1
|
Kumar A, Yap KCH, BharathwajChetty B, Lyu J, Hegde M, Abbas M, Alqahtani MS, Khadlikar S, Zarrabi A, Khosravi A, Kumar AP, Kunnumakkara AB. Regulating the regulators: long non-coding RNAs as autophagic controllers in chronic disease management. J Biomed Sci 2024; 31:105. [PMID: 39716252 DOI: 10.1186/s12929-024-01092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/23/2024] [Indexed: 12/25/2024] Open
Abstract
The increasing prevalence of chronic diseases and their associated morbidities demands a deeper understanding of underlying mechanism and causative factors, with the hope of developing novel therapeutic strategies. Autophagy, a conserved biological process, involves the degradation of damaged organelles or protein aggregates to maintain cellular homeostasis. Disruption of this crucial process leads to increased genomic instability, accumulation of reactive oxygen species (ROS), decreased mitochondrial functions, and suppression of ubiquitination, leading to overall decline in quality of intracellular components. Such deregulation has been implicated in a wide range of pathological conditions such as cancer, cardiovascular, inflammatory, and neurological disorders. This review explores the role of long non-coding RNAs (lncRNAs) as modulators of transcriptional and post-transcriptional gene expression, regulating diverse physiological process like proliferation, development, immunity, and metabolism. Moreover, lncRNAs are known to sequester autophagy related microRNAs by functioning as competing endogenous RNAs (ceRNAs), thereby regulating this vital process. In the present review, we delineate the multitiered regulation of lncRNAs in the autophagic dysfunction of various pathological diseases. Moreover, by highlighting recent findings on the modulation of lncRNAs in different stages of autophagy, and the emerging clinical landscape that recognizes lncRNAs in disease diagnosis and therapy, this review highlights the potential of lncRNAs as biomarkers and therapeutic targets in clinical settings of different stages of autophagic process by regulating ATG and its target genes. This focus on lncRNAs could lead to breakthroughs in personalized medicine, offering new avenues for diagnosis and treatment of complex diseases.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Kenneth Chun-Hong Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Juncheng Lyu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Soham Khadlikar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, 34396, Istanbul, Türkiye
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, 34959, Istanbul, Türkiye
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Zou J, Xu B, Luo P, Chen T, Duan H. Non-coding RNAs in bladder cancer, a bridge between gut microbiota and host? Front Immunol 2024; 15:1482765. [PMID: 39628486 PMCID: PMC11611751 DOI: 10.3389/fimmu.2024.1482765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
In recent years, the role of gut microbiota (GM) in bladder cancer has attracted significant attention. Research indicates that GM not only contributes to bladder carcinogenesis but also influences the efficacy of adjuvant therapies for bladder cancer. Despite this, interventions targeting GM have not been widely employed in the prevention and treatment of bladder cancer, mainly due to the incomplete understanding of the complex interactions between the host and gut flora. Simultaneously, aberrantly expressed non-coding RNAs (ncRNAs) have been frequently associated with bladder cancer, playing crucial roles in processes such as cell proliferation, invasion, and drug resistance. It is widely known that the regulation of GM-mediated host pathophysiological processes is partly regulated through epigenetic pathways. At the same time, ncRNAs are increasingly regarded as GM signaling molecules involved in GM-mediated epigenetic regulation. Accordingly, this review analyzes the ncRNAs that are closely related to the GM in the context of bladder cancer occurrence and treatment, and summarizes the role of their interaction with the GM in bladder cancer-related phenotypes. The aim is to delineate a regulatory network between GM and ncRNAs and provide a new perspective for the study and prevention of bladder cancer.
Collapse
Affiliation(s)
- Jun Zou
- Department of Otorhinolaryngology, The Affiliated Fengcheng Hospital of Yichun University, Fengcheng, Jiangxi, China
| | - Baisheng Xu
- Department of Urology, The First People's Hospital of Xiushui, Jiujiang, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Huanglin Duan
- Department of Urology, The First People's Hospital of Xiushui, Jiujiang, Jiangxi, China
| |
Collapse
|
3
|
Lei M, Liang J, Guo K, Tang L, He Y, Wu X. Roles of noncoding RNAs in multiple myeloma. Leuk Res 2024; 146:107593. [PMID: 39307099 DOI: 10.1016/j.leukres.2024.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 11/05/2024]
Abstract
Noncoding RNAs (ncRNAs) constitute a class of nucleic acid molecules within cells that do not encode proteins but play important roles in regulating gene expression, maintaining cellular homeostasis, and mediating cell signaling. This class encompasses microRNAs (miRNAs), long noncoding RNAs (lncRNAs), transfer RNAs (tRNAs), circular RNAs (circRNAs), small interfering RNAs (siRNAs), and others. miRNAs are pivotal in the regulation of gene expression in hematologic malignancies. Aberrant expression of lncRNAs has been confirmed in cancerous tissues, implicating their involvement in carcinogenesis or tumor suppression processes. tRNAs may induce errors or disturbances in protein synthesis, thereby affecting normal cellular function and proliferation. Moreover, circRNAs influence disease progression in tumors by modulating the expression of relevant genes, and siRNAs can inhibit tumor cell proliferation, invasion, and metastasis while inducing apoptosis. This review will elucidate the biological functions of ncRNAs in multiple myeloma (MM) and explore their potential value as therapeutic targets.
Collapse
Affiliation(s)
- Ming Lei
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), China
| | - Juan Liang
- Hengyang Medical College, University of South China, China
| | - Kaiyun Guo
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), China
| | - Langui Tang
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), China
| | - Yuxing He
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), China
| | - Xuefeng Wu
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), China.
| |
Collapse
|
4
|
Qiao ZZ, Zang MX, Zhang Y, Wang P, Li XY, Song X, Zhang CJ, Klinger FG, Ge W, Shen W, Cheng SF. LH promotes the proliferation of porcine primordial germ cell-like cells (pPGCLCs) by regulating the ceRNA network related to the TGF-β signaling pathway. Int J Biol Macromol 2024; 280:135984. [PMID: 39326611 DOI: 10.1016/j.ijbiomac.2024.135984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/23/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Primordial germ cells (PGCs), as the precursors of gametes found in early embryos, provide a new direction for solving the problem of reproductive disorders. In vitro, conversion of adult stem cells (ASCs) into primordial germ cell-like cells (PGCLCs) is feasible. The means of increasing PGCLCs number in vitro has been a focus of recent stem cell research. In this study, we found that luteinizing hormone (LH) could promote porcine PGCLCs (pPGCLCs) proliferation. To investigate the proliferation regulatory network, whole transcriptome sequencing technology was employed. Results showed that the TGF-β signaling pathway played a key role. In addition, we found that TGFβR1 and SMAD4, TGF-β signaling pathway-related genes, were significantly upregulated after LH treatment. Subsequently, we predicted their target microRNAs (miRNAs) and long non-coding RNAs (lncRNAs): ssc-miR-128, ssc-miR-146b, ssc-miR-361-3p, MSTRG.11473, MSTRG.11475, MSTRG.11553, and MSTRG.11554, and constructed the competitive endogenous RNAs (ceRNA) network. Finally, to further verify the ceRNA network, the miRNA-inhibitors were transfected into cells. RT-qPCR results indicated a significant increase in the expression of MSTRG.11473, MSTRG.11475, MSTRG.11553, MSTRG.11554, TGFβR1, and SMAD4 compared to the negative control (NC) group. In conclusion, these results highlight that LH could regulate the pPGCLCs proliferation by modulating the expression of TGF-β signaling pathway-related ncRNAs.
Collapse
Affiliation(s)
- Zhan-Zhong Qiao
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ming-Xin Zang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ying Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ping Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Ya Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Song
- Jinxiang County Agriculture and Rural Bureau, Jining 272200, China
| | - Chun-Jie Zhang
- Wudi Animal Husbandry and Veterinary Service Management Center of Binzhou City, Binzhou 256600, China
| | | | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
5
|
Zhou Y, Zhao K, Li J, Peng C, Jin J, Chen J, Li Y, Xu G, Pan S. LINC00461 promotes bladder cancer cells EMT through miR-518b/HNRNPUL1 axis. Discov Oncol 2024; 15:419. [PMID: 39254804 PMCID: PMC11387575 DOI: 10.1007/s12672-024-01294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Bladder cancer (BC) is a prevalent type of tumor in the urinary system, and it has been discovered that long non-coding RNA (lncRNA) plays a significant role in its occurrence and development. However, thus far, no reports have been published on the involvement of LINC00461 in BC. Here, we found that LINC00461 levels were upregulated in BC tissues and cell lines. Besides, knockdown of LINC00461 inhibited BC cell proliferation, migration, invasion through epithelial-mesenchymal transition (EMT), and slowed down tumor growth in vivo. Moreover, we found that LINC00461 regulated HNRNPUL1 expression through miR-518b sponge activity, and the miR-518 inhibitor could reverse the inhibitory effects of LINC00461 knockdown on BC cell proliferation, migration, and EMT. Our results suggest that LINC00461 may serve as a potential biomarker and therapeutic target for BC.
Collapse
Affiliation(s)
- Yijie Zhou
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Keyuan Zhao
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Junlong Li
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Chao Peng
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Jing Jin
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Jiajun Chen
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Yulei Li
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Gang Xu
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| | - Shouhua Pan
- Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
6
|
Qiu W, Zhang S, Yu W, Liu J, Wu H. Non-coding RNAs in hepatocellular carcinoma metastasis: Remarkable indicators and potential oncogenic mechanism. Comput Biol Med 2024; 180:108867. [PMID: 39089114 DOI: 10.1016/j.compbiomed.2024.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 08/03/2024]
Abstract
Non-coding RNAs (ncRNAs), as key regulators involving in intercellular biological processes, are more prominent in many malignancies, especially for hepatocellular carcinoma (HCC). Herein, we conduct a comprehensive review to summarize diverse ncRNAs roles in HCC metastatic mechanism. We focus on four signaling pathways that predominate in HCC metastatic process, including Wnt/β-catenin, HIF-1α, IL-6, and TGF-β pathways. MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) employed different mechanisms to participate in the regulation of the key genes in these pathways, typical as interaction with DNA to control transcription, with RNA to control translation, and with protein to control stability. Therefore, ncRNAs may become potential biomarkers and therapeutic targets for HCC metastasis.
Collapse
Affiliation(s)
- Wenqi Qiu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Zhu C, Zhang L, Ding X, Wu W, Zou J. Non-coding RNAs as regulators of autophagy in chondrocytes: Mechanisms and implications for osteoarthritis. Ageing Res Rev 2024; 99:102404. [PMID: 38971322 DOI: 10.1016/j.arr.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease with multiple causative factors such as aging, mechanical injury, and obesity. Autophagy is a complex dynamic process that is involved in the degradation and modification of intracellular proteins and organelles under different pathophysiological conditions. Autophagy, as a cell survival mechanism under various stress conditions, plays a key role in regulating chondrocyte life cycle metabolism and cellular homeostasis. Non-coding RNAs (ncRNAs) are heterogeneous transcripts that do not possess protein-coding functions, but they can act as effective post-transcriptional and epigenetic regulators of gene and protein expression, thus participating in numerous fundamental biological processes. Increasing evidence suggests that ncRNAs, autophagy, and their crosstalk play crucial roles in OA pathogenesis. Therefore, we summarized the complex role of autophagy in OA chondrocytes and focused on the regulatory role of ncRNAs in OA-associated autophagy to elucidate the complex pathological mechanisms of the ncRNA-autophagy network in the development of OA, thus providing new research targets for the clinical diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoqing Ding
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Wu
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
8
|
Kugaevskaya EV, Timoshenko OS, Gureeva TA, Radko SP, Lisitsa AV. MicroRNAs as promising diagnostic and prognostic markers for the human genitourinary cancer. BIOMEDITSINSKAIA KHIMIIA 2024; 70:191-205. [PMID: 39239894 DOI: 10.18097/pbmc20247004191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Genitourinary cancer (GUC) represents more than one fifth of all human cancers. This makes the development of approaches to its early diagnosis an important task of modern biomedicine. Circulating microRNAs, short (17-25 nucleotides) non-coding RNA molecules found in human biological fluids and performing a regulatory role in the cell, are considered as promising diagnostic and prognostic biomarkers of cancers, including GUC. In this review we have considered the current state of research aimed at assessing microRNAs as biomarkers of such human GUC types as malignant tumors of the bladder, kidney, prostate, testicles, ovaries, and cervix. A special attention has been paid to studies devoted to the identification of microRNAs in urine as a surrogate "liquid biopsy" that may provide the simplest and cheapest approach to mass non-invasive screening of human GUC. The use of microRNA panels instead of single types of microRNA generally leads to higher sensitivity and specificity of the developed diagnostic tests. However, to date, work on the microRNAs assessment as biomarkers of human GUC is still of a research nature, and the further introduction of diagnostic tests based on microRNAs into practice requires successful clinical trials.
