shifting of metabolic profiles. Mechanistic analysis indicated that the mRNA stability, rather than ERRα transcription was markedly increased in chemoresistant OS cells. Therefore, it was hypothesized that the 3ʹ-untranslated region of ERRα mRNA was methylated by N6-methyladenine, which could further recruit insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) to suppress mRNA decay and increase mRNA stability. IGF2BP1 knockdown downregulated ERRα and reversed the metabolic alteration of resistant OS cells. Additionally, the oncogenic effect of the IGF2BP1/ERRα axis on Dox-resistant OS cells was verified by in vitro and in vivo experiments. Clinical analysis also revealed that the expression levels of IGF2BP1 and ERRα were associated with the clinical progression of OS. Collectively, the current study suggested that the IGF2BP1/ERRα axis could regulate metabolic reprogramming to contribute to the chemoresistance of OS cells.
Collapse
Affiliation(s)
- Qing He
- Department of Surgical Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Hao
- Department of Surgical Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gang He
- Department of Orthopedics, Guangzhou Zengcheng District People's Hospital, Guangzhou, China
| | - Hantao Mai
- Department of Surgical Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenzhou Liu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, Yanjiang West Road, Yuexiu, Guangzhou, 510120, China
| | - Weiqiong Zhang
- Department of Orthopedics, Guangzhou Zengcheng District People's Hospital, Guangzhou, China
| | - Kelin Zhang
- Department of Surgical Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guifang Zhong
- Department of Surgical Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruilian Guo
- Department of Surgical Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changzhi Yu
- Department of Chinese Traditional Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Li
- Pediatric Hematology & Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chipiu Wong
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, Yanjiang West Road, Yuexiu, Guangzhou, 510120, China
| | - Qian Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, Yanjiang West Road, Yuexiu, Guangzhou, 510120, China
| | - Yantao Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, Yanjiang West Road, Yuexiu, Guangzhou, 510120, China.
| |
Collapse
|
48
|
Wu W, Wen K. Research progress on the interaction between long non‑coding RNAs and RNA‑binding proteins to influence the reprogramming of tumor glucose metabolism (Review). Oncol Rep 2022; 48:153. [PMID: 35856447 PMCID: PMC9350995 DOI: 10.3892/or.2022.8365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
As epigenetic regulators, long non-coding RNAs (lncRNAs) are involved in various important regulatory processes and typically interact with RNA-binding proteins (RBPs) to exert their core functional effects. An increasing number of studies have demonstrated that lncRNAs can regulate the occurrence and development of cancer through a variety of complex mechanisms and can also participate in tumor glucose metabolism by directly or indirectly regulating the Warburg effect. As one of the metabolic characteristics of tumor cells, the Warburg effect provides a large amount of energy and numerous intermediate products to meet the consumption demands of tumor metabolism, providing advantages for the occurrence and development of tumors. The present review article summarizes the regulatory effects of lncRNAs on the reprogramming of glucose metabolism after interacting with RBPs in tumors. The findings discussed herein may aid in the better understanding of the pathogenesis of malignancies, and may provide novel therapeutic targets, as well as new diagnostic and prognostic markers for human cancers.
Collapse
Affiliation(s)
- Weizheng Wu
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Kunming Wen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
49
|
Cui H, Ma R, Hu T, Xiao GG, Wu C. Bioinformatics Analysis Highlights Five Differentially Expressed Genes as Prognostic Biomarkers of Cervical Cancer and Novel Option for Anticancer Treatment. Front Cell Infect Microbiol 2022; 12:926348. [PMID: 35782114 PMCID: PMC9247199 DOI: 10.3389/fcimb.2022.926348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cervical cancer is one of the most common gynecological malignancies and is related to human papillomavirus (HPV) infection, especially high-risk type HPV16 and HPV18. Aberrantly expressed genes are involved in the development of cervical cancer, which set a genetic basis for patient prognosis. In this study, we identified a set of aberrantly expressed key genes from The Cancer Genome Atlas (TCGA) database, which could be used to accurately predict the survival rate of patients with cervical squamous cell carcinoma (CESC). A total of 3,570 genes that are differentially expressed between normal and cancerous samples were analyzed by the algorithm of weighted gene co-expression network analysis (WGCNA): 1,606 differentially expressed genes (DEGs) were upregulated, while 1,964 DEGs were downregulated. Analysis of these DEGs divided them into 7 modules including 76 hub genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis revealed a significant increase of genes related to cell cycle, DNA replication, p53 signaling pathway, cGMP-PKG signaling pathway, and Fanconi anemia (FA) pathway in CESC. These biological activities are previously reported to associate with cervical cancer or/and HPV infection. Finally, we highlighted 5 key genes (EMEMP2, GIMAP4, DYNC2I2, FGF13-AS1, and GIMAP1) as robust prognostic markers to predict patient’s survival rate (p = 3.706e-05) through univariate and multivariate regression analyses. Thus, our study provides a novel option to set up several biomarkers for cervical cancer prognosis and anticancer drug targets.
Collapse
Affiliation(s)
- Hongtu Cui
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Ruilin Ma
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Tao Hu
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Gary Guishan Xiao
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Chengjun Wu
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
- *Correspondence: Chengjun Wu,
| |
Collapse
|
50
|
Wang C, Kong F, Ma J, Miao J, Su P, Yang H, Li Q, Ma X. IGF2BP3 enhances the mRNA stability of E2F3 by interacting with LINC00958 to promote endometrial carcinoma progression. Cell Death Discov 2022; 8:279. [PMID: 35676262 PMCID: PMC9177600 DOI: 10.1038/s41420-022-01045-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play important regulatory roles in a variety of pathological processes involving cancer. However, the exact molecular mechanisms of lncRNA regulation in endometrial carcinoma (EC) remain poorly defined. The aim of this study was to illustrate the mechanism of LINC00958 in regulating the function of IGF2BP3, an RNA binding protein involved in mRNA stability, and their clinical implications in EC. First, we investigated the clinical role of IGF2BP3 in EC and demonstrated its prognostic value. Loss-of-function and gain-of-function studies showed that IGF2BP3 promoted EC cell proliferation, migration and invasion. Then, we carried out RNA immunoprecipitation sequencing (RIP-seq) analysis, RNA pulldown and immunofluorescence-RNA fluorescence in situ hybridization to identify LINC00958 that interacted with IGF2BP3 in the cytoplasm of EC cells. Rescue experiments indicated that knockdown of LINC00958 partially offset the EC cell progression mediated by IGF2BP3. After that, RNA sequencing was used to screen out the downstream genes of IGF2BP3 and LINC00958. The results revealed that IGF2BP3 upregulated E2F3 expression by interacting with LINC00958. Furthermore, RNA stability assays demonstrated that silencing LINC00958 partially rescued the IGF2BP3-mediated promoting effect on the mRNA stability of E2F3. Collectively, this study suggests that LINC00958, as an oncogene, assists IGF2BP3 in stabilizing E2F3 mRNA and ultimately promotes EC progression, providing a promising therapeutic target for patients with EC.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Fanfei Kong
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Jian Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Jianing Miao
- Medical Research Center, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Peng Su
- Medical Research Center, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Hui Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Qing Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China.
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China.
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China.
| |
Collapse
|