1
|
Wei ZH, Tuo M, Ye C, Wu XF, Wang HH, Ren WZ, Liu G, Xiang T. Prognostic value of neutrophil-to-lymphocyte ratio in gastric cancer patients undergoing neoadjuvant chemotherapy: A systematic review and meta-analysis. World J Gastrointest Oncol 2024; 16:4477-4488. [DOI: 10.4251/wjgo.v16.i11.4477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND In recent studies, accumulating evidence has revealed a strong association between the inflammatory response and the prognosis of many tumors. There is a certain correlation of neutrophil-to-lymphocyte ratio (NLR) with the prognosis in gastric cancer (GC) patients undergoing neoadjuvant chemotherapy (NAC). However, the existing research results have remained controversial.
AIM To explore the relationship between NLR ratio and prognosis of GC patients receiving NAC.
METHODS A thorough systematic search was performed in databases such as PubMed, Embase, Web of Science, and Cochrane Library, the search is available until February 29, 2024, and studies exploring the interaction of NLR with clinical outcomes were collected. Relevant studies meeting pre-defined inclusion and exclusion criteria were carefully chosen. The outcomes included progression-free survival (PFS), relapse-free survival, disease-free survival (DFS), and overall survival (OS). The hazard ratio (HR) and its corresponding 95% confidence interval (CI) were utilized for estimation.
RESULTS Our analysis encompassed 852 patients and incorporated data from 12 cohort studies. The comprehensive analysis revealed a significant association of high NLR with reduced OS (HR = 1.76; 95%CI: 1.22-2.54, P = 0.003), relapse-free survival (HR = 3.73; 95%CI: 1.74-7.96, P = 0.0007), and PFS (HR = 2.32; 95%CI: 1.42-3.81, P = 0.0008) in patients. However, this correlation in disease-free survival was not significant. NLR demonstrated its crucial role in effectively predicting the OS of GC patients undergoing NAC at different detection times, ages, regions, and NLR thresholds.
CONCLUSION In GC patients receiving NAC, an elevated NLR is strongly associated with reduced OS and PFS. NLR has become an effective biomarker for patient prognosis evaluation, providing valuable insights for the treatment strategies of NAC in GC patients.
Collapse
Affiliation(s)
- Zhen-Hua Wei
- Hubei Minzu University, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei Province, China
| | - Min Tuo
- Department of Breast Surgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei Province, China
| | - Chen Ye
- Department of Central Hospital of Tujia and Miao Autonomous Prefecture, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Xiao-Fan Wu
- Department of Central Hospital of Tujia and Miao Autonomous Prefecture, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Hong-Hao Wang
- Department of Gastrointestinal Surgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei Province, China
| | - Wen-Zhen Ren
- Department of Abdominal Oncology, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei Province, China
| | - Gao Liu
- Department of Gastrointestinal Surgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei Province, China
| | - Tian Xiang
- Department of Clinical Laboratory Center, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei Province, China
| |
Collapse
|
2
|
Pinjusic K, Bulliard M, Rothé B, Ansaryan S, Liu YC, Ginefra P, Schmuziger C, Altug H, Constam DB. Stepwise release of Activin-A from its inhibitory prodomain is modulated by cysteines and requires furin coexpression to promote melanoma growth. Commun Biol 2024; 7:1383. [PMID: 39448726 PMCID: PMC11502825 DOI: 10.1038/s42003-024-07053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
The Activin-A precursor dimer can be cleaved by furin, but how this proteolytic maturation is regulated in vivo and how it facilitates access to signaling receptors is unclear. Here, analysis in a syngeneic melanoma grafting model shows that without furin coexpression, Activin-A failed to accelerate tumor growth, correlating with failure of one or both subunits to undergo cleavage in signal-sending cells, even though compensatory processing by host cells nonetheless sustained elevated circulating Activin-A levels. In reporter assays, furin-independent cleavage of one subunit enabled juxtacrine Activin-A signaling, whereas completion of proteolytic maturation by coexpressed furin or by recipient cells stimulated contact-independent activity, crosstalk with BMP receptors, and signal inhibition by follistatin. Mechanistically, Activin-A processing was modulated by allosteric disulfide bonds flanking the furin site. Disruption of these disulfide linkages with the prodomain enabled Activin-A binding to cognate type II receptors independently of proteolytic maturation. Stepwise proteolytic maturation is a novel mechanism to control Activin-A protein interactions and signaling.
Collapse
Affiliation(s)
- Katarina Pinjusic
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Manon Bulliard
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
| | - Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
| | - Saeid Ansaryan
- Ecole Polytechnique Fédérale de Lausanne (EPFL) STI IBI-STI BIOS BM, Station 17, Lausanne, Switzerland
| | - Yeng-Cheng Liu
- Ecole Polytechnique Fédérale de Lausanne (EPFL) STI IBI-STI BIOS BM, Station 17, Lausanne, Switzerland
| | - Pierpaolo Ginefra
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
- University of Lausanne, Department of Oncology, Ludwig Cancer Institute, Epalinges, Switzerland
| | - Céline Schmuziger
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
| | - Hatice Altug
- Ecole Polytechnique Fédérale de Lausanne (EPFL) STI IBI-STI BIOS BM, Station 17, Lausanne, Switzerland
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland.
| |
Collapse
|
3
|
Lampinen V, Ojanen MJT, Caro FM, Gröhn S, Hankaniemi MM, Pesu M, Hytönen VP. Experimental VLP vaccine displaying a furin antigen elicits production of autoantibodies and is well tolerated in mice. NANOSCALE ADVANCES 2024:d4na00483c. [PMID: 39430302 PMCID: PMC11485048 DOI: 10.1039/d4na00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Proprotein convertase (PCSK) enzymes serve a wide range of regulatory roles in mammals, for example in metabolism and immunity, and altered activity of PCSKs is associated with disorders, such as cardiovascular disease and cancer. Inhibition of PCSK9 activity with therapeutic antibodies or small interfering RNAs is used in the clinic to lower blood cholesterol, and RNA interference -based silencing of FURIN (PCSK3) is being evaluated in clinical trials as a cancer treatment. Inhibiting these proteins through vaccine-induced autoantibodies could be a patient-friendly way to reduce the frequency of intervention and the overall price of treatment. Here, we show that a self-directed immune response against PCSK9 and furin can be generated in mice by presenting fragments of the proteins on norovirus-like particles (noro-VLPs). We genetically fused three PCSK peptides and the P domain of furin to the SpyCatcher linker protein and covalently conjugated them on noro-VLPs via SpyCatcher/SpyTag linkage. Both PCSK9 peptides and the furin P domain generated antigen specific IgGs even without conventional adjuvants. Importantly, vaccinating against furin did not cause adverse events or immune-mediated inflammatory disease. This study adds further support for the feasibility of VLP-based anti-PCSK9 vaccines and shows that the same principles can be applied to make novel vaccine candidates against other endogenous proteins such as furin. We also demonstrate that the noro-VLP can be used as a vaccine platform for presenting self-antigens.
