1
|
Barelli C, Kaluthantrige Don F, Iannuzzi RM, Faletti S, Bertani I, Osei I, Sorrentino S, Villa G, Sokolova V, Campione A, Minotti MR, Sicuri GM, Stefini R, Iorio F, Kalebic N. Morphoregulatory ADD3 underlies glioblastoma growth and formation of tumor-tumor connections. Life Sci Alliance 2025; 8:e202402823. [PMID: 39592188 PMCID: PMC11599137 DOI: 10.26508/lsa.202402823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Glioblastoma is a major unmet clinical need characterized by striking inter- and intra-tumoral heterogeneity and a population of glioblastoma stem cells (GSCs), conferring aggressiveness and therapy resistance. GSCs communicate through a network of tumor-tumor connections (TTCs), including nanotubes and microtubes, promoting tumor progression. However, very little is known about the mechanisms underlying TTC formation and overall GSC morphology. As GSCs closely resemble neural progenitor cells during neurodevelopment, we hypothesized that GSCs' morphological features affect tumor progression. We identified GSC morphology as a new layer of tumoral heterogeneity with important consequences on GSC proliferation. Strikingly, we showed that the neurodevelopmental morphoregulator ADD3 is sufficient and necessary for maintaining proper GSC morphology, TTC abundance, cell cycle progression, and chemoresistance, as well as required for cell survival. Remarkably, both the effects on cell morphology and proliferation depend on the stability of actin cytoskeleton. Hence, cell morphology and its regulators play a key role in tumor progression by mediating cell-cell communication. We thus propose that GSC morphological heterogeneity holds the potential to identify new therapeutic targets and diagnostic markers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alberto Campione
- Human Technopole, Milan, Italy
- Ospedale Nuovo di Legnano, Legnano, Italy
| | | | | | | | | | | |
Collapse
|
2
|
Leclair NK, Choudury A, Chen WC, Magill ST, McCortney K, Horbinski CM, Chen Z, Goldschmidt E, Eaton CD, Bulsara KR, Bi WL, Patel AJ, Sahm F, Raleigh D, Anczukow O. RNA splicing as a biomarker and phenotypic driver of meningioma DNA-methylation groups. Neuro Oncol 2024; 26:2222-2236. [PMID: 39093629 PMCID: PMC11630566 DOI: 10.1093/neuonc/noae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Advances in our understanding of the molecular biology of meningiomas have led to significant gains in the ability to predict patient prognosis and tumor recurrence and to identify novel targets for therapeutic design. Specifically, classification of meningiomas based on DNA methylation has greatly improved our ability to risk stratify patients, however new questions have arisen in terms of the underlying impact these DNA-methylation signatures have on meningioma biology. METHODS This study utilizes RNA-sequencing data from 486 meningioma samples corresponding to 3 meningioma DNA-methylation groups (merlin-intact, immune-enriched, and hypermitotic), followed by in vitro experiments utilizing human meningioma cell lines. RESULTS We identify alterations in RNA splicing between meningioma DNA-methylation groups including individual splicing events that correlate with hypermitotic meningiomas and predict tumor recurrence and overall patient prognosis and compile a set of splicing events that can accurately predict DNA-methylation classification based on RNA-seq data. Furthermore, we validate these events using reverse transcription polymerase chain reaction (RT-PCR) in patient samples and meningioma cell lines. Additionally, we identify alterations in RNA-binding proteins and splicing factors that lie upstream of RNA splicing events, including upregulation of SRSF1 in hypermitotic meningiomas which we show drives alternative RNA splicing changes. Finally, we design splice-switching antisense oligonucleotides to target RNA splicing changes in NASP and MFF observed in hypermitotic meningiomas, providing a rationale for RNA-based therapeutic design. CONCLUSIONS RNA splicing is an important driver of meningioma phenotypes that can be useful in prognosticating patients and as a potential exploit for therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Nathan K Leclair
- Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Abrar Choudury
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA,USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA,USA
| | - William C Chen
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA,USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA,USA
| | - Stephen T Magill
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Craig M Horbinski
- Department of Pathology, Northwestern University, Chicago, IL, USA
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Zhenhong Chen
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA,USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA,USA
| | - Ezequiel Goldschmidt
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA,USA
| | - Charlotte D Eaton
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA,USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA,USA
| | - Ketan R Bulsara
- Division of Neurosurgery, Department of Surgery, UConn Health, Farmington, CT, USA
| | - Wenya Linda Bi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Akash J Patel
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Felix Sahm
- CCU Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - David Raleigh
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA,USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA,USA
