1
|
Shen Z, Li S, Liu Z, Qi Y, Yu W, Zhang X, Zhu M, Hu X, Gong C. GCRV-encoded circRNA circ_20 forms a ternary complex with BIP and PERK to delay virus replication by inhibiting the PERK-eIF2α pathway. Int J Biol Macromol 2024; 281:136314. [PMID: 39370064 DOI: 10.1016/j.ijbiomac.2024.136314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Viral circRNAs play important roles in host-virus interactions. Previous reports showed that grass carp reovirus (GCRV) encodes 32 circRNAs, and circ_20 from the negative strand of GCRV genome segment 7 has the potential to regulate GCRV replication. However, the regulatory mechanism of circ_20 on GCRV remains unknown. In this study, circ_20 was further validated, and circ_20 negatively regulated ERS, the PERK pathway, and ROS production in GCRV-infected cells. Furthermore, circ_20 inhibited the PERK pathway by forming a ternary complex with BIP and PERK, resulting in delaying GCRV replication. RNA pull-down results indicated that the 51-102 nt region of circ_20 interacts with BIP, while the 451-502 and 514-565 nt regions interact with PERK. After the deletion of these interaction regions, the ability of circ_20 to promote BIP-PERK interaction decreases, leading to a decrease in the ability to inhibit GCRV proliferation. These findings uncovered new insights into the complex interplay between viruses and host cells and provided a novel understanding of the significance of viral circRNAs in virus-host interactions.
Collapse
Affiliation(s)
- Zeen Shen
- School of Life Sciences, Soochow University, Suzhou 21523, China
| | - Song Li
- School of Life Sciences, Soochow University, Suzhou 21523, China
| | - Zhuo Liu
- School of Life Sciences, Soochow University, Suzhou 21523, China
| | - Yanling Qi
- School of Life Sciences, Soochow University, Suzhou 21523, China
| | - Wenbin Yu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xing Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Min Zhu
- School of Life Sciences, Soochow University, Suzhou 21523, China
| | - Xiaolong Hu
- School of Life Sciences, Soochow University, Suzhou 21523, China.
| | - Chengliang Gong
- School of Life Sciences, Soochow University, Suzhou 21523, China.
| |
Collapse
|
2
|
Yang YC, Ho KH, Hua KT, Chien MH. Roles of K(H)SRP in modulating gene transcription throughout cancer progression: Insights from cellular studies to clinical perspectives. Biochim Biophys Acta Rev Cancer 2024; 1879:189202. [PMID: 39447687 DOI: 10.1016/j.bbcan.2024.189202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The KH-type splicing regulatory protein (KHSRP), also known as KSRP, is an RNA-binding protein that regulates gene expressions through various mechanisms, including messenger (m)RNA degradation, micro (mi)RNA maturation, and transcriptional activity. KSRP has been implicated in a wide range of physiological and pathological processes, with emerging evidence highlighting its role in modulating diverse aspects of cancer behaviors. In this review, we provide a comprehensive overview of KSRP's clinical relevance and its multifaceted regulatory mechanisms in cancer. Our extensive pan-cancer analysis uncovers associations of KSRP with clinical outcomes and identifies cell cycle progression as a key signaling pathway correlated with KSRP expression. Furthermore, we identify miR-17-5p as critical miRNAs positively correlated with KSRP, and it is associated with poor survival in various cancers. Collectively, this review offers new insights into the potential of KSRP as a target for therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Yi-Chieh Yang
- Department of Medical Research, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hao Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Tian S, Liu Y, Liu P, Nomura S, Wei Y, Huang T. Development and Validation of a Comprehensive Prognostic and Depression Risk Index for Gastric Adenocarcinoma. Int J Mol Sci 2024; 25:10776. [PMID: 39409106 PMCID: PMC11476876 DOI: 10.3390/ijms251910776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Depressive disorder contributes to the initiation and prognosis of patients with cancer, but the interaction between cancer and depressive disorder remains unclear. We generated a gastric adenocarcinoma patient-derived xenograft mice model, treated with chronic unpredictable mild stimulation. Based on the RNA-sequence from the mouse model, patient data from TCGA, and MDD-related (major depressive disorder) genes from the GEO database, 56 hub genes were identified by the intersection of differential expression genes from the three datasets. Molecular subtypes and a prognostic signature were generated based on the 56 genes. A depressive mouse model was constructed to test the key changes in the signatures. The signature was constructed based on the NDUFA4L2, ANKRD45, and AQP3 genes. Patients with high risk-score had a worse overall survival than the patients with low scores, consistent with the results from the two GEO cohorts. The comprehensive results showed that a higher risk-score was correlated with higher levels of