1
|
Gnanagurusamy J, Krishnamoorthy S, Muruganatham B, Selvamurugan N, Muthusami S. Analysing the relevance of TGF-β and its regulators in cervical cancer to identify therapeutic and diagnostic markers. Gene 2025; 938:149166. [PMID: 39701195 DOI: 10.1016/j.gene.2024.149166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
The role of transforming growth factor-beta (TGF-β) is dual, such that, it inhibits tumor development in initial stage and promotes metastasis in later stage. The present study is aimed to analyse the relevance of different types of TGF-β and their receptors on the overall survival (OS) and TGF-β driven gene expression in individuals with cervical cancer (CC) using ONCODB and GEPIA databases. The in-silico gene expression analysis showed, TGF-β1 and TGFβR2 are upregulated in cells infected with human papilloma virus (HPV)16, whereas, TGF-β2, TGFβR1 and TGFβR3 expression were downregulated. In HPV 18 infected cells, TGF-β1, TGF-β2 and TGFβR1 were downregulated, meanwhile, TGF-β3, TGFβR2 and TGFβR3 were upregulated. OS analysis of CC patients with different TGF-β expression revealed that, TGF-β1, TGF-β2, TGF-β3 and TGFβR2 were associated with reduced survival rate. Further, we identified four microRNAs (miRNAs) (hsa-miR-21-5p, hsa-miR-29b-3p, hsa-miR-101-3p and hsa-miR-130a-3p) interacted favorably with TGF-β in HPV 16 and 18 positive samples using MIENTURNET. This present review further emphasizes that, targeting TGF-β could be a novel and futuristic approach for CC management and therapeutics.
Collapse
Affiliation(s)
- Jayapradha Gnanagurusamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India; Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India; Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Bharathi Muruganatham
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India; Centre for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur Chennai 603 203 Tamil Nadu, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India; Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India.
| |
Collapse
|
2
|
Liu Z, Liu J, Wu Y, Zhou Z, Ousmane D, Zeinalzadeh Z, Wang J. Shared chemoresistance genes in ESCC and cervical Cancer: Insights from pharmacogenomics and Mendelian randomization. Int Immunopharmacol 2025; 147:113933. [PMID: 39755112 DOI: 10.1016/j.intimp.2024.113933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/29/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Neoadjuvant chemotherapy, particularly the use of platinum-based compounds and taxanes, is pivotal in the treatment of epithelial-derived tumors, such as cervical cancer and esophageal squamous cell carcinoma (ESCC); however, resistance remains a significant challenge. Utilizing Mendelian randomization (MR) with pharmacogenomics offers a novel approach to understanding the genetic underpinnings of drug responses, thereby aiding in personalized treatment. METHODS Single-cell RNA sequencing (scRNA-seq) analysis revealed a shared cellular subpopulation of CD8 + T effector memory (CD8 + TEM) cells that are pivotal in mediating chemotherapy resistance in ESCC and cervical cancer. A two-sample approach was employed for MR using data from genome-wide association studies, focusing on single nucleotide polymorphisms (SNPs) linked to CD8 + TEM cell expression. The SNPs were carefully selected, and statistical models, including the Wald ratio and inverse variance weighted methods, were used for robust causal effect estimation. These were supplemented by MR-Egger and weighted median analyses to address pleiotropy and variant heterogeneity. 3-(4,5-Dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) and immunohistochemistry assays were used to verify the relationship between the gene and drug sensitivity. RESULTS Increased proportion of CD8 + TEM cells were observed in resistant samples. MR identified IL32, SPOCK1, and TRBC2 as key genes associated with resistance to cisplatin, carboplatin, and paclitaxel, respectively. These findings were validated across various cohorts and underscored the role of CD8 + TEM cells in drug responsiveness. The results of the MTT and immunohistochemistry assays confirmed the MR findings. CONCLUSIONS Our study highlights the significant role of CD8 + TEM cells in the chemoresistance of ESCC and cervical cancer and identified three genetic markers crucial for resistance to common chemotherapeutic agents. These findings suggest potential pathways for developing personalized treatment strategies, offering clinically relevant insights that could enhance therapeutic efficacy and help overcome drug resistance in patients with ESCC or cervical cancer.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China; FuRong Laboratory, Changsha City, Hunan Province, China
| | - Jie Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Yanhao Wu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Zongjiang Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Diabate Ousmane
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Zahra Zeinalzadeh
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China; Ultrapathology (Biomedical Electron Microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; FuRong Laboratory, Changsha City, Hunan Province, China.
| |
Collapse
|
3
|
Li J, Ma Y, Wu Q, Ping P, Li J, Xu X. The potential role of HPV oncoproteins in the PD-L1/PD-1 pathway in cervical cancer: new perspectives on cervical cancer immunotherapy. Front Oncol 2024; 14:1488730. [PMID: 39735605 PMCID: PMC11671370 DOI: 10.3389/fonc.2024.1488730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/28/2024] [Indexed: 12/31/2024] Open
Abstract
Cervical cancer (CC) is a common malignant tumour of the female reproductive system that is highly harmful to women's health. The efficacy of traditional surgery, radiotherapy and chemotherapy is limited, especially for recurrent and metastatic CC. With continuous progress in diagnostic and treatment technology, immunotherapy has become a new approach for treating CC and has become a new therapy for recurrent and metastatic CC. However, immunotherapy is not effective for all patients with CC. Therefore, factors related to immunotherapy efficacy in CC patients have become the focus of researchers. High-risk human papillomavirus (HPV) infection is an important factor that drives CC development and affects its progression and prognosis. Increasing attention has been given to the mechanism of the E5, E6 and E7 proteins, which are encoded by the HPV gene, in the occurrence and development of CC and their interaction with programmed cell death ligand-1/programmed cell death-1 (PD-L1/PD-1). Although some preliminary studies have been conducted on these topics, a comprehensive and systematic review of these topics is not available. This review comprehensively summarizes related articles from journals with impact factors greater than 3 and published in the past 5 years; it also reviews studies on the mechanism of HPV and CC, the mechanism of PD-L1/PD-1 axis regulation in CC, and the mechanism by which the interaction between HPV-related oncoproteins and the PD-L1/PD-1 pathway affects the development and prognosis of CC. This study provides theoretical support for the use of immunotherapies for CC, provides a basis for the selection of specific medications that target different HPV-related proteins, and provides a new perspective for the discovery of new immunotherapy targets for CC.
Collapse
Affiliation(s)
| | | | | | | | - Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical
University, Dalian, China
| | - Xiaoying Xu
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical
University, Dalian, China
| |
Collapse
|
4
|
Zehtabi M, Ghaedrahmati F, Dari MAG, Moramezi F, Kempisty B, Mozdziak P, Farzaneh M. Emerging biologic and clinical implications of miR-182-5p in gynecologic cancers. Clin Transl Oncol 2024:10.1007/s12094-024-03822-9. [PMID: 39661239 DOI: 10.1007/s12094-024-03822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
MicroRNAs (miRNAs) have emerged as important regulators of gene expression in various biological processes, including cancer. miR-182-5p has gained attention for its potential implications in gynecologic cancers, including breast, ovarian, endometrial, and cervical cancers. miR-182-5p dysregulation has been associated with multiple facets of tumor biology in gynecologic cancers, including tumor initiation, progression, metastasis, and therapeutic response. Studies have highlighted its involvement in key signaling pathways and cellular processes that contribute to cancer development and progression. In addition, miR-182-5p has shown potential as a diagnostic and prognostic biomarker, with studies demonstrating its correlation with clinicopathological features and patient outcomes. Furthermore, the therapeutic potential of miR-182-5p is being explored in gynecologic cancers. Strategies such as miRNA mimics or inhibitors targeting miR-182-5p have shown promise in preclinical and early clinical studies. These approaches aim to modulate miR-182-5p expression, restoring normal cellular functions and potentially enhancing treatment responses. Understanding the biologic and clinical implications of miR-182-5p in gynecologic cancers is crucial for the development of targeted therapeutic strategies and personalized medicine approaches. Further investigations are needed to unravel the specific target genes and pathways regulated by miR-182-5p. It is important to consider the emerging biologic and clinical implications of miR-182-5p in gynecologic cancers.