Collapse
Affiliation(s)
| | | | - T A Gureeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - S P Radko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Lisitsa
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
9
|
Thangavelu L, Moglad E, Gupta G, Menon SV, Gaur A, Sharma S, Kaur M, Chahar M, Sivaprasad GV, Deorari M. GAS5 lncRNA: A biomarker and therapeutic target in breast cancer. Pathol Res Pract 2024; 260:155424. [PMID: 38909406 DOI: 10.1016/j.prp.2024.155424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Breast cancer is one of the most common causes of cancer-related mortality globally, and its aggressive phenotype results in poor treatment outcomes. Growth Arrest-Specific 5 long non-coding RNA has attracted considerable attention due to its pivotal function in apoptosis regulation and tumor aggressiveness in breast cancer. Gas5 enhances apoptosis by regulating apoptotic proteins, such as caspases and BCL2 family proteins, and the sensitivity of BCCs to chemotherapeutic agents. At the same time, low levels of GAS5 increased invasion, metastasis, and overall tumor aggressiveness. GAS5 also regulates EMT markers, critical for cancer metastasis, and influences tumor cell proliferation by regulating various signaling components. As a result, GAS5 can be restored to suppress tumor development as a possible therapeutic strategy, which might present promising prospects for a patient's treatment. Its activity levels might also be a crucial indicator and diagnostic parameter for prediction. This review highlights the significant role of GAS5 in modulating apoptosis and tumor aggressiveness in breast cancer, emphasizing its potential as a therapeutic target for breast cancer treatment and management.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Ashish Gaur
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | - Snehlata Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab 140307, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mamata Chahar
- Department of Chemistry, NIMS University, Jaipur, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
10
|
Wu L, Hu Z, Song XF, Liao YJ, Xiahou JH, Li Y, Zhang ZH. Targeting Nrf2 signaling pathways in the role of bladder cancer: From signal network to targeted therapy. Biomed Pharmacother 2024; 176:116829. [PMID: 38820972 DOI: 10.1016/j.biopha.2024.116829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/09/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
Bladder cancer (BC) is the most common malignancy of the urinary system and often recurs after tumor removal and/or is resistant to chemotherapy. In cancer cells, the activity of the signaling pathway changes significantly, affecting a wide range of cell activities from growth and proliferation to apoptosis, invasion and metastasis. Nrf2 is a transcription factor that plays an important role in cellular defense responses to a variety of cellular stresses. There is increasing evidence that Nrf2 acts as a tumor driver and that it is involved in the maintenance of malignant cell phenotypes. Abnormal expression of Nrf2 has been found to be common in a variety of tumors, including bladder cancer. Over-activation of Nrf2 can lead to DNA damage and the development of bladder cancer, and is also associated with various pathological phenomena of bladder cancer, such as metastasis, angiogenesis, and reduced toxicity and efficacy of therapeutic anticancer drugs to provide cell protection for cancer cells. However, the above process can be effectively inhibited or reversed by inhibiting Nrf2. Therefore, Nrf2 signaling may be a potential targeting pathway for bladder cancer. In this review, we will characterize this signaling pathway and summarize the effects of Nrf2 and crosstalk with other signaling pathways on bladder cancer progression. The focus will be on the impact of Nrf2 activation on bladder cancer progression and current therapeutic strategies aimed at blocking the effects of Nrf2. To better determine how to promote new chemotherapy agents, develop new therapeutic agents, and potential therapeutic targets.
Collapse
Affiliation(s)
- Liang Wu
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China.
| | - Zhao Hu
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Xiao-Fen Song
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Yu-Jian Liao
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Jiang-Huan Xiahou
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Yuan Li
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Zhong-Hua Zhang
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China.
| |
Collapse
|
11
|
Meng H, Yang R, Lin Q, Du W, Chu Z, Cao Y, Du M, Zhao Y, Xu J, Yang Z, Xie X, He L, Huang C. Isorhapontigenin inhibition of basal muscle-invasive bladder cancer attributed to its downregulation of SNHG1 and DNMT3b. BMC Cancer 2024; 24:737. [PMID: 38879516 PMCID: PMC11180402 DOI: 10.1186/s12885-024-12490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Bladder cancer (BC) is among the most prevalent malignant urothelial tumors globally, yet the prognosis for patients with muscle-invasive bladder cancer (MIBC) remains dismal, with a very poor 5-year survival rate. Consequently, identifying more effective and less toxic chemotherapeutic alternatives is critical for enhancing clinical outcomes for BC patients. Isorhapontigenin (ISO), a novel stilbene isolated from a Gnetum found in certain provinces of China, has shown potential as an anticancer agent due to its diverse anticancer activities. Despite its promising profile, the specific anticancer effects of ISO on BC and the underlying mechanisms are still largely unexplored. METHODS The anchorage-independent growth, migration and invasion of BC cells were assessed by soft agar and transwell invasion assays, respectively. The RNA levels of SOX2, miR-129 and SNHG1 were quantified by qRT-PCR, while the protein expression levels were validated through Western blotting. Furthermore, methylation-specific PCR was employed to assess the methylation status of the miR-129 promoter. Functional assays utilized siRNA knockdown, plasmid-mediated overexpression, and chemical inhibition approaches. RESULTS Our study demonstrated that ISO treatment significantly reduced SNHG1 expression in a dose- and time-dependent manner in BC cells, leading to the inhibition of anchorage-independent growth and invasion in human basal MIBC cells. This effect was accompanied by the downregulation of MMP-2 and MMP-9 and the upregulation of the tumor suppressor PTEN. Further mechanistic investigations revealed that SOX2, a key upstream regulator of SNHG1, played a crucial role in mediating the ISO-induced transcriptional suppression of SNHG1. Additionally, we found that ISO treatment led to a decrease in DNMT3b protein levels, which in turn mediated the hypomethylation of the miR-129 promoter and the subsequent suppression of SOX2 mRNA 3'-UTR activity, highlighting a novel pathway through which ISO exerts its anticancer effects. CONCLUSIONS Collectively, our study highlights the critical role of SNHG1 downregulation as well as its upstream DNMT3b/miR-129/SOX2 axis in mediating ISO anticancer activity. These findings not only elucidate the mechanism of action of ISO but also suggest novel targets for BC therapy.
Collapse
Affiliation(s)
- Hao Meng
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Rui Yang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qianqian Lin
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Wenqi Du
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zheng Chu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yaxin Cao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Mengxiang Du
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Yazhen Zhao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Jiheng Xu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ziyi Yang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Xiaomin Xie
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lijiong He
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Chuanshu Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China.
| |
Collapse
|
12
|
Hashem M, Mohandesi Khosroshahi E, Aliahmady M, Ghanei M, Soofi Rezaie Y, alsadat Jafari Y, rezaei F, Khodaparast eskadehi R, Kia Kojoori K, jamshidian F, Nabavi N, Rashidi M, Hasani Sadi F, Taheriazam A, Entezari M. Non-coding RNA transcripts, incredible modulators of cisplatin chemo-resistance in bladder cancer through operating a broad spectrum of cellular processes and signaling mechanism. Noncoding RNA Res 2024; 9:560-582. [PMID: 38515791 PMCID: PMC10955558 DOI: 10.1016/j.ncrna.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 03/23/2024] Open
Abstract
Bladder cancer (BC) is a highly frequent neoplasm in correlation with significant rate of morbidity, mortality, and cost. The onset of BC is predominantly triggered by environmental and/or occupational exposures to carcinogens, such as tobacco. There are two distinct pathways by which BC can be developed, including non-muscle-invasive papillary tumors (NMIBC) and non-papillary (or solid) muscle-invasive tumors (MIBC). The Cancer Genome Atlas project has further recognized key genetic drivers of MIBC along with its subtypes with particular properties and therapeutic responses; nonetheless, NMIBC is the predominant BC presentation among the suffering individuals. Radical cystoprostatectomy, radiotherapy, and chemotherapy have been verified to be the common therapeutic interventions in metastatic tumors, among which chemotherapeutics are more conventionally utilized. Although multiple chemo drugs have been broadly administered for BC treatment, cisplatin is reportedly the most effective chemo drug against the corresponding malignancy. Notwithstanding, tumor recurrence is usually occurred following the consumption of cisplatin regimens, particularly due to the progression of chemo-resistant trait. In this framework, non-coding RNAs (ncRNAs), as abundant RNA transcripts arise from the human genome, are introduced to serve as crucial contributors to tumor expansion and cisplatin chemo-resistance in bladder neoplasm. In the current review, we first investigated the best-known ncRNAs, i.e. microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), correlated with cisplatin chemo-resistance in BC cells and tissues. We noticed that these ncRNAs could mediate the BC-related cisplatin-resistant phenotype through diverse cellular processes and signaling mechanisms, reviewed here. Eventually, diagnostic and prognostic potential of ncRNAs, as well as their therapeutic capabilities were highlighted in regard to BC management.
Collapse
Affiliation(s)
- Mehrdad Hashem
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Melika Aliahmady
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Morvarid Ghanei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin Soofi Rezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin alsadat Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ramtin Khodaparast eskadehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kimia Kia Kojoori
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - faranak jamshidian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farzaneh Hasani Sadi
- General Practitioner, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Xu C, Wang Z, Liu YJ, Duan K, Guan J. Harnessing GMNP-loaded BMSC-derived EVs to target miR-3064-5p via MEG3 overexpression: Implications for diabetic osteoporosis therapy in rats. Cell Signal 2024; 118:111055. [PMID: 38246512 DOI: 10.1016/j.cellsig.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Diabetic osteoporosis (DO) is a significant complication of diabetes, characterized by a decrease in bone mineral density and an increase in fracture risk. Magnetic nanoparticles (GMNPs) have emerged as potential drug carriers for various therapeutic applications. This study investigated the molecular mechanism of GMNPs loaded with bone marrow mesenchymal stem cell (BMSC) derived extracellular vesicles (EVs) overexpressing MEG3 target miR-3064-5p to induce NR4A3 for treating DO in rats. Initial analysis was carried out on GEO datasets GSE7158 and GSE62589, revealing a notable downregulation of NR4A3 in osteoporotic samples. Subsequent in vitro studies demonstrated the effective uptake of BMSC-EVs-MEG3 by osteoblasts and its potential to inhibit miR-3064-5p, activating the PINK1/Parkin signaling pathway and thus promoting mitochondrial autophagy, osteoblast proliferation, and differentiation. In vivo, experiments using DO rat models further substantiated the therapeutic efficacy of GMNPE-EVs-MEG3 in alleviating osteoporosis symptoms. In conclusion, GMNPs loaded with BMSC-EVs, through the delivery of MEG3 targeting miR-3064-5p, can effectively promote NR4A3 expression, activate the PINK1/Parkin pathway, and thereby enhance osteoblast proliferation and differentiation, offering a promising treatment for DO.
