1
|
Chang SS, Cheng CC, Chen YR, Chen FW, Cheng YM, Wang JM. Epithelial CEBPD activates fibronectin and enhances macrophage adhesion in renal ischemia-reperfusion injury. Cell Death Discov 2024; 10:328. [PMID: 39025831 PMCID: PMC11258324 DOI: 10.1038/s41420-024-02082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) is a cause of acute kidney injury in patients after renal transplantation and leads to high morbidity and mortality. Damaged kidney resident cells release cytokines and chemokines, which rapidly recruit leukocytes. Fibronectin (FN-1) contributes to immune cell migration, adhesion and growth in inflamed tissues. CCAAT/enhancer-binding protein delta is responsive to inflammatory cytokines and stresses and plays functional roles in cell motility, extracellular matrix production and immune responses. We found that the expression of CCAAT/enhancer-binding protein delta was increased in renal epithelial cells in IRI mice compared with sham mice. Following IRI, the colocalization of FN-1 with the macrophage marker F4/80 was increased in renal injury model wild-type mice but was significantly attenuated in Cebpd-deficient mice. Inactivation of CEBPD can repress hypoxia-induced FN-1 expression in HK-2 cells. Moreover, the inactivation of CEBPD and FN-1 also reduces macrophage accumulation in HK-2 cells. These findings suggest that the involvement of CEBPD in macrophage accumulation through the activation of FN-1 expression and the inhibition of CEBPD can protect against renal IRI.
Collapse
Affiliation(s)
- Shen-Shin Chang
- Division of Transplantation, Department of Surgery, National Chung Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chao-Chun Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Ren Chen
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Feng-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ya-Min Cheng
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, 700, Taiwan.
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
2
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
3
|
Hu TH, Wu JC, Huang ST, Chu TH, Han AJ, Shih TW, Chang YC, Yang SM, Ko CY, Lin YW, Kung ML, Tai MH. HDGF stimulates liver tumorigenesis by enhancing reactive oxygen species generation in mitochondria. J Biol Chem 2023; 299:105335. [PMID: 37827291 PMCID: PMC10654039 DOI: 10.1016/j.jbc.2023.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Hepatoma-derived growth factor (HDGF) overexpression and uncontrolled reactive oxygen species (ROS) accumulation are involved in malignant transformation and poor prognosis in various types of cancer. However, the interplay between HDGF and ROS generation has not been elucidated in hepatocellular carcinoma. Here, we first analyzed the profile of HDGF expression and ROS production in newly generated orthotopic hepatomas by ultrasound-guided implantation. In situ superoxide detection showed that HDGF-overexpressing hepatomas had significantly elevated ROS levels compared with adjacent nontumor tissues. Consistently, liver tissues from HDGF-deficient mice exhibited lower ROS fluorescence than those from age- and sex-matched WT mice. ROS-detecting fluorescent dyes and flow cytometry revealed that recombinant HDGF (rHDGF) stimulated the production of superoxide anion, hydrogen peroxide, and mitochondrial ROS generation in cultured hepatoma cells in a dose-dependent manner. In contrast, the inactive Ser103Ala rHDGF mutant failed to promote ROS generation or oncogenic behaviors. Seahorse metabolic flux assays revealed that rHDGF dose dependently upregulated bioenergetics through enhanced basal and total oxygen consumption rate, extracellular acidification rate, and oxidative phosphorylation in hepatoma cells. Moreover, antioxidants of N-acetyl cysteine and MitoQ treatment significantly inhibited HDGF-mediated cell proliferation and invasive capacity. Genetic silencing of superoxide dismutase 2 augmented the HDGF-induced ROS generation and oncogenic behaviors of hepatoma cells. Finally, genetic knockdown nucleolin (NCL) and antibody neutralization of surface NCL, the HDGF receptor, abolished the HDGF-induced increase in ROS and mitochondrial energetics. In conclusion, this study has demonstrated for the first time that the HDGF/NCL signaling axis induces ROS generation by elevating ROS generation in mitochondria, thereby stimulating liver carcinogenesis.