Collapse
Affiliation(s)
- Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farideh Moramezi
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bartosz Kempisty
- Department of Human Morphology and Embryology, Division of Anatomy, Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland
- Physiology Graduate Faculty North, Carolina State University, Raleigh, NC, 27695, USA
- Center of Assisted Reproduction Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| | - Paul Mozdziak
- Physiology Graduate Faculty North, Carolina State University, Raleigh, NC, 27695, USA
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Clinical Research Development Unit, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
5
|
Peng C, Wang Y, Guo Y, Li J, Liu F, Fu Y, Yu Y, Zhang C, Fu J, Han F. A literature review on signaling pathways of cervical cancer cell death-apoptosis induced by Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118491. [PMID: 38936644 DOI: 10.1016/j.jep.2024.118491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cervical cancer (CC) is a potentially lethal disorder that can have serious consequences for a woman's health. Because early symptoms are typically only present in the middle to late stages of the disease, clinical diagnosis and treatment can be challenging. Traditional Chinese medicine (TCM) has been shown to have unique benefits in terms of alleviating cancer clinical symptoms, lowering the risk of recurrence after surgery, and reducing toxic side effects and medication resistance after radiation therapy. It has also been shown to improve the quality of life for patients. Because of its improved anti-tumor effectiveness and biosafety, it could be considered an alternative therapy option. This study examines how TCM causes apoptosis in CC cells via signal transduction, including the active components and medicinal tonics. It also intends to provide a reliable clinical basis and protocol selection for the TCM therapy of CC. METHODS The following search terms were employed in PubMed, Web of Science, Embase, CNKI, Wanfang, VIP, SinoMed, and other scientific databases to retrieve pertinent literature on "cervical cancer," "apoptosis," "signaling pathway," "traditional Chinese medicine," "herbal monomers," "herbal components," "herbal extracts," and "herbal formulas." RESULTS It has been demonstrated that herbal medicines can induce apoptosis in cells of the cervix, a type of cancer, by influencing the signaling pathways involved. CONCLUSION A comprehensive literature search was conducted, and 148 papers from the period between January 2017 and December 2023 were identified as eligible for inclusion. After a meticulous process of screening, elimination and summary, generalization, and analysis, it was found that TCM can regulate multiple intracellular signaling pathways and related molecular targets, such as STAT3, PI3K/AKT, Wnt/β-catenin, MAPK, NF-κB, p53, HIF-1α, Fas/FasL and so forth. This regulatory capacity was observed to induce apoptosis in cervical cancer cells. The study of the mechanism of TCM against cervical cancer and the screening of new drug targets is of great significance for future research in this field. The results of this study will provide ideas and references for the future development of Chinese medicine in the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Ying Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fangyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yang Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Chengxin Zhang
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jiangmei Fu
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fengjuan Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
6
|
Sebutsoe XM, Tsotetsi NJN, Jantjies ZE, Raphela-Choma PP, Choene MS, Motadi LR. Therapeutic Strategies in Advanced Cervical Cancer Detection, Prevention and Treatment. Onco Targets Ther 2024; 17:785-801. [PMID: 39345275 PMCID: PMC11439348 DOI: 10.2147/ott.s475132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
Cervical cancer is ranked the fourth most common cause of cancer related deaths amongst women. The situation is particularly dire in low to lower middle-income countries. It continues to affect these countries due to poor vaccine coverage and screening. Cervical cancer is mostly detected in the advanced stages leading to poor outcomes. This review focuses on the progress made to date to improve early detection and targeted therapy using both circulating RNA. Vaccine has played a major role in cervical cancer control in vaccinated young woman in mainly developed countries yet in low-income countries with challenges of 3 dose vaccination affordability, cervical cancer continues to be the second most deadly amongst women. In this review, we show the progress made in reducing cervical cancer using vaccination that in combination with other treatments that might improve survival in cervical cancer. We further show with both miRNA and siRNA that targeted therapy and specific markers might be ideal for early detection of cervical cancer in low-income countries. These markers are either upregulated or down regulated in cancer providing clue to the stage of the cancer.
Collapse
Affiliation(s)
- Xolisiwe M Sebutsoe
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | | | - Zodwa Edith Jantjies
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Portia Pheladi Raphela-Choma
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Mpho S Choene
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Lesetja R Motadi
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| |
Collapse
|
7
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2024. [PMID: 39185567 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | | |
Collapse
|
8
|
Arizmendi-Izazaga A, Navarro-Tito N, Jiménez-Wences H, Evaristo-Priego A, Priego-Hernández VD, Dircio-Maldonado R, Zacapala-Gómez AE, Mendoza-Catalán MÁ, Illades-Aguiar B, De Nova Ocampo MA, Salmerón-Bárcenas EG, Leyva-Vázquez MA, Ortiz-Ortiz J. Bioinformatics Analysis Reveals E6 and E7 of HPV 16 Regulate Metabolic Reprogramming in Cervical Cancer, Head and Neck Cancer, and Colorectal Cancer through the PHD2-VHL-CUL2-ELOC-HIF-1α Axis. Curr Issues Mol Biol 2024; 46:6199-6222. [PMID: 38921041 PMCID: PMC11202971 DOI: 10.3390/cimb46060370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Human papillomavirus 16 (HPV 16) infection is associated with several types of cancer, such as head and neck, cervical, anal, and penile cancer. Its oncogenic potential is due to the ability of the E6 and E7 oncoproteins to promote alterations associated with cell transformation. HPV 16 E6 and E7 oncoproteins increase metabolic reprogramming, one of the hallmarks of cancer, by increasing the stability of hypoxia-induced factor 1 α (HIF-1α) and consequently increasing the expression levels of their target genes. In this report, by bioinformatic analysis, we show the possible effect of HPV 16 oncoproteins E6 and E7 on metabolic reprogramming in cancer through the E6-E7-PHD2-VHL-CUL2-ELOC-HIF-1α axis. We proposed that E6 and E7 interact with VHL, CUL2, and ELOC in forming the E3 ubiquitin ligase complex that ubiquitinates HIF-1α for degradation via the proteasome. Based on the information found in the databases, it is proposed that E6 interacts with VHL by blocking its interaction with HIF-1α. On the other hand, E7 interacts with CUL2 and ELOC, preventing their binding to VHL and RBX1, respectively. Consequently, HIF-1α is stabilized and binds with HIF-1β to form the active HIF1 complex that binds to hypoxia response elements (HREs), allowing the expression of genes related to energy metabolism. In addition, we suggest an effect of E6 and E7 at the level of PHD2, VHL, CUL2, and ELOC gene expression. Here, we propose some miRNAs targeting PHD2, VHL, CUL2, and ELOC mRNAs. The effect of E6 and E7 may be the non-hydroxylation and non-ubiquitination of HIF-1α, which may regulate metabolic processes involved in metabolic reprogramming in cancer upon stabilization, non-degradation, and translocation to the nucleus.
Collapse
Affiliation(s)
- Adán Arizmendi-Izazaga
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
| | - Hilda Jiménez-Wences
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
| | - Adilene Evaristo-Priego
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Víctor Daniel Priego-Hernández
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Roberto Dircio-Maldonado
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
| | - Ana Elvira Zacapala-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Miguel Ángel Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Mónica Ascención De Nova Ocampo
- Escuela Nacional de Medicina y Homeopatía, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 Col. Fracc. La Escalera-Ticomán, Ciudad de Mexico C.P. 07320, Mexico;
| | - Eric Genaro Salmerón-Bárcenas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México C.P. 07360, Mexico;
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
| |
Collapse
|
9
|
Sriharikrishnaa S, John FE, Bairy M, Shetty S, Suresh PS, Kabekkodu SP. A comprehensive review on the functional role of miRNA clusters in cervical cancer. Epigenomics 2024; 16:493-511. [PMID: 38511231 DOI: 10.2217/epi-2023-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Cervical cancer (CC) poses a significant health threat in women globally. MicroRNA clusters (MCs), comprising multiple miRNA-encoding genes, are pivotal in gene regulation. Various factors, including circular RNA and DNA methylation, govern MC expression. Dysregulated MC expression correlates strongly with CC development via promoting the acquisition of cancer hallmarks. Certain MCs show promise for diagnosis, prognosis and therapy selection due to their distinct expression patterns in normal, premalignant and tumor tissues. This review explains the regulation and biological functions of MCs and highlights the clinical relevance of abnormal MC expression in CC.
Collapse
Affiliation(s)
- Srinath Sriharikrishnaa
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Femi E John
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Medha Bairy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sachin Shetty
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padmanaban S Suresh
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Kerala, India
| | - Shama P Kabekkodu
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
10
|
Dehghani A, Khajepour F, Dehghani M, Razmara E, Zangouey M, Abadi MFS, Nezhad RBA, Dabiri S, Garshasbi M. Hsa-miR-194-5p and hsa-miR-195-5p are down-regulated expressed in high dysplasia HPV-positive Pap smear samples compared to normal cytology HPV-positive Pap smear samples. BMC Infect Dis 2024; 24:182. [PMID: 38342922 PMCID: PMC10860252 DOI: 10.1186/s12879-023-08942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/20/2023] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND The human papillomavirus (HPV) infection may affect the miRNA expression pattern during cervical cancer (CC) development. To demonstrate the association between high-risk HPVs and the development of cervix dysplasia, we examined the expression patterns of hsa-miR-194-5p and hsa-miR-195-5p in Pap smear samples from southeast Iranian women. We compared samples that were HPV-positive but showed no abnormality in the cytological examination to samples that were HPV-positive and had severe dysplasia. METHODS Pap smear samples were obtained from 60 HPV-positive (HPV-16/18) patients with histologically confirmed severe dysplasia (cervical intra-epithelial neoplasia (CIN 3) or carcinoma in situ) and the normal cytology group. The expression of hsa-miR-194-5p and hsa-miR-195-5p was analyzed by real-time quantitative PCR, using specific stem-loop primers and U6 snRNA as the internal reference gene. Clinicopathological features were associated with miRNA expression levels. Furthermore, functional enrichment analysis was conducted using in silico tools. The Kaplan-Meier survival method was also obtained to discriminate survival-significant candidate miRNAs in CC, and receiver operating characteristic (ROC) curves were constructed to assess the diagnostic value. RESULTS Compared to HPV-positive cytologically normal Pap smear samples, hsa-miR-194-5p and hsa-miR-195-5p relative expression decreased significantly in HPV-positive patients with a severe dysplasia Pap smear. Kaplan-Meier analysis indicated a significant association between the miR-194 decrease and poor CC survival. In essence, ROC curve analysis showed that miR-194-5p and miR-195-5p could serve as valuable markers for the development of cervix dysplasia in individuals who are positive for high-risk HPVs. CONCLUSIONS This study revealed that hsa-miR-194-5p and hsa-miR-195-5p may possess tumor suppressor capabilities in the context of cervical dysplasia progression. However, it remains uncertain whether these microRNAs are implicated in the transition of patients with high dysplasia to cervical cancer. We also showed the potential capability of candidate miRNAs as novel diagnostic biomarkers related to cervical dysplasia progression.
