1
|
Zeng Z, Li Y, Zhou H, Li M, Ye J, Li D, Zhu Y, Zhang Y, Zhang X, Deng Y, Li J, Gu L, Wu J. System-wide identification of novel de-ubiquitination targets for USP10 in gastric cancer metastasis through multi-omics screening. BMC Cancer 2024; 24:773. [PMID: 38937694 PMCID: PMC11209979 DOI: 10.1186/s12885-024-12549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE Ubiquitin-specific peptidase 10 (USP10), a typical de-ubiquitinase, has been found to play a double-edged role in human cancers. Previously, we reported that the expression of USP10 was negatively correlated with the depth of gastric wall invasion, lymph node metastasis, and prognosis in gastric cancer (GC) patients. However, it remains unclear whether USP10 can regulate the metastasis of GC cells through its de-ubiquitination function. METHODS In this study, proteome, ubiquitinome, and transcriptome analyses were conducted to comprehensively identify novel de-ubiquitination targets for USP10 in GC cells. Subsequently, a series of validation experiments, including in vitro cell culture studies, in vivo metastatic tumor models, and clinical sample analyses, were performed to elucidate the regulatory mechanism of USP10 and its de-ubiquitination targets in GC metastasis. RESULTS After overexpression of USP10 in GC cells, 146 proteins, 489 ubiquitin sites, and 61 mRNAs exhibited differential expression. By integrating the results of multi-omics, we ultimately screened 9 potential substrates of USP10, including TNFRSF10B, SLC2A3, CD44, CSTF2, RPS27, TPD52, GPS1, RNF185, and MED16. Among them, TNFRSF10B was further verified as a direct de-ubiquitination target for USP10 by Co-IP and protein stabilization assays. The dysregulation of USP10 or TNFRSF10B affected the migration and invasion of GC cells in vitro and in vivo models. Molecular mechanism studies showed that USP10 inhibited the epithelial-mesenchymal transition (EMT) process by increasing the stability of TNFRSF10B protein, thereby regulating the migration and invasion of GC cells. Finally, the retrospective clinical sample studies demonstrated that the downregulation of TNFRSF10B expression was associated with poor survival among 4 of 7 GC cohorts, and the expression of TNFRSF10B protein was significantly negatively correlated with the incidence of distant metastasis, diffuse type, and poorly cohesive carcinoma. CONCLUSIONS Our study established a high-throughput strategy for screening de-ubiquitination targets for USP10 and further confirmed that inhibiting the ubiquitination of TNFRSF10B might be a promising therapeutic strategy for GC metastasis.
Collapse
Affiliation(s)
- Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yina Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Heng Zhou
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingyang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan Ye
- Department of Pharmacy, Huazhong University of Science and Technology Hospital, Wuhan, Hubei, China
| | - Dan Li
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuxi Zhu
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yunchao Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan Li
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Lijuan Gu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Jie Wu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
D’Amico M, De Amicis F. Challenges of Regulated Cell Death: Implications for Therapy Resistance in Cancer. Cells 2024; 13:1083. [PMID: 38994937 PMCID: PMC11240625 DOI: 10.3390/cells13131083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Regulated cell death, a regulatory form of cell demise, has been extensively studied in multicellular organisms. It plays a pivotal role in maintaining organismal homeostasis under normal and pathological conditions. Although alterations in various regulated cell death modes are hallmark features of tumorigenesis, they can have divergent effects on cancer cells. Consequently, there is a growing interest in targeting these mechanisms using small-molecule compounds for therapeutic purposes, with substantial progress observed across various human cancers. This review focuses on summarizing key signaling pathways associated with apoptotic and autophagy-dependent cell death. Additionally, it explores crucial pathways related to other regulated cell death modes in the context of cancer. The discussion delves into the current understanding of these processes and their implications in cancer treatment, aiming to illuminate novel strategies to combat therapy resistance and enhance overall cancer therapy.
