1
|
Boleti APDA, Jacobowski AC, Monteiro-Alfredo T, Pereira APR, Oliva MLV, Maria DA, Macedo MLR. Cutaneous Melanoma: An Overview of Physiological and Therapeutic Aspects and Biotechnological Use of Serine Protease Inhibitors. Molecules 2024; 29:3891. [PMID: 39202970 PMCID: PMC11357276 DOI: 10.3390/molecules29163891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Metastatic melanoma stands out as the most lethal form of skin cancer because of its high propensity to spread and its remarkable resistance to treatment methods. METHODS In this review article, we address the incidence of melanoma worldwide and its staging phases. We thoroughly investigate the different melanomas and their associated risk factors. In addition, we underscore the principal therapeutic goals and pharmacological methods that are currently used in the treatment of melanoma. RESULTS The implementation of targeted therapies has contributed to improving the approach to patients. However, because of the emergence of resistance early in treatment, overall survival and progression-free periods continue to be limited. CONCLUSIONS We provide new insights into plant serine protease inhibitor therapeutics, supporting high-throughput drug screening soon, and seeking a complementary approach to explain crucial mechanisms associated with melanoma.
Collapse
Affiliation(s)
- Ana Paula De Araújo Boleti
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Ana Cristina Jacobowski
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Tamaeh Monteiro-Alfredo
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Ana Paula Ramos Pereira
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil;
| | - Durvanei Augusto Maria
- Divisão de Ciências Fisiológicas e Químicas, Serviço de Bioquímica, Instituto Butantan, São Paulo 05585-000, SP, Brazil;
| | - Maria Lígia Rodrigues Macedo
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
- Department of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
2
|
Santos NRM, de Oliveira WF, Cabrera MP, Bezerra Filho CM, Patriota LLS, Napoleão TH, Paiva PMG, Oliva MLV, Cabral Filho PE, Fontes A, Correia MTS. A fluorescent quantum dot conjugate to probe the interaction of Enterolobium contortisiliquum trypsin inhibitor with cancer cells. Int J Biol Macromol 2023; 252:126453. [PMID: 37619683 DOI: 10.1016/j.ijbiomac.2023.126453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/10/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Serine proteases play crucial biological roles and have their activity controlled by inhibitors, such as the EcTI, a serine protease inhibitor purified from Enterolobium contortisiliquum seeds, which has anticancer activity. This study aimed to conjugate EcTI with quantum dots (QDs), fluorophores with outstanding optical properties, and investigate the interaction of QDs-EcTI nanoprobe with cancer cells. The conjugation was evaluated by fluorescence correlation spectroscopy (FCS) and fluorescence microplate assay (FMA). EcTI inhibitory activity after interaction with QDs was also analyzed. From FCS, the conjugate presented a hydrodynamic diameter about 4× greater than bare QDs, suggesting a successful conjugation. This was supported by FMA, which showed a relative fluorescence intensity of ca. 3815% for the nanosystem, concerning bare QDs or EcTI alone. The EcTI inhibitory activity remained intact after its interaction with QDs. From flow cytometry analyses, approximately 62% of MDA-MB-231 and 90% of HeLa cells were labeled with the QD-EcTI conjugate, suggesting that their membranes have different protease levels to which EcTI exhibits an affinity. Concluding, the QD-EcTI represents a valuable nanotool to study the interaction of this inhibitor with cancer cells using fluorescence-based techniques with the potential to unravel the intricate dynamics of interplays between proteases and inhibitors in cancer biology.
Collapse
Affiliation(s)
- Natália R M Santos
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil; Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Weslley F de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil; Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Mariana P Cabrera
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, PE, 50740-560, Brazil
| | - Clovis M Bezerra Filho
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, 04044-020, Brazil; Núcleo de Pesquisas em Ciências Ambientais e Biotecnologia, Universidade Católica de Pernambuco, Recife, PE, 50050-900, Brazil
| | - Leydianne L S Patriota
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Thiago H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Patrícia M G Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Maria Luiza V Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, 04044-020, Brazil
| | - Paulo E Cabral Filho
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.