Collapse
Affiliation(s)
- Ali Dehghani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fardin Khajepour
- Department of Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Dehghani
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Mohammadreza Zangouey
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Reza Bahram Abadi Nezhad
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
11
|
Yin S, Cui H, Qin S, Yu S. Manipulating TGF-β signaling to optimize immunotherapy for cervical cancer. Biomed Pharmacother 2023; 166:115355. [PMID: 37647692 DOI: 10.1016/j.biopha.2023.115355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Cervical cancer is a serious threat to women's health globally. Therefore, identifying key molecules associated with cervical cancer progression is essential for drug development, disease monitoring, and precision therapy. Recently, TGF-β (transforming growth factor-beta) has been identified as a promising target for cervical cancer treatment. For advanced cervical cancer, TGF-β participates in tumor development by improving metastasis, stemness, drug resistance, and immune evasion. Accumulating evidence demonstrates that TGF-β blockade effectively improves the therapeutic effects, especially immunotherapy. Currently, agents targeting TGF-β and immune checkpoints such as PD-L1 have been developed and tested in clinical studies. These bispecific antibodies might have the potential as therapeutic agents for cervical cancer treatment in the future.
Collapse
Affiliation(s)
- Shuping Yin
- Department of Obstetrics and Gynecology, Changxing People's Hospital of Zhejiang Huzhou, Changxing 313100, China
| | - Han Cui
- Department of Obstetrics and Gynecology, Changxing People's Hospital of Zhejiang Huzhou, Changxing 313100, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shengnan Yu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China.
| |
Collapse
|
12
|
Li J, Wan C, Li X, Quan C, Li X, Wu X. Characterization of tumor microenvironment and tumor immunology based on the double-stranded RNA-binding protein related genes in cervical cancer. J Transl Med 2023; 21:647. [PMID: 37735483 PMCID: PMC10515034 DOI: 10.1186/s12967-023-04505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Cervical cancer is one of the most common gynecological cancers threatening women's health worldwide. Double-stranded RNA-binding proteins (dsRBPs) regulate innate immunity and are therefore believed to be involved in virus-related malignancies, however, their role in cervical cancer is not well known. METHODS We performed RNA-seq of tumor samples from cervical cancer patients in local cohort and also assessed the RNA-seq and clinical data derived from public datasets. By using single sample Gene Set Enrichment Analysis (ssGSEA) and univariate Cox analysis, patients were stratified into distinct dsRBP clusters. Stepwise Cox and CoxBoost were performed to construct a risk model based on optimal dsRBPs clusters-related differentially expressed genes (DEGs), and GSE44001 and CGCI-HTMCP-CC were employed as two external validation cohorts. Single cell RNA sequencing data from GSE168652 and Scissor algorithm were applied to evaluated the signature-related cell population. RESULTS The expression of dsRBP features was found to be associated with HPV infection and carcinogenesis in CESC. However, only Adenosine deaminases acting on RNA (ADAR) and Dicer, Drosha, and Argonautes (DDR) exhibited significant correlations with the overall survival (OS) of CESC patients. Based on these findings, CESC patients were divided into three dsRBP clusters. Cluster 3 showed superior OS but lower levels of ADAR and DDR. Additionally, Cluster 3 demonstrated enhanced innate immunity, with significantly higher activity in cancer immunity cycles, immune scores, and levels of tumor-infiltrating immune cells, particularly CD8+ T cells. Furthermore, a risk model based on nine dsRBP cluster-related DEGs was established. The accuracy of survival prediction for 1 to 5 years was consistently above 0.78, and this model's robust predictive capacity was confirmed by two external validation sets. The low-risk group exhibited significantly higher levels of immune checkpoints, such as PDCD1 and CTLA4, as well as a higher abundance of CD8+ T cells. Analysis of single-cell sequencing data revealed a significant association between the dsRBP signature and glycolysis. Importantly, low-risk patients showed improved OS and a higher response rate to immunotherapy, along with enduring clinical benefits from concurrent chemoradiotherapy. CONCLUSIONS dsRBP played a crucial role in the regulation of prognosis and tumor immunology in cervical cancer, and its prognostic signature provides a strategy for risk stratification and immunotherapy evaluation.
Collapse
Affiliation(s)
- Jin Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chong Wan
- Precision Medicine Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Xiaoqi Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chenlian Quan
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoqiu Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Li Y, Patterson MR, Morgan EL, Wasson CW, Ryder EL, Barba‐Moreno D, Scarth JA, Wang M, Macdonald A. CREB1 activation promotes human papillomavirus oncogene expression and cervical cancer cell transformation. J Med Virol 2023; 95:e29025. [PMID: 37565725 PMCID: PMC10952218 DOI: 10.1002/jmv.29025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Human papillomaviruses (HPVs) infect the oral and anogenital mucosa and can cause cancer. The high-risk (HR)-HPV oncoproteins, E6 and E7, hijack cellular factors to promote cell proliferation, delay differentiation and induce genomic instability, thus predisposing infected cells to malignant transformation. cAMP response element (CRE)-binding protein 1 (CREB1) is a master transcription factor that can function as a proto-oncogene, the abnormal activity of which is associated with multiple cancers. However, little is known about the interplay between HPV and CREB1 activity in cervical cancer or the productive HPV lifecycle. We show that CREB is activated in productively infected primary keratinocytes and that CREB1 expression and phosphorylation is associated with the progression of HPV+ cervical disease. The depletion of CREB1 or inhibition of CREB1 activity results in decreased cell proliferation and reduced expression of markers of epithelial to mesenchymal transition, coupled with reduced migration in HPV+ cervical cancer cell lines. CREB1 expression is negatively regulated by the tumor suppressor microRNA, miR-203a, and CREB1 phosphorylation is controlled through the MAPK/MSK pathway. Crucially, CREB1 directly binds the viral promoter to upregulate transcription of the E6/E7 oncogenes, establishing a positive feedback loop between the HPV oncoproteins and CREB1. Our findings demonstrate the oncogenic function of CREB1 in HPV+ cervical cancer and its relationship with the HPV oncogenes.
Collapse
Affiliation(s)
- Yigen Li
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| | - Molly R. Patterson
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| | | | - Christopher W. Wasson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and HealthUniversity of LeedsLeedsWest YorkshireUK
| | - Emma L. Ryder
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| | - Diego Barba‐Moreno
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| | - James A. Scarth
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| | - Miao Wang
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsWest YorkshireUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsWest YorkshireUK
| |
Collapse
|
14
|
Sameti P, Tohidast M, Amini M, Bahojb Mahdavi SZ, Najafi S, Mokhtarzadeh A. The emerging role of MicroRNA-182 in tumorigenesis; a promising therapeutic target. Cancer Cell Int 2023; 23:134. [PMID: 37438760 DOI: 10.1186/s12935-023-02972-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/13/2023] [Indexed: 07/14/2023] Open
Abstract
A wide range of studies have indicated that microRNAs (miRNAs), a type of small single-stranded regulatory RNAs, are dysregulated in a different variety of human cancers. Therefore, they are expected to play important roles in tumorigenesis by functioning as oncogenic (oncomiRs) or tumor-suppressive miRNAs. Subsequently, their potential as diagnostic and therapeutic targets for malignancies has attracted attention in recent years. In particular, studies have revealed the aberrant expression of miR-182 through tumorigenesis and its important roles in various aspects of malignancies, including proliferation, metastasis, and chemoresistance. Accumulating reports have illustrated that miR-182, as a dual-role regulator, directly or indirectly regulates the expression of a wide range of genes and modulates the activity of various signaling pathways involved in tumor progression, such as JAK / STAT3, Wnt / β-catenin, TGF-β, and P13K / AKT. Therefore, considering the high therapeutic and diagnostic potential of miR-182, this review aims to point out the effects of miR-182 dysregulation on the signaling pathways involved in tumorigenesis.
Collapse
Affiliation(s)
- Pouriya Sameti
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Tohidast
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Nie G, Tang B, Lv M, Li D, Li T, Ou R, Xu Y, Wen J. HPV E6 promotes cell proliferation of cervical cancer cell by accelerating accumulation of RBM15 dependently of autophagy inhibition. Cell Biol Int 2023. [PMID: 37191290 DOI: 10.1002/cbin.12020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/26/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023]
Abstract
The mechanism of m6A modification in HPV-related cervical cancer remains unclear. This study explored the role of methyltransferase components in HPV-related cervical cancer and the mechanism. The levels of methyltransferase components and autophagy, ubiquitylation of RBM15 protein and the co-localization of lysosomal markers LAMP2A and RBM15 were measured. CCK-8 assay, flow cytometry, clone formation experiment and immunofluorescence assay were conducted to measure cell proliferation. The mouse tumor model was developed to study the cell growth in vivo. The binding of RBM15 to c-myc mRNA and m6A modifcation of c-myc mRNA were analyzed. The expressions of METTL3, RBM15 and WTAP were higher in HPV-positive cervical cancer cell lines than those in HPV-negative cells, especially RBM15. HPV-E6 knock-down inhibited the expression of RBM15 protein and promoted its degradation, but couldn't change its mRNA level. Autophagy inhibitor and proteasome inhibitor could reverse those effects. HPV-E6 siRNA could not enhance ubiquitylation modification of RBM15, but could enhance autophagy and the co-localization of RBM15 and LAMP2A. RBM15 overexpression could enhance cell proliferation, block the inhibitory effects of HPV-E6 siRNA on cell growth, and these effects could be reserved by cycloeucine. RBM15 could bind to c-myc mRNA, resulting in an increase to m6A level and protein expression of c-myc, which could be blocked by cycloeucine. HPV-E6 can downregulate autophagy, inhibit the degradation of RBM15 protein, induce the accumulation of intracellular RBM15, and increase the m6A modification on c-myc mRNA, resulting in an increase of c-myc protein and a growth promotion for cervical cancer cells.