Collapse
Affiliation(s)
- Tsung-Hui Hu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jian-Ching Wu
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Tsung Huang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ai-Jie Han
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ting-Wei Shih
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yi-Chen Chang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Shih-Ming Yang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chou-Yuan Ko
- Department of Gastroenterology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Yu-Wei Lin
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| | - Ming-Hong Tai
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Hartl L, Duitman J, Maarten FB, Spek CA. The Dual Role of C/EBPδ in Cancer. Crit Rev Oncol Hematol 2023; 185:103983. [PMID: 37024021 DOI: 10.1016/j.critrevonc.2023.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
CCAAT/Enhancer-Binding Protein delta (C/EBPδ) is a transcription factor involved in differentiation and inflammation. While sparsely expressed in adult tissues, aberrant expression of C/EBPδ has been associated with different cancers. Initially, re-expression of C/EBPδ in cell cultures limited tumor cell proliferation, assigning it a tumor suppressor role. However, opposing observations were made in pre-clinical models and patients, suggesting that C/EBPδ not only mediates cell proliferation but dictates a broader spectrum of tumorigenesis-related effects. It is now widely accepted that C/EBPδ contributes to an inflammatory, tumor-promoting microenvironment, aids hypoxia adaption and contributes to the recruitment of blood vessels for improved nutrient supply to tumor cells and facilitated extravasation. This review summarizes the work published on this transcription factor in the field of cancer over the past decade. It points out areas in which a consensus on C/EBPδ's role appears to emerge and seek to explain seemingly contradictory results.
Collapse
Affiliation(s)
- Leonie Hartl
- Amsterdam UMC Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, the Netherlands.
| | - JanWillem Duitman
- Amsterdam UMC Location University of Amsterdam, Department of Pulmonary Medicine, 1105 AZ Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, 1105 AZ Amsterdam, the Netherlands; Amsterdam Infection & Immunity, Inflammatory Diseases, 1105 AZ Amsterdam, the Netherlands
| | - F Bijlsma Maarten
- Amsterdam UMC Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, the Netherlands
| | - C Arnold Spek
- Amsterdam UMC Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
5
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 154.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
6
|
Wang L, Feng J, Deng Y, Yang Q, Wei Q, Ye D, Rong X, Guo J. CCAAT/Enhancer-Binding Proteins in Fibrosis: Complex Roles Beyond Conventional Understanding. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9891689. [PMID: 36299447 PMCID: PMC9575473 DOI: 10.34133/2022/9891689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 07/29/2023]
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are a family of at least six identified transcription factors that contain a highly conserved basic leucine zipper domain and interact selectively with duplex DNA to regulate target gene expression. C/EBPs play important roles in various physiological processes, and their abnormal function can lead to various diseases. Recently, accumulating evidence has demonstrated that aberrant C/EBP expression or activity is closely associated with the onset and progression of fibrosis in several organs and tissues. During fibrosis, various C/EBPs can exert distinct functions in the same organ, while the same C/EBP can exert distinct functions in different organs. Modulating C/EBP expression or activity could regulate various molecular processes to alleviate fibrosis in multiple organs; therefore, novel C/EBPs-based therapeutic methods for treating fibrosis have attracted considerable attention. In this review, we will explore the features of C/EBPs and their critical functions in fibrosis in order to highlight new avenues for the development of novel therapies targeting C/EBPs.
Collapse
Affiliation(s)
- Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
7
|
Hsiao Y, Chi J, Li C, Chen L, Chen Y, Liang H, Lo Y, Hong J, Chuu C, Hung L, Du J, Chang W, Wang J. Disruption of the pentraxin 3/CD44 interaction as an efficient therapy for triple-negative breast cancers. Clin Transl Med 2022; 12:e724. [PMID: 35090088 PMCID: PMC8797470 DOI: 10.1002/ctm2.724] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/29/2022] Open
Abstract
Due to the heterogeneity and high frequency of genome mutations in cancer cells, targeting vital protumour factors found in stromal cells in the tumour microenvironment may represent an ideal strategy in cancer therapy. However, the regulation and mechanisms of potential targetable therapeutic candidates need to be investigated. An in vivo study demonstrated that loss of pentraxin 3 (PTX3) in stromal cells significantly decreased the metastasis and growth of cancer cells. Clinically, our results indicate that stromal PTX3 expression correlates with adverse prognostic features and is associated with worse survival outcomes in triple-negative breast cancer (TNBC). We also found that transforming growth factor beta 1 (TGF-β1) induces PTX3 expression by activating the transcription factor CCAAT/enhancer binding protein delta (CEBPD) in stromal fibroblasts. Following PTX3 stimulation, CD44, a PTX3 receptor, activates the downstream ERK1/2, AKT and NF-κB pathways to specifically contribute to the metastasis/invasion and stemness of TNBC MDA-MB-231 cells. Two types of PTX3 inhibitors were developed to disrupt the PTX3/CD44 interaction and they showed a significant effect on attenuating growth and restricting the metastasis/invasion of MDA-MB-231 cells, suggesting that targeting the PTX3/CD44 interaction could be a new strategy for future TNBC therapies.