Collapse
Affiliation(s)
- Vili Lampinen
- Faculty of Medicine and Health Technology, Tampere University Tampere Finland
| | - Markus J T Ojanen
- Faculty of Medicine and Health Technology, Tampere University Tampere Finland
| | - Fernanda Muñoz Caro
- Faculty of Medicine and Health Technology, Tampere University Tampere Finland
| | - Stina Gröhn
- Faculty of Medicine and Health Technology, Tampere University Tampere Finland
| | - Minna M Hankaniemi
- Faculty of Medicine and Health Technology, Tampere University Tampere Finland
| | - Marko Pesu
- Faculty of Medicine and Health Technology, Tampere University Tampere Finland
- Fimlab Laboratories Ltd FI-33014 Tampere Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University Tampere Finland
- Fimlab Laboratories Ltd FI-33014 Tampere Finland
| |
Collapse
|
4
|
Zaafour A, Seeneevassen L, Nguyen TL, Genevois C, Nicolas N, Sifré E, Giese A, Porcheron C, Descarpentrie J, Dubus P, Khatib AM, Varon C. Inhibition of proprotein convertases activity results in repressed stemness and invasiveness of cancer stem cells in gastric cancer. Gastric Cancer 2024; 27:292-307. [PMID: 38280128 DOI: 10.1007/s10120-023-01462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND Gastric cancer (GC), the fourth leading cause of cancer-related death worldwide, with most deaths caused by advanced and metastatic disease, has limited curative options. Here, we revealed the importance of proprotein convertases (PCs) in the malignant and metastatic potential of GC cells through the regulation of the YAP/TAZ/TEAD pathway and epithelial-to-mesenchymal transition (EMT) in cancer stem cells (CSC). METHODS The general PCs inhibitor, decanoyl-RVKR-chloromethyl-ketone (CMK), was used to repress PCs activity in CSCs of various GC cell lines. Their tumorigenic properties, drug resistance, YAP/TAZ/TEAD pathway activity, and invasive properties were then investigated in vitro, and their metastatic properties were explored in a mouse xenograft model. The prognostic value of PCs in GC patients was also explored in molecular databases of GC. RESULTS Inhibition of PCs activity in CSCs in all GC cell lines reduced tumorsphere formation and growth, drug efflux, EMT phenotype, and invasive properties that are associated with repressed YAP/TAZ/TEAD pathway activity in vitro. In vivo, PCs' inhibition in GC cells reduced their metastatic spread. Molecular analysis of tumors from GC patients has highlighted the prognostic value of PCs. CONCLUSIONS PCs are overexpressed in GC and associated with poor prognosis. PCs are involved in the malignant and metastatic potential of CSCs via the regulation of EMT, the YAP/TAZ/TEAD oncogenic pathway, and their stemness and invasive properties. Their repression represents a new strategy to target CSCs and impair metastatic spreading in GC.
Collapse
Affiliation(s)
- Anissa Zaafour
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Lornella Seeneevassen
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Tra Ly Nguyen
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Coralie Genevois
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
- Vivoptic Platform, CNRS, INSERM TBM-Core UAR3427 US5, Univ. Bordeaux, 33000, Bordeaux, France
| | - Nour Nicolas
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Elodie Sifré
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Alban Giese
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Chloé Porcheron
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Jean Descarpentrie
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Pierre Dubus
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
- Department of Histology and Pathology, CHU Bordeaux, 33000, Bordeaux, France
| | - Abdel-Majid Khatib
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Christine Varon
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France.
| |
Collapse
|
5
|
Xie X, Sun Y, Peng J, Zhang Z, Wang M, Wang Z, Lei C, Huang Y, Nie Z. Collagen Anchoring Protein-Nucleic Acid Chimeric Probe for In Situ In Vivo Mapping of a Tumor-Specific Protease. Anal Chem 2023; 95:18487-18496. [PMID: 38057291 DOI: 10.1021/acs.analchem.3c03775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
In situ analysis of biomarkers in the tumor microenvironment (TME) is important to reveal their potential roles in tumor progression and early diagnosis of tumors but remains a challenge. In this work, a bottom-up modular assembly strategy was proposed for a multifunctional protein-nucleic chimeric probe (PNCP) for in situ mapping of cancer-specific proteases. PNCP, containing a collagen anchoring module and a target proteolysis-responsive isothermal amplification sensor module, can be anchored in the collagen-rich TME and respond to the target protease in situ and generate amplified signals through rolling cycle amplification of tandem fluorescent RNAs. Taking matrix metalloproteinase 2 (MMP-2), a tumor-associated protease, as the model, the feasibility of PNCP was demonstrated for the in situ detection of MMP-2 activity in 3D tumor spheroids. Moreover, in situ in vivo mapping of MMP-2 activity was also achieved in a metastatic solid tumor model with high sensitivity, providing a useful tool for evaluating tumor metastasis and distinguishing highly aggressive forms of tumors.
Collapse
Affiliation(s)
- Xuan Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Yuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Jialong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Zhenhua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Meixia Wang
- College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Zeyuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
6
|
Proprotein convertases regulate trafficking and maturation of key proteins within the secretory pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:1-54. [PMID: 36707198 DOI: 10.1016/bs.apcsb.2022.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proprotein Convertases (PCs) are serine endoproteases that regulate the homeostasis of protein substrates in the cell. The PCs family counts 9 members-PC1/3, PC2, PC4, PACE4, PC5/6, PC7, Furin, SKI-1/S1P, and PCSK9. The first seven PCs are known as Basic Proprotein Convertases due to their propensity to cleave after polybasic clusters. SKI-1/S1P requires the additional presence of hydrophobic residues for processing, whereas PCSK9 is catalytically dead after autoactivation and exerts its functions using mechanisms alternative to direct cleavage. All PCs traffic through the canonical secretory pathway, reaching different compartments where the various substrates reside. Despite PCs members do not share the same subcellular localization, most of the cellular organelles count one or more Proprotein Convertases, including ER, Golgi stack, endosomes, secretory granules, and plasma membranes. The widespread expression of these enzymes at the systemic level speaks for their importance in the homeostasis of a large number of biological functions. Among others, PCs cleave precursors of hormones and growth factors and activate receptors and transcription factors. Notably, dysregulation of the enzymatic activity of Proprotein Convertases is associated to major human pathologies, such as cardiovascular diseases, cancer, diabetes, infections, inflammation, autoimmunity diseases, and Parkinson. In the current COVID-19 pandemic, Furin has further attracted the attention as a key player for conferring high pathogenicity to SARS-CoV-2. Here, we review the Proprotein Convertases family and their most important substrates along the secretory pathway. Knowledge about the complex functions of PCs is important to identify potential drug strategies targeting this class of enzymes.
Collapse
|
7
|
Andrade ADO, Mesquita RA, Gordón-Núñez MA, Alves PM, Nonaka CFW. Immunoexpression of CXCL12 and CXCR4 in Radicular Cysts, Dentigerous Cysts, and Odontogenic Keratocysts. Appl Immunohistochem Mol Morphol 2023; 31:113-120. [PMID: 36449693 DOI: 10.1097/pai.0000000000001093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/08/2022] [Indexed: 12/05/2022]
Abstract
The aim of this study was to evaluate the immunoexpression of chemokine CXCL12 and its receptor CXCR4 in radicular cysts (RCs), dentigerous cysts (DCs), and odontogenic keratocysts (OKCs), and to correlate the findings with morphologic parameters of RCs (inflammatory infiltrate and cystic epithelium). Twenty RCs, 20 DCs, and 20 OKCs were submitted to immunohistochemistry. The percentages of cytoplasmic (CXCL12 and CXCR4) and nuclear (CXCR4) staining in epithelial and fibrous capsule cells were determined. RCs and DCs exhibited higher epithelial expression of CXCL12 than OKCs ( P <0.05). The expression of CXCL12 in the fibrous capsule was higher in DCs than in RCs and OKCs ( P <0.05). Higher cytoplasmic expression of CXCR4 was observed in the epithelial lining and fibrous capsule of RCs and DCs compared with OKCs ( P <0.05). In the fibrous capsule, DCs exhibited higher nuclear expression of CXCR4 than OKCs ( P <0.05). No significant differences in the immunoexpression of CXCL12 or CXCR4 were observed according to the morphologic parameters of RCs ( P >0.05). Strong positive correlations were found between cytoplasmic and nuclear expression of CXCR4 in the epithelial lining of RCs and DCs and in the fibrous capsule of all groups ( P <0.05). The results suggest the participation of CXCL12 and CXCR4 in the pathogenesis of RCs, DCs, and OKCs. These proteins may be particularly relevant for the development of odontogenic cysts with less aggressive biological behavior, irrespective of their nature (inflammatory or developmental). In RCs, the expression of CXCL12 and CXCR4 may not be related to the intensity of the inflammatory infiltrate or the status of cystic epithelium.