| | - Maria T S Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
3
|
Costa CRC, Belchor MN, Roggero A, Moraes LL, Samelo R, Annunciato I, Bonturi CR, Oliva MLV, Sousa SF, de Oliveira MA, Toyama MH. The First Anti-Snakebite and Hepatoprotective Characterization of a Trypsin Kunitz-like Inhibitor (EcTI) from the Plant Enterolobium contortisiliquum; A Case of Two Soul Mates Meeting. Pharmaceuticals (Basel) 2023; 16:ph16040632. [PMID: 37111388 PMCID: PMC10145096 DOI: 10.3390/ph16040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Snake venom serine protease (SVSP) interferes with the regulation and control of important biological reactions in homeostasis and can be classified as an activator of the fibrinolytic system and platelet aggregation. Our group has recently isolated a new serine protease from Crotalus durissus terrificus total venom (Cdtsp-2). This protein exhibits edematogenic capacity and myotoxic activity. A Kunitz-like EcTI inhibitor protein with a molecular mass of 20 kDa was isolated from Enterolobium contortisiliquum and showed high trypsin inhibition. Thus, the objective of this work is to verify the possible inhibition of the pharmacological activities of Cdtsp-2 by the Kutinz-type inhibitor EcTI. To isolate Cdtsp-2 from total C. d. terrificus venom, we used three-step chromatographic HPLC. Using the mice paw edema model, we observed an edematogenic effect, myotoxicity and hepatotoxicity caused by Cdtsp-2. In vitro and in vivo experiments showed that the alterations in hemostasis caused by Cdtsp-2 are crucial for the development of marked hepatotoxicity and that EcTI significantly inhibits the enzymatic and pharmacological activities of Cdtsp-2. Kunitz-like inhibitor may be a viable alternative for the development of ancillary treatments against the biological activities of venoms.
Collapse
Affiliation(s)
- Caroline R C Costa
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Mariana N Belchor
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Airam Roggero
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Laila L Moraes
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Ricardo Samelo
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Isabelly Annunciato
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Camila R Bonturi
- National Institute of Pharmacology (INFAR), Federal University of São Paulo (UNIFESP), São Paulo 04044-020, SP, Brazil
| | - Maria L V Oliva
- National Institute of Pharmacology (INFAR), Federal University of São Paulo (UNIFESP), São Paulo 04044-020, SP, Brazil
| | - Sergio F Sousa
- Unit of Applied Biomolecular Sciences (UCIBIO), REQUIMTE-BioSIM-Medicine Faculty, Porto University, 4050-345 Porto, Portugal
| | - Marcos A de Oliveira
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Marcos H Toyama
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| |
Collapse
|
4
|
De Souza DA, Salu BR, Nogueira RS, de Carvalho Neto JCS, Maffei FHDA, Oliva MLV. Peptides Derived from a Plant Protease Inhibitor of the Coagulation Contact System Decrease Arterial Thrombus Formation in a Murine Model, without Impairing Hemostatic Parameters. J Clin Med 2023; 12:jcm12051810. [PMID: 36902597 PMCID: PMC10003694 DOI: 10.3390/jcm12051810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Several plant protein inhibitors with anticoagulant properties have been studied and characterized, including the Delonix regia trypsin inhibitor (DrTI). This protein inhibits serine proteases (trypsin) and enzymes directly involved in coagulation, such as plasma kallikrein, factor XIIa, and factor XIa. In this study, we evaluated the effects of two new synthetic peptides derived from the primary sequence of DrTI in coagulation and thrombosis models to understand the mechanisms involved in the pathophysiology of thrombus formation as well as in the development of new antithrombotic therapies. Both peptides acted on in vitro hemostasis-related parameters, showing promising results, prolonging the Partially Activated Thromboplastin Time (aPTT) and inhibited platelet aggregation induced by adenosine diphosphate (ADP) and arachidonic acid. In murine models, for arterial thrombosis induced by photochemical injury, and platelet-endothelial interactions monitored by intravital microscopy, both peptides at doses of 0.5 mg/kg significantly extended the time of artery occlusion and modified the platelet adhesion and aggregation pattern with no changes in bleeding time, demonstrating the high biotechnological potential of both molecules.
Collapse
Affiliation(s)
- Daniel Alexandre De Souza
- Laboratório de Química e Função de Proteínas, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo 04044-020, SP, Brazil
- Correspondence: (D.A.D.S.); (M.L.V.O.)
| | - Bruno Ramos Salu
- Laboratório de Química e Função de Proteínas, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo 04044-020, SP, Brazil
| | - Ruben Siedlarczyk Nogueira
- Laboratório de Química e Função de Proteínas, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo 04044-020, SP, Brazil
| | - José Carlos Sá de Carvalho Neto
- Laboratório de Química e Função de Proteínas, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo 04044-020, SP, Brazil
| | | | - Maria Luiza Vilela Oliva
- Laboratório de Química e Função de Proteínas, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo 04044-020, SP, Brazil
- Correspondence: (D.A.D.S.); (M.L.V.O.)