tumor immune exclusion, higher infiltration of M0 macrophages, M2 macrophages, and neutrophils, higher angiogenetic activities, and more enriched epithelial-mesenchymal transition signaling pathways. A higher risk score was correlated to a higher MDD score, elevated MDD-related cytokines, and the dysfunction of neurogenesis-related genes, and parts of these changes showed similar trends in the animal model. With the Genomics of Drug Sensitivity in Cancer database, we found that the gastric adenocarcinoma patients with high risk-score may be sensitive to Pazopanib, XMD8.85, Midostaurin, HG.6.64.1, Elesclomol, Linifanib, AP.24534, Roscovitine, Cytarabine, and Axitinib. The gene signature consisting of the NDUFA4L2, ANKRD45, and AQP3 genes is a promising biomarker to distinguish the prognosis, the molecular and immune characteristics, the depressive risk, and the therapy candidates for gastric adenocarcinoma patients.
Collapse
Affiliation(s)
- Sheng Tian
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; (S.T.); (Y.L.); (P.L.)
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yixin Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; (S.T.); (Y.L.); (P.L.)
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Pan Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; (S.T.); (Y.L.); (P.L.)
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan;
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; (S.T.); (Y.L.); (P.L.)
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; (S.T.); (Y.L.); (P.L.)
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Shi D, Yang Z, Cai Y, Li H, Lin L, Wu D, Zhang S, Guo Q. Research advances in the molecular classification of gastric cancer. Cell Oncol (Dordr) 2024; 47:1523-1536. [PMID: 38717722 PMCID: PMC11466988 DOI: 10.1007/s13402-024-00951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 06/27/2024] Open
Abstract
Gastric cancer (GC) is a malignant tumor with one of the lowest five-year survival rates. Traditional first-line treatment regimens, such as platinum drugs, have limited therapeutic efficacy in treating advanced GC and significant side effects, greatly reducing patient quality of life. In contrast, trastuzumab and other immune checkpoint inhibitors, such as nivolumab and pembrolizumab, have demonstrated consistent and reliable efficacy in treating GC. Here, we discuss the intrinsic characteristics of GC from a molecular perspective and provide a comprehensive review of classification and treatment advances in the disease. Finally, we suggest several strategies based on the intrinsic molecular characteristics of GC to aid in overcoming clinical challenges in the development of precision medicine and improve patient prognosis.
Collapse
Affiliation(s)
- Dike Shi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road, Hangzhou, 310009, China
| | - Zihan Yang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yanna Cai
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hongbo Li
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lele Lin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road, Hangzhou, 310009, China
| | - Dan Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road, Hangzhou, 310009, China
| | - Shengyu Zhang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Qingqu Guo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
5
|
Kundu I, Varshney S, Karnati S, Naidu S. The multifaceted roles of circular RNAs in cancer hallmarks: From mechanisms to clinical implications. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102286. [PMID: 39188305 PMCID: PMC11345389 DOI: 10.1016/j.omtn.2024.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Circular RNAs (circRNAs) represent a distinct class of covalently closed RNA species lacking conventional 5' to 3' polarity. Derived predominantly from pre-mRNA transcripts of protein-coding genes, circRNAs arise through back-splicing events of exon-exon or exon-intron junctions. They exhibit tissue- and cell-specific expression patterns and play crucial roles in regulating fundamental cellular processes such as cell cycle dynamics, proliferation, apoptosis, and differentiation. CircRNAs modulate gene expression through a plethora of mechanisms at epigenetic, transcriptional, and post-transcriptional levels, and some can even undergo translation into functional proteins. Recently, aberrant expression of circRNAs has emerged as a significant molecular aberration within the intricate regulatory networks governing hallmarks of cancer. The tumor-specific expression patterns and remarkable stability of circRNAs have profound implications for cancer diagnosis, prognosis, and therapy. This review comprehensively explores the multifaceted roles of circRNAs across cancer hallmarks in various tumor types, underscoring their growing significance in cancer diagnosis and therapeutic interventions. It also details strategies for leveraging circRNA-based therapies and discusses the challenges in using circRNAs for cancer management, emphasizing the need for further research to overcome these obstacles.