Collapse
Affiliation(s)
| | - Ricardo Alves Mesquita
- Department of Oral Pathology and Surgery, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Pollianna Muniz Alves
- Department of Dentistry, School of Dentistry, State University of Paraíba, Campina Grande, Brazil
| | | |
Collapse
|
8
|
Pharmacological Activation of YAP/TAZ by Targeting LATS1/2 Enhances Periodontal Tissue Regeneration in a Murine Model. Int J Mol Sci 2023; 24:ijms24020970. [PMID: 36674487 PMCID: PMC9866423 DOI: 10.3390/ijms24020970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Due to their multi-differentiation potential, periodontal ligament fibroblasts (PDLF) play pivotal roles in periodontal tissue regeneration in vivo. Several in vitro studies have suggested that PDLFs can transmit mechanical stress into favorable basic cellular functions. However, the application of mechanical force for periodontal regeneration therapy is not expected to exhibit an effective prognosis since mechanical forces, such as traumatic occlusion, also exacerbate periodontal tissue degeneration and loss. Herein, we established a standardized murine periodontal regeneration model and evaluated the regeneration process associated with cementum remodeling. By administering a kinase inhibitor of YAP/TAZ suppressor molecules, such as large tumor suppressor homolog 1/2 (LATS1/2), we found that the activation of YAP/TAZ, a key downstream effector of mechanical signals, accelerated periodontal tissue regeneration due to the activation of PDLF cell proliferation. Mechanistically, among six kinds of MAP4Ks previously reported as upstream kinases that suppressed YAP/TAZ transcriptional activity through LATS1/2 in various types of cells, MAP4K4 was identified as the predominant MAP4K in PDLF and contributed to cell proliferation and differentiation depending on its kinase activity. Ultimately, pharmacological activation of YAP/TAZ by inhibiting upstream inhibitory kinase in PDLFs is a valuable strategy for improving the clinical outcomes of periodontal regeneration therapies.
Collapse
|
9
|
Rashid G, Khan NA, Elsori D, Rehman A, Tanzeelah, Ahmad H, Maryam H, Rais A, Usmani MS, Babker AM, Kamal MA, Hafez W. Non-steroidal anti-inflammatory drugs and biomarkers: A new paradigm in colorectal cancer. Front Med (Lausanne) 2023; 10:1130710. [PMID: 36950511 PMCID: PMC10025514 DOI: 10.3389/fmed.2023.1130710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Colorectal cancer is a sporadic, hereditary, or familial based disease in its origin, caused due to diverse set of mutations in large intestinal epithelial cells. Colorectal cancer (CRC) is a common and deadly disease that accounts for the 4th worldwide highly variable malignancy. For the early detection of CRC, the most common predictive biomarker found endogenously are KRAS and ctDNA/cfDNA along with SEPT9 methylated DNA. Early detection and screening for CRC are necessary and multiple methods can be employed to screen and perform early diagnosis of CRC. Colonoscopy, an invasive method is most prevalent for diagnosing CRC or confirming the positive result as compared to other screening methods whereas several non-invasive techniques such as molecular analysis of breath, urine, blood, and stool can also be performed for early detection. Interestingly, widely used medicines known as non-steroidal anti-inflammatory drugs (NSAIDs) to reduce pain and inflammation have reported chemopreventive impact on gastrointestinal malignancies, especially CRC in several epidemiological and preclinical types of research. NSAID acts by inhibiting two cyclooxygenase enzymes, thereby preventing the synthesis of prostaglandins (PGs) and causing NSAID-induced apoptosis and growth inhibition in CRC cells. This review paper majorly focuses on the diversity of natural and synthetic biomarkers and various techniques for the early detection of CRC. An approach toward current advancement in CRC detection techniques and the role of NSAIDs in CRC chemoprevention has been explored systematically. Several prominent governing mechanisms of the anti-cancer effects of NSAIDs and their synergistic effect with statins for an effective chemopreventive measure have also been discussed in this review paper.
Collapse
Affiliation(s)
- Gowhar Rashid
- Department of Amity Medical School, Amity University, Gurugram, India
- *Correspondence: Gowhar Rashid,
| | - Nihad Ashraf Khan
- Department of Biosciences, Jamia Millia Islamia, Central University, New Delhi, India
| | - Deena Elsori
- Faculty of Resillience, Deans Office Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Andleeb Rehman
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Tanzeelah
- Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Haleema Ahmad
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, India
| | - Humaira Maryam
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, India
| | - Amaan Rais
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, India
| | - Mohd Salik Usmani
- The Department of Surgery, Faculty of Medicine, JNMCH, AMU, Uttar Pradesh, India
| | - Asaad Ma Babker
- Department of Medical Laboratory Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Wael Hafez
- Department of Internal Medicine, NMC Royal Hospital, Abu Dhabi, United Arab Emirates
- The Medical Research Division, Department of Internal Medicine, The National Research Center, Ad Doqi, Egypt
| |
Collapse
|
10
|
Mehranzadeh E, Crende O, Badiola I, Garcia-Gallastegi P. What Are the Roles of Proprotein Convertases in the Immune Escape of Tumors? Biomedicines 2022; 10:biomedicines10123292. [PMID: 36552048 PMCID: PMC9776400 DOI: 10.3390/biomedicines10123292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Protein convertases (PCs) play a significant role in post-translational procedures by transforming inactive precursor proteins into their active forms. The role of PCs is crucial for cellular homeostasis because they are involved in cell signaling. They have also been described in many diseases such as Alzheimer's and cancer. Cancer cells are secretory cells that send signals to the tumor microenvironment (TME), remodeling the surrounding space for their own benefits. One of the most important components of the TME is the immune system of the tumor. In this review, we describe recent discoveries that link PCs to the immune escape of tumors. Among PCs, many findings have determined the role of Furin (PC3) as a paramount enzyme causing the TME to induce tumor immune evasion. The overexpression of various cytokines and proteins, for instance, IL10 and TGF-B, moves the TME towards the presence of Tregs and, consequently, immune tolerance. Furthermore, Furin is implicated in the regulation of macrophage activity that contributes to the increased impairment of DCs (dendritic cells) and T effector cells. Moreover, Furin interferes in the MHC Class_1 proteolytic cleavage in the trans-Golgi network. In tumors, the T cytotoxic lymphocytes (CTLs) response is impeded by the PD1 receptor (PD1-R) located on CTLs and its ligand, PDL1, located on cancer cells. The inhibition of Furin is a subtle means of enhancing the antitumor response by repressing PD-1 expression in tumors or macrophage cells. The impacts of other PCs in tumor immune escape have not yet been clarified to the extent that Furin has. Accordingly, the influence of other types of PCs in tumor immune escape is a promising topic for further consideration.