Collapse
Affiliation(s)
- Yu‐Wei Hsiao
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan R. O. C.
| | - Jhih‐Ying Chi
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan R. O. C.
| | - Chien‐Feng Li
- Department of PathologyChi‐Mei Medical CenterTainanTaiwan R. O. C.
| | - Lei‐Yi Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan R. O. C.
| | - Yi‐Ting Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan R. O. C.
| | - Hsin‐Yin Liang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan R. O. C.
| | - Yu‐Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan R. O. C.
| | - Jhen‐Yi Hong
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan R. O. C.
| | - Chin‐Pin Chuu
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoli CountyTaiwan R. O. C.
| | - Liang‐Yi Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan R. O. C.
| | - Jyun‐Yi Du
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan R. O. C.
| | - Wen‐Chang Chang
- Graduate Institute of Medical Sciences, College of MedicineTaipei Medical UniversityTaipeiTaiwan R. O. C.
| | - Ju‐Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan R. O. C.
- Graduate Institute of Medical Sciences, College of MedicineTaipei Medical UniversityTaipeiTaiwan R. O. C.
- International Research Center for Wound Repair and RegenerationNational Cheng Kung UniversityTainanTaiwan R. O. C.
- Department of Physiology, College of MedicineNational Cheng Kung UniversityTainanTaiwan R. O. C.
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan R. O. C.
| |
Collapse
|
8
|
Paradoxical effects of DNA tumor virus oncogenes on epithelium-derived tumor cell fate during tumor progression and chemotherapy response. Signal Transduct Target Ther 2021; 6:408. [PMID: 34836940 PMCID: PMC8626493 DOI: 10.1038/s41392-021-00787-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) and human papillomavirus (HPV) infection is the risk factors for nasopharyngeal carcinoma and cervical carcinoma, respectively. However, clinical analyses demonstrate that EBV or HPV is associated with improved response of patients, although underlying mechanism remains unclear. Here, we reported that the oncoproteins of DNA viruses, such as LMP1 of EBV and E7 of HPV, inhibit PERK activity in cancer cells via the interaction of the viral oncoproteins with PERK through a conserved motif. Inhibition of PERK led to increased level of reactive oxygen species (ROS) that promoted tumor and enhanced the efficacy of chemotherapy in vivo. Consistently, disruption of viral oncoprotein-PERK interactions attenuated tumor growth and chemotherapy in both cancer cells and tumor-bearing mouse models. Our findings uncovered a paradoxical effect of DNA tumor virus oncoproteins on tumors and highlighted that targeting PERK might be an attractive strategy for the treatment of NPC and cervical carcinoma.
Collapse
|
9
|
Zhang Z, Zhang H, Liu T, Chen T, Wang D, Tang D. Heterogeneous Pancreatic Stellate Cells Are Powerful Contributors to the Malignant Progression of Pancreatic Cancer. Front Cell Dev Biol 2021; 9:783617. [PMID: 34988078 PMCID: PMC8722736 DOI: 10.3389/fcell.2021.783617] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/24/2021] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer is associated with highly malignant tumors and poor prognosis due to strong therapeutic resistance. Accumulating evidence shows that activated pancreatic stellate cells (PSC) play an important role in the malignant progression of pancreatic cancer. In recent years, the rapid development of single-cell sequencing technology has facilitated the analysis of PSC population heterogeneity, allowing for the elucidation of the relationship between different subsets of cells with tumor development and therapeutic resistance. Researchers have identified two spatially separated, functionally complementary, and reversible subtypes, namely myofibroblastic and inflammatory PSC. Myofibroblastic PSC produce large amounts of pro-fibroproliferative collagen fibers, whereas inflammatory PSC express large amounts of inflammatory cytokines. These distinct cell subtypes cooperate to create a microenvironment suitable for cancer cell survival. Therefore, further understanding of the differentiation of PSC and their distinct functions will provide insight into more effective treatment options for pancreatic cancer patients.