Collapse
Affiliation(s)
- Gang Nie
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Bo Tang
- Department of Pathology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Mingfen Lv
- Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Danyang Li
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Tian Li
- Department of Gynaecology and Obstetrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Rongying Ou
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Yunsheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Juan Wen
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| |
Collapse
|
16
|
Köcher S, Zech HB, Krug L, Gatzemeier F, Christiansen S, Meyer F, Rietow R, Struve N, Mansour WY, Kriegs M, Petersen C, Betz C, Rothkamm K, Rieckmann T. A Lack of Effectiveness in the ATM-Orchestrated DNA Damage Response Contributes to the DNA Repair Defect of HPV-Positive Head and Neck Cancer Cells. Front Oncol 2022; 12:765968. [PMID: 35719921 PMCID: PMC9204973 DOI: 10.3389/fonc.2022.765968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with human papillomavirus-positive squamous cell carcinoma of the head and neck (HPV+ HNSCC) have a favorable prognosis compared to those with HPV-negative (HPV−) ones. We have shown previously that HPV+ HNSCC cell lines are characterized by enhanced radiation sensitivity and impaired DNA double-strand break (DSB) repair. Since then, various publications have suggested a defect in homologous recombination (HR) and dysregulated expression of DSB repair proteins as underlying mechanisms, but conclusions were often based on very few cell lines. When comparing the expression levels of suggested proteins and other key repair factors in 6 HPV+ vs. 5 HPV− HNSCC strains, we could not confirm most of the published differences. Furthermore, HPV+ HNSCC strains did not demonstrate enhanced sensitivity towards PARP inhibition, questioning a general HR defect. Interestingly, our expression screen revealed minimal levels of the central DNA damage response kinase ATM in the two most radiosensitive HPV+ strains. We therefore tested whether insufficient ATM activity may contribute to the enhanced cellular radiosensitivity. Irrespective of their ATM expression level, radiosensitive HPV+ HNSCC cells displayed DSB repair kinetics similar to ATM-deficient cells. Upon ATM inhibition, HPV+ cell lines showed only a marginal increase in residual radiation-induced γH2AX foci and induction of G2 cell cycle arrest as compared to HPV− ones. In line with these observations, ATM inhibition sensitized HPV+ HNSCC strains less towards radiation than HPV− strains, resulting in similar levels of sensitivity. Unexpectedly, assessment of the phosphorylation kinetics of the ATM targets KAP-1 and Chk2 as well as ATM autophosphorylation after radiation did not indicate directly compromised ATM activity in HPV-positive cells. Furthermore, ATM inhibition delayed radiation induced DNA end resection in both HPV+ and HPV− cells to a similar extent, further suggesting comparable functionality. In conclusion, DNA repair kinetics and a reduced effectiveness of ATM inhibition clearly point to an impaired ATM-orchestrated DNA damage response in HPV+ HNSCC cells, but since ATM itself is apparently functional, the molecular mechanisms need to be further explored.
Collapse
Affiliation(s)
- Sabrina Köcher
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henrike Barbara Zech
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel Cancer Career Center HaTriCS, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Krug
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fruzsina Gatzemeier
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Christiansen
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Meyer
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ruth Rietow
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Department, Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Struve
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel Cancer Career Center HaTriCS, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wael Yassin Mansour
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel Cancer Career Center HaTriCS, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Betz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Thorsten Rieckmann,
| |
Collapse
|
17
|
Ghafouri-Fard S, Hussen BM, Shaterabadi D, Abak A, Shoorei H, Taheri M, Rakhshan A. The Interaction Between Human Papilloma Viruses Related Cancers and Non-coding RNAs. Pathol Res Pract 2022; 234:153939. [DOI: 10.1016/j.prp.2022.153939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
|
18
|
Wu X, Xiao Y, Guo D, Zhang Z, Liu M. Reduced NK Cell Cytotoxicity by Papillomatosis-Derived TGF-β Contributing to Low-Risk HPV Persistence in JORRP Patients. Front Immunol 2022; 13:849493. [PMID: 35350785 PMCID: PMC8957810 DOI: 10.3389/fimmu.2022.849493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/11/2022] [Indexed: 12/19/2022] Open
Abstract
The role of natural killer (NK) cells in juvenile-onset recurrent respiratory papillomatosis (JORRP) patients remains elusive. In this study, we find increased NK cell percentage, particularly CD11b-CD27- (DN) subsets in peripheral blood of JORRP patients and associated with disease activity. RNA sequencing shows a downregulated "natural killer cell-mediated cytotoxicity" feature in JORRP tumors. We also find impaired cytotoxic capacity and lower expression of NK cell-activating receptors including NKp30 and NKp46. Higher transforming growth factor-beta 1 (TGF-β1) is found both in plasma and tumor tissues of JORRP, and anti-TGF-β1 antibody could restore NK cell cytolytic activity and upregulate NKp30 and NKG2D expression. Also, we find a significantly higher Chemokine receptor type 6 (CXCR6) on NK cells in tumors compared with that in peripheral blood. Finally, RT-PCR analysis show that both HPV6-E6-E7 and HPV11-E6-E7 overexpression leads to higher TGFB1 expression compared with control SNU-1076 cell line, and higher CXCR6 expression is detected on NK coculture with HPV11-E6-E7-overexpressing cells. In conclusion, we demonstrate that TGF-β1 by papillomatosis leads to decreased NK cell cytotoxicity through downregulating NK cell-activating receptors in JORRP patients.
Collapse
Affiliation(s)
- Xunyao Wu
- Clinical Biobank, Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Xiao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Dan Guo
- Clinical Biobank, Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zixin Zhang
- Clinical Biobank, Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meiyu Liu
- Clinical Biobank, Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Birrer MJ, Fujiwara K, Oaknin A, Randall L, Ojalvo LS, Valencia C, Ray-Coquard I. The Changing Landscape of Systemic Treatment for Cervical Cancer: Rationale for Inhibition of the TGF-β and PD-L1 Pathways. Front Oncol 2022; 12:814169. [PMID: 35280818 PMCID: PMC8905681 DOI: 10.3389/fonc.2022.814169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Cervical cancer is one of the most common and lethal cancers among women worldwide. Treatment options are limited in patients with persistent, recurrent, or metastatic cervical cancer, with <20% of women living >5 years. Persistent human papillomavirus (HPV) infection has been implicated in almost all cases of cervical cancer. HPV infection not only causes normal cervical cells to transform into cancer cells, but also creates an immunosuppressive environment for cancer cells to evade the immune system. Recent clinical trials of drugs targeting the PD-(L)1 pathway have demonstrated improvement in overall survival in patients with cervical cancer, but only 20% to 30% of patients show overall survival benefit beyond 2 years, and resistance to these treatments remains common. Therefore, novel treatment strategies targeting HPV infection-associated factors are currently being evaluated in clinical trials. Bintrafusp alfa is a first-in-class bifunctional fusion protein composed of the extracellular domain of the TGF-βRII receptor (a TGF-β "trap") fused to a human immunoglobulin G1 monoclonal antibody that blocks PD-L1. Early clinical trials of bintrafusp alfa have shown promising results in patients with advanced cervical cancer.
Collapse
Affiliation(s)
- Michael J Birrer
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas Medical School, Little Rock, AR, United States
| | - Keiichi Fujiwara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Ana Oaknin
- Gynaecological Cancer Program, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Leslie Randall
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Laureen S Ojalvo
- EMD Serono Research & Development Institute, Inc., Billerica, MA, United States
| | - Christian Valencia
- EMD Serono Research & Development Institute, Inc., Billerica, MA, United States
| | - Isabelle Ray-Coquard
- GINECO Group & Department of Medical Oncology, Centre Leon Berard, University Claude Bernard Lyon, Lyon, France
| |
Collapse
|
20
|
SET and MYND domain-containing protein 2 (SMYD2): A prognostic biomarker associated with immune infiltrates in cervical squamous cell carcinoma and endocervical adenocarcinoma. ARCH BIOL SCI 2022. [DOI: 10.2298/abs220413014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The histone lysine methyltransferase SET (Suppressor of variegation, Enhancer
of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domaincontaining protein
(SMYD2) plays a role in the tumorigenesis of cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC). However, the prognostic
significance of SMYD2 in CESC and the link between SMYD2 and
tumor-infiltrating immune cells are unknown. The prognostic value of SMYD2
in CESC was obtained from The Cancer Genome Atlas (TCGA). SMYD2 mRNA and
protein were both highly expressed in CESC compared with normal tissues. The
high expression of SMYD2 was associated with advanced tumor status and poor
prognosis in CESC patients. SMYD2 was an independent prognostic factor for
overall survival. In vitro experiments with knockdown of SMYD2 suppressed
CESC cell migration and invasion. The online tumor immune estimation
resource (TIMER) and Kaplan-Meier analysis results revealed that the
infiltration of CD4+ T and CD8+ T cells was related to poor prognosis. In
TIMER-based multivariate Cox regression analysis, CD8+ T cells and SMYD2
were demonstrated as independent prognostic factors of CESC. In conclusion,
our data suggest that high SMYD2 expression is a predictor of poor prognosis
in CESC patients; SMYD2 could serve as a prognostic biomarker and molecular
therapeutic target for CESC.
Collapse
|
21
|
Salinas-Montalvo AM, Supramaniam A, McMillan NA, Idris A. RNA-based gene targeting therapies for human papillomavirus driven cancers. Cancer Lett 2021; 523:111-120. [PMID: 34627949 DOI: 10.1016/j.canlet.2021.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
While platinum-based chemotherapy, radiation therapy and or surgery are effective in reducing human papillomavirus (HPV) driven cancer tumours, they have some significant drawbacks, including low specificity for tumour, toxicity, and severe adverse effects. Though current therapies for HPV-driven cancers are effective, severe late toxicity associated with current treatments contributes to the deterioration of patient quality of life. This warrants the need for novel therapies for HPV derived cancers. In this short review, we examined RNA-based therapies targeting the major HPV oncogenes, including short-interfering RNAs (siRNAs) and clustered regularly interspaced short palindromic repeats (CRISPR) as putative treatment modalities. We also explore other potential RNA-based targeting approaches such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and mRNA vaccines as future treatment modalities for HPV cancers. Some of these technologies have already been approved for clinical use for a range of other human diseases but not for HPV cancers. Here we explore the emerging evidence supporting the effectiveness of some of these gene-based therapies for HPV malignancies. In short, the evidence sheds promising light on the feasibility of translating these technologies into a clinically relevant treatment modality for HPV derived cancers and potentially other virally driven human cancers.