| |
Collapse
|
5
|
Bonturi CR, Salu BR, Bonazza CN, Sinigaglia RDC, Rodrigues T, Alvarez-Flores MP, Chudzinski-Tavassi AM, Oliva MLV. Proliferation and Invasion of Melanoma Are Suppressed by a Plant Protease Inhibitor, Leading to Downregulation of Survival/Death-Related Proteins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092956. [PMID: 35566311 PMCID: PMC9104945 DOI: 10.3390/molecules27092956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
Cell adhesion and migration are crucial for cancer progression and malignancy. Drugs available for the treatment of metastatic melanoma are expensive and unfit for certain patients. Therefore, there is still a need to identify new drugs that block tumor cell development. We investigated the effects of Enterolobium contortisiliquum trypsin inhibitor (EcTI), a protease inhibitor, on cell viability, cell migration, invasion, cell adhesion, and cell death (hallmarks of cancer) in vitro using human melanoma cells (SK-MEL-28 and CHL-1). Although EcTI did not affect non-tumor cells, it significantly inhibited the proliferation, migration, invasion, and adhesion of melanoma cells. Investigation of the underlying mechanisms revealed that EcTI triggered apoptosis and nuclear shrinkage, increased PI uptake, activated effector caspases-3/7, and produced reactive oxygen species (ROS). Furthermore, EcTI disrupted the mitochondrial membrane potential, altered calcium homeostasis, and modified proteins associated with survival and apoptosis/autophagy regulation. Acridine orange staining indicated acidic vesicular organelle formation upon EcTI treatment, demonstrating a cell death display. Electronic microscopy corroborated the apoptotic pattern by allowing the visualization of apoptotic bodies, mitochondrial cristae disorganization, and autophagic vesicles. Taken together, these results provide new insights into the anti-cancer properties of the natural EcTI protein, establishing it as a promising new therapeutic drug for use in melanoma treatment.
Collapse
Affiliation(s)
- Camila Ramalho Bonturi
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| | - Bruno Ramos Salu
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| | - Camila Nimri Bonazza
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| | - Rita de Cassia Sinigaglia
- Electron Microscopy Center, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| | - Tiago Rodrigues
- Centre for Natural and Human Sciences, Universidade Federal do ABC (UFABC), Santo André 09210-580, Brazil
| | | | | | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| |
Collapse
|
6
|
Plant Kunitz Inhibitors and Their Interaction with Proteases: Current and Potential Pharmacological Targets. Int J Mol Sci 2022; 23:ijms23094742. [PMID: 35563133 PMCID: PMC9100506 DOI: 10.3390/ijms23094742] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
The action of proteases can be controlled by several mechanisms, including regulation through gene expression; post-translational modifications, such as glycosylation; zymogen activation; targeting specific compartments, such as lysosomes and mitochondria; and blocking proteolysis using endogenous inhibitors. Protease inhibitors are important molecules to be explored for the control of proteolytic processes in organisms because of their ability to act on several proteases. In this context, plants synthesize numerous proteins that contribute to protection against attacks by microorganisms (fungi and bacteria) and/or invertebrates (insects and nematodes) through the inhibition of proteases in these organisms. These proteins are widely distributed in the plant kingdom, and are present in higher concentrations in legume seeds (compared to other organs and other botanical families), motivating studies on their inhibitory effects in various organisms, including humans. In most cases, the biological roles of these proteins have been assigned based mostly on their in vitro action, as is the case with enzyme inhibitors. This review highlights the structural evolution, function, and wide variety of effects of plant Kunitz protease inhibitors, and their potential for pharmaceutical application based on their interactions with different proteases.