| | - Olga Anczukow
- Institute for Systems Genomics, UConn Health, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| |
Collapse
|
3
|
Jin J, Cui Y, Niu H, Lin Y, Wu X, Qi X, Bai K, Zhang Y, Wang Y, Bu H. NSCLC Extracellular Vesicles Containing miR-374a-5p Promote Leptomeningeal Metastasis by Influencing Blood‒Brain Barrier Permeability. Mol Cancer Res 2024; 22:699-710. [PMID: 38639925 PMCID: PMC11294816 DOI: 10.1158/1541-7786.mcr-24-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/27/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
Leptomeningeal metastasis (LM) is a devastating complication of advanced non-small cell lung cancer (NSCLC). Its diagnosis and monitoring can be challenging. Recently, extracellular vesicle (EV) miRNAs have become a new noninvasive diagnostic biomarker. The purpose of this study was to examine the clinical value and role of EV miRNAs in NSCLC-LM. Next-generation sequencing analysis revealed that miRNAs with differential expression of EVs in sera of patients with NSCLC with LM and non-LM were detected to identify biological markers for the diagnosis of LM. Cellular and in vivo experiments were conducted to explore the pathogenesis of EV miRNA promoting LM in NSCLC. In the present study, we first demonstrated that the serum level of EV-associated miR-374a-5p in patients with LM of lung cancer was much higher than that in patients without LM and was correlated with the survival time of patients with LM. Further studies showed that EV miR-374a-5p efficiently destroys tight junctions and the integrity of the cerebral microvascular endothelial cell barrier, resulting in increased blood-brain barrier permeability. Mechanistically, miR-374a-5p regulates the distribution of ZO1 and occludin in endothelial cells by targeting γ-adducin, increasing vascular permeability and promoting LM. Implications: These results suggest that serum NSCLC-derived EV miR-374a-5p is involved in premetastatic niche formation by regulating the permeability of the blood-brain barrier to promote NSCLC-LM and can be used as a blood biomarker for the diagnosis and prognosis of NSCLC-LM.
Collapse
Affiliation(s)
- Jie Jin
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
- Beijing Institute of Biotechnology, Beijing, PR China.
- Xiong’an Xuanwu Hospital, Baoding, PR China.
| | - Yumeng Cui
- Beijing Institute of Biotechnology, Beijing, PR China.
| | - Huicong Niu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, PR China.
| | - Yanli Lin
- Beijing Institute of Biotechnology, Beijing, PR China.
| | - Xiaojie Wu
- Beijing Institute of Biotechnology, Beijing, PR China.
| | - Xuejiao Qi
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
- Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, PR China.
| | - Kaixuan Bai
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
- Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, PR China.
| | - Yu Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
- Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, PR China.
| | - Youliang Wang
- Beijing Institute of Biotechnology, Beijing, PR China.
| | - Hui Bu
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
- Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, PR China.
| |
Collapse
|
4
|
Zhang X, Xiao Q, Zhang C, Zhou Q, Xu T. Construction of a prognostic model with CAFs for predicting the prognosis and immunotherapeutic response of lung squamous cell carcinoma. J Cell Mol Med 2024; 28:e18262. [PMID: 38520221 PMCID: PMC10960179 DOI: 10.1111/jcmm.18262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024] Open
Abstract
Lung squamous cell carcinoma (LUSC) is one of the subtypes of lung cancer (LC) that contributes to approximately 25%-30% of its prevalence. Cancer-associated fibroblasts (CAFs) are key cellular components of the TME, and the large number of CAFs in tumour tissues creates a favourable environment for tumour development. However, the function of CAFs in the LUSC is complex and uncertain. First, we processed the scRNA-seq data and classified distinct types of CAFs. We also identified prognostic CAFRGs using univariate Cox analysis and conducted survival analysis. Additionally, we assessed immune cell infiltration in CAF clusters using ssGSEA. We developed a model with a significant prognostic correlation and verified the prognostic model. Furthermore, we explored the immune landscape of LUSC and further investigated the correlation between malignant features and LUSC. We identified CAFs and classified them into three categories: iCAFs, mCAFs and apCAFs. The survival analysis showed a significant correlation between apCAFs and iCAFs and LUSC patient prognosis. Kaplan-Meier analysis showed that patients in CAF cluster C showed a better survival probability compared to clusters A and B. In addition, we identified nine significant prognostic CAFRGs (CLDN1, TMX4, ALPL, PTX3, BHLHE40, TNFRSF12A, VKORC1, CST3 and ADD3) and subsequently employed multivariate Cox analysis to develop a signature and validate the model. Lastly, the correlation between CAFRG and malignant features indicates the potential role of CAFRG in promoting tumour angiogenesis, EMT and cell cycle alterations. We constructed a CAF prognostic signature for identifying potential prognostic CAFRGs and predicting the prognosis and immunotherapeutic response for LUSC. Our study may provide a more accurate prognostic assessment and immunotherapy targeting strategies for LUSC.