Collapse
Affiliation(s)
- Chen Xu
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu 233000, Anhui Province, China; Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, Bengbu 233030, Anhui Province, China
| | - Zhaodong Wang
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu 233000, Anhui Province, China; Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, Bengbu 233030, Anhui Province, China
| | - Ya Jun Liu
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu 233000, Anhui Province, China; Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, Bengbu 233030, Anhui Province, China
| | - Keyou Duan
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu 233000, Anhui Province, China; Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, Bengbu 233030, Anhui Province, China
| | - Jianzhong Guan
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu 233000, Anhui Province, China; Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), 2600 Donghai Avenue, Bengbu 233030, Anhui Province, China.
| |
Collapse
|
14
|
Zhang Y, Zhan L, Jiang X, Tang X. Comprehensive review for non-coding RNAs: From mechanisms to therapeutic applications. Biochem Pharmacol 2024; 224:116218. [PMID: 38643906 DOI: 10.1016/j.bcp.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Non-coding RNAs (ncRNAs) are an assorted collection of transcripts that are not translated into proteins. Since their discovery, ncRNAs have gained prominence as crucial regulators of various biological functions across diverse cell types and tissues, and their abnormal functioning has been implicated in disease. Notably, extensive research has focused on the relationship between microRNAs (miRNAs) and human cancers, although other types of ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as significant contributors to human disease. In this review, we provide a comprehensive summary of our current knowledge regarding the roles of miRNAs, lncRNAs, and circRNAs in cancer and other major human diseases, particularly cancer, cardiovascular, neurological, and infectious diseases. Moreover, we discuss the potential utilization of ncRNAs as disease biomarkers and as targets for therapeutic interventions.
Collapse
Affiliation(s)
- YanJun Zhang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China.
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
15
|
Zhao D, Wu T, Tan Z, Xu J, Lu Z. Role of non-coding RNAs mediated pyroptosis on cancer therapy: a review. Expert Rev Anticancer Ther 2024; 24:239-251. [PMID: 38594965 DOI: 10.1080/14737140.2024.2341737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Non-coding RNAs (ncRNAs), which are incapable of encoding proteins, are involved in the progression of numerous tumors by altering transcriptional and post-transcriptional processing. Recent studies have revealed prominent features of ncRNAs in pyroptosis, a type of non-apoptotic programmed cellular destruction linked to an inflammatory reaction. Drug resistance has arisen gradually as a result of anti-apoptotic proteins, therefore strategies based on pyroptotic cell death have attracted increasing attention. We have observed that ncRNAs may exert significant influence on cancer therapy, chemotherapy, radio- therapy, targeted therapy and immunotherapy, by regulating pyroptosis. AREAS COVERED Literatures were searched (December 2023) for studies on cancer therapy for ncRNAs-mediated pyroptotic cell death. EXPERT OPINION The most universal mechanical strategy for ncRNAs to regulate target genes is competitive endogenous RNAs (ceRNA). Besides, certain ncRNAs could directly interact with proteins and modulate downstream genes to induce pyroptosis, resulting in tumor growth or inhibition. In this review, we aim to display that ncRNAs, predominantly long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs), could function as potential biomarkers for diagnosis and prognosis and produce new insights into anti-cancer strategies modulated by pyroptosis for clinical applications.
Collapse
Affiliation(s)
- Dan Zhao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangwei Wu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheqiong Tan
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Xu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongxin Lu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Zhuang S, Yang Z, Cui Z, Zhang Y, Che F. Epigenetic alterations and advancement of lymphoma treatment. Ann Hematol 2024; 103:1435-1454. [PMID: 37581713 DOI: 10.1007/s00277-023-05395-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023]
Abstract
Lymphomas, complex and heterogeneous malignant tumors, originate from the lymphopoietic system. These tumors are notorious for their high recurrence rates and resistance to treatment, which leads to poor prognoses. As ongoing research has shown, epigenetic modifications like DNA methylation, histone modifications, non-coding RNA regulation, and RNA modifications play crucial roles in lymphoma pathogenesis. Epigenetic modification-targeting drugs have exhibited therapeutic efficacy and tolerability in both monotherapy and combination lymphoma therapy. This review discusses pathogenic mechanisms and potential epigenetic therapeutic targets in common lymphomas, offering new avenues for lymphoma diagnosis and treatment. We also discuss the shortcomings of current lymphoma treatments, while suggesting potential areas for future research, in order to improve the prediction and prognosis of lymphoma.
Collapse
Affiliation(s)
- Shuhui Zhuang
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Zhaobo Yang
- Spine Surgery, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Zhuangzhuang Cui
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Yuanyuan Zhang
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China.
- Department of Hematology, Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Fengyuan Che
- Department of Neurology, Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, 276000, China.
| |
Collapse
|
17
|
Liu Y, Qin Y, Zhang Y. circRNA-PTPN4 mediated regulation of FOXO3 and ZO-1 expression: implications for blood-brain barrier integrity and cognitive function in uremic encephalopathy. Cell Biol Toxicol 2024; 40:22. [PMID: 38630149 PMCID: PMC11024022 DOI: 10.1007/s10565-024-09865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Uremic encephalopathy (UE) poses a significant challenge in neurology, leading to the need to investigate the involvement of non-coding RNA (ncRNA) in its development. This study employed ncRNA-seq and RNA-seq approaches to identify fundamental ncRNAs, specifically circRNA and miRNA, in the pathogenesis of UE using a mouse model. In vitro and in vivo experiments were conducted to explore the circRNA-PTPN4/miR-301a-3p/FOXO3 axis and its effects on blood-brain barrier (BBB) function and cognitive abilities. The research revealed that circRNA-PTPN4 binds to and inhibits miR-301a-3p, leading to an increase in FOXO3 expression. This upregulation results in alterations in the transcriptional regulation of ZO-1, affecting the permeability of human brain microvascular endothelial cells (HBMECs). The axis also influences the growth, proliferation, and migration of HBMECs. Mice with UE exhibited cognitive deficits, which were reversed by overexpression of circRNA-PTPN4, whereas silencing FOXO3 exacerbated these deficits. Furthermore, the uremic mice showed neuronal loss, inflammation, and dysfunction in the BBB, with the expression of circRNA-PTPN4 demonstrating therapeutic effects. In conclusion, circRNA-PTPN4 plays a role in promoting FOXO3 expression by sequestering miR-301a-3p, ultimately leading to the upregulation of ZO-1 expression and restoration of BBB function in mice with UE. This process contributes to the restoration of cognitive abilities.
Collapse
Affiliation(s)
- Yuhan Liu
- Department of Nephrology, General Hospital of the Northern Theatre, No. 83, Wenhua Road, Shenhe District, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Yanling Qin
- Department of Nephrology, General Hospital of the Northern Theatre, No. 83, Wenhua Road, Shenhe District, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Yanning Zhang
- Department of Nephrology, General Hospital of the Northern Theatre, No. 83, Wenhua Road, Shenhe District, Shenyang, 110000, Liaoning Province, People's Republic of China.
| |
Collapse
|
18
|
Yuan H, Wang T, Peng P, Xu Z, Feng F, Cui Y, Ma J, Wu J. Urinary Exosomal miR-17-5p Accelerates Bladder Cancer Invasion by Repressing its Target Gene ARID4B and Regulating the Immune Microenvironment. Clin Genitourin Cancer 2024; 22:569-579.e1. [PMID: 38383173 DOI: 10.1016/j.clgc.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Urothelial bladder cancer (BCa) is a common malignant tumor of the urinary system. It has been identified that exosomal miRNAs contribute to the development of BCa. However, its significance and mechanism in the malignant biological behavior of BCa remain unclear. In this study, the influence of exosomal miRNAs on BCa progression was investigated. METHODS High-throughput sequencing was conducted to analyze the microRNA-expression profile in urinary exosomes to screen out the key miRNA of muscle-invasive bladder cancer (MIBC). Then, candidate miRNA expression was verified and validated in urinary exosomes and tissue samples. To address the potential role of the candidate miRNA, we overexpressed and knocked down the candidate miRNA and explored its activity in BCa cell lines. Furthermore, the target gene of the selected miRNA was predicted and validated. RESULTS The expression profile of miRNAs revealed increased expression of miR-17-5p in MIBC urinary exosomes, and this was later confirmed in urinary exosomes and tissue samples. Cell function studies revealed that exosomal miR-17-5p significantly promoted the growth and invasion of BCa cells. Bioinformatics and luciferase experiments demonstrated that the ARID4B mRNA 3' UTR might be the binding site for miR-17-5p. Low ARID4B levels were linked to high-grade BCa patients and were associated with a better prognosis. CONCLUSION Elevated miR-17-5p contributes to BCa progression by targeting ARID4B and influencing the immune system. Based on these findings, miR-17-5p has the potential to be a new therapeutic target for the treatment of BCa.
Collapse
Affiliation(s)
- Hejia Yuan
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Tianqi Wang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Peng Peng
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Zhunan Xu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fan Feng
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Yuanshan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Jian Ma
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China.
| |
Collapse
|
19
|
Fan J, Chen B, Luo Q, Li J, Huang Y, Zhu M, Chen Z, Li J, Wang J, Liu L, Wei Q, Cao D. Potential molecular biomarkers for the diagnosis and prognosis of bladder cancer. Biomed Pharmacother 2024; 173:116312. [PMID: 38417288 DOI: 10.1016/j.biopha.2024.116312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 03/01/2024] Open
Abstract
Bladder cancer (BC) is a common malignant tumor of urinary system, which can be divided into muscle-invasive BC (MIBC) and nonmuscle-invasive BC (NMIBC). The number of BC patients has been gradually increasing currently. At present, bladder tumours are diagnosed and followed-up using a combination of cystoscopic examination, cytology and histology. However, the detection of early grade tumors, which is much easier to treat effectively than advanced stage disease, is still insufficient. It frequently recurs and can progress when not expeditiously diagnosed and monitored following initial therapy for NMIBC. Treatment strategies are totally different for different stage diseases. Therefore, it is of great practical significance to study new biomarkers for diagnosis and prognosis. In this review, we summarize the current state of biomarker development in BC diagnosis and prognosis prediction. We retrospectively analyse eight diagnostic biomarkers and eight prognostic biomarkers, in which CK, P53, PPARγ, PTEN and ncRNA are emphasized for discussion. Eight molecular subtype systems are also identified. Clinical translation of biomarkers for diagnosis, prognosis, monitoring and treatment will hopefully improve outcomes for patients. These potential biomarkers provide an opportunity to diagnose tumors earlier and with greater accuracy, and help identify those patients most at risk of disease recurrence.
Collapse
Affiliation(s)
- Junping Fan
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Bo Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Qiuping Luo
- Out-patient Department, West China Hospital, Sichuan University, Chengdu, China
| | - Jinze Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Yin Huang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Mengli Zhu
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyu Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Jia Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Liangren Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Dehong Cao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Yang Y, Li W, Yang H, Zhang Y, Zhang S, Xu F, Hao Y, Cao W, Du G, Wang J. Research progress on the regulatory mechanisms of FOXC1 expression in cancers and its role in drug resistance. Gene 2024; 897:148079. [PMID: 38101711 DOI: 10.1016/j.gene.2023.148079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
The Forkhead box C1 (FOXC1) transcription factor is an important member of the FOX family. After initially being identified in triple-negative breast cancer (TNBC) with significant oncogenic function, FOXC1 was subsequently demonstrated to be involved in the development of more than 16 types of cancers. In recent years, increasing studies have focused on the deregulatory mechanisms of FOXC1 expression and revealed that FOXC1 expression was regulated at multiple levels including transcriptional regulation, post-transcription regulation and post-translational modification. Moreover, dysregulation of FOXC1 is also implicated in drug resistance in various types of cancer, especially in breast cancer, which further emphasizes the translational and clinical significance of FOXC1 as a therapeutic target in cancer treatment. This review summarizes recent findings on mechanisms of FOXC1 dysregulation in cancers and its role in chemoresistance, which will help to better understand the oncogenic role of FOXC1, overcome FOXC1-mediated drug resistance and develop targeted therapy for FOXC1 in cancers.