Collapse
Affiliation(s)
- Ana María Salinas-Montalvo
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Aroon Supramaniam
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Nigel Aj McMillan
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Adi Idris
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
22
|
Liu X, Liu X, Han X. FANCI may serve as a prognostic biomarker for cervical cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27690. [PMID: 34941027 PMCID: PMC8702066 DOI: 10.1097/md.0000000000027690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/18/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND DNA damage is a fundamental process that plays a considerable role in generating protein diversity. FANCI, loaded on the altered chromatin, plays a vital role in DNA damage. Abnormal FANCI expression is potentially associated with carcinogenesis.However, the biological role of FANCI in cervical cancer is yet to be determined. METHODS We analyzed FANCI expression via multiple gene expression databases. Genes co-expressed with FANCI and its regulators were identified using LinkedOmics. The correlations between FANCI and cancer immune infiltrates were investigated via Tumor Immune Estimation Resource (TIMER). RESULTS FANCI was found upregulated with amplification in tumor tissues of multiple cervical cancer cohorts. High FANCI expression was associated with poorer overall survival (OS). Functional network analysis suggested that FANCI regulates spliceosome, DNA replication, and cell cycle signaling via pathways involving several cancer-related kinases and the E2F family. In additional, FANCI expression was positively correlated with infiltrating levels of CD4+ T and CD8+ T cells, and neutrophils. FANCI expression also showed strong correlations with diverse immune marker sets in cervical cancer. CONCLUSION These findings suggested that FANCI is correlated with prognosis of and immune infiltration in cervical cancer, laying a foundation for further study of the immune regulatory role of FANCI in cervical cancer.
Collapse
Affiliation(s)
- Xiaoling Liu
- Department of Obstetrics and Gynecology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xiqin Liu
- Department of Obstetrics and Gynecology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xia Han
- Department of Obstetrics and Gynecology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, Guangdong, China
| |
Collapse
|
23
|
A four immune-related long noncoding RNAs signature as predictors for cervical cancer. Hum Cell 2021; 35:348-359. [PMID: 34846702 DOI: 10.1007/s13577-021-00654-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
The progression, metastasis, and prognosis of cervical cancer (CC) is influenced by the tumor immune microenvironment. Studies proved that long non-coding RNAs (lncRNAs) to engage in cervical cancer development, especially immune-related lncRNAs, have emerged crucial in the tumor immune process. This study was set out to identify an immune-related lncRNA signature. In total, 13,838 lncRNA expression profiles and 328 immune genes were acquired from the clnical data of 306 CC tissues and 3 non-CC tissues. From the 433 identified immune-related lncRNAs, 4 candidate immune-related lncRNAs (SOX21-AS1, AC005332.4, NCK1-DT, LINC01871) were considered independent indicators of cervical cancer prognosis through the univariate and multivariate Cox regression analysis, and they were used to construct a prognostic and survival lncRNA signature model followed by the bootstrap method for further verification. Kaplan-Meier curves illustrated that cervical cancer patients could be divided into high-risk and low-risk groups with significant differences (P = 2.052e - 05), and the discrepancy of immune profiles between these two risk groups was illustrated by principal components analysis. Taken together, the novel survival predictive model created by the four immune-related lncRNAs showed promising clinical prediction value in cervical cancer.
Collapse
|
24
|
The miR-182/Myadm axis regulates hypoxia-induced pulmonary hypertension by balancing the BMP- and TGF-β-signalling pathways in an SMC/EC-crosstalk-associated manner. Basic Res Cardiol 2021; 116:53. [PMID: 34546460 DOI: 10.1007/s00395-021-00892-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
We recently identified oncologic miR-182 as a new regulator of pulmonary artery hypertension (PAH) that targets myeloid-associated differentiation marker (Myadm), which is expressed in bone marrow stem cells and multipotent progenitors. Both miR-182 and Myadm are expressed in the cardiopulmonary system and correlated with the balance between the bone morphogenetic protein (BMP) and the transforming growth factor (TGF)-β signalling pathways, which are disturbed in PAH. We hypothesize that miR-182/Myadm are involved in BMP-TGF-β-signalling way in PAH. Hypoxia triggered pathological progression in cardiopulmonary PAH in vivo and in vitro; these changes were accompanied by strongly dowregulated BMP/SMAD1/5/8 expression and enhanced TGF-β/SMAD2/3 signalling pathway, favouring SMAD4/SMAD2 transcript formation and inhibiting the PAH negative regulator Id1 expression. miR-182 gain-of-function significantly inhibited the pathological progression in hypoxia-induced PAH (HPH) in vivo and in vitro, with a restoration of the balance in BMP-TGF-β signalling pathway. This recovery was abrogated by overexpression of Myadm. Conversely, loss-of-function of miR-182 increased the pathological progression of HPH followed by severe disturbance of BMP and TGF-β signal transduction and reduced Id1 expression, which was restored by Myadm knockdown. We also showed that the miR-182/Myadm relate BMP-TGF-β pathway is associated with NOS3/NO/cGMP via the crosstalk between endothelial cells and smooth muscle cells. Our findings further support the therapeutic significance of miR-182/Myadm in PAH via the balance of BMP- and TGF-β-associated mechanisms.
Collapse
|
25
|
Weiss BG, Anczykowski MZ, Ihler F, Bertlich M, Spiegel JL, Haubner F, Canis M, Küffer S, Hess J, Unger K, Kitz J, Jakob M. MicroRNA-182-5p and microRNA-205-5p as potential biomarkers for prognostic stratification of p16-positive oropharyngeal squamous cell carcinoma. Cancer Biomark 2021; 33:331-347. [PMID: 34542062 DOI: 10.3233/cbm-203149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND MicroRNAs constitute promising biomarkers. OBJECTIVE The aim was to investigate diagnostic and prognostic implications of miR-182-5p and miR-205-5p in p16-positive and p16-negative oropharyngeal squamous cell carcinomas (OPSCCs). METHODS Expression of miR-182-5p, miR-205-5p were determined via quantitative real-time-PCR in fresh frozen tissues of 26 p16-positive, 19 p16-negative OPSCCs and 18 HPV-negative oropharyngeal controls. Associations between miRNA-expression, clinicopathological characteristics and prognosis were analyzed. RESULTS Higher miR-182-5p expression was associated with significant inferior disease-specific survival for p16-positive OPSCCs (HR = 1.98E+09, 95% CI 0-Inf; P= 0.028) and a similar trend was observed for p16-negative OPSCCs (HR = 1.56E+09, 95% CI 0-Inf; P= 0.051). Higher miR-205-5p expression was associated with an inferior progression-free survival (HR = 4.62, 95% CI 0.98-21.83; P= 0.034) and local control rate (HR = 2.18E+09, 95% CI 0-Inf; P= 0.048) for p16-positive OPSCCs. CONCLUSIONS Results indicate that miR-182-5p and miR-205-5p can further stratify patients with p16-positive OPSCC into prognostic groups.
Collapse
Affiliation(s)
- Bernhard G Weiss
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Mahalia Zoe Anczykowski
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Göttingen, Göttingen, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Friedrich Ihler
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians University of Munich, Munich, Germany
| | - Mattis Bertlich
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Jennifer L Spiegel
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Frank Haubner
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany
| | - Julia Kitz
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Mark Jakob
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
26
|
Crosstalk between Environmental Inflammatory Stimuli and Non-Coding RNA in Cancer Occurrence and Development. Cancers (Basel) 2021; 13:cancers13174436. [PMID: 34503246 PMCID: PMC8430834 DOI: 10.3390/cancers13174436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Increasing evidence has indicated that chronic inflammatory processes have an influence on tumor occurrence and all stages of tumor development. A dramatic increase of studies into non-coding RNAs (ncRNAs) biology has shown that ncRNAs act as oncogenic drivers and tumor suppressors in various inflammation-induced cancers. Thus, this complex network of inflammation-associated cancers and ncRNAs offers targets for prevention from the malignant transformation from inflammation and treatment of malignant diseases. Abstract There is a clear relationship between inflammatory response and different stages of tumor development. Common inflammation-related carcinogens include viruses, bacteria, and environmental mutagens, such as air pollutants, toxic metals, and ultraviolet light. The expression pattern of ncRNA changes in a variety of disease conditions, including inflammation and cancer. Non-coding RNAs (ncRNAs) have a causative role in enhancing inflammatory stimulation and evading immune responses, which are particularly important in persistent pathogen infection and inflammation-to-cancer transformation. In this review, we investigated the mechanism of ncRNA expression imbalance in inflammation-related cancers. A better understanding of the function of inflammation-associated ncRNAs may help to reveal the potential of ncRNAs as a new therapeutic strategy.