Collapse
Affiliation(s)
- Elham Mehranzadeh
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Olatz Crende
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Iker Badiola
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
- Nanokide Therapeutics SL, Ed. ZITEK, Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Patricia Garcia-Gallastegi
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
- Correspondence:
| |
Collapse
|
11
|
Sajeev A, Hegde M, Daimary UD, Kumar A, Girisa S, Sethi G, Kunnumakkara AB. Modulation of diverse oncogenic signaling pathways by oroxylin A: An important strategy for both cancer prevention and treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154369. [PMID: 35985182 DOI: 10.1016/j.phymed.2022.154369] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/14/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Regardless of major advances in diagnosis, prevention and treatment strategies, cancer is still a foreboding cause due to factors like chemoresistance, radioresistance, adverse side effects and cancer recurrence. Therefore, continuous development of unconventional approaches is a prerequisite to overcome foregoing glitches. Natural products have found their way into treatment of serious health conditions, including cancer since ancient times. The compound oroxylin A (OA) is one among those with enormous potential against different malignancies. It is a flavonoid obtained from the several plants such as Oroxylum indicum, Scutellaria baicalensis and S. lateriflora, Anchietea pyrifolia, and Aster himalaicus. PURPOSE The main purpose of this study is to comprehensively elucidate the anticancerous effects of OA against various malignancies and unravel their chemosensitization and radiosensitization potential. Pharmacokinetic and pharmacodynamic studies of OA have also been investigated. METHOD The literature on antineoplastic effects of OA was searched in PubMed and Scopus, including in vitro and in vivo studies and is summarized based on a systematic review protocol prepared according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The term "oroxylin A" was used in combination with "cancer" and all the title, abstracts and keywords appeared were considered. RESULTS In Scopus, a total of 157 articles appeared out of which 103 articles that did not meet the eligibility criteria were eliminated and 54 were critically evaluated. In PubMed, from the 85 results obtained, 26 articles were eliminated and 59 were included in the preparation of this review. Mounting number of studies have illustrated the anticancer effects of OA, and its mechanism of action. CONCLUSION OA is a promising natural flavonoid possessing wide range of pleiotropic properties and is a potential anticancer agent. It has a great potential in the treatment of multiple cancers including brain, breast, cervical, colon, esophageal, gall bladder, gastric, hematological, liver, lung, oral, ovarian, pancreatic and skin. However, lack of pharmacokinetic studies, toxicity assessments, and dose standardization studies and adverse effects limit the optimization of this compound as a therapeutic agent.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, Assam, India.
| |
Collapse
|
12
|
Pernot S, Evrard S, Khatib AM. The Give-and-Take Interaction Between the Tumor Microenvironment and Immune Cells Regulating Tumor Progression and Repression. Front Immunol 2022; 13:850856. [PMID: 35493456 PMCID: PMC9043524 DOI: 10.3389/fimmu.2022.850856] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
A fundamental concern of the majority of cancer scientists is related to the identification of mechanisms involved in the evolution of neoplastic cells at the cellular and molecular level and how these processes are able to control cancer cells appearance and death. In addition to the genome contribution, such mechanisms involve reciprocal interactions between tumor cells and stromal cells within the tumor microenvironment (TME). Indeed, tumor cells survival and growth rely on dynamic properties controlling pro and anti-tumorigenic processes. The anti-tumorigenic function of the TME is mainly regulated by immune cells such as dendritic cells, natural killer cells, cytotoxic T cells and macrophages and normal fibroblasts. The pro-tumorigenic function is also mediated by other immune cells such as myeloid-derived suppressor cells, M2-tumor-associated macrophages (TAMs) and regulatory T (Treg) cells, as well as carcinoma-associated fibroblasts (CAFs), adipocytes (CAA) and endothelial cells. Several of these cells can show both, pro- and antitumorigenic activity. Here we highlight the importance of the reciprocal interactions between tumor cells and stromal cells in the self-centered behavior of cancer cells and how these complex cellular interactions control tumor progression and repression.
Collapse
Affiliation(s)
- Simon Pernot
- Reprograming Tumor Activity and Associated Microenvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-Unité Mixte de Recherche (UMR) 1312 Inserm, Pessac, France
| | | | - Abdel-Majid Khatib
- Reprograming Tumor Activity and Associated Microenvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-Unité Mixte de Recherche (UMR) 1312 Inserm, Pessac, France.,Institut Bergonié, Bordeaux, France
| |
Collapse
|
13
|
Liang W, Chen W, Wei J, Yao H, Shi J, Hou X, Deng Y, Ou M. Zinc finger C3H1-type containing serves as a novel prognostic biomarker in human pan-cancer. Gene X 2022; 820:146251. [PMID: 35131366 DOI: 10.1016/j.gene.2022.146251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/21/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Zinc finger C3H1 domain-containing protein (ZFC3H1) is differentially expressed between primary tumor and the normal in most cancers. Additionally, a recent study has suggested that ZFC3H1 could serve as a novel marker for the prognosis of prostate adenocarcinoma (PRAD). However, the relationship between ZFC3H1 expression and the prognostic values in most tumors remains unclear. Our study is mainly for exploring the prognosis of ZFC3H1 in pan-cancer and for further discovering a potential therapeutics target. METHODS Based on the clinical big data, we performed a pan-cancer analysis of ZFC3H1, including gene expression, survival prognosis, genetic alteration, protein phosphorylation, immune infiltration and enrichment analysis. In addition, Real-Time PCR and Western Blot were used to further confirm the role of ZFC3H1 in the colorectal cancer. RESULTS We found that ZFC3H1 expression was connected with the prognosis of multiple malignant tumors. Furthermore, we also observed that ZFC3H1 was highly expressed in colorectal cancer through Real-Time PCR and Western Blot. The primary tumors presented higher phosphorylation level of the S655 site in lung adenocarcinoma, colon adenocarcinoma and uterine corpus endometrial carcinoma. ZFC3H1 expression was positively correlated with the immune infiltration of Cancer-associated fibroblasts (CAFs) in some tumors, such as liver hepatocellular carcinoma. And RNA surveillance pathways may be closely associated with the occurrence of tumors. CONCLUSIONS Our study first reveals that ZFC3H1 could serve as a novel prognostic biomarker of pan-cancer, especially colorectal cancer.
Collapse
Affiliation(s)
- Wenken Liang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541000, China; College of Life Science, Guangxi Normal University, Guilin 541000, China.
| | - Wei Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin 541000, China.
| | - Jianfen Wei
- College of Life Science, Guangxi Normal University, Guilin 541000, China.
| | - Hongbing Yao
- Biliary Hepatopancreatic Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin 541000, China.
| | - Jianling Shi
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541000, China.
| | - Xianliang Hou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541000, China.
| | - Yecheng Deng
- College of Life Science, Guangxi Normal University, Guilin 541000, China.
| | - Minglin Ou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541000, China.
| |
Collapse
|
14
|
Testicular Germ Cell Tumours and Proprotein Convertases. Cancers (Basel) 2022; 14:cancers14071633. [PMID: 35406405 PMCID: PMC8996948 DOI: 10.3390/cancers14071633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Despite the high survival rate of the most common neoplasia in young Caucasian men: Testicular Germ Cell Tumors (TGCT), the quality of life of these patients is impaired by the multiple long-term side effects of their treatment. The study of molecules that can serve both as diagnostic biomarkers for tumor development and as therapeutic targets seems necessary. Proprotein convertases (PC) are a group of proteases responsible for the maturation of inactive proproteins with very diverse functions, whose alterations in expression have been associated with various diseases, such as other types of cancer and inflammation. The study of the immune tumor microenvironment and the substrates of PCs could contribute to the development of new and necessary immunotherapies to treat this pathology. Abstract Testicular Germ Cell Tumours (TGCT) are widely considered a “curable cancer” due to their exceptionally high survival rate, even if it is reduced by many years after the diagnosis due to metastases and relapses. The most common therapeutic approach to TGCTs has not changed in the last 50 years despite its multiple long-term side effects, and because it is the most common malignancy in young Caucasian men, much research is needed to better the quality of life of the many survivors. Proprotein Convertases (PC) are nine serine proteases responsible for the maturation of inactive proproteins with many diverse functions. Alterations in their expression have been associated with various diseases, including cancer and inflammation. Many of their substrates are adhesion molecules, metalloproteases and proinflammatory molecules, all of which are involved in tumour development. Inhibition of certain convertases has also been shown to slow tumour formation, demonstrating their involvement in this process. Considering the very established link between PCs and inflammation-related malignancies and the recent studies carried out into the immune microenvironment of TGCTs, the study of the involvement of PCs in testicular cancer may open up avenues for being both a biomarker for diagnosis and a therapeutic target.