Collapse
|
7
|
Li M, Srp J, Mareš M, Wlodawer A, Gustchina A. Structural studies of complexes of kallikrein 4 with wild-type and mutated forms of the Kunitz-type inhibitor BbKI. Acta Crystallogr D Struct Biol 2021; 77:1084-1098. [PMID: 34342281 PMCID: PMC8329858 DOI: 10.1107/s2059798321006483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/21/2021] [Indexed: 11/10/2022] Open
Abstract
Structures of BbKI, a recombinant Kunitz-type serine protease inhibitor from Bauhinia bauhinioides, complexed with human kallikrein 4 (KLK4) were determined at medium-to-high resolution in four crystal forms (space groups P3121, P6522, P21 and P61). Although the fold of the protein was virtually identical in all of the crystals, some significant differences were observed in the conformation of Arg64 of BbKI, the residue that occupies the S1 pocket in KLK4. Whereas this residue exhibited two orientations in the highest resolution structure (P3121), making either a canonical trypsin-like interaction with Asp189 of KLK4 or an alternate interaction, only a single alternate orientation was observed in the other three structures. A neighboring disulfide, Cys191-Cys220, was partially or fully broken in all KLK4 structures. Four variants of BbKI in which Arg64 was replaced by Met, Phe, Ala and Asp were expressed and crystallized, and their structures were determined in complex with KLK4. Structures of the Phe and Met variants complexed with bovine trypsin and of the Phe variant complexed with α-chymotrypsin were also determined. Although the inhibitory potency of these variant forms of BbKI was lowered by up to four orders of magnitude, only small changes were seen in the vicinity of the mutated residues. Therefore, a totality of subtle differences in KLK4-BbKI interactions within the fully extended interface in the structures of these variants might be responsible for the observed effect. Screening of the BbKI variants against a panel of serine proteases revealed an altered pattern of inhibitory specificity, which was shifted towards that of chymotrypsin-like proteases for the hydrophobic Phe and Met P1 substitutions. This work reports the first structures of plant Kunitz inhibitors with S1-family serine proteases other than trypsin, as well as new insights into the specificity of inhibition of medically relevant kallikreins.
Collapse
Affiliation(s)
- Mi Li
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jaroslav Srp
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Alexander Wlodawer
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Alla Gustchina
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
8
|
Differences in the Inhibitory Specificity Distinguish the Efficacy of Plant Protease Inhibitors on Mouse Fibrosarcoma. PLANTS 2021; 10:plants10030602. [PMID: 33806820 PMCID: PMC8005126 DOI: 10.3390/plants10030602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 11/18/2022]
Abstract
Metastasis, the primary cause of death from malignant tumors, is facilitated by multiple protease-mediated processes. Thus, effort has been invested in the development of protease inhibitors to prevent metastasis. Here, we investigated the effects of protease inhibitors including the recombinant inhibitors rBbKI (serine protease inhibitor) and rBbCI (serine and cysteine inhibitor) derived from native inhibitors identified in Bauhinia bauhinioides seeds, and EcTI (serine and metalloprotease inhibitor) isolated from the seeds of Enterolobium contortisiliquum on the mouse fibrosarcoma model (lineage L929). rBbKI inhibited 80% of cell viability of L929 cells after 48 h, while EcTI showed similar efficacy after 72 h. Both inhibitors acted in a dose and time-dependent manner. Conversely, rBbCI did not significantly affect the viability of L929 cells. Confocal microscopy revealed the binding of rBbKI and EcTI to the L929 cell surface. rBbKI inhibited approximately 63% of L929 adhesion to fibronectin, in contrast with EcTI and rBbCI, which did not significantly interfere with adhesion. None of the inhibitors interfered with the L929 cell cycle phases. The synthetic peptide RPGLPVRFESPL-NH2, based on the BbKI reactive site, inhibited 45% of the cellular viability of L929, becoming a promising protease inhibitor due to its ease of synthesis.
Collapse
|
9
|
Biotechnological Potential of Araucaria angustifolia Pine Nuts Extract and the Cysteine Protease Inhibitor AaCI-2S. PLANTS 2020; 9:plants9121676. [PMID: 33266031 PMCID: PMC7760129 DOI: 10.3390/plants9121676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023]
Abstract
Protease inhibitors are involved in the regulation of endogenous cysteine proteases during seed development and play a defensive role because of their ability to inhibit exogenous proteases such as those present in the digestive tracts of insects. Araucaria angustifolia seeds, which can be used in human and animal feed, were investigated for their potential for the development of agricultural biotechnology and in the field of human health. In the pine nuts extract, which blocked the activities of cysteine proteases, it was detected potent insecticidal activity against termites (Nasutitermes corniger) belonging to the most abundant termite genus in tropical regions. The cysteine inhibitor (AaCI-2S) was purified by ion-exchange, size exclusion, and reversed-phase chromatography. Its functional and structural stability was confirmed by spectroscopic and circular dichroism studies, and by detection of inhibitory activity at different temperatures and pH values. Besides having activity on cysteine proteases from C. maculatus digestive tract, AaCI-2S inhibited papain, bromelain, ficin, and cathepsin L and impaired cell proliferation in gastric and prostate cancer cell lines. These properties qualify A. angustifolia seeds as a protein source with value properties of natural insecticide and to contain a protease inhibitor with the potential to be a bioactive molecule on different cancer cells.
Collapse
|