Collapse
|
27
|
Song H, Liu Y, Liang H, Jin X, Liu L. SPINT1-AS1 Drives Cervical Cancer Progression via Repressing miR-214 Biogenesis. Front Cell Dev Biol 2021; 9:691140. [PMID: 34350182 PMCID: PMC8326843 DOI: 10.3389/fcell.2021.691140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/28/2021] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidences have revealed the dysregulated expressions and critical roles of non-coding RNAs in various malignancies, including cervical cancer. Nevertheless, our knowledge about the vast majority of non-coding RNAs is still lacking. Here we identified long non-coding RNA (lncRNA) SPINT1-AS1 as a novel cervical cancer-associated lncRNA. SPINT1-AS1 was increased in cervical cancer and correlated with advanced stage and poor prognosis. SPINT1-AS1 was a direct downstream target of miR-214, a well-known tumor suppressive microRNA (miRNA) in cervical cancer. Intriguingly, SPINT1-AS1 was also found to repress miR-214 biogenesis via binding DNM3OS, the primary transcript of miR-214. The interaction between SPINT1-AS1 and DNM3OS repressed the binding of DROSHA and DGCR8 to DNM3OS, blocked DNM3OS cleavage, and therefore repressed mature miR-214 biogenesis. The expression of SPINT1-AS1 was significantly negatively correlated with miR-214 in cervical cancer tissues, supporting the reciprocal repression between SPINT1-AS1 and miR-214 in vivo. Through downregulating mature miR-214 level, SPINT1-AS1 upregulated the expression of β-catenin, a target of miR-214. Thus, SPINT1-AS1 further activated Wnt/β-catenin signaling in cervical cancer. Functionally, SPINT1-AS1 drove cervical cancer cellular proliferation, migration, and invasion in vitro, and also tumorigenesis in vivo. Deletion of the region mediating the interaction between SPINT1-AS1 and DNM3OS, overexpression of miR-214, and inhibition of Wnt/β-catenin signaling all reversed the roles of SPINT1-AS1 in cervical cancer. Collectively, these findings identified SPINT1-AS1 as a novel cervical cancer-associated oncogenic lncRNA which represses miR-214 biogenesis and activates Wnt/β-catenin signaling, highlighting its potential as prognostic biomarker and therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Hongjuan Song
- Department of Gynecology, Xuzhou Maternal and Child Health Care Hospital, Xuzhou, China.,Department of Gynecology, Xuzhou Renci Hospital, Xuzhou, China
| | - Yuan Liu
- Department of Gynecology, Xuzhou Maternal and Child Health Care Hospital, Xuzhou, China
| | - Hui Liang
- Department of Cervical Disease, Xuzhou Maternal and Child Health Care Hospital, Xuzhou, China
| | - Xin Jin
- Medical Department, Xuzhou Central Hospital, Xuzhou, China
| | - Liping Liu
- Department of Research and Development, Shanghai Lichun Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|
28
|
Yang Y, Liu Y, Liu W, Li C, Liu Y, Hu W, Song H. miR-122 Inhibits the Cervical Cancer Development by Targeting the Oncogene RAD21. Biochem Genet 2021; 60:303-314. [PMID: 34191246 DOI: 10.1007/s10528-021-10098-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022]
Abstract
Cervical cancer (CC) is one of the most frequently diagnosed tumors in female. miR-122 has been proved to be dominant in CC. The particular role of miR-122 in CC is unclear. Thus, we attempted to investigate the prognostic role of miR-122 in CC. We used the database of Kaplan-Meier curve plot. Growth and apoptosis of C33A cells were detected by CCK-8, colony formation assay, transwell assays and flow cytometry analysis. The target gene of miR-122 was identified using bioinformatics, q-PCR, western blot and luciferase assay. It showed that CC patients with overexpression of miR-122 have a better prognosis in the Kaplan-Meier plot database analysis. Overexpressed miR-122 inhibited the malignant growth and induced apoptosis of CC. miR-122 targeting of RAD21 cohesin complex component (RAD21) was identified using bioinformatics, Q-PCR, western blot and luciferase assay analyses. Moreover, we found miR-122 conduct its functions via RAD21 via the PI3K/AKT signaling pathway. Importantly, overexpression of RAD21 restored the roles of miR-122 in CC. Our data suggested that miR-122 could block malignant growth and promoted apoptosis by targeting RAD21 in CC. Our finding indicates miR-122 could potentially participate in the pathogenesis and be a biomarker or the potential therapeutic target of CC.
Collapse
Affiliation(s)
- Yanling Yang
- Xuzhou Maternal and Child Health Hospital, Xuzhou Medical University, Xuzhou, 221000, China
| | - Yang Liu
- Xuzhou Maternal and Child Health Hospital, Xuzhou Medical University, Xuzhou, 221000, China
| | - Wei Liu
- Xuzhou Maternal and Child Health Hospital, Xuzhou Medical University, Xuzhou, 221000, China
| | - Chunyang Li
- Xuzhou Maternal and Child Health Hospital, Xuzhou Medical University, Xuzhou, 221000, China
| | - Yuan Liu
- Xuzhou Maternal and Child Health Hospital, Xuzhou Medical University, Xuzhou, 221000, China
| | - Wenyang Hu
- College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Hongjuan Song
- Xuzhou Maternal and Child Health Hospital, Xuzhou Medical University, Xuzhou, 221000, China.
| |
Collapse
|
29
|
Mendaza S, Fernández-Irigoyen J, Santamaría E, Arozarena I, Guerrero-Setas D, Zudaire T, Guarch R, Vidal A, Salas JS, Matias-Guiu X, Ausín K, Gil C, Hernández-Alcoceba R, Martín-Sánchez E. Understanding the Molecular Mechanism of miR-877-3p Could Provide Potential Biomarkers and Therapeutic Targets in Squamous Cell Carcinoma of the Cervix. Cancers (Basel) 2021; 13:cancers13071739. [PMID: 33917510 PMCID: PMC8038805 DOI: 10.3390/cancers13071739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
No therapeutic targets and molecular biomarkers are available in cervical cancer (CC) management. In other cancer types, micro-RNA-877-3p (miR-877-3p) has been associated with events relevant for CC development. Thus, we aimed to determine miR-877-3p role in CC. miR-877-3p levels were examined by quantitative-PCR in 117 cervical lesions and tumors. Effects on CC cell proliferation, migration, and invasion were evaluated upon anti-miR-877-3p transfection. miR-877-3p dependent molecular mechanism was comprehensively explored by proteomics, dual-luciferase reporter assay, western blot, and immunohistochemistry. Cervical tumors expressed higher miR-877-3p levels than benign lesions. miR-877-3p promoted CC cell migration and invasion, at least partly by modulating cytoskeletal protein folding through the chaperonin-containing T-complex protein 1 complex. Notably, miR-877-3p silencing synergized with paclitaxel. Interestingly, miR-877-3p downregulated the levels of an in silico-predicted target, ZNF177, whose expression and subcellular location significantly distinguished high-grade squamous intraepithelial lesions (HSILs) and squamous cell carcinomas of the cervix (SCCCs). Cytoplasmic ZNF177 was significantly associated with worse progression-free survival in SCCC. Our results suggest that: (i) miR-877-3p is a potential therapeutic target whose inhibition improves paclitaxel effects; (ii) the expression and location of its target ZNF177 could be diagnostic biomarkers between HSIL and SCCC; and (iii) cytoplasmic ZNF177 is a poor-prognosis biomarker in SCCC.
Collapse
Affiliation(s)
- Saioa Mendaza
- Molecular Pathology of Cancer Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (S.M.); (D.G.-S.)
| | - Joaquín Fernández-Irigoyen
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (J.F.-I.); (E.S.); (K.A.)
| | - Enrique Santamaría
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (J.F.-I.); (E.S.); (K.A.)
| | - Imanol Arozarena
- Cancer Cell Signalling Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain;
| | - David Guerrero-Setas
- Molecular Pathology of Cancer Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (S.M.); (D.G.-S.)
- Department of Pathology, Complejo Hospitalario de Navarra (CHN), Irunlarrea 3, 31008 Pamplona, Spain; (T.Z.); (R.G.)
| | - Tamara Zudaire
- Department of Pathology, Complejo Hospitalario de Navarra (CHN), Irunlarrea 3, 31008 Pamplona, Spain; (T.Z.); (R.G.)
| | - Rosa Guarch
- Department of Pathology, Complejo Hospitalario de Navarra (CHN), Irunlarrea 3, 31008 Pamplona, Spain; (T.Z.); (R.G.)
| | - August Vidal
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, Carrer de la Feixa Llarga, 08907 L’Hospitalet de Llobregat, Spain; (A.V.); (X.M.-G.)
- CIBERONC, Centro de Investigación Biomédica en Red—Cáncer, 28029 Madrid, Spain
| | - José-Santos Salas
- Department of Pathology, Complejo Asistencial Universitario, Altos de Nava, 24071 León, Spain;
| | - Xavier Matias-Guiu
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, Carrer de la Feixa Llarga, 08907 L’Hospitalet de Llobregat, Spain; (A.V.); (X.M.-G.)
- CIBERONC, Centro de Investigación Biomédica en Red—Cáncer, 28029 Madrid, Spain
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, Alcalde Rovira Roure 80, 25198 Lleida, Spain
| | - Karina Ausín
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (J.F.-I.); (E.S.); (K.A.)
| | - Carmen Gil
- Microbial Pathogenesis Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain;
| | - Rubén Hernández-Alcoceba
- Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pío XII 55, 31008 Pamplona, Spain;
| | - Esperanza Martín-Sánchez
- Molecular Pathology of Cancer Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (S.M.); (D.G.-S.)
- Correspondence:
| |
Collapse
|
30
|
Wu Y, Yin Q, Zhou YL, He L, Zou ZQ, Dai XY, Xia W. Evaluation of microRNAs as potential biomarkers in circulating HPV-DNA-positive non-small cell lung cancer patients. Cancer Biol Ther 2021; 22:136-148. [PMID: 33535877 DOI: 10.1080/15384047.2021.1872155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The aim of the present study was to identify the potential risk of circulating-HPV-DNA in non-small cell lung cancer (NSCLC) and to analyze abnormally expressed miRNAs in circulating HPV-DNA-positive NSCLC. HPV universal primers were used to detect the presence of HPV-DNA in the peripheral blood of 100 patients with NSCLC. The relationship between circulating-HPV-DNA and NSCLC patients characteristics was analyzed. Then, eight differentially expressed miRNAs in NSCLC were screened based on the TCGA database. The levels of miRNAs in circulating HPV-DNA-positive NSCLC patients were detected by real-time quantitative PCR. ROC curves were generated to evaluate the diagnostic performance. Circulating-HPV-DNA was found in 16 patients. The proportion of HPV-DNA-positive patients with poorly differentiated NSCLC, advanced lung cancer and lymph node metastasis was higher than that of HPV-DNA-negative patients. The levels of miR-183, miR-210 and miR-182 were significantly higher and miR-144 was significantly lower in HPV-DNA-positive NSCLC than those in HPV-DNA-negative NSCLC patients. When using a single miRNA to identify circulating HPV-DNA-positive NSCLC patients, miR-210 had a higher area under the ROC curve (AUC) than other miRNAs, and its sensitivity and specificity were also higher. In addition, the combination of two miRNAs was more effective than a single miRNA. Among them, miR-210+ miR-144 had the highest AUC value and showed the best prediction performance. Circulating-HPV-DNA may serve as a risk factor in NSCLC. Plasma miR-183, miR-210, miR-182 and miR-144 can be used as reliable biomarkers to identify circulating HPV-DNA-positive NSCLC.