Collapse
Affiliation(s)
- Maria D’Amico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
3
|
De Wilt L, Sobocki BK, Jansen G, Tabeian H, de Jong S, Peters GJ, Kruyt F. Mechanisms underlying reversed TRAIL sensitivity in acquired bortezomib-resistant non-small cell lung cancer cells. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:12. [PMID: 38835345 PMCID: PMC11149110 DOI: 10.20517/cdr.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 06/06/2024]
Abstract
Aim: The therapeutic targeting of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) death receptors in cancer, including non-small cell lung cancer (NSCLC), is a widely studied approach for tumor selective apoptotic cell death therapy. However, apoptosis resistance is often encountered. The main aim of this study was to investigate the apoptotic mechanism underlying TRAIL sensitivity in three bortezomib (BTZ)-resistant NSCLC variants, combining induction of both the intrinsic and extrinsic pathways. Methods: Sensitivity to TRAIL in BTZ-resistant variants was determined using a tetrazolium (MTT) and a clonogenic assay. A RT-qPCR profiling mRNA array was used to determine apoptosis pathway-specific gene expression. The expression of these proteins was determined through ELISA assays and western Blotting, while apoptosis (sub-G1) and cytokine expression were determined using flow cytometry. Apoptotic genes were silenced by specific siRNAs. Lipid rafts were isolated with fractional ultracentrifugation. Results: A549BTZR (BTZ-resistant) cells were sensitive to TRAIL in contrast to parental A549 cells, which are resistant to TRAIL. TRAIL-sensitive H460 cells remained equally sensitive for TRAIL as H460BTZR. In A549BTZR cells, we identified an increased mRNA expression of TNFRSF11B [osteoprotegerin (OPG)] and caspase-1, -4 and -5 mRNAs involved in cytokine activation and immunogenic cell death. Although the OPG, interleukin-6 (IL-6), and interleukin-8 (IL-8) protein levels were markedly enhanced (122-, 103-, and 11-fold, respectively) in the A549BTZR cells, this was not sufficient to trigger TRAIL-induced apoptosis in the parental A549 cells. Regarding the extrinsic apoptotic pathway, the A549BTZR cells showed TRAIL-R1-dependent TRAIL sensitivity. The shift of TRAIL-R1 from non-lipid into lipid rafts enhanced TRAIL-induced apoptosis. In the intrinsic apoptotic pathway, a strong increase in the mRNA and protein levels of the anti-apoptotic myeloid leukemia cell differentiation protein (Mcl-1) and B-cell leukemia/lymphoma 2 (Bcl-2) was found, whereas the B-cell lymphoma-extra large (Bcl-xL) expression was reduced. However, the stable overexpression of Bcl-xL in the A549BTZR cells did not reverse the TRAIL sensitivity in the A549BTZR cells, but silencing of the BH3 Interacting Domain Death Agonist (BID) protein demonstrated the importance of the intrinsic apoptotic pathway, regardless of Bcl-xL. Conclusion: In summary, increased sensitivity to TRAIL-R1 seems predominantly related to the relocalization into lipid rafts and increased extrinsic and intrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Leonie De Wilt
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam 1007MB, the Netherlands
- Authors contributed equally
| | - Bartosz Kamil Sobocki
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk 80-210, Poland
- Authors contributed equally
| | - Gerrit Jansen
- Department of Rheumatology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Hessan Tabeian
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam 1007MB, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam 1007MB, the Netherlands
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk 80-210, Poland
| | - Frank Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| |
Collapse
|
4
|
Hsu CY, Rajabi S, Hamzeloo-Moghadam M, Kumar A, Maresca M, Ghildiyal P. Sesquiterpene lactones as emerging biomolecules to cease cancer by targeting apoptosis. Front Pharmacol 2024; 15:1371002. [PMID: 38529189 PMCID: PMC10961375 DOI: 10.3389/fphar.2024.1371002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Apoptosis is a programmed cell death comprising two signaling cascades including the intrinsic and extrinsic pathways. This process has been shown to be involved in the therapy response of different cancer types, making it an effective target for treating cancer. Cancer has been considered a challenging issue in global health. Cancer cells possess six biological characteristics during their developmental process known as cancer hallmarks. Hallmarks of cancer include continuous growth signals, unlimited proliferation, resistance to proliferation inhibitors, apoptosis escaping, active angiogenesis, and metastasis. Sesquiterpene lactones are one of the large and diverse groups of planet-derived