Collapse
Affiliation(s)
- Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Fang Xu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yue Hao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wanxin Cao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
21
|
Lv Q, Shi J, Miao D, Tan D, Zhao C, Xiong Z, Zhang X. miR-1182-mediated ALDH3A2 inhibition affects lipid metabolism and progression in ccRCC by activating the PI3K-AKT pathway. Transl Oncol 2024; 40:101835. [PMID: 38039946 PMCID: PMC10730858 DOI: 10.1016/j.tranon.2023.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
In clear cell renal cell carcinoma (ccRCC), dysregulated lipid metabolism plays a pivotal role in tumor initiation and progression. This study delves into the unexplored landscape of Dysregulated Aldehyde Dehydrogenase 3 Family Member A2 (ALDH3A2) in ccRCC. Using a combination of "fatty acid metabolism" dataset analysis and differentially expressed genes (DEGs) derived from Gene Expression Omnibus (GEO) database, potential metabolic regulators in ccRCC were identified. Subsequent investigations utilizing public databases, clinical samples, and in vitro experiments revealed that ALDH3A2 was down-regulated in ccRCC, mediated by miR-1182, highlighting its role as an independent prognostic factor for patient survival. Functionally, ALDH3A2 exhibited tumor-suppressive properties, impacting ccRCC cell phenotypes and influencing epithelial-mesenchymal transition. Mechanistically, silencing ALDH3A2 promoted lipid accumulation in ccRCC cells by activating the PI3K-AKT pathway, thereby promoting tumor progression. These findings shed light on the critical role of the miR-1182/ALDH3A2 axis in ccRCC tumorigenesis, emphasizing the potential for targeting lipid metabolism as a promising anti-cancer strategy.
Collapse
Affiliation(s)
- Qingyang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Daojia Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Diaoyi Tan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chuanyi Zhao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
22
|
Martins EP, Vieira de Castro J, Fontes R, Monteiro-Reis S, Henrique R, Jerónimo C, Costa BM. Relevance of HOTAIR rs920778 and rs12826786 Genetic Variants in Bladder Cancer Risk and Survival. Cancers (Basel) 2024; 16:434. [PMID: 38275875 PMCID: PMC10814037 DOI: 10.3390/cancers16020434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The long non-coding RNA HOX transcript antisense intergenic RNA (HOTAIR) is associated with oncogenic features in bladder cancer and is predictive of poor clinical outcomes in patients diagnosed with this disease. In this study, we evaluated the impact of the HOTAIR single nucleotide polymorphisms rs920778 and rs12826786 on bladder cancer risk and survival. This case-control study included 106 bladder cancer patients and 199 cancer-free controls. Polymorphisms were evaluated through PCR-restriction fragment length polymorphism. The odds ratio and 95% confidence intervals were tested using univariable and multivariable logistic regressions. The effects on patient survival were evaluated using the log-rank test and Cox regression models. Our data showed that the HOTAIR rs920778 and rs12826786 genetic variants are not associated with the risk of developing bladder cancer. Nevertheless, survival analyses suggested that the HOTAIR rs920778 TT genotype and rs12826786 CC genotype are associated with increased survival in male bladder cancer patients and in patients, both male and female, who have primary tumors with a pathological stage of pT2. Together, these results suggest that, despite not being associated with bladder cancer risk, HOTAIR rs920778 and rs12826786 polymorphisms might represent new prognostic factors in this type of cancer. This is particularly important as these polymorphisms might be easily evaluated in bladder cancer patients in a minimally invasive manner to better predict their clinical outcomes.
Collapse
Affiliation(s)
- Eduarda P. Martins
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (E.P.M.); (J.V.d.C.); (R.F.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Joana Vieira de Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (E.P.M.); (J.V.d.C.); (R.F.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Rita Fontes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (E.P.M.); (J.V.d.C.); (R.F.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Sara Monteiro-Reis
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), 4200-072 Porto, Portugal; (S.M.-R.); (R.H.); (C.J.)
- Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), University of Porto, 4200-465 Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), 4200-072 Porto, Portugal; (S.M.-R.); (R.H.); (C.J.)
- Department of Pathology & Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), 4200-072 Porto, Portugal; (S.M.-R.); (R.H.); (C.J.)
- Department of Pathology & Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (E.P.M.); (J.V.d.C.); (R.F.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
23
|
Li S, Peng M, Tan S, Oyang L, Lin J, Xia L, Wang J, Wu N, Jiang X, Peng Q, Zhou Y, Liao Q. The roles and molecular mechanisms of non-coding RNA in cancer metabolic reprogramming. Cancer Cell Int 2024; 24:37. [PMID: 38238756 PMCID: PMC10795359 DOI: 10.1186/s12935-023-03186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024] Open
Abstract
One of the key features of cancer is energy metabolic reprogramming which is tightly related to cancer proliferation, invasion, metastasis, and chemotherapy resistance. NcRNAs are a class of RNAs having no protein-coding potential and mainly include microRNAs, lncRNAs and circRNAs. Accumulated evidence has suggested that ncRNAs play an essential role in regulating cancer metabolic reprogramming, and the altered metabolic networks mediated by ncRNAs primarily drive carcinogenesis by regulating the expression of metabolic enzymes and transporter proteins. Importantly, accumulated research has revealed that dysregulated ncRNAs mediate metabolic reprogramming contributing to the generation of therapeutic tolerance. Elucidating the molecular mechanism of ncRNAs in cancer metabolic reprogramming can provide promising metabolism-related therapeutic targets for treatment as well as overcome therapeutic tolerance. In conclusion, this review updates the latest molecular mechanisms of ncRNAs related to cancer metabolic reprogramming.
Collapse
Affiliation(s)
- Shizhen Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiewen Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
24
|
Zhong X, Sun L, Liu J, Yang X, Hou M, Wang X, Diao H. Silencing LINC00663 inhibits inflammation and angiogenesis through downregulation of NR2F1 via EBF1 in bladder cancer. RNA Biol 2024; 21:9-22. [PMID: 39219375 PMCID: PMC11188801 DOI: 10.1080/15476286.2024.2368304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/14/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024] Open
Abstract
This study is to elucidate the effect of the LINC00663/EBF1/NR2F1 axis on inflammation and angiogenesis in bladder cancer (BC) and related molecular mechanisms. After transfection, functional experiments were conducted to test cell proliferation and invasion, tube formation ability, and content of inflammatory factors, Snail, E-cadherin, and VEGFA. Meanwhile, the relationships among LINC00663, EBF1, and NR2F1 were predicted and verified. In addition, xenograft experiments in nude mice were performed to observe the oncogenicity of 5637 BC cells in vivo. In BC tissues and cells, LINC00663 and NR2F1 were upregulated. Silencing NR2F1 or LINC00663 repressed cell proliferation and invasion, weakened vascular mimicry in vitro, decreased inflammatory factor, Snail, and VEGFA levels, and increased expression of E-cadherin. LINC00663 positively regulated NR2F1 expression through EBF1. Additionally, in vivo experiments showed that NR2F1 upregulation reversed the suppression effects of LINC00663 silencing on tumour growth, inflammation, and angiogenesis. Silencing LINC00663 decreased NR2F1 expression by mediating EBF1, thereby inhibiting BC inflammation and angiogenesis.
Collapse
Affiliation(s)
- Xiulong Zhong
- Department of Urology Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Lijiang Sun
- Department of Urology Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Junxiang Liu
- Department of Urology Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Xiaokun Yang
- Department of Urology Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Minghui Hou
- Department of Urology Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Xinning Wang
- Medical Record Management Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Huifeng Diao
- Department of Urology Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| |
Collapse
|
25
|
Kishi S, Mori S, Fujiwara-Tani R, Ogata R, Sasaki R, Ikemoto A, Goto K, Sasaki T, Miyake M, Sasagawa S, Kawaichi M, Luo Y, Bhawal UK, Fujimoto K, Nakagawa H, Kuniyasu H. ERVK13-1/miR-873-5p/GNMT Axis Promotes Metastatic Potential in Human Bladder Cancer though Sarcosine Production. Int J Mol Sci 2023; 24:16367. [PMID: 38003554 PMCID: PMC10671720 DOI: 10.3390/ijms242216367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
N-methyl-glycine (sarcosine) is known to promote metastatic potential in some cancers; however, its effects on bladder cancer are unclear. T24 cells derived from invasive cancer highly expressed GNMT, and S-adenosyl methionine (SAM) treatment increased sarcosine production, promoting proliferation, invasion, anti-apoptotic survival, sphere formation, and drug resistance. In contrast, RT4 cells derived from non-invasive cancers expressed low GNMT, and SAM treatment did not produce sarcosine and did not promote malignant phenotypes. In T24 cells, the expression of miR-873-5p, which suppresses GNMT expression, was suppressed, and the expression of ERVK13-1, which sponges miR-873-5p, was increased. The growth of subcutaneous tumors, lung metastasis, and intratumoral GNMT expression in SAM-treated nude mice was suppressed in T24 cells with ERVK13-1 knockdown but promoted in RT4 cells treated with miR-873-5p inhibitor. An increase in mouse urinary sarcosine levels was observed to correlate with tumor weight. Immunostaining of 86 human bladder cancer cases showed that GNMT expression was higher in cases with muscle invasion and metastasis. Additionally, urinary sarcosine concentrations increased in cases of muscle invasion. Notably, urinary sarcosine concentration may serve as a marker for muscle invasion in bladder cancer; however, further investigation is necessitated.
Collapse
Grants
- 22K09341 Ministry of Education, Culture, Sports, Science and Technology
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
- 23K16621 Ministry of Education, Culture, Sports, Science and Technology
- 23K19900 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
- Research Institute, Tokushukai Nozaki Hospital, 2-10-50 Tanigawa, Daito 574-0074, Japan; (S.S.); (M.K.); (H.N.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Ayaka Ikemoto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Makito Miyake
- Department of Urology, Nara Medical University, Kashihara 634-8522, Japan; (M.M.); (K.F.)
| | - Satoru Sasagawa
- Research Institute, Tokushukai Nozaki Hospital, 2-10-50 Tanigawa, Daito 574-0074, Japan; (S.S.); (M.K.); (H.N.)
| | - Masashi Kawaichi
- Research Institute, Tokushukai Nozaki Hospital, 2-10-50 Tanigawa, Daito 574-0074, Japan; (S.S.); (M.K.); (H.N.)
| | - Yi Luo
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China;
| | - Ujjal Kumar Bhawal
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Japan;
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, Kashihara 634-8522, Japan; (M.M.); (K.F.)
| | - Hidemitsu Nakagawa
- Research Institute, Tokushukai Nozaki Hospital, 2-10-50 Tanigawa, Daito 574-0074, Japan; (S.S.); (M.K.); (H.N.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| |
Collapse
|
26
|
Li P, Ma X, Gu X. LncRNA MAFG-AS1 is involved in human cancer progression. Eur J Med Res 2023; 28:497. [PMID: 37941063 PMCID: PMC10631199 DOI: 10.1186/s40001-023-01486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) refer to a type of non-protein-coding transcript of more than 200 nucleotides. LncRNAs play fundamental roles in disease development and progression, and lncRNAs are dysregulated in many pathophysiological processes. Thus, lncRNAs may have potential value in clinical applications. The lncRNA, MAF BZIP Transcription Factor G (MAFG)-AS1, is dysregulated in several cancer, including breast cancer, lung cancer, liver cancer, bladder cancer, colorectal cancer, gastric cancer, esophagus cancer, prostate cancer, pancreatic cancer, ovarian cancer, and glioma. Altered MAFG-AS1 levels are also associated with diverse clinical characteristics and patient outcomes. Mechanistically, MAFG-AS1 mediates a variety of cellular processes via the regulation of target gene expression. Therefore, the diagnostic, prognostic, and therapeutic aspects of MAFG-AS1 have been widely explored. In this review, we discuss the expression, major roles, and molecular mechanisms of MAFG-AS1, the relationship between MAFG-AS1 and clinical features of diseases, and the clinical applications of MAFG-AS1.