Collapse
Affiliation(s)
- Xiang Zhang
- Lung cancer center, West China hospitalSichuan universityChengduChina
| | - Qingqing Xiao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Cong Zhang
- Department of Thoracic surgeryChengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College)ChengduChina
| | - Qinghua Zhou
- Lung cancer center, West China hospitalSichuan universityChengduChina
| | - Tao Xu
- Department of Thoracic SurgeryThe Affiliated Hospital, Southwest Medical UniversityLuzhouChina
| |
Collapse
|
5
|
Luo H, Liang H, Liu H, Fan Z, Wei Y, Yao X, Cong S. TEMINET: A Co-Informative and Trustworthy Multi-Omics Integration Network for Diagnostic Prediction. Int J Mol Sci 2024; 25:1655. [PMID: 38338932 PMCID: PMC10855161 DOI: 10.3390/ijms25031655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Advancing the domain of biomedical investigation, integrated multi-omics data have shown exceptional performance in elucidating complex human diseases. However, as the variety of omics information expands, precisely perceiving the informativeness of intra- and inter-omics becomes challenging due to the intricate interrelations, thus presenting significant challenges in the integration of multi-omics data. To address this, we introduce a novel multi-omics integration approach, referred to as TEMINET. This approach enhances diagnostic prediction by leveraging an intra-omics co-informative representation module and a trustworthy learning strategy used to address inter-omics fusion. Considering the multifactorial nature of complex diseases, TEMINET utilizes intra-omics features to construct disease-specific networks; then, it applies graph attention networks and a multi-level framework to capture more collective informativeness than pairwise relations. To perceive the contribution of co-informative representations within intra-omics, we designed a trustworthy learning strategy to identify the reliability of each omics in integration. To integrate inter-omics information, a combined-beliefs fusion approach is deployed to harmonize the trustworthy representations of different omics types effectively. Our experiments across four different diseases using mRNA, methylation, and miRNA data demonstrate that TEMINET achieves advanced performance and robustness in classification tasks.
Collapse
Affiliation(s)
- Haoran Luo
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China; (H.L.); (Z.F.)
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; (H.L.); (H.L.); (Y.W.)
| | - Hong Liang
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; (H.L.); (H.L.); (Y.W.)
| | - Hongwei Liu
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; (H.L.); (H.L.); (Y.W.)
| | - Zhoujie Fan
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China; (H.L.); (Z.F.)
| | - Yanhui Wei
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; (H.L.); (H.L.); (Y.W.)
| | - Xiaohui Yao
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China; (H.L.); (Z.F.)
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; (H.L.); (H.L.); (Y.W.)
| | - Shan Cong
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China; (H.L.); (Z.F.)
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; (H.L.); (H.L.); (Y.W.)
| |
Collapse
|
6
|
Han X, Zhou H, Sun W, Hou L, Wang Y, Wang H, Lv Z, Xue X. IDH1 R132H mutation increases radiotherapy efficacy and a 4-gene radiotherapy-related signature of WHO grade 4 gliomas. Sci Rep 2023; 13:19659. [PMID: 37952042 PMCID: PMC10640646 DOI: 10.1038/s41598-023-46335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
The prognosis for the WHO grade 4 IDH-mutant astrocytoma is better than IDH-wildtype glioblastoma (GBM) patients. The purpose of this study is to explore the potential mechanism of how IDH1 mutation can increase the efficacy of radiotherapy and to establish a risk-score model to predict the efficacy of radiotherapy in WHO grade 4 gliomas. First, we conducted experimental study on the effect of IDH1R132H mutation on glioma cells in vitro. Radiosensitivity of glioma cells was detected by γ-H2AX after 5 Gy radiation. Cell proliferation, migration and invasion were determined respectively by CCK-8, EDU, monolayer cell migration scratch assay and Transwell assay. Then we analyzed IDH1 gene status and the survival of WHO grade 4 glioma patients received radiotherapy in our center and verified our results by analyzing CGGA and TCGA database. For the risk-score model, we use CGGA data to find genetic differences between WHO grade 4 IDH-mutant astrocytoma and IDH-wildtype GBM patients, and determined a 4-gene radiotherapy-related signature through survival analysis by R software. Evaluation and verification through different glioma validation sets and different statistical methods. For in vitro experiments, we established glioma cells stably overexpressing IDH1 wild-type and IDH1-mutant proteins. γ-H2AX assay showed that IDH1-mutant glioma cells had higher radiosensitivity than wild-type. CCK-8 and EDU assay showed that proliferation capacity of IDH1-mutant glioma cells declined. Transwell assay and monolayer cell migration scratch assay also showed that IDH1-mutant glioma cells reduced migration and invasion capabilities. Among the 83 WHO grade 4 glioma patients who received radiotherapy in our center, WHO grade 4 IDH-mutant astrocytoma patients had longer OS and PFS versus IDH-wildtype GBM (P = 0.0336, P = 0.0324, respectively). TCGA and CGGA database analysis had the similar results. Through complex analysis of CGGA and TCGA databases, we established a risk-model that can predict the efficacy of radiotherapy for WHO grade 4 glioma patients. The 4-gene radiotherapy-related signature including ADD3, GRHPR, RHBDL1 and SLC9A9. Patients in the high-risk group had worse OS compared to low-risk group (P = 0.0001). High- and low-risk groups of patients receiving radiotherapy have significant survival differences, while patients who did not receive radiotherapy have no survival difference both in CGGA and TCGA databases. WHO grade 4 IDH-mutant astrocytoma is more radiosensitive than IDH-wildtype GBM patients. Our 4-gene radiotherapy-related signature can predict the radiation efficacy of WHO grade 4 glioma patients, and it may provide some reference for clinical treatment options.