phytochemicals that can be used as sources for a variety of drugs. Some sesquiterpene lactones possess many biological activities such as anti-inflammatory, anti-viral, anti-microbial, anti-malarial, anticancer, anti-diabetic, and analgesic. This review article briefly overviews the intrinsic and extrinsic pathways of apoptosis and the interactions between the modulators of both pathways. Also, the present review summarizes the potential effects of sesquiterpene lactones on different modulators of the intrinsic and extrinsic pathways of apoptosis in a variety of cancer cell lines and animal models. The main purpose of the present review is to give a clear picture of the current knowledge about the pro-apoptotic effects of sesquiterpene lactones on various cancers to provide future direction in cancer therapeutics.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
5
|
Cai X, Li Y, Zheng J, Liu L, Jiao Z, Lin J, Jiang S, Lin X, Sun Y. Modeling of senescence-related chemoresistance in ovarian cancer using data analysis and patient-derived organoids. Front Oncol 2024; 13:1291559. [PMID: 38370348 PMCID: PMC10869451 DOI: 10.3389/fonc.2023.1291559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/26/2023] [Indexed: 02/20/2024] Open
Abstract
Background Ovarian cancer (OC) is a malignant tumor associated with poor prognosis owing to its susceptibility to chemoresistance. Cellular senescence, an irreversible biological state, is intricately linked to chemoresistance in cancer treatment. We developed a senescence-related gene signature for prognostic prediction and evaluated personalized treatment in patients with OC. Methods We acquired the clinical and RNA-seq data of OC patients from The Cancer Genome Atlas and identified a senescence-related prognostic gene set through differential and cox regression analysis in distinct chemotherapy response groups. A prognostic senescence-related signature was developed and validated by OC patient-derived-organoids (PDOs). We leveraged gene set enrichment analysis (GSEA) and ESTIMATE to unravel the potential functions and immune landscape of the model. Moreover, we explored the correlation between risk scores and potential chemotherapeutic agents. After confirming the congruence between organoids and tumor tissues through immunohistochemistry, we measured the IC50 of cisplatin in PDOs using the ATP activity assay, categorized by resistance and sensitivity to the drug. We also investigated the expression patterns of model genes across different groups. Results We got 2740 differentially expressed genes between two chemotherapy response groups including 43 senescence-related genes. Model prognostic genes were yielded through univariate cox analysis, and multifactorial cox analysis. Our work culminated in a senescence-related prognostic model based on the expression of SGK1 and VEGFA. Simultaneously, we successfully constructed and propagated three OC PDOs for drug screening. PCR and WB from PDOs affirmed consistent expression trends as those of our model genes derived from comprehensive data analysis. Specifically, SGK1 exhibited heightened expression in cisplatin-resistant OC organoids, while VEGFA manifested elevated expression in the sensitive group (P<0.05). Intriguingly, GSEA results unveiled the enrichment of model genes in the PPAR signaling pathway, pivotal regulator in chemoresistance and tumorigenesis. This revelation prompted the identification of potential beneficial drugs for patients with a high-risk score, including gemcitabine, dabrafenib, epirubicin, oxaliplatin, olaparib, teniposide, ribociclib, topotecan, venetoclax. Conclusion Through the formulation of a senescence-related signature comprising SGK1 and VEGFA, we established a promising tool for prognosticating chemotherapy reactions, predicting outcomes, and steering therapeutic strategies. Patients with high VEGFA and low SGK1 expression levels exhibit heightened sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Xintong Cai
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yanhong Li
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Jianfeng Zheng
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Li Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Zicong Jiao
- Department of Translational Medicine, Scientific Research System, Geneplus -Beijing Institute, Beijing, China
| | - Jie Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Shan Jiang
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Xuefen Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yang Sun