Collapse
|
15
|
Descarpentrie J, Araúzo-Bravo MJ, He Z, François A, González Á, Garcia-Gallastegi P, Badiola I, Evrard S, Pernot S, Creemers JWM, Khatib AM. Role of Furin in Colon Cancer Stem Cells Malignant Phenotype and Expression of LGR5 and NANOG in KRAS and BRAF-Mutated Colon Tumors. Cancers (Basel) 2022; 14:1195. [PMID: 35267511 PMCID: PMC8909039 DOI: 10.3390/cancers14051195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 01/01/2023] Open
Abstract
Proprotein convertases or PCs are known to regulate the malignant phenotype of colon cancer cells by different mechanisms, but their effects on cancer stem cells (CSCs) have been less widely investigated. Here, we report that PCs expression is altered in colon CSCs, and the inhibition of their activity reduced colon CSCs growth, survival, and invasion in three-dimensional spheroid cultures. In vivo, repression of PCs activity by the general PC inhibitors α1-PDX, Spn4A, or decanoyl-RVKR-chloromethylketone (CMK) significantly reduced tumor expression levels of the stem cell markers LGR5 and NANOG that are associated with reduced tumor xenografts. Further analysis revealed that reduced tumor growth mediated by specific silencing of the convertase Furin in KRAS or BRAF mutated-induced colon tumors was associated with reduced expression of LGR5 and NANOG compared to wild-type KRAS and BRAF tumors. Analysis of various calcium regulator molecules revealed that while the calcium-transporting ATPase 4 (ATP2B4) is downregulated in all the Furin-silenced colon cancer cells, the Ca2+-mobilizing P2Y receptors, was specifically repressed in BRAF mutated cells and ORAI1 and CACNA1H in KRAS mutated cells. Taken together, our findings indicate that PCs play an important role in the malignant phenotype of colon CSCs and stem cell markers' expression and highlight PCs repression, particularly of Furin, to target colon tumors with KRAS or BRAF mutation.
Collapse
Affiliation(s)
- Jean Descarpentrie
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, C/Doctor Beguiristain s/n, 20014 San Sebastian, Spain;
| | - Zongsheng He
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing 400042, China;
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium;
| | - Alexia François
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
| | - Álvaro González
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
| | - Patricia Garcia-Gallastegi
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Serge Evrard
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
- Institut Bergonié, 33000 Bordeaux, France;
| | | | - John W. M. Creemers
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium;
| | - Abdel-Majid Khatib
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
- Institut Bergonié, 33000 Bordeaux, France;
| |
Collapse
|
16
|
He Z, Khatib AM, Creemers JWM. The proprotein convertase furin in cancer: more than an oncogene. Oncogene 2022; 41:1252-1262. [PMID: 34997216 DOI: 10.1038/s41388-021-02175-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023]
Abstract
Furin is the first discovered proprotein convertase member and is present in almost all mammalian cells. Therefore, by regulating the maturation of a wide range of proproteins, Furin expression and/or activity is involved in various physiological and pathophysiological processes ranging from embryonic development to carcinogenesis. Since many of these protein precursors are involved in initiating and maintaining the hallmarks of cancer, Furin has been proposed as a potential target for treating several human cancers. In contrast, other studies have revealed that some types of cancer do not benefit from Furin inhibition. Therefore, understanding the heterogeneous functions of Furin in cancer will provide important insights into the design of effective strategies targeting Furin in cancer treatment. Here, we present recent advances in understanding how Furin expression and activity are regulated in cancer cells and their influences on the activity of Furin substrates in carcinogenesis. Furthermore, we discuss how Furin represses tumorigenic properties of several cancer cells and why Furin inhibition leads to aggressive phenotypes in other tumors. Finally, we summarize the clinical applications of Furin inhibition in treating human cancers.
Collapse
Affiliation(s)
- Zongsheng He
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Abdel-Majid Khatib
- INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France.
- Institut Bergoinié, Bordeaux, France.
| | - John W M Creemers
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
Wu M, Liu J, Wu S, Liu J, Wu H, Yu J, Meng X. Systemic Immune Activation and Responses of Irradiation to Different Metastatic Sites Combined With Immunotherapy in Advanced Non-Small Cell Lung Cancer. Front Immunol 2022; 12:803247. [PMID: 34970277 PMCID: PMC8712862 DOI: 10.3389/fimmu.2021.803247] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Considering the limited data, we aimed to identify the greatest immune activation irradiated site of common metastases and response to immune checkpoint inhibitors simultaneously in non-small cell lung cancer (NSCLC). Methods A total of 136 patients with advanced NSCLC who had received radiation to a primary or metastatic solid tumor were enrolled. We recorded blood cell counts in three time periods, before, during, and after radiotherapy (RT), and derived some blood index ratios including monocyte-to-lymphocyte ratio (MLR), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII). The delta-IBs were calculated as medio-IBs ÷ pre-IBs − 1. We analyzed the changes before and during RT using Spearman rank correlation test, Kruskal–Wallis rank sum test, and logistic regression analyzing their correlation with efficacy. Results The medians of delta-MLR and delta-PLR were both the lowest while the median of delta-L was the highest in brain. Therapeutic effect evaluation showed that the objective response rate (ORR) of 48.65% (18/37) in the brain irradiation group was the highest, compared with 17.07% (7/41) in bone and 41.94% (13/31) in lung. Conclusions In this study, results suggested that irradiation to brain has the best immune activation effect and patient outcome compared with other organs in NSCLC, and when the earlier-line ICIs were combined with RT, a better patient outcome was reached. Prospective studies are also necessary to provide more convincing evidence and standards for clinical irradiation metastases selection.
Collapse
Affiliation(s)
- Min Wu
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shihao Wu
- Medical School, Anhui University of Science and Technology, Huainan, China
| | - Jingru Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hui Wu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinming Yu
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xue Meng
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
18
|
Lin W, Ou G, Zhao W. Mutational profiling of low-grade gliomas identifies prognosis and immunotherapy-related biomarkers and tumour immune microenvironment characteristics. J Cell Mol Med 2021; 25:10111-10125. [PMID: 34597473 PMCID: PMC8572778 DOI: 10.1111/jcmm.16947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 02/05/2023] Open
Abstract
Low-grade glioma (LGG) is a heterogeneous tumour with the median survival rate less than 10 years. Therefore, it is urgent to develop efficient immunotherapy strategies of LGG. In this study, we analysed mutation profiles based on the data of 510 LGG patients from the Cancer Genome Atlas (TCGA) database and investigated the prognostic value of mutated genes and evaluate their immune infiltration. Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was used to indicate the characteristics of gliomas that respond to immune checkpoint blockade (ICB) therapy. Univariate and multivariate cox regression analysis was performed to identify indicators to construct the nomogram model. 485 (95.47%) of 508 LGG samples showed gene mutation, and 9 mutated genes were significantly related to overall survival (OS), among which 6 mutated genes were significantly correlated with OS between mutation and wildtypes. Immune infiltration and immune score analyses revealed that these six mutated genes were significantly associated with tumour immune microenvironment in LGG. The response of LGG with different characteristics to ICB was evaluated by TIDE algorithm. Finally, CIC gene was screened through both univariate and multivariate Cox regression analyses, and the nomogram model was established to determine the potential prognostic value of CIC in LGG. Our study provides comprehensive analysis of mutated genes in LGG, supporting modulation of mutated genes in the management of LGG.