Collapse
Affiliation(s)
- Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Tian Liu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Tian Chen
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Daorong Wang
- Department of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Institute of General Surgery, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Institute of General Surgery, Yangzhou University, Yangzhou, China
- *Correspondence: Dong Tang,
| |
Collapse
|
10
|
Selective inhibition of aldo-keto reductase 1C3: a novel mechanism involved in midostaurin and daunorubicin synergism. Arch Toxicol 2020; 95:67-78. [PMID: 33025066 DOI: 10.1007/s00204-020-02884-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Midostaurin is an FMS-like tyrosine kinase 3 receptor (FLT3) inhibitor that provides renewed hope for treating acute myeloid leukaemia (AML). The limited efficacy of this compound as a monotherapy contrasts with that of its synergistic combination with standard cytarabine and daunorubicin (Dau), suggesting a therapeutic benefit that is not driven only by FLT3 inhibition. In an AML context, the activity of the enzyme aldo-keto reductase 1C3 (AKR1C3) is a crucial factor in chemotherapy resistance, as it mediates the intracellular transformation of anthracyclines to less active hydroxy metabolites. Here, we report that midostaurin is a potent inhibitor of Dau inactivation mediated by AKR1C3 in both its recombinant form as well as during its overexpression in a transfected cell model. Likewise, in the FLT3- AML cell line KG1a, midostaurin was able to increase the cellular accumulation of Dau and significantly decrease its metabolism by AKR1C3 simultaneously. The combination of those mechanisms increased the nuclear localization of Dau, thus synergizing its cytotoxic effects on KG1a cells. Our results provide new in vitro evidence of how the therapeutic activity of midostaurin could operate beyond targeting the FLT3 receptor.
Collapse
|
11
|
CCAAT/Enhancer-Binding Protein Delta (C/EBPδ): A Previously Unrecognized Tumor Suppressor that Limits the Oncogenic Potential of Pancreatic Ductal Adenocarcinoma Cells. Cancers (Basel) 2020; 12:cancers12092546. [PMID: 32906832 PMCID: PMC7564797 DOI: 10.3390/cancers12092546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Here we show that a protein called C/EBPδ is present in healthy pancreas tissue but almost absent in pancreas tumors. Patients with less C/EBPδ in their tumors had the most metastases and the worst survival chances, showing that C/EBPδ has tumor-suppressive properties in pancreatic cancer. In this study, we reactivated C/EBPδ in pancreatic cancer cells in vitro and observed a reduction in cell proliferation in a 2-dimentional and 3-dimensional space. This implies that tumor cells grow slower when C/EBPδ is activated and they are likely also less capable to escape the primary tumor in order to form metastases. Conversely, when we deleted C/EBPδ in pancreatic cancer cells, we observed accelerated growth. We suggest that reactivating C/EBPδ can suppress tumor growth and formation of metastases, thereby improving patient survival. Abstract CCAAT/enhancer-binding protein δ (C/EBPδ) is a transcription factor involved in growth arrest and differentiation, which has consequently been suggested to harbor tumor suppressive activities. However, C/EBPδ over-expression correlates with poor prognosis in glioblastoma and promotes genomic instability in cervical cancer, hinting at an oncogenic role of C/EBPδ in these contexts. Here, we explore the role of C/EBPδ in pancreatic cancer. We determined C/EBPδ expression in biopsies from pancreatic cancer patients using public gene-expression datasets and in-house tissue microarrays. We found that C/EBPδ is highly expressed in healthy pancreatic ductal cells but lost in pancreatic ductal adenocarcinoma. Furthermore, loss of C/EBPδ correlated with increased lymph node involvement and shorter overall survival in pancreatic ductal adenocarcinoma patients. In accordance with this, in vitro experiments showed reduced clonogenic capacity and proliferation of pancreatic ductal adenocarcinoma cells following C/EBPδ re-expression, concurrent with decreased sphere formation capacity in soft agar assays. We thus report a previously unrecognized but important tumor suppressor role of C/EBPδ in pancreatic ductal adenocarcinoma. This is of particular interest since only few tumor suppressors have been identified in the context of pancreatic cancer. Moreover, our findings suggest that restoration of C/EBPδ activity could hold therapeutic value in pancreatic ductal adenocarcinoma, although the latter claim needs to be substantiated in future studies.