Collapse
Affiliation(s)
- Indira Kundu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Shivani Varshney
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Srivatsava Naidu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| |
Collapse
|
6
|
Ding P, Wu H, Wu J, Li T, He J, Ju Y, Liu Y, Li F, Deng H, Gu R, Zhang L, Guo H, Tian Y, Yang P, Meng N, Li X, Guo Z, Meng L, Zhao Q. N6-methyladenosine modified circPAK2 promotes lymph node metastasis via targeting IGF2BPs/VEGFA signaling in gastric cancer. Oncogene 2024; 43:2548-2563. [PMID: 39014193 DOI: 10.1038/s41388-024-03099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
Circular RNAs (circRNAs) have emerged as key regulators of cancer occurrence and progression, as well as promising biomarkers for cancer diagnosis and prognosis. However, the potential mechanisms of circRNAs implicated in lymph node (LN) metastasis of gastric cancer remain unclear. Herein, we identify a novel N6-methyladenosine (m6A) modified circRNA, circPAK2, which is significantly upregulated in gastric cancer tissues and metastatic LN tissues. Functionally, circPAK2 enhances the migration, invasion, lymphangiogenesis, angiogenesis, epithelial-mesenchymal transition (EMT), and metastasis of gastric cancer in vitro and in vivo. Mechanistically, circPAK2 is exported by YTH domain-containing protein 1 (YTHDC1) from the nucleus to the cytoplasm in an m6A methylation-dependent manner. Moreover, increased cytoplasmic circPAK2 interacts with Insulin-Like Growth Factor 2 mRNA-Binding Proteins (IGF2BPs) and forms a circPAK2/IGF2BPs/VEGFA complex to stabilize VEGFA mRNA, which contributes to gastric cancer vasculature formation and aggressiveness. Clinically, high circPAK2 expression is positively associated with LN metastasis and poor prognosis in gastric cancer. This study highlights m6A-modified circPAK2 as a key regulator of LN metastasis of gastric cancer, thus supporting circPAK2 as a promising therapeutic target and prognostic biomarker for gastric cancer.
Collapse
Affiliation(s)
- Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Tongkun Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Jinchen He
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Yingchao Ju
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
- Animal Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yueping Liu
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fang Li
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huiyan Deng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Renjun Gu
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Honghai Guo
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Yuan Tian
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Peigang Yang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Ning Meng
- Department of General Surgery, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China
| | - Xiaolong Li
- Department of General Surgery, Baoding Central Hospital, Baoding, Hebei, China
| | - Zhenjiang Guo
- General Surgery Department, Hengshui People's Hospital, Hengshui, Hebei, China
| | - Lingjiao Meng
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China.
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China.
| |
Collapse
|
7
|
Qiu Y, Zhang S, Man C, Gong D, Xu Y, Fan Y, Wang X, Zhang W. Advances on Senescence-associated secretory phenotype regulated by circular RNAs in tumors. Ageing Res Rev 2024; 97:102287. [PMID: 38570142 DOI: 10.1016/j.arr.2024.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The components that comprise the senescence-associated secretory phenotype (SASP) include growth factors, proteases, chemokines, cytokines, and bioactive lipids. It drives secondary aging and disrupts tissue homeostasis, ultimately leading to tissue repair and regeneration loss. It has a two-way regulatory effect on tumor cells, resisting cancer occurrence and promoting its progression. A category of single-stranded circular non-coding RNA molecules known as circular RNAs (circRNAs) carries out a series of cellular activities, including sequestering miRNAs and modulating gene editing and expression. Research has demonstrated that a large number of circRNAs exhibit aberrant expression in pathological settings, and play a part in the onset and progress of cancer via modulating SASP factors. However, the research related to SASP and circRNAs in tumors is still in its infancy at this stage. This review centers on the bidirectional modulation of SASP and the role of circRNAs in regulating SASP factors across different types of tumors. The aim is to present novel perspectives for the diagnosis and therapeutic management of malignancies.