Collapse
Affiliation(s)
- Wen‐wen Lin
- Center for NeuroscienceShantou University Medical CollegeShantouGuangdongChina
| | - Guan‐yong Ou
- Center for NeuroscienceShantou University Medical CollegeShantouGuangdongChina
| | - Wei‐jiang Zhao
- Center for NeuroscienceShantou University Medical CollegeShantouGuangdongChina
- Cell biology department, Wuxi School of MedicineJiangnan UniversityWuxi, JiangsuChina
| |
Collapse
|
19
|
Jacome Sanz D, Saralahti AK, Pekkarinen M, Kesseli J, Nykter M, Rämet M, Ojanen MJT, Pesu M. Proprotein convertase subtilisin/kexin type 9 regulates the production of acute-phase reactants from the liver. Liver Int 2021; 41:2511-2522. [PMID: 34174143 DOI: 10.1111/liv.14993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Proprotein convertase subtilisin/kexin type 9 (PCSK9) controls blood cholesterol levels by fostering the LDL receptor (LDLR) degradation in hepatocytes. Additionally, PCSK9 has been suggested to participate in immunoregulation by modulating cytokine production. We studied the immunological role of PCSK9 in Streptococcus pneumoniae bacteraemia in vivo and in a human hepatocyte cell line. METHODS CRISPR/Cas9 mutagenesis was utilized to create pcsk9 knock-out (KO) zebrafish, which were infected with S pneumoniae to assess the role of PCSK9 for the survival of the fish and in the transcriptomic response of the liver. The direct effects of PCSK9 on the expression of acute-phase reaction (APR) genes were studied in HepG2 cells. RESULTS The pcsk9 KO zebrafish lines (pcsk9tpu-13 and pcsk9tpu-2,+15 ) did not show developmental defects or gross phenotypical differences. In the S pneumoniae infected zebrafish, the mortality of pcsk9 KOs was similar to the controls. A liver-specific gene expression analysis revealed that a pneumococcal challenge upregulated pcsk9, and that the pcsk9 deletion reduced the expression of APR genes, including hepcidin antimicrobial peptide (hamp) and complement component 7b (c7b). Accordingly, silencing PCSK9 in vitro in HepG2 cells using small interfering RNAs (siRNAs) decreased HAMP expression. CONCLUSIONS We demonstrate that PCSK9 is not critical for zebrafish survival in a systemic pneumococcal infection. However, PCSK9 deficiency was associated with the lower expression of APR genes in zebrafish and altered the expression of innate immunity genes in a human hepatocyte cell line. Overall, our data suggest an evolutionarily conserved function for PCSK9 in APR in the liver.
Collapse
Affiliation(s)
- Dafne Jacome Sanz
- Laboratory of Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anni K Saralahti
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Meeri Pekkarinen
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juha Kesseli
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Matti Nykter
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Markus J T Ojanen
- Laboratory of Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marko Pesu
- Laboratory of Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab laboratories Ltd, Tampere, Finland
| |
Collapse
|
20
|
Liet B, Nys N, Siegfried G. Elabela/toddler: New peptide with a promising future in cancer diagnostic and therapy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119065. [PMID: 34090960 DOI: 10.1016/j.bbamcr.2021.119065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/19/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022]
Abstract
Elabela/toddler is the second endogenous ligand recently identified after Apelin, that binds to the G protein-coupled receptor APJ. Elabela is a 54-amino acid peptide initially identified in fish and human genomes and classified as noncoding. This precursor can be cleaved to shorter sequences (32, 21, and 11 amino acids), which bind and activate APJ, and can be blocked by APJ antagonists. Contrary to Apelin and APJ, widely distributed in organs and tissues, Elabela expression is more restricted, and different studies have revealed the potential role of Elabela in cancers. This review summarizes the current studies focusing on the role of Elabela in different cancers.
Collapse
Affiliation(s)
- Benjamin Liet
- Institut National de la Santé et de la Recherche Médicale U1029 LAMC, F-33400 Talence, France; Université de Bordeaux F-33400, Talence, France
| | - Nicolas Nys
- Institut National de la Santé et de la Recherche Médicale U1029 LAMC, F-33400 Talence, France; Université de Bordeaux F-33400, Talence, France
| | - Geraldine Siegfried
- Institut National de la Santé et de la Recherche Médicale U1029 LAMC, F-33400 Talence, France; Université de Bordeaux F-33400, Talence, France.
| |
Collapse
|
21
|
Rose M, Duhamel M, Rodet F, Salzet M. The Role of Proprotein Convertases in the Regulation of the Function of Immune Cells in the Oncoimmune Response. Front Immunol 2021; 12:667850. [PMID: 33995401 PMCID: PMC8117212 DOI: 10.3389/fimmu.2021.667850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Proprotein convertases (PC) are a family of 9 serine proteases involved in the processing of cellular pro-proteins. They trigger the activation, inactivation or functional changes of many hormones, neuropeptides, growth factors and receptors. Therefore, these enzymes are essential for cellular homeostasis in health and disease. Nine PC subtilisin/kexin genes (PCSK1 to PCSK9) encoding for PC1/3, PC2, furin, PC4, PC5/6, PACE4, PC7, SKI-1/S1P and PCSK9 are known. The expression of PC1/3, PC2, PC5/6, Furin and PC7 in lymphoid organs such as lymph nodes, thymus and spleen has suggested a role for these enzymes in immunity. In fact, knock-out of Furin in T cells was associated with high secretion of pro-inflammatory cytokines and autoantibody production in mice. This suggested a key role for this enzyme in immune tolerance. Moreover, Furin through its proteolytic activity, regulates the suppressive functions of Treg and thus prevents chronic inflammation and autoimmune diseases. In macrophages, Furin is also involved in the regulation of their inflammatory phenotype. Similarly, PC1/3 inhibition combined with TLR4 stimulation triggers the activation of the NF-κB signaling pathway with an increased secretion of pro-inflammatory cytokines. Factors secreted by PC1/3 KD macrophages stimulated with LPS exert a chemoattractive effect on naive auxiliary T lymphocytes (Th0) and anti-tumoral activities. The link between TLR and PCs is thus very important in inflammatory response regulation. Furin regulates TL7 and TLR8 processing and trafficking whereas PC1/3 controls TLR4 and TLR9 trafficking. Since PC1/3 and Furin are key regulators of both the innate and adaptive immune responses their inhibition may play a major role in oncoimmune therapy. The role of PCs in the oncoimmune response and therapeutic strategies based on PCs inhibition are proposed in the present review.