Collapse
Affiliation(s)
- Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Center of Metabolic Diseases and Cancer Research (CMCR), Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Wei Sun
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Liubing Hou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yanqiang Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Hong Wang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Zhongqiang Lv
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China.
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China.
- Center of Metabolic Diseases and Cancer Research (CMCR), Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
7
|
Xiong H, Ren S, Chen J, Yang X, Liu Y, Xu Z, Guo J, Jiang T, Yuan M, Liu Y, Zhang G, Li W, Machens HG, Chen Z. Knockdown of long noncoding RNA SAN rejuvenates aged adipose-derived stem cells via miR-143-3p/ADD3 axis. Stem Cell Res Ther 2023; 14:213. [PMID: 37605290 PMCID: PMC10441736 DOI: 10.1186/s13287-023-03441-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Senescent adipose-derived stem cells (ASCs) exhibit reduced therapeutic efficacy during wound healing. Transcriptional regulation factors including long noncoding RNAs (lncRNAs) reportedly have essential roles in stem cell aging. However, the mechanisms of which lncRNAs influence mesenchymal stem cell aging and how it works need further investigation. METHODS The expression patterns of lncRNA senescence-associated noncoding RNA (SAN) and miR-143-3p in ASCs obtained from old and young volunteer donors were detected by quantitative polymerase chain reaction. ASCs with overexpression or knockdown of SAN and γ-adducin (ADD3) were constructed by lentiviral transduction. Mimic and inhibitor were used to manipulate the cellular level of miR-143-3p in ASCs. The effects of these RNAs on ASCs proliferation, migration and cellular senescence were examined by EdU, transwell and senescence-activated β-galactosidase (SA-β-gal) staining assays. Wound scratch and tube formation assays were conducted to evaluate the capacities of ASCs in promoting fibroblasts migration and endothelial cells angiogenesis. Furthermore, dual-luciferase assays and rescue experiments were performed to identify the RNA interactions. Finally, the therapeutic effects of SAN-depleted aged ASCs were evaluated in a skin injury model. RESULTS The lncRNA SAN (NONHSAT035482.2) was upregulated in aged ASCs; it controlled cellular senescence in ASCs. lncRNA SAN knockdown in ASCs led to ASC functional enhancement and the inhibition of cellular senescence; it also promoted the effects of conditioned medium (CM) on endothelial cell tube formation and fibroblast migration. Mechanistic analysis showed that SAN serves as a sponge for miR-143-3p, thereby regulating the expression of ADD3. The application of SAN-depleted aged ASCs increased re-epithelialization, collagen deposition, neovascularization and led to accelerated skin wound closure, compared with transplantation of aged ASCs. CONCLUSION The lncRNA SAN mediates ASC senescence by regulating the miR-143-3p/ADD3 pathway, providing a potential target for rejuvenation of senescent ASCs and enhancement of wound repair.