Collapse
|
12
|
Wang D, Ruan X, Liu X, Xue Y, Shao L, Yang C, Zhu L, Yang Y, Li Z, Yu B, Feng T, Liu Y. SUMOylation of PUM2 promotes the vasculogenic mimicry of glioma cells via regulating CEBPD. Clin Transl Med 2020; 10:e168. [PMID: 32997416 PMCID: PMC7507322 DOI: 10.1002/ctm2.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 02/05/2023] Open
Abstract
Glioma is the most common form of primary central nervous malignant tumors. Vasculogenic mimicry (VM) is a blood supply channel that is different from endothelial blood vessels in glioma. VM is related to tumor invasion and metastasis. Therefore, it plays an important role to target therapy for glioma VM. Our experimental results showed abnormal expression of UBE2I, PUM2, CEBPD, and DSG2 in glioma cells. The Co-IP and Immunofluorescence staining were used to detect that PUM2 can be modified by SUMO2/3. The interaction between PUM2 and CEBPD mRNA was detected by the RIP assays. The interaction between transcription factor CEBPD and promoter region of DSG2 was detected by the ChIP assays and luciferase assays. The capacity for migration in glioma cells was observed by the laser holographic microscope. The capacity for invasion in glioma cells was detected by Transwell method. The VM in glioma cells was detected by three-dimensional cell culture method. The experimental results found that the upregulation of UBE2I in glioma tissues and cells promotes the SUMOylation of PUM2, which decreases not only the stability of PUM2 protein but also decreases the inhibitory effect of PUM2 on CEBPD mRNA. The upregulation of CEBPD promotes the binding to the upstream promoter region of DSG2 gene, further upregulates the expression of DSG2, and finally promotes the development of glioma VM. In conclusion, this study found that the UBE2I/PUM2/CEBPD/DSG2 played crucial roles in regulating glioma VM. It also provides potential targets and alternative strategies for combined treatment of glioma.
Collapse
Affiliation(s)
- Di Wang
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Clinical Medical Research Center in Nervous System DiseaseShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
| | - Xuelei Ruan
- Department of Neurobiology, School of life SciencesChina Medical UniversityShenyangChina
- Key Laboratory of Cell Biology, Ministry of Public Health of ChinaChina Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology, Ministry of Education of ChinaChina Medical UniversityShenyangChina
| | - Xiaobai Liu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Clinical Medical Research Center in Nervous System DiseaseShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
| | - Yixue Xue
- Department of Neurobiology, School of life SciencesChina Medical UniversityShenyangChina
- Key Laboratory of Cell Biology, Ministry of Public Health of ChinaChina Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology, Ministry of Education of ChinaChina Medical UniversityShenyangChina
| | - Lianqi Shao
- Department of Neurobiology, School of life SciencesChina Medical UniversityShenyangChina
- Key Laboratory of Cell Biology, Ministry of Public Health of ChinaChina Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology, Ministry of Education of ChinaChina Medical UniversityShenyangChina
| | - Chunqing Yang
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Clinical Medical Research Center in Nervous System DiseaseShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
| | - Lu Zhu
- Department of Neurobiology, School of life SciencesChina Medical UniversityShenyangChina
- Key Laboratory of Cell Biology, Ministry of Public Health of ChinaChina Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology, Ministry of Education of ChinaChina Medical UniversityShenyangChina
| | - Yang Yang
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Clinical Medical Research Center in Nervous System DiseaseShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
| | - Zhen Li
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Clinical Medical Research Center in Nervous System DiseaseShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
| | - Bo Yu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Clinical Medical Research Center in Nervous System DiseaseShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
| | - Tianda Feng
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Clinical Medical Research Center in Nervous System DiseaseShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
| | - Yunhui Liu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Clinical Medical Research Center in Nervous System DiseaseShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
| |
Collapse
|
13
|
Enomoto H, Nakamura H, Nishikawa H, Nishiguchi S, Iijima H. Hepatoma-Derived Growth Factor: An Overview and Its Role as a Potential Therapeutic Target Molecule for Digestive Malignancies. Int J Mol Sci 2020; 21:ijms21124216. [PMID: 32545762 PMCID: PMC7352308 DOI: 10.3390/ijms21124216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatoma-derived growth factor (HDGF) was identified in research seeking to find a novel growth factor for hepatoma cells. Subsequently, four HDGF-related proteins were identified, and these proteins are considered to be members of a new gene family. HDGF has a growth-stimulating role, an angiogenesis-inducing role, and a probable anti-apoptotic role. HDGF is ubiquitously expressed in non-cancerous tissues, and participates in organ development and in the healing of damaged tissues. In addition, the high expression of HDGF was reported to be closely associated with unfavorable clinical outcomes in several malignant diseases. Thus, HDGF is considered to contribute to the development and progression of malignant disease. We herein provide a brief overview of the factor and its functions in relation to benign and malignant cells. We also describe its possible role as a target molecule for digestive malignancies.