Collapse
Affiliation(s)
- Penghui Li
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| |
Collapse
|
27
|
Wang W, He Z. Gasdermins in sepsis. Front Immunol 2023; 14:1203687. [PMID: 38022612 PMCID: PMC10655013 DOI: 10.3389/fimmu.2023.1203687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is a hyper-heterogeneous syndrome in which the systemic inflammatory response persists throughout the course of the disease and the inflammatory and immune responses are dynamically altered at different pathogenic stages. Gasdermins (GSDMs) proteins are pore-forming executors in the membrane, subsequently mediating the release of pro-inflammatory mediators and inflammatory cell death. With the increasing research on GSDMs proteins and sepsis, it is believed that GSDMs protein are one of the most promising therapeutic targets in sepsis in the future. A more comprehensive and in-depth understanding of the functions of GSDMs proteins in sepsis is important to alleviate the multi-organ dysfunction and reduce sepsis-induced mortality. In this review, we focus on the function of GSDMs proteins, the molecular mechanism of GSDMs involved in sepsis, and the regulatory mechanism of GSDMs-mediated signaling pathways, aiming to provide novel ideas and therapeutic strategies for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Wenhua Wang
- Department of Intensive Care Unit, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihui He
- Department of Intensive Care Unit, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan, China
| |
Collapse
|
28
|
Alharbi KS. Exploring GAS5's impact on prostate cancer: Recent discoveries and emerging paradigms. Pathol Res Pract 2023; 251:154851. [PMID: 37837861 DOI: 10.1016/j.prp.2023.154851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
Novel treatment targets must be discovered to improve the results for patients with prostate cancer, which continues to be a significant worldwide health problem. Growth Arrest-Specific 5 (GAS5) is a long non-coding RNA (lncRNA) that has emerged as a promising target. GAS5 is a non-coding RNA that is a tumour suppressor in many different cancers by reducing cell proliferation and increasing apoptosis. GAS5 influences cell cycle control and apoptosis via interactions with important signalling pathways and microRNAs, as has been shown by recent studies. Furthermore, GAS5 has attracted interest for its diagnostic and prognostic potential in prostate cancer. GAS5 expression is a promising biomarker for disease classification and individualized treatment approaches because of its association with clinicopathological characteristics such as tumour stage, Gleason score, and metastatic potential. Preclinical models have revealed encouraging anticancer benefits from experimental techniques employing GAS5 overexpression or synthetic analogues, indicating the possibility of translational treatments. Whether GAS5 can be used as a diagnostic biomarker and therapeutic target might lead to more effective and individualized ways to fight prostate cancer, improving patient outcomes and quality of life. To utilize its potential for therapy and establish it as a useful addition to the clinical arsenal against this pervasive malignancy, more investigation into the complex molecular pathways of GAS5 in prostate cancer is essential. This review highlights the recent advancements and insights into the role of GAS5 in prostate cancer pathogenesis and progression.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia.
| |
Collapse
|
29
|
Yu J, Lan L, Liu C, Zhu X. Improved prediction of prognosis and therapy response for lung adenocarcinoma after identification of DNA-directed RNA polymerase-associated lncRNAs. J Cancer Res Clin Oncol 2023; 149:12737-12754. [PMID: 37453971 DOI: 10.1007/s00432-023-05118-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND DNA-directed RNA polymerase (DDRP) related genes and long non-coding RNAs (lncRNAs) play an important role in the development of lung adenocarcinoma (LUAD), the leading cause of cancer-related death worldwide. Therefore, we aimed to construct a DDRP-associated lncRNA model to predict the prognosis of LUAD and to evaluate its sensitivity to immunotherapy and chemotherapy. METHODS To construct a predictive signature, we used univariate and multivariate Cox regression analyses, as well as the least absolute shrinkage and selection operator regression analysis. The prognostic model was verified by applying the ROC curve analysis, Kaplan-Meier analysis, GO/KEGG analysis, and a predictive nomogram. Eventually, immunotherapy and drug susceptibility were examined and stemness indices were analyzed. RESULTS 24 DDRP-associated lncRNAs were found as independent prognosis factors, which may be further developed as potential therapeutic vaccines for LUAD. The area under the ROC curve and the conformance index showed that the constructed model can predict the prognosis of LUAD patients. The predicted incidences of overall survival showed perfect conformance. And there were significant changes in immunological markers between the two risk subgroups in the model. Finally, an analysis of 50% maximum inhibitory concentration between the two risk subgroups showed that the high-risk subgroup was more sensitive to certain chemotherapy drugs. CONCLUSION We constructed a model that accurately predicts the outcomes of LUAD based on 24 DDRP-related lncRNAs and provided promising treatment options for the future.
Collapse
Affiliation(s)
- Jiaao Yu
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
- Computational Systems Biology Lab (CSBL), Institute of Bioinformatics, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Liqiang Lan
- Department of Internal Medicine, Qingdao Sixth People's Hospital, Qingdao, China
| | - Caixin Liu
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.
| | - Xiao Zhu
- Computational Systems Biology Lab (CSBL), Institute of Bioinformatics, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
30
|
Liu TY, Feng H, Yousuf S, Xie LL, Miao XY. Functional analysis of differentially expressed circular RNAs in sheep subcutaneous fat. BMC Genomics 2023; 24:591. [PMID: 37798722 PMCID: PMC10557293 DOI: 10.1186/s12864-023-09401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/23/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs), as important non-coding RNAs (ncRNAs), are involved in many biological activities. However, the exact chemical mechanism behind fat accumulation is unknown. In this paper, we obtained the expression profiles of circRNAs using high-throughput sequencing and investigated their differential expression in subcutaneous fat tissue of Duolang and Small Tail Han sheep. RESULTS From the transcriptomic analysis, 141 differentially expressed circRNAs were identified, comprising 61 up-regulated circRNAs and 80 down-regulated circRNAs. These host genes were primarily enriched in the MAPK and AMPK signaling pathways which is closely associated with fat deposition regulation. We identified circRNA812, circRNA91, and circRNA388 as vital genes in fat deposition by miRNA-circRNA target gene prediction. The functional annotation results of target genes of key circRNAs showed that the signaling pathways mainly included PI3K-Akt and AMPK. We constructed the competing endogenous RNA (ceRNA) regulatory network to study the role of circRNAs in sheep lipid deposition, and circRNA812, circRNA91, and circRNA388 can adsorb more miRNAs. NC_040253.1_5757, as the source of miRNA response element (MRE) among the three, may play an important role during the process of sheep fat deposition. CONCLUSIONS Our study gives a systematic examination of the circRNA profiles expressed in sheep subcutaneous fat. These results from this study provide some new basis for understanding circRNA function and sheep fat metabolism.
Collapse
Affiliation(s)
- Tian-Yi Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Hui Feng
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Salsabeel Yousuf
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Ling-Li Xie
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Xiang-Yang Miao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| |
Collapse
|
31
|
Zheng R, Gao F, Mao Z, Xiao Y, Yuan L, Huang Z, Lv Q, Qin C, Du M, Zhang Z, Wang M. LncRNA BCCE4 Genetically Enhances the PD-L1/PD-1 Interaction in Smoking-Related Bladder Cancer by Modulating miR-328-3p-USP18 Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303473. [PMID: 37705121 PMCID: PMC10602555 DOI: 10.1002/advs.202303473] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Indexed: 09/15/2023]
Abstract
Identification of cancer-associated variants, especially those in functional regions of long noncoding RNAs (lncRNAs), has become an essential task in tumor etiology. However, the genetic function of lncRNA variants involved in bladder cancer susceptibility remains poorly understood. Herein, it is identified that the rs62483508 G > A variant in microRNA response elements (MREs) of lncRNA Bladder cancer Cell Cytoplasm-Enriched abundant transcript 4 (BCCE4) is significantly associated with decreased bladder cancer risk (odds ratio = 0.84, P = 7.33 × 10-8 ) in the Chinese population (3603 cases and 4986 controls) but not in the European population. The protective genetic effect of the rs62483508 A allele is found in smokers or cigarette smoke-related carcinogen 4-aminobiphenyl (4-ABP) exposure. Subsequent biological experiments reveal that the A allele of rs62483508 disrupts the binding affinity of miR-328-3p to facilitate USP18 from miRNA-mediated degradation and thus specifically attenuates the downstream PD-L1/PD-1 interaction. LncRNA BCCE4 is also enriched in exosomes from bladder cancer plasma, tissues, and cells. This comprehensive study clarifies the genetic mechanism of lncRNA BCCE4 in bladder cancer susceptibility and its role in the regulation of the immune response in tumorigenesis. The findings provide a valuable predictor of bladder cancer risk that can facilitate diagnosis and prevention.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Fang Gao
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Key Laboratory of Environmental Medicine EngineeringMinistry of Education of ChinaSchool of Public HealthSoutheast UniversityNanjing210009China
| | - Zhenguang Mao
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Yanping Xiao
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Lin Yuan
- Department of UrologyJiangsu Province Hospital of TCMNanjing210029China
- Department of Integrated Traditional Chinese and Western Medicine Tumor Research LabNanjing210028China
| | - Zhengkai Huang
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Qiang Lv
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Chao Qin
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Mulong Du
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Department of BiostatisticsCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Zhengdong Zhang
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
- Institute of Clinical ResearchThe Affiliated Taizhou People's Hospital of NanjingMedical UniversityTaizhou225300China
| | - Meilin Wang
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
- The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215008China
| |
Collapse
|
32
|
Aldayyeni H, Hjazi A, Shahab S, Gupta J, Alsaab HO, Motea YH, Alazbjee AAA, Romero-Parra RM, Obaid RF, Hussien BM, Hosseini-Fard SR. Functions, mechanisms, and clinical applications of lncRNA LINC00857 in cancer pathogenesis. Hum Cell 2023; 36:1656-1671. [PMID: 37378889 DOI: 10.1007/s13577-023-00936-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Emerging data indicated that long noncoding RNAs (lncRNAs) are crucial players in the biological processes via regulating epigenetics, transcription, and protein translation. A novel lncRNA, LINC00857, was indicated to upregulate in several types of cancer. In addition, LINC00857 was functionally related to the modulation of the cancer-linked behaviors, including invasion, migration, proliferation, epithelial-mesenchymal transition (EMT), cell cycle, and apoptosis. The importance of LINC00857 in cancer onset and development proposed that LINC00857 has major importance in the cancer progression and may be considered as a novel prognostic/diagnostic biomarker as well as a treatment target. Here, we retrospectively investigate the available progress in biomedical research investigating the functions of LINC00857 in cancer, focusing on finding the molecular mechanisms affecting various cancer-related behaviors and exploring its clinical applications.
Collapse
Affiliation(s)
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sana Shahab
- Department of Business Administration, College of Business Administration, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, 21944, Saudi Arabia
| | | | | | | | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Sun YF, Chen L, Xia QJ, Wang TH. Identification of necroptosis-related long non-coding RNAs prognostic signature and the crucial lncRNA in bladder cancer. J Cancer Res Clin Oncol 2023; 149:10217-10234. [PMID: 37269345 DOI: 10.1007/s00432-023-04886-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/19/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Research on the relationships between long non-coding RNAs (lncRNAs) and cancer is attractive and has progressed very rapidly. Necroptosis-related biomarkers can potentially be used for predicting the prognosis of cancer patients. This study aimed to establish a necroptosis-related lncRNA (NPlncRNA) signature to predict the prognosis of patients with bladder cancer (BCa). METHODS First, NPlncRNAs were identified using Pearson correlation analysis and machine learning algorithms, including SVM-RFE, least absolute shrinkage and selection operator (LASSO) regression, and random forest. The prognostic NPlncRNA signature was constructed using univariate and multivariate Cox regression analyses and the diagnostic efficacy and clinically predictive efficiency were evaluated and validated. The biological functions of the signature were analysed using gene set enrichment analysis (GSEA) and functional enrichment analysis. We further integrated the RNA-seq dataset (GSE133624) with our outcomes to reveal the crucial NPlncRNA that was functionally verified by assessing cell viability, proliferation, and apoptosis in BCa cells. RESULTS The prognostic NPlncRNAs signature was composed of PTOV1-AS2, AC083862.2, MAFG-DT, AC074117.1, AL049840.3, and AC078778.1, and a risk score based on this signature was proven to be an independent prognostic factor for the BCa patients, indicated by poor overall survival (OS) of patients in the high-risk group. Additionally, the NPlncRNAs signature had a higher diagnostic validity than that of other clinicopathological variables, with a greater area under the receptor operating characteristic and concordance index curves. A nomogram established by integrating clinical variables and risk score confirmed that the signature can accurately predict the OS of patients and has high clinical practicability. Functional enrichment analysis and GSEA revealed that some cancer-related and necroptosis-related pathways were enriched in high-risk groups. The crucial NPlncRNA MAFG-DT was associated with poor prognosis and was highly expressed in BCa cells. MAFG-DT silencing notably inhibited proliferation and enhanced apoptosis of BCa cells. CONCLUSIONS A novel prognostic NPlncRNAs signature was identified in BCa in this study, which provides potential therapeutic targets among which MAFG-DT plays critical roles in the tumorigenesis of BCa.