Collapse
Affiliation(s)
- Hewei Xiong
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sen Ren
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yutian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhao Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Meng Yuan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yang Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guolei Zhang
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Wenqing Li
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Technical University of Munich, 81675, Munich, Germany
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
8
|
Hou C, Wu M, Zhang H, Yang Z. The specific phagocytosis regulators could predict recurrence and therapeutic effect in thyroid cancer: A study based on bioinformatics analysis. Medicine (Baltimore) 2023; 102:e33290. [PMID: 36930113 PMCID: PMC10019206 DOI: 10.1097/md.0000000000033290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Thyroid cancer (TC) is one of the growing cancers and is prone to recurrence. Meanwhile, in immunotherapy, antibody-dependent cellular phagocytosis (ADCP) phagocytosis related regulators (PRs) play an important role. This study aims to investigate the prognostic value of specific PRs in TC. METHODS The purpose of this study was to identify specific PRs in TC patients by retrieving RNA-seq and Clustered Regularly Interspaced Short Palindromic Repeats-cas9 data and an algorithm based on LASSO was used to construct the PRs-signature. Subsequently, prognosis value of PRs-signature for recurrence-free survival (RFS) was explored through various statistical analysis, including Cox regression analysis, Kaplan-Meier analysis, and receiver operating characteristic curve. Additionally, an analysis of immune cell content by risk group was conducted using CIBERSORT, single sample gene set enrichment analysis and MCP-counter algorithms, with a particular focus on the correlation between macrophages and specific PRs. RESULTS We identified 36 specific PRs, and a PRs-signature was constructed using 5-prognostic PRs (CAPN6, MUC21, PRDM1, SEL1L3, and CPQ). Receiver operating characteristic analysis showed that predictive power of PRs-signature was decent, and the PRs risk score as an independent prognostic factor was found to be correlated with RFS showed by multivariate cox regression analysis. Meanwhile, a lower RFS was observed in the high-risk group than in the low-risk group. The results of the 3 algorithms suggested that our PRs-signature may have certain significance for macrophage content and ADCP. Interestingly, the low-risk group had higher levels of mRNA expression than the high-risk group at PDCD1, CTLA4, and pro-inflammatory factors from macrophage. CONCLUSION For the purpose of prognostic management, this study developed a prediction model. And the cross-talk between certain PRs and TC patients was revealed in this study. Besides, the PRs-signature can predict the immunotherapy response, macrophage content, and ADCP status. TC patients will benefit from these developments by gaining insight into novel therapeutic strategies.
Collapse
Affiliation(s)
- Changran Hou
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Mengmeng Wu
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Haojie Zhang
- Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Zhenlin Yang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| |
Collapse
|
9
|
Xiao Y, Li M, Ma T, Ning H, Liu L. AMG232 inhibits angiogenesis in glioma through the p53-RBM4-VEGFR2 pathway. J Cell Sci 2023; 136:jcs260270. [PMID: 36601864 DOI: 10.1242/jcs.260270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
AMG232 effectively inhibits cancers with wild-type p53 (also known as TP53) by reactivating p53, but whether it inhibits glioma angiogenesis remains unclear. This study confirms that AMG232 inhibits the proliferation of glioma endothelial cells (GECs) in a dose-dependent manner and inhibits the angiogenesis of GECs. p53 and RNA-binding motif protein 4 (RBM4) were expressed at low levels in GECs, while MDM2 and vascular endothelial growth factor receptor 2 (VEGFR2, also known as KDR) were highly expressed. In vitro and in vivo experiments confirmed that AMG232 upregulated p53 and RBM4, and downregulated MDM2 and VEGFR2 by blocking the MDM2-p53 interaction. Both p53 silencing and RBM4 silencing significantly upregulated the expression of VEGFR2, promoted the proliferation, migration and tube formation of GECs, and reversed the effects of AMG232 on downregulating VEGFR2 and inhibiting the angiogenesis of GECs. AMG232 increased RBM4 expression by upregulating p53, and p53 bound to RBM4 and promoted its transcription. RBM4 bound to and shortened the half-life of VEGFR2, promoting its degradation. Finally, AMG232 produced a significant decrease in new vessels and hemoglobin content in vivo. This study proves that AMG232 inhibits glioma angiogenesis by blocking the MDM2-p53 interaction, in which the p53-RBM4-VEGFR2 pathway plays an important role.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China
| | - Mingliang Li
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China
| | - Hao Ning
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China
| |
Collapse
|
10
|
Kiang KMY, Sun S, Leung GKK. ADD3 Deletion in Glioblastoma Predicts Disease Status and Survival. Front Oncol 2022; 11:717793. [PMID: 34970477 PMCID: PMC8712675 DOI: 10.3389/fonc.2021.717793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Loss of heterozygosity (LOH) on chromosome 10 frequently occurs in gliomas. Whereas genetic loci with allelic deletion often implicate tumor suppressor genes, a putative tumor suppressor Adducin3 (ADD3) mapped to chromosome 10q25.2 was found to be preferentially downregulated in high-grade gliomas compared with low-grade lesions. In this study, we unveil how the assessment of ADD3 deletion provides clinical significance in glioblastoma (GBM). By deletion mapping, we assessed the frequency of LOH in forty-three glioma specimens using five microsatellite markers spanning chromosome 10q23-10qter. Data were validated in The Cancer Genome Atlas (TCGA) cohort with 203 GBM patients. We found that allelic loss in both D10S173 (ADD3/MXI1 locus) and D10S1137 (MGMT locus) were positively associated with tumor grading and proliferative index (MIB-1). However, LOH events at only the ADD3/MXI1 locus provided prognostic significance with a marked reduction in patient survival and appeared to have diagnostic potential in differentiating high-grade gliomas from low-grade ones. Furthermore, we showed progressive loss of ADD3 in six out of seven patient-paired gliomas with malignant progression, as well as in recurrent GBMs. These findings suggest the significance of ADD3/MXI1 locus as a promising marker that can be used to refine the LOH10q assessment. Data further suggest the role of ADD3 as a novel tumor suppressor, whereby the loss of ADD3 is indicative of a progressive disease that may at least partially account for rapid disease progression in GBM. This study revealed for the first time the downregulation of ADD3 on the genetic level resulting from copy number deletion.