Collapse
Affiliation(s)
- Hirayuki Enomoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine Nishinomiya, Hyogo 663-8501, Japan; (H.N.); (H.I.)
- Correspondence: ; Tel.: +81-798-45-6111
| | - Hideji Nakamura
- Department of Gastroenterology and Hepatology, Nippon Life Hospital, Osaka 550-0006, Japan;
| | - Hiroki Nishikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine Nishinomiya, Hyogo 663-8501, Japan; (H.N.); (H.I.)
| | - Shuhei Nishiguchi
- Department of Internal Medicine, Kano General Hospital, Oska 531-0041, Japan;
| | - Hiroko Iijima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine Nishinomiya, Hyogo 663-8501, Japan; (H.N.); (H.I.)
| |
Collapse
|
14
|
Jin G, Hong W, Guo Y, Bai Y, Chen B. Molecular Mechanism of Pancreatic Stellate Cells Activation in Chronic Pancreatitis and Pancreatic Cancer. J Cancer 2020; 11:1505-1515. [PMID: 32047557 PMCID: PMC6995390 DOI: 10.7150/jca.38616] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022] Open
Abstract
Activated pancreatic stellate cells (PSCs) are the main effector cells in the process of fibrosis, a major pathological feature in pancreatic diseases that including chronic pancreatitis and pancreatic cancer. During tumorigenesis, quiescent PSCs change into an active myofibroblast-like phenotype which could create a favorable tumor microenvironment and facilitate cancer progression by increasing proliferation, invasiveness and inducing treatment resistance of pancreatic cancer cells. Many cellular signals are revealed contributing to the activation of PSCs, such as transforming growth factor-β, platelet derived growth factor, mitogen-activated protein kinase (MAPK), Smads, nuclear factor-κB (NF-κB) pathways and so on. Therefore, investigating the role of these factors and signaling pathways in PSCs activation will promote the development of PSCs-specific therapeutic strategies that may provide novel options for pancreatic cancer therapy. In this review, we systematically summarize the current knowledge about PSCs activation-associated stimulating factors and signaling pathways and hope to provide new strategies for the treatment of pancreatic diseases.
Collapse
Affiliation(s)
- Guihua Jin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Weilong Hong
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yangyang Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
15
|
Xiao Y, Qin T, Sun L, Qian W, Li J, Duan W, Lei J, Wang Z, Ma J, Li X, Ma Q, Xu Q. Resveratrol Ameliorates the Malignant Progression of Pancreatic Cancer by Inhibiting Hypoxia-induced Pancreatic Stellate Cell Activation. Cell Transplant 2020; 29:963689720929987. [PMID: 32463297 PMCID: PMC7563930 DOI: 10.1177/0963689720929987] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/24/2020] [Accepted: 04/05/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer is characterized by a hypoxic tumor microenvironment, which is primarily caused by massive fibrosis with pancreatic stellate cells (PSCs) as a main component. Our previous studies have shown that resveratrol can significantly inhibit pancreatic cancer. However, whether resveratrol can inhibit hypoxia-induced cancer development remains unclear. The objective of this study was to explore whether PSCs and hypoxia synergistically mediate aggressiveness in pancreatic cancer and detect the potential pleiotropic protective effects of resveratrol on hypoxia-induced pancreatic cancer progression. Human PSCs were treated with vehicle or resveratrol under normoxic or hypoxic conditions (3% O2), and PSC activation was assessed by immunofluorescence staining. SiRNA was used to silence hypoxia-inducible factor 1 (HIF-1) expression. The invasive capacity of Panc-1 and Mia Paca-2 cells cocultured with conditioned medium from PSCs was assessed by Transwell assays. To examine tumor formation kinetics, KPC (LSL-KrasG12D/+, Trp53fl/+, and Pdx1-Cre) mice were sacrificed at different time points. To investigate the antitumor effects of resveratrol in vivo, 8-wk-old KPC mice were divided into two groups and treated daily with or without 50 mg/kg resveratrol. Our data indicate that hypoxia induces PSC activation via HIF-1 and that the interleukin 6, vascular endothelial growth factor A, and stromal cell-derived factor 1 derived from activated PSCs promote both invasion and the epithelial-mesenchymal transition and inhibit apoptosis in pancreatic cancer cells. However, resveratrol inhibits hypoxia-induced PSC activation, blocks the interplay between PSCs and pancreatic cancer cells, and suppresses the malignant progression of pancreatic cancer and stromal desmoplasia in a KPC mouse model. Our data highlight that activated PSCs and intratumoral hypoxia are essential targets for novel strategies to prevent tumor-microenvironment interactions. Furthermore, the polyphenolic compound resveratrol effectively ameliorates the malignant progression of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Both the authors contributed equally to this article