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Tang K, Zhang Y, Zhang C, Hu H, Zhuang R, Jin B, Zhang Y, Ma Y. Hantaan virus-induced elevation of plasma osteoprotegerin and its clinical implications in hemorrhagic fever with renal syndrome. Int J Infect Dis 2023; 126:14-21. [PMID: 36371012 DOI: 10.1016/j.ijid.2022.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/13/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES The bleeding tendency is a hallmark of hemorrhagic fever with renal syndrome (HFRS) after Hantaan virus (HTNV) infection. Growing reports indicate the importance of osteoprotegerin (OPG) in vascular homeostasis, implying OPG might be involved in the pathogenesis of coagulopathy in patients with HFRS. METHODS Acute and convalescence plasmas of 32 patients with HFRS were collected. Enzyme-linked immunosorbent assays (ELISA) were used to detect plasma OPG levels and other parameters. The human umbilical vein endothelial cells were stimulated with HTNV and/or tumor necrosis factor-α (TNF-α) to explore the source of OPG. RESULTS Plasma OPG levels of patients with HFRS were elevated and correlated positively with the severity of HFRS and negatively with platelet counts. Abundant OPG was released from endothelial cells in response to TNF-α stimuli, along with HTNV infection, which was in accordance with the findings of positive correlations between plasma OPG and TNF-α or c-reactive protein. Importantly, plasma OPG levels correlated positively with activated partial thromboplastin time and the content of d-dimer. CONCLUSION These findings suggested that increased plasma OPG levels induced by HTNV might be an important factor for the severity of HFRS, and was likely involved in endothelium dysfunction and hemorrhagic disorder of HFRS, which might contribute to the pathogenesis of hemorrhage in HFRS.
Collapse
Affiliation(s)
- Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Haifeng Hu
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ran Zhuang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China.
| | - Ying Ma
- Department of Immunology, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
7
|
Serna-Salas SA, Soto-Gámez AA, Wu Z, Klaver M, Moshage H. Studying Hepatic Stellate Cell Senescence. Methods Mol Biol 2023; 2669:79-109. [PMID: 37247056 DOI: 10.1007/978-1-0716-3207-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Hepatic stellate cells (HSCs) are the key effector cells in liver fibrosis. They are the main producers of excessive amounts of extracellular matrix components during fibrogenesis and therefore a potential target for the treatment of liver fibrosis. Induction of senescence in HSCs may be a promising strategy to slow down, stop, or even reverse fibrogenesis. Senescence is a complex and heterogeneous process linked to fibrosis and cancer, but the exact mechanism and relevant markers can be cell-type dependent. Therefore, many markers of senescence have been proposed, and many methods to detect senescence have been developed. In this chapter, we review relevant methods and biomarkers to detect cellular senescence in hepatic stellate cells.
Collapse
Affiliation(s)
- Sandra A Serna-Salas
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Abel A Soto-Gámez
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zongmei Wu
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Myrthe Klaver
- European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
8
|
Wang L, Jin H, Jochems F, Wang S, Lieftink C, Martinez IM, De Conti G, Edwards F, de Oliveira RL, Schepers A, Zhou Y, Zheng J, Wu W, Zheng X, Yuan S, Ling J, Jastrzebski K, Santos Dias MD, Song JY, Celie PNH, Yagita H, Yao M, Zhou W, Beijersbergen RL, Qin W, Bernards R. cFLIP suppression and DR5 activation sensitize senescent cancer cells to senolysis. NATURE CANCER 2022; 3:1284-1299. [PMID: 36414711 DOI: 10.1038/s43018-022-00462-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022]
Abstract
Senolytics, drugs that kill senescent cells, have been proposed to improve the response to pro-senescence cancer therapies; however, this remains challenging due to a lack of broadly acting senolytic drugs. Using CRISPR/Cas9-based genetic screens in different senescent cancer cell models, we identify loss of the death receptor inhibitor cFLIP as a common vulnerability of senescent cancer cells. Senescent cells are primed for apoptotic death by NF-κB-mediated upregulation of death receptor 5 (DR5) and its ligand TRAIL, but are protected from death by increased cFLIP expression. Activation of DR5 signaling by agonistic antibody, which can be enhanced further by suppression of cFLIP by BRD2 inhibition, leads to efficient killing of a variety of senescent cancer cells. Moreover, senescent cells sensitize adjacent non-senescent cells to killing by DR5 agonist through a bystander effect mediated by secretion of cytokines. We validate this 'one-two punch' cancer therapy by combining pro-senescence therapy with DR5 activation in different animal models.