Collapse
Affiliation(s)
- Yao Wu
- Department of Clinical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qing Yin
- Department of Clinical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ya-Ling Zhou
- Department of Clinical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lei He
- Department of Clinical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhi-Qing Zou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao-Yue Dai
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wen Xia
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
31
|
Liu G, Deng Y, Song Y, Sui Y, Cen J, Shao Z, Li H, Tang T. Transdermal Delivery of Adipocyte Phospholipase A2 siRNA using Microneedles to Treat Thyroid Associated Ophthalmopathy-Related Proptosis. Cell Transplant 2021; 30:9636897211010633. [PMID: 33880967 PMCID: PMC8072820 DOI: 10.1177/09636897211010633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 11/15/2022] Open
Abstract
Thyroid associated ophthalmopathy (TAO) is an organ-specific autoimmune disease occurring in patients with thyroid disease. Patients with TAO-related proptosis is largely due to excessive orbital adipose tissue Adipocyte phospholipase A2 (AdPLA) is one of the most important regulatory factors in adipocyte lipolysis, which may be associated with TAO-related proptosis. Thus, silencing AdPLA by RNA interference may be beneficial for the treatment of TAO. In this study, we sought to evaluate the efficiency of two types of microneedles to deliver siRNAs for silencing AdPLA. Our results showed that AdPLA mRNA was up-regulated in the orbit adipose tissues from TAO patients. Silence of AdPLA by siRNA can reduce lipid accumulation in both human and mouse adipocyte cell lines. Moreover, silence effects of silicon microneedle array patch-based and injectable microneedle device-based siRNA administration were examined at the belly site of the mice, and injectable microneedle device showed higher knockdown efficiency than silicon microneedle array patch. This study sets the stage not only for future treatment of TAO-related proptosis using AdPLA siRNA, but also provides the foundation for targeted siRNA delivery by using microneedles.
Collapse
Affiliation(s)
- Guiqin Liu
- Shenzhen Laboratory of Ophthalmology, Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Shenzhen University, Shenzhen, China
| | - Yan Deng
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Song
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Sui
- Department of Nutrition, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Juan Cen
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, China
| | - Ziyu Shao
- Department of Obstetrics & Gynaecology, Panyu Central Hospital, Guangzhou, China
| | - Hu Li
- Department of Obstetrics & Gynaecology, Panyu Central Hospital, Guangzhou, China
- Cancer Institute of Panyu Central Hospital, Guangzhou, China
| | - Tao Tang
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Cancer Institute of Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
32
|
|
33
|
Pan S, Zhou G, Hu W, Pei H. SMAD-6, -7 and -9 are potential molecular biomarkers for the prognosis in human lung cancer. Oncol Lett 2020; 20:2633-2644. [PMID: 32782581 PMCID: PMC7401007 DOI: 10.3892/ol.2020.11851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/13/2020] [Indexed: 12/24/2022] Open
Abstract
SMADs, a family of proteins that function as signal transducers and transcriptional regulators to regulate various signaling pathways, including the transforming growth factor-β signaling pathway, are similar to the mothers against decapentaplegic family of genes and the sma gene family in Caenorhabditis elegans. SMADs generate context-dependent modulation by interacting with various sequence-specific transcription factors, such as E2F4/5, c-Fos, GATA3, YY1 and SRF, which have been found to serve a key role in lung carcinoma oncogenesis and progression. However, the prognostic values of the eight SMADs in lung cancer have not been fully understood. In the present study, the expression levels and survival data of SMADs in patients with lung carcinoma from the Oncomine, Gene Expression Profiling Interactive Analysis, Kaplan-Meier plotter and cBioPortal databases were downloaded and analyzed. It was found that the mRNA expression levels of SMAD-6, -7 and -9 were decreased in lung adenocarcinoma and squamous cell carcinoma compared with that in adjacent normal tissues, while there was no significant difference in SMADs 1-5. Survival analysis revealed that not only were low transcriptional levels of SMAD-6, -7 and -9 associated with low overall survival but they also had prognostic role for progression-free survival and post-progression survival (P<0.05) in patients with lung carcinoma. In conclusion, the present study demonstrated that SMAD-6, -7 and -9 are potential biomarkers for the prognosis of patients with lung carcinoma.
Collapse
Affiliation(s)
- Shuxian Pan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, P.R. China
- Department of Radiation Oncology, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
34
|
Miao J, Regenstein JM, Xu D, Zhou D, Li H, Zhang H, Li C, Qiu J, Chen X. The roles of microRNA in human cervical cancer. Arch Biochem Biophys 2020; 690:108480. [PMID: 32681832 DOI: 10.1016/j.abb.2020.108480] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022]
Abstract
Although a potentially preventable disease, cervical cancer (CC) is the second most commonly diagnosed gynaecological cancer with at least 530,000 new cases annually, and the prognosis with CC is still poor. Studies suggest that aberrant expression of microRNA (miRNA) contributes to the progression of CC. As a group of small non-coding RNA with 18-25 nucleotides, miRNA regulate about one-third of all human genes. They function by repressing translation or inducing mRNA cleavage or degradation, including genes involved in diverse and important cellular processes, including cell cycling, proliferation, differentiation, and apoptosis. Results showed that misexpression of miRNA is closely related to the onset and progression of CC. This review will provide an overview of the function of miRNA in CC and the mechanisms involved in cervical carcinogenesis.
Collapse
Affiliation(s)
- Jingnan Miao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, 570100, China; School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, 14853-7201, USA
| | - Dan Xu
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Dan Zhou
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Haixia Li
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Hua Zhang
- Department of Food Science, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150010, China
| | - Chunfeng Li
- Gastrointestinal Surgical Ward, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Junqiang Qiu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, 570100, China; School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China; Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou, Hainan, 570100, China.
| | - Xun Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, 570100, China; School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China; Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou, Hainan, 570100, China
| |
Collapse
|
35
|
Huang W, Yang Y, Wu J, Niu Y, Yao Y, Zhang J, Huang X, Liang S, Chen R, Chen S, Guo L. Circular RNA cESRP1 sensitises small cell lung cancer cells to chemotherapy by sponging miR-93-5p to inhibit TGF-β signalling. Cell Death Differ 2020; 27:1709-1727. [PMID: 31728016 PMCID: PMC7206039 DOI: 10.1038/s41418-019-0455-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are novel RNA molecules that play important roles in chemoresistance in different cancers, including breast and gastric cancers. However, whether circRNAs are involved in the response to chemotherapy in small cell lung cancer (SCLC) remains largely unknown. In this study, we observed that cESRP1 (circular RNA epithelial splicing regulatory protein-1) expression was significantly downregulated in the chemoresistant cells compared with the parental chemosensitive cells. cESRP1 enhanced drug sensitivity by repressing miR-93-5p in SCLC. Cytoplasmic cESRP1 could directly bind to miR-93-5p and inhibit the posttranscriptional repression mediated by miR-93-5p, thereby upregulating the expression of the miR-93-5p downstream targets Smad7/p21(CDKN1A) and forming a negative feedback loop to regulate transforming growth factor-β (TGF-β) mediated epithelial-mesenchymal transition. Furthermore, cESRP1 overexpression and TGF-β pathway inhibition both altered tumour responsiveness to chemotherapy in an acquired chemoresistant patient-derived xenograft model. Importantly, cESRP1 expression was downregulated in SCLC patient tissues and was associated with survival. Our findings reveal, for the first time, that cESRP1 plays crucial a role in SCLC chemosensitivity by sponging miR-93-5p to inhibit the TGF-β pathway, suggesting that cESRP1 may serve as a valuable prognostic biomarker and a potential therapeutic target in SCLC patients.
Collapse
Affiliation(s)
- Weimei Huang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yunchu Yang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingfang Wu
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuchun Niu
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Oncology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yao Yao
- Department of Pathology, Peking University Third Hospital, Beijing, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxian Huang
- Clinical Laboratory, Gushang Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shumei Liang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Chen
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Size Chen
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
36
|
Yuan Y, Shi X, Li B, Peng M, Zhu T, Lv G, Liu L, Jin H, Li L, Qin D. Integrated analysis of key microRNAs /TFs /mRNAs/ in HPV-positive cervical cancer based on microRNA sequencing and bioinformatics analysis. Pathol Res Pract 2020; 216:152952. [PMID: 32307200 DOI: 10.1016/j.prp.2020.152952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 03/29/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cervical squamous cell carcinoma (CESC) is one of the most common malignancies associated with mortality in females. Its onset and prognosis are primarily concerned with persistent infection with high-risk types of human papillomavirus (HPV). However, the molecular mechanisms of HPV-positive CESC remain unclear. METHODS In this study, we conducted a high-throughput sequencing to identify differentially expressed miRNAs (DEMs). Besides, three series were selected from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs). Then the miRNA-TF-gene regulatory network was constructed using bioinformatic methods. Genes in the network were performed functional enrichment analysis and protein-protein interaction (PPI) network analysis. Ultimately, the expression levels of six key miRNAs, TFs, and mRNAs were validated by 20 HPV-positive CESC tissues and 15 normal cervical samples. RESULTS A total of 52 DEMs and 300 DEGs differed between the HPV-positive CESC and normal cervical samples. Then the miRNA-TF-gene regulatory network was constructed consisting of 22 miRNAs, 6 TFs, and 76 corresponding genes, among which miR-149-5p, miRNA-1248 and E2F4 acted as key regulators. PPI network analysis showed that ten genes including TOP2A, AURKA, CHEK1, KIF11, MCM4, MKI67, DTL, FOXM1, SMC4, and FBXO5 were recognized as hub genes with the highest connectivity degrees. Besides, five key molecules miRNA-149-5p, E2F4, KIF11, DTL, and SMC4 were suggested to play crucial roles in the development of HPV-positive CESC. CONCLUSION These results present a unique insight into the pathological mechanisms of HPV-positive CESC and possibly provides potential therapeutic targets.