Collapse
Affiliation(s)
- Karrie Mei-Yee Kiang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Stella Sun
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Gilberto Ka-Kit Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Kuang Z, Tu J, Li X. Combined Identification of Novel Markers for Diagnosis and Prognostic of Classic Hodgkin Lymphoma. Int J Gen Med 2021; 14:9951-9963. [PMID: 34955650 PMCID: PMC8694578 DOI: 10.2147/ijgm.s341557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/19/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND An effective diagnostic and prognostic marker based on the gene expression profile of classic Hodgkin lymphoma (cHL) has not yet been developed. The aim of the present study was to investigate potential markers for the diagnosis and prediction of cHL prognosis. METHODS The gene expression profiles with all available clinical features were downloaded from the Gene Expression Omnibus (GEO) database. Then, multiple machine learning algorithms were applied to develop and validate a diagnostic signature by comparing cHL with normal control. In addition, we identified prognostic genes and built a prognostic model with them to predict the prognosis for 130 patients with cHL which were treated with first-line treatment (ABVD chemotherapy or an ABVD-like regimen). RESULTS A diagnostic prediction signature was constructed and showed high specificity and sensitivity (training cohort: AUC=0.981,95% CI 0.933-0.998, P<0.001, validation cohort: AUC=0.955,95% CI 0.895-0.986, P<0.001). Additionally, nine prognostic genes (LAMP1, STAT1, MMP9, C1QB, ICAM1, CD274, CCL19, HCK and LILRB2) were screened and a prognostic prediction model was constructed with them, which had been confirmed effectively predicting prognosis (P<0.001). Furthermore, the results of the immune infiltration assessment indicated that the high scale of the fraction of CD8 + T cells, M1 macrophages, resting mast cells associated with an adverse outcome in cHL, and naive B cells related to prolonged survival. In addition, a nomogram that combined the prognostic prediction model and clinical characteristics is also suggested to have a good predictive value for the prognosis of patients. CONCLUSION The new markers found in this study may be helpful for the diagnosis and prediction of the prognosis of cHL.
Collapse
Affiliation(s)
- Zhixing Kuang
- Department of Radiation Oncology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, People's Republic of China
| | - Jiannan Tu
- Department of Oncology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, People's Republic of China
| | - Xun Li
- Department of Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, People's Republic of China
| |
Collapse
|
12
|
Wills C, He Y, Summers MG, Lin Y, Phipps AI, Watts K, Law PJ, Al-Tassan NA, Maughan TS, Kaplan R, Houlston RS, Peters U, Newcomb PA, Chan AT, Buchanan DD, Gallinger S, Marchand LL, Pai RK, Shi Q, Alberts SR, Gray V, West HD, Escott-Price V, Dunlop MG, Cheadle JP. A genome-wide search for determinants of survival in 1926 patients with advanced colorectal cancer with follow-up in over 22,000 patients. Eur J Cancer 2021; 159:247-258. [PMID: 34794066 PMCID: PMC9132154 DOI: 10.1016/j.ejca.2021.09.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND While genome-wide association studies (GWAS) have identified germline variants influencing the risk of developing colorectal cancer (CRC), there has been limited examination of the possible role of inherited variation as a determinant of patient outcome. PATIENTS AND METHODS We performed a GWAS for overall survival (OS) in 1926 patients with advanced CRC from the COIN and COIN-B clinical trials. For single nucleotide polymorphisms (SNPs) showing an association with OS (P < 1.0 × 10-5), we conducted sensitivity analyses based on the time from diagnosis to death and sought independent replications in 5675 patients from the Study of Colorectal Cancer in Scotland (SOCCS) and 16,964 patients from the International Survival Analysis in Colorectal cancer Consortium (ISACC). We analysed the Human Protein Atlas to determine if ERBB4 expression was associated with survival in 438 patients with colon adenocarcinomas. RESULTS The most significant SNP associated with OS was rs79612564 in ERBB4 (hazard ratio [HR] = 1.24, 95% confidence interval [CI] = 1.16-1.32, P = 1.9 × 10-7). SNPs at 17 loci had suggestive associations for OS and all had similar effects on the time from diagnosis to death. No lead SNPs were independently replicated in the meta-analysis of all patients from SOCCS and ISACC. However, rs79612564 was significant in stage-IV patients from SOCCS (P = 2.1 × 10-2) but not ISACC (P = 0.89) and SOCCS combined with COIN and COIN-B attained genome-wide significance (P = 1.7 × 10-8). Patients with high ERBB4 expression in their colon adenocarcinomas had worse survival (HR = 1.50, 95% CI = 1.1-1.9, P = 4.6 × 10-2). CONCLUSIONS Genetic and expression data support a potential role for rs79612564 in the receptor tyrosine kinase ERBB4 as a predictive biomarker of survival.