Collapse
Affiliation(s)
- Mélanie Rose
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Marie Duhamel
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Franck Rodet
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Michel Salzet
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| |
Collapse
|
22
|
Furin Prodomain ppFurin Enhances Ca 2+ Entry Through Orai and TRPC6 Channels' Activation in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13071670. [PMID: 33916304 PMCID: PMC8037623 DOI: 10.3390/cancers13071670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Furin, a proprotein convertase that belongs to a family of Ca2+-dependent serine peptidases, is involved in the maturation of a variety of proproteins, including growth factors, receptors and differentiation factors, adhesion molecules and proteases. Furin have been associated with tumorigenesis and tumor progression and metastasis; therefore, it has been hypothesized that Furin may constitute a new potential target for cancer therapy. In triple negative breast cancer cells, inhibition of Furin by the prodomain ppFurin results in enhancement of Ca2+ influx, which involves both the increase of store-operated calcium entry (SOCE) and the activation of constitutive Ca2+ entry. The latter involves the activation of Orai and TRPC6 channels, while the increase of SOCE observed in ppFurin-expressing cells is entirely dependent on Orai channels. As a result, ppFurin expression reduces triple negative breast cancer cell viability and ability to migrate and enhances their sensitization to hydrogen peroxide-induced apoptosis. Abstract The intracellular calcium concentration ([Ca2+]i) modulation plays a key role in the regulation of cellular growth and survival in normal cells and failure of [Ca2+]i homeostasis is involved in tumor initiation and progression. Here we showed that inhibition of Furin by its naturally occurring inhibitor the prodomain ppFurin in the MDA-MB-231 breast cancer cells resulted in enhanced store-operated calcium entry (SOCE) and reduced the cell malignant phenotype. Expression of ppFurin in a stable manner in MDA-MB-231 and the melanoma MDA-MB-435 cell lines inhibits Furin activity as assessed by in vitro digestion assays. Accordingly, cell transfection experiments revealed that the ppFurin-expressing cells are unable to adequately process the proprotein convertase (PC) substrates vascular endothelial growth factor C (proVEGF-C) and insulin-like growth factor-1 receptor (proIGF-1R). Compared to MDA-MB-435 cells, expression of ppFurin in MDA-MB-231 and BT20 cells significantly enhanced SOCE and induced constitutive Ca2+ entry. The enhanced SOCE is impaired by inhibition of Orai channels while the constitutive Ca2+ entry is attenuated by silencing or inhibition of TRPC6 or inhibition of Orai channels. Analysis of TRPC6 activation revealed its upregulated tyrosine phosphorylation in ppFurin-expressing MDA-MB-231 cells. In addition, while ppFurin had no effect on MDA-MB-435 cell viability, in MDA-MB-231 cells ppFurin expression reduced their viability and ability to migrate and enhanced their sensitization to the apoptosis inducer hydrogen peroxide and similar results were observed in BT20 cells. These findings suggest that Furin inhibition by ppFurin may be a useful strategy to interfere with Ca2+ mobilization, leading to breast cancer cells’ malignant phenotype repression and reduction of their resistance to treatments.
Collapse
|
23
|
Naveja JJ, Madariaga-Mazón A, Flores-Murrieta F, Granados-Montiel J, Maradiaga-Ceceña M, Alaniz VD, Maldonado-Rodriguez M, García-Morales J, Senosiain-Peláez JP, Martinez-Mayorga K. Union is strength: antiviral and anti-inflammatory drugs for COVID-19. Drug Discov Today 2021; 26:229-239. [PMID: 33127568 PMCID: PMC7590638 DOI: 10.1016/j.drudis.2020.10.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 10/21/2020] [Indexed: 01/18/2023]
Abstract
•Treatment for moderately ill COVID-19 patients might arise from drug repurposing •RdRp, spike protein, and Mpro are relevant SARS-CoV-2 molecular targets. •Targeting human furin may contain viral infection and inflammation. •Molecular docking and clinical experience is useful for drug repurposing. Several clinical trials to treat Coronavirus 2019 (COVID-19) are in progress around the world. Some of them rely on clinical experience, whereas others include computational predictions. Here, we provide an overview of current efforts in the search for COVID-19 therapies, focusing on structural information of relevant targets. We elaborate on a robust pharmacological rationale for the repurposing of existing drugs, highlighting key advantages of dual therapies with antiviral and anti-inflammatory activity. Furthermore, we provide a consensus list of molecules that could undergo preliminary randomized clinical trials against COVID-19.
Collapse
Affiliation(s)
- Jose J Naveja
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Francisco Flores-Murrieta
- Instituto Nacional de Enfermedades Respiratorias 'Ismael Cosío Villegas', Mexico City, Mexico; Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Julio Granados-Montiel
- Regenerative Medicine Unit, Instituto Nacional de Rehabilitación 'Luis Guillermo Ibarra Ibarra', Mexico City, Mexico
| | | | - Víctor Duarte Alaniz
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
24
|
Hu X, Hai Z, Wu C, Zhan W, Liang G. A Golgi-Targeting and Dual-Color “Turn-On” Probe for Spatially Precise Imaging of Furin. Anal Chem 2020; 93:1636-1642. [DOI: 10.1021/acs.analchem.0c04186] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiao Hu
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Zijuan Hai
- Institutes of Physical Science and Information Technology, Anhui University, 110 Jiulong Road, Hefei, Anhui 230601, China
| | - Chengfan Wu
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Wenjun Zhan
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, China
| | - Gaolin Liang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, China
| |
Collapse
|
25
|
Gerovska D, García-Gallastegi P, Descarpentrie J, Crende O, Casado-Andrés M, Martín A, Eguia J, Khatib AM, Araúzo-Bravo MJ, Badiola I. Proprotein convertases blockage up-regulates specifically metallothioneins coding genes in human colon cancer stem cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118912. [PMID: 33249002 DOI: 10.1016/j.bbamcr.2020.118912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Despite continuous exertion made, colon cancer still represents a major health problem and its incidence continues being high worldwide. There is growing evidence in support of the cancer stem cells (CSCs) being central in the initiation of this cancer, and CSCs have been the focus of various studies for the identification of new ways of treatment. Lately, the proprotein convertases (PCs) were reported to regulate the maturation and expression of various molecules involved in the malignant phenotype of colon cancer cells, however, the identity of the molecules regulated by these serine proteases in CSCs is unknown. In this study, we used the general PCs inhibitor, the Decanoyl-RVKR-chloromethylketone (Decanoyl-RVKR-CMK) that inhibits all the PCs found in the secretory pathway, and analyzed its effect on CSCs using RNA-seq analysis. Remarkably, from the only 9 up-regulated genes in the human SW620-derived sphere-forming cells, we identified 7 of the 11 human metallothioneins, all of them localized on chromosome 16, and zinc related proteins as downstream effectors of the PCs. The importance of these molecules in the regulation of cell proliferation, differentiation and chemoresistance, and their reported potential tumor suppressor role and loss in colon cancer patients associated with worse prognosis, suggests that targeting PCs in the control of the malignant phenotype of CSCs is a new potential therapeutic strategy in colon cancer.
Collapse
Affiliation(s)
- Daniela Gerovska
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, Calle Doctor 8 Beguiristain s/n, 20014 San Sebastián, Spain; Computational Biomedicine Data Analysis Platform, Biodonostia Health Research Institute, C/ Doctor 8 Beguiristain s/n, 20014 San Sebastián, Spain
| | - Patricia García-Gallastegi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Spain; Univ. Bordeaux, INSERM, LAMC, U1029, F-33600 Pessac, France
| | | | - Olatz Crende
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Spain
| | - María Casado-Andrés
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Spain; Univ. Bordeaux, INSERM, LAMC, U1029, F-33600 Pessac, France
| | - Ander Martín
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Spain
| | - Jokin Eguia
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Spain
| | | | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, Calle Doctor 8 Beguiristain s/n, 20014 San Sebastián, Spain; Computational Biomedicine Data Analysis Platform, Biodonostia Health Research Institute, C/ Doctor 8 Beguiristain s/n, 20014 San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, C/ María Díaz Harokoa 3, 48013 Bilbao, Spain; CIBER of Frailty and Healthy Aging (CIBERfes), Madrid, Spain.