Collapse
Affiliation(s)
- Yi-Fei Sun
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Li Chen
- Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing-Jie Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory Animal Department, Kunming Medical University, Kunming, 650031, China.
| |
Collapse
|
34
|
Mehmandar-Oskuie A, Jahankhani K, Rostamlou A, Arabi S, Sadat Razavi Z, Mardi A. Molecular landscape of LncRNAs in bladder cancer: From drug resistance to novel LncRNA-based therapeutic strategies. Biomed Pharmacother 2023; 165:115242. [PMID: 37531786 DOI: 10.1016/j.biopha.2023.115242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Bladder cancer (BC) is a common and serious type of cancer that ranks among the top ten most prevalent malignancies worldwide. Due to the high occurrence rate of BC, the aggressive nature of cancer cells, and their resistance to medication, managing this disease has become a growing challenge in clinical care. Long noncoding RNAs (lncRNAs) are a group of RNA transcripts that do not code for proteins and are more than 200 nucleotides in length. They play a significant role in controlling cellular pathways and molecular interactions during the onset, development and progression of different types of cancers. Recent advancements in high-throughput gene sequencing technology have led to the identification of various differentially expressed lncRNAs in BC, which indicate abnormal expression. In this review, we summarize that these lncRNAs have been found to impact several functions related to the development of BC, including proliferation, cell growth, migration, metastasis, apoptosis, epithelial-mesenchymal transition, and chemo- and radio-resistance. Additionally, lncRNAs may improve prognosis prediction for BC patients, indicating a future use for them as prognostic and diagnostic biomarkers for BC patients. This review highlights that genetic tools and anti-tumor agents, such as CRISPR/Cas systems, siRNA, shRNA, antisense oligonucleotides, and vectors, have been created for use in preclinical cancer models. This has led to a growing interest in using lncRNAs based on positive research findings.
Collapse
Affiliation(s)
- Amirreza Mehmandar-Oskuie
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Rostamlou
- Department of Medical Biology, Faculty of Medicine, University of EGE, IZMIR, Turkey
| | - Sepideh Arabi
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zahra Sadat Razavi
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Amirhossein Mardi
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
35
|
Xiao Y, He L, Dong Y, Huang Y, Ma L, Li W. Highly Expressed LINC00958 Modulates the Growth and Epithelial-Mesenchymal Transition of Bladder Cancer Cells Through SAPK/JNK Signaling Pathway. Cancer Biother Radiopharm 2023; 38:405-414. [PMID: 35766943 DOI: 10.1089/cbr.2022.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective: To determine the expression of LINC00958 (BLACAT2) in bladder cancer (BC), the most common malignancy in the urinary system, and to determine its exact mechanism of action, so as to provide novel references for future clinical diagnosis and treatment of BC and lay a foundation for the follow-up research on LINC00958. Materials and Methods: Human bladder transitional cell carcinoma cells (T24 and J82) and human normal urothelial cells (SV-HUC-1) were purchased to detect the expression of LINC00958 and SAPK/JNK signaling pathway-related proteins. sh-LINC00958 targeting to silence LINC00958 expression and corresponding negative blank (sh-Control) were transfected into T24 and J82. Additionally, BC cells cultured with SP600125 (SP600125 group), a specific inhibitor of SAPK/JNK signaling pathway, and those cultured with the same amount of normal saline (Blank group) were also constructed. Cell growth capacity, cell invasiveness, and expression of epithelial-mesenchymal transition (EMT)-associated proteins were determined using CCK-8 & clone formation assays, Transwell assay, and Western blot, respectively. Results: The online databases Gene Expression Profiling Interactive Analysis, European Bioinformatics Institute, and StarBase revealed elevated LINC00958 expression in BC, and a potential association between LINC00958 and patient prognosis and survival. PCR results showed that LINC00958 was increased in T24 and J82 compared with the sh-Control group (p < 0.05). The results of biological behavior test revealed that the proliferation and invasiveness capacity of the sh-LINC00958 group decreased, while that of the SP600125 group increased compared with the Blank group (both p < 0.05). In the rescue experiment, the influence of sh-LINC00958 on BC cells was completely reversed by SP600125 (p > 0.05); In addition, the expression of E-cadherin, an EMT marker protein, was lower compared with the SH-LINC0958 group, while the Vimentin expression was higher (p < 0.05). Similarly, the wound-healing assay determined reduced cell healing rate in the sh-LINC00958 group (p < 0.05), and there was no difference between the sh-LINC00958+SP600125 group and the sh-Control group (p > 0.05). Conclusion: LINC00958 shows elevated expression in BC and promotes the growth and EMT of BC cell via inhibiting the SAPK/JNK signaling pathway, which has important potential as a new clinical diagnostic marker and therapeutic target for BC.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Urological Surgery, The Affiliated Hospital of Nantong University, Nantong, China
- School of Medicine, Nantong University, Nantong, China
| | - Lei He
- Department of Urological Surgery, The Affiliated Hospital of Nantong University, Nantong, China
- School of Medicine, Nantong University, Nantong, China
| | - Yipeng Dong
- School of Medicine, Nantong University, Nantong, China
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Nantong University, Nantong, China
| | - Yeqing Huang
- Department of Urological Surgery, The Affiliated Hospital of Nantong University, Nantong, China
| | - Limin Ma
- Department of Urological Surgery, The Affiliated Hospital of Nantong University, Nantong, China
| | - Wenguang Li
- Department of Urological Surgery, The Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
36
|
Guz M, Jeleniewicz W, Cybulski M. Interactions between circRNAs and miR-141 in Cancer: From Pathogenesis to Diagnosis and Therapy. Int J Mol Sci 2023; 24:11861. [PMID: 37511619 PMCID: PMC10380543 DOI: 10.3390/ijms241411861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
The function of non-coding RNAs (ncRNAs) in the pathogenesis and development of cancer is indisputable. Molecular mechanisms underlying carcinogenesis involve the aberrant expression of ncRNAs, including circular RNAs (circRNAs), and microRNAs (miRNAs). CircRNAs are a class of single-stranded, covalently closed RNAs responsible for maintaining cellular homeostasis through their diverse functions. As a part of the competing endogenous RNA (ceRNAs) network, they play a central role in the regulation of accessibility of miRNAs to their mRNA targets. The interplay between these molecular players is based on the primary role of circRNAs that act as miRNAs sponges, and the circRNA/miRNA imbalance plays a central role in different pathologies including cancer. Herein, we present the latest state of knowledge about interactions between circRNAs and miR-141, a well-known member of the miR-200 family, in malignant transformation, with emphasis on the biological role of circRNA/miR-141/mRNA networks as a future target for novel anti-cancer therapies.
Collapse
Affiliation(s)
- Małgorzata Guz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Witold Jeleniewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marek Cybulski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
37
|
Si TE, Li Z, Zhang J, Su S, Liu Y, Chen S, Peng GH, Cao J, Zang W. Epigenetic mechanisms of Müller glial reprogramming mediating retinal regeneration. Front Cell Dev Biol 2023; 11:1157893. [PMID: 37397254 PMCID: PMC10309042 DOI: 10.3389/fcell.2023.1157893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023] Open
Abstract
Retinal degenerative diseases, characterized by retinal neuronal death and severe vision loss, affect millions of people worldwide. One of the most promising treatment methods for retinal degenerative diseases is to reprogram non-neuronal cells into stem or progenitor cells, which then have the potential to re-differentiate to replace the dead neurons, thereby promoting retinal regeneration. Müller glia are the major glial cell type and play an important regulatory role in retinal metabolism and retinal cell regeneration. Müller glia can serve as a source of neurogenic progenitor cells in organisms with the ability to regenerate the nervous system. Current evidence points toward the reprogramming process of Müller glia, involving changes in the expression of pluripotent factors and other key signaling molecules that may be regulated by epigenetic mechanisms. This review summarizes recent knowledge of epigenetic modifications involved in the reprogramming process of Müller glia and the subsequent changes to gene expression and the outcomes. In living organisms, epigenetic mechanisms mainly include DNA methylation, histone modification, and microRNA-mediated miRNA degradation, all of which play a crucial role in the reprogramming process of Müller glia. The information presented in this review will improve the understanding of the mechanisms underlying the Müller glial reprogramming process and provide a research basis for the development of Müller glial reprogramming therapy for retinal degenerative diseases.
Collapse
Affiliation(s)
- Tian-En Si
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Zhixiao Li
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jingjing Zhang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Songxue Su
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Yupeng Liu
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Shiyue Chen
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Guang-Hua Peng
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Weidong Zang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Gilyazova I, Enikeeva K, Rafikova G, Kagirova E, Sharifyanova Y, Asadullina D, Pavlov V. Epigenetic and Immunological Features of Bladder Cancer. Int J Mol Sci 2023; 24:9854. [PMID: 37373000 DOI: 10.3390/ijms24129854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Bladder cancer (BLCA) is one of the most common types of malignant tumors of the urogenital system in adults. Globally, the incidence of BLCA is more than 500,000 new cases worldwide annually, and every year, the number of registered cases of BLCA increases noticeably. Currently, the diagnosis of BLCA is based on cystoscopy and cytological examination of urine and additional laboratory and instrumental studies. However, cystoscopy is an invasive study, and voided urine cytology has a low level of sensitivity, so there is a clear need to develop more reliable markers and test systems for detecting the disease with high sensitivity and specificity. Human body fluids (urine, serum, and plasma) are known to contain significant amounts of tumorigenic nucleic acids, circulating immune cells and proinflammatory mediators that can serve as noninvasive biomarkers, particularly useful for early cancer detection, follow-up of patients, and personalization of their treatment. The review describes the most significant advances in epigenetics of BLCA.
Collapse
Affiliation(s)
- Irina Gilyazova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Kadriia Enikeeva
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Guzel Rafikova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Evelina Kagirova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Yuliya Sharifyanova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Dilara Asadullina
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
39
|
Xu X, Li H, Xie M, Zhou Z, Wang D, Mao W. LncRNAs and related molecular basis in malignant pleural mesothelioma: challenges and potential. Crit Rev Oncol Hematol 2023; 186:104012. [PMID: 37116816 DOI: 10.1016/j.critrevonc.2023.104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare but invasive cancer, which mainly arises from mesothelial tissues of pleura, peritoneum and pericardium. Despite significant advances in treatments, the prognosis of MPM patients remains poor, and the 5-year survival rate is less than 10%. Therefore, it is urgent to explore novel therapeutic targets for the treatment of MPM. Growing evidence has indicated that long non-coding RNAs (lncRNAs) potentially could be promising therapeutic targets for numerous cancers. In this regard, lncRNAs might also potentially therapeutic targets for MPM. Recent advances have been made to investigate the molecular basis of MPM. This review first provides a comprehensive overview of roles of lncRNAs in MPM and then discusses the relationship between molecular basis of MPM and MPM-related lncRNAs to implement them as promising therapeutic targets for MPM.