Collapse
Affiliation(s)
- Christopher Wills
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Yazhou He
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK; Department of Oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, China
| | - Matthew G Summers
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Yi Lin
- Epidemiology Department, University of Washington, Seattle, WA, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Amanda I Phipps
- Epidemiology Department, University of Washington, Seattle, WA, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Katie Watts
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Nada A Al-Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Timothy S Maughan
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Richard Kaplan
- MRC Clinical Trials Unit, University College of London, 125 Kingsway, London, WC2B 6NH, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Ulrike Peters
- Epidemiology Department, University of Washington, Seattle, WA, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Polly A Newcomb
- Epidemiology Department, University of Washington, Seattle, WA, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia; Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Steve Gallinger
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Loic L Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Qian Shi
- Department of Quantitative Science, Mayo Clinic, Rochester, MN, USA
| | | | - Victoria Gray
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Hannah D West
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Valentina Escott-Price
- Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Malcolm G Dunlop
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Jeremy P Cheadle
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
13
|
Suo Z, Ma X, Ding Y, Zhou Y, Duan X, Fei L, Song J, Ding H. Posttranscriptional inhibition of γ-adducin promotes the proliferation and migration of osteosarcoma cells. TUMORI JOURNAL 2021; 108:600-608. [PMID: 34632867 DOI: 10.1177/03008916211050687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The expression of cytoskeleton-related protein γ-adducin (ADD3) was abnormally reduced in some tumors. Functional experiments demonstrated that it could inhibit the malignant progression of lung cancer and glioma, whereas the involvement of ADD3 in osteosarcoma was not clear. This study aimed to investigate the role of ADD3 in osteosarcoma and its upstream regulatory mechanisms. METHODS ADD3 was knocked down by siRNA transfection and the expression level of ADD3 was determined using quantitative real-time PCR assay and Western blot. CCK-8 assay and colony formation were performed to detect the capacity of cell proliferation. Transwell assay and PI and Annexin V-FITC staining were used to determine cell migration and apoptosis, respectively. Luciferase reporter experiment was performed to investigate the interaction between ADD3 and miR-23b-3p. RESULTS Based on gene silencing assays, we showed that knockdown of ADD3 suppressed apoptosis and promoted the proliferation and migration of osteosarcoma cells, revealing inhibitory effects of ADD3 in osteosarcoma. Luciferase reporter gene assays confirmed that miR-23b-3p could bind to the 3'-UTR of ADD3. Upregulation of miR-23b-3p not only inhibited the expression of ADD3, but also released the tumor suppressive role of ADD3 on the proliferation and migration of osteosarcoma cells. CONCLUSIONS Our study found that ADD3 functioned as a tumor suppressor gene during osteosarcoma development. The abnormal upregulation of miR-23b-3p targeted the expression of ADD3 and resulted in accelerated osteosarcoma cell proliferation and migration. Thus, the miR-23b-3p/ADD3 axis contributes to the development of osteosarcoma and ADD3 is a key driver of malignancy.