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Spain.
| |
Collapse
|
26
|
He Z, Khatib AM, Creemers JWM. Loss of Proprotein Convertase Furin in Mammary Gland Impairs proIGF1R and proIR Processing and Suppresses Tumorigenesis in Triple Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12092686. [PMID: 32962246 PMCID: PMC7563341 DOI: 10.3390/cancers12092686] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/27/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) is known to have a poor prognosis and limited treatment options. The aim of the current study is to evaluate the role of Furin, a proprotein convertase involved in the activation of wide range of protein precursors in TNBC progression. The generation of a TNBC mouse model lacking Furin specifically in the mammary gland confirmed that Furin is implicated in TNBC tumor progression and the derived lung metastasis. Further analysis revealed that the proteolytic activation of proIGF1R and proIR receptors, two substrates of Furin involved in TNBC were inhibited in these mice and was associated with reduced AKT and ERK1/2 expression and phosphorylation. In addition, Furin is frequently overexpressed in TNBC tumors and correlates with poor patient prognosis, suggesting the use of Furin inhibition as a potential adjunct therapy in TNBC. Abstract In triple negative breast cancer (TNBC) cell lines, the proprotein convertase Furin cleaves and then activates several protein precursors involved in oncogenesis. However, the in vivo role of Furin in the mammary gland and how mammary gland-specific Furin knockout specifically influences tumor initiation and progression of TNBC is unknown. Here, we report that Furin is frequently overexpressed in TNBC tumors and this correlates with poor prognosis in patients with TNBC tumors. In a whey acidic protein (WAP)-induced mammary epithelial cell-specific Furin knockout mouse model, mice show normal mammary development. However, loss of Furin in mammary glands inhibits primary tumor growth and lung metastasis in an oncogene-induced TNBC mouse model. Further analysis of TNBC mice lacking Furin revealed repressed maturation of the Furin substrates proIGF1R and proIR that are associated with reduced expression and activation of their downstream effectors PI3K/AKT and MAPK/ERK1/2. In addition, these tissues showed enhanced apoptotic signaling. In conclusion, our findings reveal that upregulated Furin expression reflects the poor prognosis of TNBC patients and highlights the therapeutic potential of inhibiting Furin in TNBC tumors.
Collapse
Affiliation(s)
- Zongsheng He
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven (Katholieke Universiteit Leuven), 3000 Leuven, Belgium;
| | - Abdel-Majid Khatib
- INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, 33615 Pessac, France
- Digestive group, Institut Bergonié, 33000 Bordeaux, France
- Correspondence: (A.-M.K.); (J.W.M.C.)
| | - John W. M. Creemers
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven (Katholieke Universiteit Leuven), 3000 Leuven, Belgium;
- Correspondence: (A.-M.K.); (J.W.M.C.)
| |
Collapse
|
27
|
He Z, Khatib AM, Creemers JW. Loss of the proprotein convertase Furin in T cells represses mammary tumorigenesis in oncogene-driven triple negative breast cancer. Cancer Lett 2020; 484:40-49. [DOI: 10.1016/j.canlet.2020.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/14/2020] [Accepted: 05/02/2020] [Indexed: 01/24/2023]
|
28
|
Soulet F, Bodineau C, Hooks KB, Descarpentrie J, Alves I, Dubreuil M, Mouchard A, Eugenie M, Hoepffner JL, López JJ, Rosado JA, Soubeyran I, Tomé M, Durán RV, Nikolski M, Villoutreix BO, Evrard S, Siegfried G, Khatib AM. ELA/APELA precursor cleaved by furin displays tumor suppressor function in renal cell carcinoma through mTORC1 activation. JCI Insight 2020; 5:129070. [PMID: 32516140 DOI: 10.1172/jci.insight.129070] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/05/2020] [Indexed: 01/15/2023] Open
Abstract
Apelin is a well-established mediator of survival and mitogenic signaling through the apelin receptor (Aplnr) and has been implicated in various cancers; however, little is known regarding Elabela (ELA/APELA) signaling, also mediated by Aplnr, and its role and the role of the conversion of its precursor proELA into mature ELA in cancer are unknown. Here, we identified a function of mTORC1 signaling as an essential mediator of ELA that repressed kidney tumor cell growth, migration, and survival. Moreover, sunitinib and ELA showed a synergistic effect in repressing tumor growth and angiogenesis in mice. The use of site-directed mutagenesis and pharmacological experiments provided evidence that the alteration of the cleavage site of proELA by furin induced improved ELA antitumorigenic activity. Finally, a cohort of tumors and public data sets revealed that ELA was only repressed in the main human kidney cancer subtypes, namely clear cell, papillary, and chromophobe renal cell carcinoma. Aplnr was expressed by various kidney cells, whereas ELA was generally expressed by epithelial cells. Collectively, these results showed the tumor-suppressive role of mTORC1 signaling mediated by ELA and established the potential use of ELA or derivatives in kidney cancer treatment.
Collapse
Affiliation(s)
- Fabienne Soulet
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | - Clement Bodineau
- Institut Européen de Chimie et Biologie, INSERM U1218, University of Bordeaux, Pessac, France.,Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | | | - Jean Descarpentrie
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | | | - Marielle Dubreuil
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | - Amandine Mouchard
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | - Malaurie Eugenie
- Institut Européen de Chimie et Biologie, INSERM U1218, University of Bordeaux, Pessac, France
| | | | - Jose J López
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | | | - Mercedes Tomé
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France.,Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Raúl V Durán
- Institut Européen de Chimie et Biologie, INSERM U1218, University of Bordeaux, Pessac, France.,Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Macha Nikolski
- LaBRI, CNRS UMR 5800, University of Bordeaux, Bordeaux, France
| | | | - Serge Evrard
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France.,Bergonié Institute, Bordeaux, France
| | - Geraldine Siegfried
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | - Abdel-Majid Khatib
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| |
Collapse
|
29
|
He Z, Thorrez L, Siegfried G, Meulemans S, Evrard S, Tejpar S, Khatib AM, Creemers JWM. The proprotein convertase furin is a pro-oncogenic driver in KRAS and BRAF driven colorectal cancer. Oncogene 2020; 39:3571-3587. [PMID: 32139876 DOI: 10.1038/s41388-020-1238-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022]
Abstract
Mutations in KRAS and/or BRAF that activate the ERK kinase are frequently found in colorectal cancer (CRC) and drive resistance to targeted therapies. Therefore, the identification of therapeutic targets that affect multiple signaling pathways simultaneously is crucial for improving the treatment of patients with KRAS or BRAF mutations. The proprotein convertase furin activates several oncogenic protein precursors involved in the ERK-MAPK pathway by endoproteolytic cleavage. Here we show that genetic inactivation of furin suppresses tumorigenic growth, proliferation, and migration in KRAS or BRAF mutant CRC cell lines but not in wild-type KRAS and BRAF cells. In a mouse xenograft model, these KRAS or BRAF mutant cells lacking furin displayed reduced growth and angiogenesis, and increased apoptosis. Mechanistically, furin inactivation prevents the processing of various protein pecursors including proIGF1R, proIR, proc-MET, proTGF-β1 and NOTCH1 leading to potent and durable ERK-MAPK pathway suppression in KRAS or BRAF mutant cells. Furthermore, we identified genes involved in activating the ERK-MAPK pathway, such as PTGS2, which are downregulated in the KRAS or BRAF mutant cells after furin inactivation but upregulated in wild-type KRAS and BRAF cells. Analysis of human colorectal tumor samples reveals a positive correlation between enhanced furin expression and KRAS or BRAF expression. These results indicate that furin plays an important role in KRAS or BRAF-associated ERK-MAPK pathway activation and tumorigenesis, providing a potential target for personalized treatment.
Collapse
Affiliation(s)
- Zongsheng He
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Lieven Thorrez
- Interdisciplinary Research Facility, Department of Development and Regeneration, KU Leuven, Campus Kulak Kortrijk, Kortrijk, Belgium
| | | | - Sandra Meulemans
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Serge Evrard
- INSERM, LAMC, UMR, Allée Geoffroy St Hilaire, 1029, Pessac, France.,Institut Bergonié, Bordeaux, France
| | - Sabine Tejpar
- Digestive Oncology Unit, Department of Oncology, University Hospitals Leuven, Leuven, Belgium
| | | | - John W M Creemers
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|