| | - Tao Qin
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Both the authors contributed equally to this article
| | - Liankang Sun
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jie Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianjun Lei
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiguang Ma
- Department of Anesthesiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuqi Li
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qinhong Xu
- Department of Geriatric Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
16
|
Lin YW, Huang ST, Wu JC, Chu TH, Huang SC, Lee CC, Tai MH. Novel HDGF/HIF-1α/VEGF axis in oral cancer impacts disease prognosis. BMC Cancer 2019; 19:1083. [PMID: 31711427 PMCID: PMC6849302 DOI: 10.1186/s12885-019-6229-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hepatoma-derived growth factor (HDGF) participates in angiogenesis and represents a negative prognostic factor in oral cancer. The current study was designed to elucidate the regulatory mechanism between HDGF and vascular endothelial growth factor (VEGF) and the clinical impact of oral cancer. METHODS TCGA data and surgical samples from oral cancer patients were used for the clinicopathological parameter and survival analysis. Human oral cancer SCC4 and SAS cells were treated with recombinant HDGF protein. VEGF gene expression and protein level were analyzed by RT-PCR, Western blotting, and enzyme-linked immunosorbent assay. The signaling pathways for regulating VEGF expression were investigated. The nucleolin neutralizing antibody and HIF-1α inhibitor were applied to SCC4 cells to investigate their effects on the HDGF-stimulated VEGF pathways. RESULTS TCGA and immunohistochemical analysis revealed a positive correlation between HDGF and VEGF expression in oral cancer tissues. Recombinant HDGF significantly increased VEGF gene and protein expression in oral cancer SCC4 cells in a dose-dependent manner. HDGF enhanced the phosphorylation levels of AKT and IkB and the protein level of HIF-1α and NF-κB. The nucleolin-neutralizing antibody abolished HDGF-stimulated HIF-1α, NF-κB and VEGF protein expression in SCC4 cells. The HIF-1α inhibitor antagonized the HDGF-induced VEGF gene expression. High VEGF expression was strongly correlated with HDGF expression, advanced disease, and poor survival. CONCLUSION This study postulated a new pathway in which HDGF activated HIF-1α and then induced VEGF expression through binding to membrane nucleolin under normoxic conditions, leading to poor disease control. The HDGF/HIF-1α/VEGF axis is important for developing future therapeutic strategies.
Collapse
Affiliation(s)
- Yu-Wei Lin
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan City, 710, Taiwan.,Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Shih-Tsung Huang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, 115, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Jian-Ching Wu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, 833, Taiwan
| | - Tian-Huei Chu
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Shih-Chung Huang
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, 802, Taiwan
| | - Ching-Chih Lee
- Department of Otolaryngology, Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan. .,School of Medicine, National Defense Medical Center, Taipei, 114, Taiwan. .,Institute of Hospital and Health Care Administration, National Yang-Ming University, Taipei, 112, Taiwan.
| | - Ming-Hong Tai
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, 804, Taiwan. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan. .,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, 115, Taiwan. .,Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, 804, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|