Collapse
Affiliation(s)
- Xiaoling Xu
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Huihui Li
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Mingying Xie
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zichao Zhou
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ding Wang
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weimin Mao
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China; Department of Thoracic Surgery, Zhejiang Cancer Hospital (Zhejiang Cancer Research Institute), Hangzhou, Zhejiang Province, China.
| |
Collapse
|
40
|
Biological functions and therapeutic potential of SHCBP1 in human cancer. Biomed Pharmacother 2023; 160:114362. [PMID: 36739763 DOI: 10.1016/j.biopha.2023.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The incidence of cancer is increasing globally, and it is the most common cause of death. The identification of novel cancer diagnostic and prognostic biomarkers is important for developing cancer treatment strategies and reducing mortality. SHCSH2 domain-binding protein 1 (SHCBP1) is a protein that specifically binds to the SH2 domain of Src homology-collagen. It participates in the regulation of a variety of signal transduction pathways and can activate a variety of signaling molecules to perform a series of physiological functions. SHCBP1 is expressed in a variety of human tissues, but its abnormal expression in various systems is associated with cancer. SHCBP1 is abnormally expressed in a variety of tumors, and plays roles in almost all aspects of cancer biology (such as cell proliferation, apoptosis prevention, invasion, and metastasis) through various possible mechanisms. Its expression level is related to the clinicopathological characteristics of patients. In addition, the SHCBP1 expression pattern is closely related to cancer type, stage, and other clinical variables. Therefore, SHCBP1 is a promising tumor biomarker for cancer diagnosis and prognosis and a potential therapeutic target. This article reviews the expression, biological functions, mechanisms, and potential clinical significance of SHCBP1 in various human tumors to provide a new theoretical basis for clinical molecular diagnosis, molecular targeted therapy, and scientific research on cancer.
Collapse
|
41
|
Ke M, Sun N, Lin Z, Zhang P, Hu Y, Wu S, Zheng Z, Lu Y, Jin H. SNHG18 inhibits bladder cancer cell proliferation by increasing p21 transcription through destabilizing c-Myc protein. Cancer Cell Int 2023; 23:48. [PMID: 36927398 PMCID: PMC10018893 DOI: 10.1186/s12935-023-02887-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been confirmed to play important roles in various cancers including bladder cancer (BC). The precise expression pattern of lncRNA small nucleolar RNA host gene 18 (SNHG18) in BC and its mechanisms of action have not been fully explored. MATERIALS AND METHODS The expression of SNHG18 was evaluated by RT-qPCR in bladder cancer clinical samples and human bladder cancer cell lines, and stable cell lines overexpressing SNHG18 were constructed. The effect of SNHG18 on the proliferation of bladder cancer cells was detected by soft agar colony formation test, ATP activity test and subcutaneous tumorigenesis model in nude mice. The specific mechanism of SNHG18 inhibition of bladder cancer proliferation was studied by flow cytometry, western blotting, dual luciferase reporter gene assay and protein degradation assay. RESULTS We found that SNHG18 is significantly downregulated in BC tissues and cell lines. Kaplan-Meier analysis showed that SNHG18 expression is positively correlated with survival in BC patients. Ectopic overexpression of SNHG18 significantly inhibited the proliferation of BC cells in vitro and in vivo. Further mechanistic investigations demonstrated that SNHG18 inhibited c-Myc expression by modulating the ubiquitination-proteasome pathway and that c-Myc is the critical transcription factor that mediates SNHG18 inhibition of BC growth by directly binding to the p21 promoter, which was attributed with significant p21 accumulation. CONCLUSIONS SNHG18 promotes the transcription and expression of p21 by inhibiting c-Myc expression, leading to G0-G1 arrest and inhibiting the proliferation of bladder cancer cells. These findings highlight a novel cell cycle regulatory mechanism involving the SNHG18/c-Myc/p21 pathway in BC pathogenesis and could potentially lead to new lncRNA-based diagnostics and/or therapeutics for BC.
Collapse
Affiliation(s)
- Meixia Ke
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,Clinical Laboratory, Dongyang People's Hospital, Dongyang, 322100, Zhejiang, China
| | - Ning Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhenni Lin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Peipei Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shuilian Wu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhijian Zheng
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yongyong Lu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
42
|
Qin J, Ke B, Liu T, Kong C, Li A, Fu H, Jin C. Aberrantly expressed long noncoding RNAs as potential prognostic biomarkers in newly diagnosed multiple myeloma: A systemic review and meta-analysis. Cancer Med 2023; 12:2199-2218. [PMID: 36057947 PMCID: PMC9939128 DOI: 10.1002/cam4.5135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/17/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Numerous studies have manifested long noncoding RNAs (lncRNAs) as biomarkers to determine the prognosis of multiple myeloma (MM) patients. Nevertheless, the prognostic role of lncRNAs in MM is still ambiguous. Herein, we performed a meta-analysis to evaluate the predictive value of aberrantly expressed lncRNAs in MM. METHODS A systemic literature search was performed in PubMed, EMBASE, Cochrane, and Web of Science databases until October 9, 2021, and the protocol was registered in the PROSPERO database (CRD42021284364). Our study extracted the hazard ratios (HRs) and 95% confidence intervals (CIs) of overall survival (OS), progression-free survival (PFS), or event-free survival (EFS). Begg's and Egger's tests were employed to correct publication bias. RESULT Twenty-six individual studies containing 3501 MM patients were enrolled in this study. The results showed that aberrant expression of lncRNAs was associated with poor OS and PFS of MM patients. The pooled HRs for univariate OS and PFS were 1.48 (95% CI = 1.17-1.88, p < 0.001) and 1.30 (95% CI = 1.18-1.43, p < 0.001), respectively, whereas the pooled HRs for multivariate OS and PFS were 1.50 (95% CI = 1.16-1.95, p < 0.001) and 1.59 (95% CI = 1.22-2.07, p < 0.001), respectively. Subgroup analysis suggested that MALAT1, TCF7, NEAT1, and PVT1 upregulation were associated with poor OS (p < 0.05), PVT1, and TCF7 upregulation were implicated with worse PFS (p < 0.05), while only TCF7 overexpression was correlated with reduced EFS (p < 0.05). Moreover, the contour-enhanced funnel plot demonstrated the reliability of our current conclusion, which was not affected by publication bias. CONCLUSION Aberrantly expressed particular lncRNAs are critical prognostic indicators in long-term survival as well as promising biomarkers in progression-free status. However, different cutoff values and dissimilar methods to assess lncRNA expression among studies may lead to heterogeneity.
Collapse
Affiliation(s)
- Jiading Qin
- Medical College of Nanchang UniversityNanchangJiangxi330006China
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
| | - Bo Ke
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySoochowJiangsu215006China
| | - Tingting Liu
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
| | - Chunfang Kong
- Medical College of Nanchang UniversityNanchangJiangxi330006China
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
| | - Anna Li
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
| | - Huan Fu
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
| | - Chenghao Jin
- Medical College of Nanchang UniversityNanchangJiangxi330006China
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySoochowJiangsu215006China
| |
Collapse
|
43
|
p53 Activates the Lipoxygenase Activity of ALOX15B via Inhibiting SLC7A11 to Induce Ferroptosis in Bladder Cancer Cells. J Transl Med 2023; 103:100058. [PMID: 36801644 DOI: 10.1016/j.labinv.2022.100058] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Bladder cancer is a malignant tumor of the urinary system and is one of the most common cancers worldwide. Lipoxygenases are closely related to the development of various cancers. However, the relationship between lipoxygenases and p53/SLC7A11-dependent ferroptosis in bladder cancer has not been reported. Here, we aimed to investigate the roles and internal mechanisms of lipid peroxidation and p53/SLC7A11-dependent ferroptosis in the development and progression of bladder cancer. First, ultraperformance liquid chromatography-tandem mass spectrometry was performed to measure the metabolite production of lipid oxidation in patients' plasma. The metabolic changes in patients with bladder cancer were discovered, revealing that stevenin, melanin, and octyl butyrate were upregulated. Then, the expressions of lipoxygenase family members were measured to screen out candidates with significant changes in bladder cancer tissues. Among various lipoxygenases, ALOX15B was significantly downregulated in bladder cancer tissues. Moreover, p53 and 4-hydroxynonenal (4-HNE) levels were decreased in bladder cancer tissues. Next, sh-ALOX15B, oe-ALOX15B, or oe-SLC7A11 plasmids were constructed and transfected into bladder cancer cells. Then, the p53 agonist Nutlin-3a, tert-butyl hydroperoxide, iron chelator deferoxamine, and the selective ferroptosis inhibitor ferr1 were added. The effects of ALOX15B and p53/SLC7A11 on bladder cancer cells were evaluated by in vitro and in vivo experiments. We revealed that knockdown of ALOX15B promoted bladder cancer cell growth, which was also found to protect bladder cancer cells from p53-induced ferroptosis. Furthermore, p53 activated ALOX15B lipoxygenase activity by suppressing SLC7A11. Taken together, p53 activated the lipoxygenase activity of ALOX15B via inhibiting SLC7A11 to induce ferroptosis in bladder cancer cells, which provided insight into the molecular mechanism of the occurrence and development of bladder cancer.
Collapse
|
44
|
Cai J, Xie H, Yan Y, Huang Z, Tang P, Cao X, Wang Z, Yang C, Wen J, Tan M, Zhang F, Shen B. A novel cuproptosis-related lncRNA signature predicts prognosis and therapeutic response in bladder cancer. Front Genet 2023; 13:1082691. [PMID: 36685947 PMCID: PMC9845412 DOI: 10.3389/fgene.2022.1082691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Bladder cancer (BC) ranks the tenth in the incidence of global tumor epidemiology. LncRNAs and cuproptosis were discovered to regulate the cell death. Herein, we downloaded transcriptome profiling, mutational data, and clinical data on patients from The Cancer Genome Atlas (TCGA). High- and low-risk BC patients were categorized. Three CRLs (AL590428.1, AL138756.1 and GUSBP11) were taken into prognostic signature through least absolute shrinkage and selection operator (LASSO) Cox regression. Worse OS and PFS were shown in high-risk group (p < 0.05). ROC, independent prognostic analyses, nomogram and C-index were predicted via CRLs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated IncRNAs play a biological role in BC progression. Immune-related functions showed the high-risk group received more benefit from immunotherapy and had stronger immune responses, and the overall survival was better (p < 0.05). Finally, a more effective outcome (p < 0.05) was found from clinical immunotherapy via the TIDE algorithm and many potential anti-tumor drugs were identified. In our study, the cuproptosis-related signature provided a novel tool to predict the prognosis in BC patients accurately and provided a novel strategy for clinical immunotherapy and clinical applications.