Collapse
Affiliation(s)
- Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Haojie Jin
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fleur Jochems
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Siying Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, NKI Robotic and Screening Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Isabel Mora Martinez
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Giulia De Conti
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Finn Edwards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rodrigo Leite de Oliveira
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Arnout Schepers
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Yangyang Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaojiao Zheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingling Zheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jing Ling
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kathy Jastrzebski
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Matheus Dos Santos Dias
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Patrick N H Celie
- Division of Biochemistry, Protein facility, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, NKI Robotic and Screening Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands. .,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Can 3D bioprinting solve the mystery of senescence in cancer therapy? Ageing Res Rev 2022; 81:101732. [PMID: 36100069 DOI: 10.1016/j.arr.2022.101732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 01/31/2023]
Abstract
Tumor dormancy leading to cancer relapse is still a poorly understood mechanism. Several cell states such as quiescence and diapause can explain the persistence of tumor cells in a dormant state, but the potential role of tumor cell senescence has been met with hesitance given the historical understanding of the senescent growth arrest as irreversible. However, recent evidence has suggested that senescence might contribute to dormancy and relapse, although its exact role is not fully developed. This limited understanding is largely due to the paucity of reliable study models. The current 2D cell modeling is overly simplistic and lacks the appropriate representation of the interactions between tumor cells (senescent or non-senescent) and the other cell types within the tumor microenvironment (TME), as well as with the extracellular matrix (ECM). 3D cell culture models, including 3D bioprinting techniques, offer a promising approach to better recapitulate the native cancer microenvironment and would significantly improve our understanding of cancer biology and cellular response to treatment, particularly Therapy-Induced Senescence (TIS), and its contribution to tumor dormancy and cancer recurrence. Fabricating a novel 3D bioprinted model offers excellent opportunities to investigate both the role of TIS in tumor dormancy and the utility of senolytics (drugs that selectively eliminate senescent cells) in targeting dormant cancer cells and mitigating the risk for resurgence. In this review, we discuss literature on the possible contribution of TIS in tumor dormancy, provide examples on the current 3D models of senescence, and propose a novel 3D model to investigate the ultimate role of TIS in mediating overall response to therapy.
Collapse
|
10
|
Recent Advances in the Aging Microenvironment of Breast Cancer. Cancers (Basel) 2022; 14:cancers14204990. [PMID: 36291773 PMCID: PMC9599409 DOI: 10.3390/cancers14204990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The incidence of breast cancer has increased rapidly in recent years. Aging is one of the risk factors for advanced breast cancer. More and more studies have been conducted on the influence of the aging microenvironment on breast cancer. In this review, we summarize the effects of physical changes in the aging microenvironment, senescence-associated secretory phenotypes, and senescent stromal cells on the initiation and progression of breast cancer and the underlying mechanisms. In addition, we also discuss potential targets for senotherapeutics and senescence-inducing agents in the aging microenvironment of breast cancer. We hope this review can provide some directions for future research on the aging microenvironment in breast cancer. Abstract Aging is one of the risk factors for advanced breast cancer. With the increasing trend toward population aging, it is important to study the effects of aging on breast cancer in depth. Cellular senescence and changes in the aging microenvironment in vivo are the basis for body aging and death. In this review, we focus on the influence of the aging microenvironment on breast cancer. Increased breast extracellular matrix stiffness in the aging breast extracellular matrix can promote the invasion of breast cancer cells. The role of senescence-associated secretory phenotypes (SASPs) such as interleukin-6 (IL-6), IL-8, and matrix metalloproteases (MMPs), in breast cancer cell proliferation, invasion, and metastasis is worthy of exploration. Furthermore, the impact of senescent fibroblasts, adipocytes, and endothelial cells on the mammary matrix is discussed in detail. We also list potential targets for senotherapeutics and senescence-inducing agents in the aging microenvironment of breast cancer. In conclusion, this review offers an overview of the influence of the aging microenvironment on breast cancer initiation and progression, with the aim of providing some directions for future research on the aging microenvironment in breast cancer.