Collapse
Affiliation(s)
- Zhigang Suo
- Department of Spinal Orthopedics, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan, Ningxia, China
| | - Xiucai Ma
- Department of Bone and Soft Tissue Oncology, Gansu Provincial People's Hospital, No. 204 Donggang West Road, Lanzhou City, Gansu Province, China
| | - Yueping Ding
- Department of Obstetrics and Gynecology, Yinchuan First People's Hospital, No. 2 Liqun West Street, Yinchuan, Ningxia, China
| | - Yu Zhou
- Surgery Laboratory, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan, Ningxia, China
| | - Xiangguo Duan
- Department of Pharmacy and Medical Laboratory, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan, Ningxia, China
| | - Le Fei
- Ningxia Medical University, No. 804 Shengli South Street, Yinchuan, Ningxia, China
| | - Jianmin Song
- Department of Bone and Soft Tissue Oncology, Gansu Provincial People's Hospital, No. 204 Donggang West Road, Lanzhou City, Gansu Province, China
| | - Huiqiang Ding
- Department of Spinal Orthopedics, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan, Ningxia, China
| |
Collapse
|
14
|
Kałuzińska Ż, Kołat D, Bednarek AK, Płuciennik E. PLEK2, RRM2, GCSH: A Novel WWOX-Dependent Biomarker Triad of Glioblastoma at the Crossroads of Cytoskeleton Reorganization and Metabolism Alterations. Cancers (Basel) 2021; 13:cancers13122955. [PMID: 34204789 PMCID: PMC8231639 DOI: 10.3390/cancers13122955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is one of the deadliest human cancers. Its malignancy depends on cytoskeleton reorganization, which is related to, e.g., epithelial-to-mesenchymal transition and metastasis. The malignant phenotype of glioblastoma is also affected by the WWOX gene, which is lost in nearly a quarter of gliomas. Although the role of WWOX in the cytoskeleton rearrangement has been found in neural progenitor cells, its function as a modulator of cytoskeleton in gliomas was not investigated. Therefore, this study aimed to investigate the role of WWOX and its collaborators in cytoskeleton dynamics of glioblastoma. Methodology on RNA-seq data integrated the use of databases, bioinformatics tools, web-based platforms, and machine learning algorithm, and the obtained results were validated through microarray data. PLEK2, RRM2, and GCSH were the most relevant WWOX-dependent genes that could serve as novel biomarkers. Other genes important in the context of cytoskeleton (BMP4, CCL11, CUX2, DUSP7, FAM92B, GRIN2B, HOXA1, HOXA10, KIF20A, NF2, SPOCK1, TTR, UHRF1, and WT1), metabolism (MTHFD2), or correlation with WWOX (COL3A1, KIF20A, RNF141, and RXRG) were also discovered. For the first time, we propose that changes in WWOX expression dictate a myriad of alterations that affect both glioblastoma cytoskeleton and metabolism, rendering new therapeutic possibilities.
Collapse
|
15
|
Liu Z, Liu T, Li W, Li J, Wang C, Zhang K. Insights into the antitumor mechanism of ginsenosides Rg3. Mol Biol Rep 2021; 48:2639-2652. [PMID: 33661439 DOI: 10.1007/s11033-021-06187-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Panax ginseng, an ancient herb, belonging to Chinese traditional medicine, is an important herb that has a remarkable impact on various diseases. Ginsenoside Rg3, one of the most abundant ginsenosides, exerts significant functions in the prevention of various types of cancers with few side effects. In the present review, its functional molecular mechanisms are explored, including the improvement of antioxidant and anti-inflammation properties, immune regulation, induction of tumor apoptosis, prevention of tumor invasion and metastasis, tumor proliferation and angiogenesis, and reduction of chemoresistance and radioresistance. On the other hand, metabolism, pharmacokinetics and clinical indications of Rg3 are also discussed. The biological functional role of ginsenoside Rg3 may be associated with that it is a steroid glycoside with diverse biological activities and many signaling pathway can be regulated. Many clinical trials are highly needed to confirm the functions of ginsenoside Rg3.
Collapse
Affiliation(s)
- Zongyu Liu
- Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China
| | - Wei Li
- Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China
| | - Cuizhu Wang
- Department of New Drug Research Office, College of Pharmacy of Jilin University, Changchun, 130000, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China.
| |
Collapse
|
16
|
Identification of New Genetic Clusters in Glioblastoma Multiforme: EGFR Status and ADD3 Losses Influence Prognosis. Cells 2020; 9:cells9112429. [PMID: 33172155 PMCID: PMC7694764 DOI: 10.3390/cells9112429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GB) is one of the most aggressive tumors. Despite continuous efforts to improve its clinical management, there is still no strategy to avoid a rapid and fatal outcome. EGFR amplification is the most characteristic alteration of these tumors. Although effective therapy against it has not yet been found in GB, it may be central to classifying patients. We investigated somatic-copy number alterations (SCNA) by multiplex ligation-dependent probe amplification in a series of 137 GB, together with the detection of EGFRvIII and FISH analysis for EGFR amplification. Publicly available data from 604 patients were used as a validation cohort. We found statistical associations between EGFR amplification and/or EGFRvIII, and SCNA in CDKN2A, MSH6, MTAP and ADD3. Interestingly, we found that both EGFRvIII and losses on ADD3 were independent markers of bad prognosis (p = 0.028 and 0.014, respectively). Finally, we got an unsupervised hierarchical classification that differentiated three clusters of patients based on their genetic alterations. It offered a landscape of EGFR co-alterations that may improve the comprehension of the mechanisms underlying GB aggressiveness. Our findings can help in defining different genetic profiles, which is necessary to develop new and different approaches in the management of our patients.
Collapse
|