Collapse
Affiliation(s)
- Jinming Cai
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haoran Xie
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengnan Huang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengfei Tang
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai, China
| | - Xiangqian Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyi Wang
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiling Wen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,*Correspondence: Jiling Wen, ; Mingyue Tan, ; Fang Zhang, ; Bing Shen,
| | - Mingyue Tan
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Jiling Wen, ; Mingyue Tan, ; Fang Zhang, ; Bing Shen,
| | - Fang Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jiling Wen, ; Mingyue Tan, ; Fang Zhang, ; Bing Shen,
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jiling Wen, ; Mingyue Tan, ; Fang Zhang, ; Bing Shen,
| |
Collapse
|
45
|
Ling Y, Li J, Zhou L. Smoking-related epigenetic modifications are associated with the prognosis and chemotherapeutics of patients with bladder cancer. Int J Immunopathol Pharmacol 2023; 37:3946320231166774. [PMID: 37011378 PMCID: PMC10074629 DOI: 10.1177/03946320231166774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
OBJECTIVE Epidemiologic studies have linked smoking to various malignancies, including bladder cancer, but its underlying biological functions remain elusive. Currently, we aimed to identify the smoking-related epigenetic modifications and disclose their impacts on prognosis and therapies in bladder cancer. METHODS DNA methylation, transcriptome, and clinical profiles were acquired from The Cancer Genome Atlas (TCGA) using "TCGAbiolinks" Differential expression analyses were performed with "limma" and visualized by the "pheatmap" package. Smoking-related interactions were displayed using Cytoscape. Least absolute shrinkage and selection operator (LASSO) algorithm was for generation of a smoking-related prognostic model. Kaplan-Meier analysis with log-rank test was for survival analysis, followed by a prognostic nomogram. The Gene Set Enrichment Analysis (GSEA) was used for functional analysis. The "oncoPredict" package was applied for drug sensitivity analysis. RESULTS We recruited all types of bladder cancers and found that smoking was involved in poor prognosis, with the hazard ratio (HR) of 1.600 (95%CI: 1.028-2.491). A total of 1078 smoking-related DNA methylations (526 hypermethylation and 552 hypomethylation) were identified and 9 methylation-driven genes differentially expressed in bladder cancer. Also, 506lncRNAs (448 upregulated and 58 downregulated lncRNAs) and 102 miRNAs (74 upregulated and 28 downregulated miRNAs) were determined as smoking-related ncRNAs. We then calculated the smoking-related risk score and observed that cases of high risk were predicted with poor prognosis. We constructed a prognostic nomogram to predict the 1-, 3-, and 5-year overall survival rates. Several cancer-related pathways were enriched in the high-risk group, and patients with high-risk were more sensitive to Gemcitabine, Wnt-C59, JAK1_8709, KRAS (G12C) Inhibitor-12, and LY2109761. Whereas, those with low-risk were more sensitive to Cisplatin, AZ960, and Buparlisib. CONCLUSIONS Totally, we initially identified the smoking-related epigenetic modifications in bladder cancer and constructed a corresponding prognostic model, which was also linked to disparate sensitivities to chemotherapeutics. Our findings would provide novel insights into the carcinogenesis, prognosis, and therapies in bladder cancer.
Collapse
Affiliation(s)
- Ya Ling
- 74566The first Affiliated Hospital of Soochow University, Suzhou, China
| | - Jindong Li
- 372209Taizhou People's Hospital, Taizhou, China
| | - Lijuan Zhou
- 74566The first Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
46
|
Deng M, Zou W. Noncoding RNAs: Novel Targets for Opioid Tolerance. Curr Neuropharmacol 2023; 21:1202-1213. [PMID: 36453497 PMCID: PMC10286586 DOI: 10.2174/1570159x21666221129122932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/12/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
As a global health problem, chronic pain is one of the leading causes of disability, and it imposes a huge economic and public health burden on families and society. Opioids represent the cornerstone of analgesic drugs. However, opioid tolerance caused by long-term application of opioids is a major factor leading to drug withdrawal, serious side effects caused by dose increases, and even the death of patients, placing an increasing burden on individuals, medicine, and society. Despite efforts to develop methods to prevent and treat opioid tolerance, no effective treatment has yet been found. Therefore, understanding the mechanism underlying opioid tolerance is crucial for finding new prevention and treatment strategies. Noncoding RNAs (ncRNAs) are important parts of mammalian gene transcriptomes, and there are thousands of unique noncoding RNA sequences in cells. With the rapid development of high-throughput genome technology, research on ncRNAs has become a hot topic in biomedical research. In recent years, studies have shown that ncRNAs mediate physiological and pathological processes, including chromatin remodeling, transcription, posttranscriptional modification and signal transduction, which are key regulators of physiological processes in developmental and disease environments and have become biomarkers and potential therapeutic targets for various diseases. An increasing number of studies have found that ncRNAs are closely related to the development of opioid tolerance. In this review, we have summarized the evidence that ncRNAs play an important role in opioid tolerance and that ncRNAs may be novel targets for opioid tolerance.
Collapse
Affiliation(s)
- Meiling Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| |
Collapse
|
47
|
Kang Z, Dou Q, Huang T, Tu M, Zhong Y, Wang M, Li T. An angiogenesis‑related lncRNA signature for the prognostic prediction of patients with bladder cancer and LINC02321 promotes bladder cancer progression via the VEGFA signaling pathway. Mol Med Rep 2022; 27:38. [PMID: 36579659 PMCID: PMC9827344 DOI: 10.3892/mmr.2022.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/02/2022] [Indexed: 12/30/2022] Open
Abstract
The mechanism underlying bladder cancer metastasis is associated with tumor angiogenesis. The present study aimed to evaluate the predictive role and value of an angiogenesis‑associated long non‑coding (lnc)RNA signature in patients with bladder cancer and the role of long intergenic non‑coding RNA (LINC)02321 in the progression of this malignancy. Angiogenesis‑related lncRNAs were screened using Pearson correlation analysis and the signaturewas constructed using Cox regression analysis and evaluated using the receiver operating characteristic curve. LINC02321, which expressed the largest difference in bladder cancer, was screened using reverse transcription‑quantitative PCR. The role of LINC02321 in the malignant progression of bladder cancer was evaluated using Transwell, wound healing and Cell Counting Kit 8 assays. A total of six angiogenesis‑associated lncRNAs (USP30‑AS1, LINC02321, PSMB8‑AS1, KRT7‑AS, LINC01767 and OCIAD1‑AS1) were identified as candidates for the prognostic signature using Cox regression analysis. The overall survival of patients in the low‑risk group was significantly longer compared with that in the high‑risk group, with the highest area under the curve value being 0.807. A nomogram was constructed based on the traditional clinical indicators (age, sex, grade, American Joint Committee on Cancer stage) and risk score of patients. Compared with the traditional clinical indicators, the risk score demonstrated better clinical prediction capacity for predicting the prognosis of patients with bladder cancer. The Cancer Genome Atlas prediction and RT‑qPCR experimental results demonstrated that only LINC02321 was highly expressed in bladder cancer tissue and promoted the proliferation, invasion, migration and cisplatin resistance of the malignancy. Gene set enrichment, Pearson's correlation analysis and experimental results demonstrated that the VEGFA signalling pathway may be involved in the LINC02321‑regulated progression of bladder cancer. In conclusion, the six angiogenesis‑associated lncRNA signatures reported in the present study may be used to predict the prognosis of patients with bladder cancer, and LINC02321 promoted malignant progression of bladder cancer via the VEGFA signalling pathway.
Collapse
Affiliation(s)
- Zhao Kang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, P.R. China,School of Clinical Medicine, Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan 621000, P.R. China
| | - Qian Dou
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400011, P.R. China
| | - Ting Huang
- Department of Respiratory Nephrology, Mianyang Fulin Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Maoting Tu
- Department of Oncology, Mianyang Fulin Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Yongping Zhong
- Department of Oncology, Mianyang Fulin Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Mei Wang
- Department of Oncology, Mianyang Fulin Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Tao Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, P.R. China,Department of Radiotherapy, Cancer Hospital Affiliated to Medical College, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China,Correspondence to: Professor Tao Li, Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan 646099, P.R. China, E-mail:
| |
Collapse
|
48
|
Zhang C, Bai X, Peng X, Shi W, Li Y, Chen G, Yu H, Feng Z, Deng Y. Starvation-induced long non-coding RNAs are significant for prognosis evaluation of bladder cancer. Aging (Albany NY) 2022; 14:10067-10080. [PMID: 36541918 PMCID: PMC9831724 DOI: 10.18632/aging.204444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Starving intratumoral microenvironment prominently alters genic profiles including long non-coding RNAs (lncRNAs), which further regulate bladder cancer (BCa) malignant biological properties, such as invasion and migration. METHODS Transcriptome RNA-sequencing data of 414 BCa tumor tissues and 19 normal tissues were obtained from TCGA database and paired samples of 132 BCa patients. A chain of in vitro validations such as qPCR, migration and invasion assays were performed to reveal the clinical relevance of AC011472.4 and AL157895.1. RESULTS A total of 11 lncRNAs were identified as starvation-related lncRNAs, of which AC011472.4 and AL157895.1 were relevant to overall survival of BCa patients. Besides, a starvation-related risk score model was established based on the levels of AC011472.4 and AL157895.1. BCa patients with higher levels of AL157895.1 were divided into the high-risk group and usually obtained higher mortality rate, but AC011472.4 was contrary. AL157895.1 expressed highly in BCa cell lines and tumour tissues, especially in patients with the advanced grade, stage and T-stage, while AC011472.4 showed the reversed result. Moreover, increased level of AL157895.1 was remarkably correlated to T-stage, muscle invasion status and distant metastasis. SiRNAs-mediated silence of AC011472.4 and AL157895.1 respectively increased and diminished invasion and migration properties of BCa cells. CONCLUSIONS In this study, we highlight the significant roles of AC011472.4 and AL157895.1 on evaluating prognoses of BCa patients and validate their correlation with various clinical parameters. These findings provide an appropriate risk score model for BCa clinical decision making.
Collapse
Affiliation(s)
- Chunlin Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing 400016, China
| | - Xuesong Bai
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiang Peng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing 400016, China
| | - Wei Shi
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing 400016, China
| | - Yang Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing 400016, China
| | - Guo Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing 400016, China
| | - Haitao Yu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing 400016, China
| | - Zhenwei Feng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing 400016, China
| | - Yuanzhong Deng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
49
|
lncRNA-mediated ceRNA network in bladder cancer. Noncoding RNA Res 2022; 8:135-145. [PMID: 36605618 PMCID: PMC9792360 DOI: 10.1016/j.ncrna.2022.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer is a common disease associated with high rates of morbidity and mortality. Although immunotherapy approaches such as adoptive T-cell therapy and immune checkpoint blockade have been investigated for the treatment of bladder cancer, their off-target effects and ability to affect only single targets have led to clinical outcomes that are far from satisfactory. Therefore, it is important to identify novel targets that can effectively control tumor growth and metastasis. It is well known that long noncoding RNAs (lncRNAs) are powerful regulators of gene expression. Increasing evidence has shown that dysregulated lncRNAs in bladder cancer are involved in cancer cell proliferation, migration, invasion, apoptosis, and epithelial-mesenchymal transition (EMT). In this review, we focus on the roles and underlying mechanisms of lncRNA-mediated competing endogenous RNA (ceRNA) networks in the regulation of bladder cancer progression. In addition, we discuss the potential of targeting lncRNA-mediated ceRNA networks to overcome cancer treatment resistance and its association with clinicopathological features and outcomes in bladder cancer patients. We hope this review will stimulate research to develop more effective therapeutic approaches for bladder cancer treatment.
Collapse
|
50
|
Bankole T, Winn H, Li Y. Dietary Impacts on Gestational Diabetes: Connection between Gut Microbiome and Epigenetic Mechanisms. Nutrients 2022; 14:nu14245269. [PMID: 36558427 PMCID: PMC9786016 DOI: 10.3390/nu14245269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common obstetric complications due to an increased level of glucose intolerance during pregnancy. The prevalence of GDM increases due to the obesity epidemic. GDM is also associated with an increased risk of gestational hypertension and preeclampsia resulting in elevated maternal and perinatal morbidity and mortality. Diet is one of the most important environmental factors associated with etiology of GDM. Studies have shown that the consumption of certain bioactive diets and nutrients before and during pregnancy might have preventive effects against GDM leading to a healthy pregnancy outcome as well as beneficial metabolic outcomes later in the offspring's life. Gut microbiome as a biological ecosystem bridges the gap between human health and diseases through diets. Maternal diets affect maternal and fetal gut microbiome and metabolomics profiles, which consequently regulate the host epigenome, thus contributing to later-life metabolic health in both mother and offspring. This review discusses the current knowledge regarding how epigenetic mechanisms mediate the interaction between maternal bioactive diets, the gut microbiome and the metabolome leading to improved metabolic health in both mother and offspring.
Collapse
Affiliation(s)
- Taiwo Bankole
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Hung Winn
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65212, USA
| | - Yuanyuan Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
- Correspondence:
| |
Collapse
|