Collapse
Affiliation(s)
- Yingying Yuan
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoqing Shi
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bingjie Li
- Department of Clinical Laboratory, Fuwai Central China Cardiovascular Hospital, Zhengzhou 451450, China
| | - Mengle Peng
- Department of Clinical Laboratory, The Third People's Hospital of Henan Province, Zhengzhou 450050, China
| | - Tao Zhu
- Department of Clinical Laboratory, People's Hospital of Zhecheng County, Shangqiu 476200, China
| | - Guanting Lv
- Department of Blood Transfusion, The Second Affiliated Hospital of Air Force Military Medical University of Chinese PLA, Xian 710032, China
| | - Lu Liu
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huifang Jin
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Liuxia Li
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Dongchun Qin
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
37
|
Cheng Y, Yang S, Shen Y, Ding B, Wu W, Zhang Y, Liang G. The Role of High-Risk Human Papillomavirus-Related Long Non-Coding RNAs in the Prognosis of Cervical Squamous Cell Carcinoma. DNA Cell Biol 2020; 39:645-653. [PMID: 32045269 DOI: 10.1089/dna.2019.5167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer (CC) is a malignant tumor that could seriously endanger women's life and health, of which cervical squamous cell carcinoma (CESC) accounts for more than 80%. High-risk human papillomavirus (HR-HPV) infection is the primary cause of CC. The 5-year survival rate is low due to poor prognosis. We need to explore the pathogenesis of CC and seek effective biomarkers to improve prognosis. The purpose of this research is to construct an HR-HPV-related long non-coding RNA (lncRNA) signature for predicting the survival and finding the biomarkers related to CC prognosis. First, we downloaded the CESC data from The Cancer Genome Atlas (TCGA) database to find HR-HPV-related lncRNAs in CC. Then, the differentially expressed lncRNAs were analyzed by univariate and multivariate Cox regression. Six lncRNAs were found to be associated with the prognosis and can be used as independent prognostic factors. Next, based on these prognostic genes, we established a risk score model, which showed that patients with higher score had poorer prognosis and higher mortality. Moreover, the Kaplan-Meier curve of the model indicated that the model was statistically significant (p < 0.05). The survival-receiver operating characteristic curve showed that the model could also predict the survival of CC patients (the area under the curve, AUC = 0.65). More importantly, nomogram was drawn with clinical features and risk score, which verified the above conclusion, and its calibration curve and c-index index fully demonstrated that the prediction model could predict the progress of CC. We also validated the risk score model in head and neck cancer, and the results indicated that the model had obvious prognostic ability. Finally, we analyzed the correlation between clinical features and survival, and found that neoplasm cancer (p < 0.000) and risk score (p < 0.000) were independent prognostic factors for CC. In conclusion, the study established HR-HPV-related lncRNA signature, which provided a reliable prognostic tool, and was of great significance for finding the biomarkers related to HR-HPV infection in CC.
Collapse
Affiliation(s)
- Yanping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Yang Shen
- Zhongda Hospital, Nanjing, Jiangsu, P.R. China
| | - Bo Ding
- Zhongda Hospital, Nanjing, Jiangsu, P.R. China
| | - Wenjuan Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Yanqiu Zhang
- Department of Environmental Occupational Health, Taizhou Center for Disease Control and Prevention, Taizhou City, Jiangsu, P.R. China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
38
|
Shen H, Sun B, Yang Y, Cai X, Bi L, Deng L, Zhang L. MIR4435-2HG regulates cancer cell behaviors in oral squamous cell carcinoma cell growth by upregulating TGF-β1. Odontology 2020; 108:553-559. [PMID: 32016787 DOI: 10.1007/s10266-020-00488-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022]
Abstract
MIR4435-2HG has been characterized as an oncogenic lncRNA in several types of cancer, while its role in oral squamous cell carcinoma (OSCC, a major subtype of oral cancer) has not been characterized. We explored the functionality of MIR4435-2HG in OSCC and investigated its interactions with TGF-β1. Blood samples were extracted from OSCC patients (n = 44) and healthy volunteers (n = 38), RT-qPCR, CCK-8, Transwell assays and western blot were performed in this study. The results showed that levels of MIR4435-2HG and TGF-β1 in plasma were upregulated in OSCC. Across OSCC plasma samples, TGF-β1 and MIR4435-2HG were significantly and positively correlated. Overexpression of MIR4435-2HG resulted in upregulated TGF-β1 expression, while exogenous TGF-β1 treatment had no effect on the expression of MIR4435-2HG. Overexpression of MIR4435-2HG and exogenous TGF-β1 treatment led to promoted, while TGF-β inhibitor led to inhibited migration, proliferation and invasion of cancer cells. Moreover, TGF-β inhibitor led to reduced effects of overexpressing MIR4435-2HG. Therefore, MIR4435-2HG regulates the behaviors of OSCC cells by promoting the expression of TGF-β1.
Collapse
Affiliation(s)
- Huan Shen
- Department of Stomatology, PLA Rocket Force General Hospital, Beijing, 100088, People's Republic of China
| | - Bin Sun
- Department of Stomatology, PLA Rocket Force General Hospital, Beijing, 100088, People's Republic of China
| | - Yongjin Yang
- Department of Stomatology, PLA Rocket Force General Hospital, Beijing, 100088, People's Republic of China
| | - Xingwei Cai
- Department of Stomatology, PLA Rocket Force General Hospital, Beijing, 100088, People's Republic of China
| | - Lixia Bi
- Department of Stomatology, PLA Rocket Force General Hospital, Beijing, 100088, People's Republic of China
| | - Lin Deng
- Department of Stomatology, PLA Rocket Force General Hospital, Beijing, 100088, People's Republic of China
| | - Luyue Zhang
- School of Basic Medical Sciences, The Fourth Military Medical University, No. 147, West of Changle Road, Xincheng District, Xi'an, 710032, Shannxi, People's Republic of China.
| |
Collapse
|
39
|
Lou X, Li J, Yu D, Wei YQ, Feng S, Sun JJ. Comprehensive analysis of five long noncoding RNAs expression as competing endogenous RNAs in regulating hepatoma carcinoma. Cancer Med 2019; 8:5735-5749. [PMID: 31392826 PMCID: PMC6745846 DOI: 10.1002/cam4.2468] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022] Open
Abstract
Liver cancer is the most common cancer and is the epitome of a recalcitrant cancer. Increasing evidence shown that long noncoding RNAs (lncRNA) were associated with cancer‐related death and could function as a competing endogenous RNA (ceRNA). To explore regulatory roles and potential prognostic biomarkers of lncRNA for liver cancer, RNA‐sequencing expression data were downloaded from the TCGA database and GEO database. A total of 357 patients were randomly divided into a discovery group and a validation group, of which 313 patients can obtain clinical data. In discovery phrase, 58 lncRNAs, 16 miRNAs, and 34 mRNAs were screened to construct the ceRNA network based on 252 patients employed from discovery group. Univariate and multivariate Cox hazard regression analysis model revealed that five lncRNAs (AATK‐AS1, C10orf91, LINC00162, LINC00200, and LINC00501) from 58 lncRNAs were formulated to predict the overall survival (OS). We used the value of gene expression and regression coefficients to construct a risk score based on the five lncRNAs. Next, we validated our model in the GSE116174 dataset (n = 64) and the validation group (n = 94) from TCGA database. Subgroup analysis suggest that the five lncRNAs played critical parts in early stage in cancer from both discovery and validation groups. The five lncRNAs were also found to be associated with immune cells infiltration including CD4+ memory activated, NK cells activated and mast cells activated, then the results were also validated according to the validation group. Furthermore, KEGG pathway enrichment analysis showed that these nine coexpressed modules using the method of WGCNA, and many of these pathways are associated with the development and progression of disease. At last, the transcription factor binding sites (TFBS) of the five lncRNAs were predicted, which help us to understand the potential mechanism that the TFBS adjusted the ceRNA network. In summary, the ceRNA regulatory network may contribute to a better understanding of liver cancer mechanism and provide potential prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xin Lou
- Department of Hepatopancreatobiliary Surgery, Tianjin Medical University Second Hospital, Tianjin Medical University, Tianjin, China
| | - Jun Li
- Department of Hepatopancreatobiliary Surgery, Tianjin Medical University Second Hospital, Tianjin Medical University, Tianjin, China
| | - Dong Yu
- Department of Hepatopancreatobiliary Surgery, Tianjin Medical University Second Hospital, Tianjin Medical University, Tianjin, China
| | - Ya-Qing Wei
- Department of Hepatopancreatobiliary Surgery, Tianjin Medical University Second Hospital, Tianjin Medical University, Tianjin, China
| | - Shuang Feng
- Department of Hepatopancreatobiliary Surgery, Tianjin Medical University Second Hospital, Tianjin Medical University, Tianjin, China
| | - Jin-Jin Sun
- Department of Hepatopancreatobiliary Surgery, Tianjin Medical University Second Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|