Collapse
|
11
|
Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stress. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Zhou X, Suo F, Haslinger K, Quax WJ. Artemisinin-Type Drugs in Tumor Cell Death: Mechanisms, Combination Treatment with Biologics and Nanoparticle Delivery. Pharmaceutics 2022; 14:395. [PMID: 35214127 PMCID: PMC8875250 DOI: 10.3390/pharmaceutics14020395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Artemisinin, the most famous anti-malaria drug initially extracted from Artemisia annua L., also exhibits anti-tumor properties in vivo and in vitro. To improve its solubility and bioavailability, multiple derivatives have been synthesized. However, to reveal the anti-tumor mechanism and improve the efficacy of these artemisinin-type drugs, studies have been conducted in recent years. In this review, we first provide an overview of the effect of artemisinin-type drugs on the regulated cell death pathways, which may uncover novel therapeutic approaches. Then, to overcome the shortcomings of artemisinin-type drugs, we summarize the recent advances in two different therapeutic approaches, namely the combination therapy with biologics influencing regulated cell death, and the use of nanocarriers as drug delivery systems. For the former approach, we discuss the superiority of combination treatments compared to monotherapy in tumor cells based on their effects on regulated cell death. For the latter approach, we give a systematic overview of nanocarrier design principles used to deliver artemisinin-type drugs, including inorganic-based nanoparticles, liposomes, micelles, polymer-based nanoparticles, carbon-based nanoparticles, nanostructured lipid carriers and niosomes. Both approaches have yielded promising findings in vitro and in vivo, providing a strong scientific basis for further study and upcoming clinical trials.
Collapse
Affiliation(s)
| | | | - Kristina Haslinger
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (F.S.)
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (F.S.)
| |
Collapse
|
13
|
Suo F, Zhou X, Setroikromo R, Quax WJ. Receptor Specificity Engineering of TNF Superfamily Ligands. Pharmaceutics 2022; 14:181. [PMID: 35057080 PMCID: PMC8781899 DOI: 10.3390/pharmaceutics14010181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor necrosis factor (TNF) ligand family has nine ligands that show promiscuity in binding multiple receptors. As different receptors transduce into diverse pathways, the study on the functional role of natural ligands is very complex. In this review, we discuss the TNF ligands engineering for receptor specificity and summarize the performance of the ligand variants in vivo and in vitro. Those variants have an increased binding affinity to specific receptors to enhance the cell signal conduction and have reduced side effects due to a lowered binding to untargeted receptors. Refining receptor specificity is a promising research strategy for improving the application of multi-receptor ligands. Further, the settled variants also provide experimental guidance for engineering receptor specificity on other proteins with multiple receptors.
Collapse
Affiliation(s)
- Fengzhi Suo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Xinyu Zhou
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
14
|
Li F, Wang X, Wu M, Guan J, Liang Y, Liu X, Lin X, Liu J. Biosynthetic cell membrane vesicles to enhance TRAIL-mediated apoptosis driven by photo-triggered oxidative stress. Biomater Sci 2022; 10:3547-3558. [PMID: 35616096 DOI: 10.1039/d2bm00599a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the tumor-specificity and limited side effects, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) shows great potential in cancer treatments. However, the short half-life of TRAIL protein and the poor...
Collapse
Affiliation(s)
- Feida Li
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
| | - Xiaoyan Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jianhua Guan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yuzhi Liang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xinyi Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, P. R. China
| |
Collapse
|