Collapse
Affiliation(s)
- Yue Qiu
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Shiqi Zhang
- Department of Gastroenterology, Affiliated Suqian First People's Hospital of Nanjing Medical University, No 120, Suzhi Road, Suqian, Jiangsu 223812, People's Republic of China
| | - Changfeng Man
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Dandan Gong
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Ying Xu
- Laboratory Center, Jiangsu University Affiliated People's Hospital, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Fan
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China.
| | - Xiaoyan Wang
- Department of Gastroenterology, Affiliated Suqian First People's Hospital of Nanjing Medical University, No 120, Suzhi Road, Suqian, Jiangsu 223812, People's Republic of China.
| | - Wenbo Zhang
- General Surgery Department, Jiangsu University Affiliated People's Hospital, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Shen Z, Dong T, Yong H, Deng C, Chen C, Chen X, Chen M, Chu S, Zheng J, Li Z, Bai J. FBXO22 promotes glioblastoma malignant progression by mediating VHL ubiquitination and degradation. Cell Death Discov 2024; 10:151. [PMID: 38519492 PMCID: PMC10959977 DOI: 10.1038/s41420-024-01919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor. Despite comprehensive treatment with traditional surgery, radiotherapy, and chemotherapy, the median survival rate is <14.6% and the 5-year survival rate is only 5%. FBXO22, a substrate receptor of the SCF ubiquitin ligases, has been reported to play a promoting role in melanoma, liver cancer, cervical cancer, and other cancers. However, the function of FBXO22 in GBM has not been reported. In the present study, we demonstrate that FBXO22 is highly expressed in glioma and is positively correlated with worse pathological features and shorter survival of GBM patients. We revealed that FBXO22 promotes GBM cell proliferation, angiogenesis, migration, and tumorigenesis in vitro and in vivo. In terms of mechanism, we reveal that FBXO22 decreases VHL expression by directly mediating VHL ubiquitination degradation, which ultimately increases HIF-1α and VEGFA expression. In addition, our data confirm that there are positive correlations among FBXO22, HIF-1α, and VEGFA expression, and there is a negative correlation between FBXO22 and VHL protein expression in glioma patients. Our study strongly indicates that FBXO22 is a promising diagnostic marker and therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Zhigang Shen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Dong
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongmei Yong
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huaian, Jiangsu, China
| | - Chuyin Deng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Changxiu Chen
- Department of Pediatrics, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xintian Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Miaolei Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Zhongwei Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Laboratory of Tumor Epigenetics, School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
9
|
Ma Q, Yang F, Xiao B, Guo X. Emerging roles of circular RNAs in tumorigenesis, progression, and treatment of gastric cancer. J Transl Med 2024; 22:207. [PMID: 38414006 PMCID: PMC10897999 DOI: 10.1186/s12967-024-05001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
With an estimated one million new cases reported annually, gastric cancer (GC) ranks as the fifth most diagnosed malignancy worldwide. The early detection of GC remains a major challenge, and the prognosis worsens either when patients develop resistance to chemotherapy or radiotherapy or when the cancer metastasizes. The precise pathogenesis underlying GC is not well understood, which further complicates its treatment. Circular RNAs (circRNAs), a recently discovered class of noncoding RNAs that originate from parental genes through "back-splicing", have been shown to play a key role in various biological processes in both eukaryotes and prokaryotes. CircRNAs have been linked to cardiovascular diseases, diabetes, hypertension, Alzheimer's disease, and the occurrence and progression of tumors. Prior studies have established that circRNAs play a crucial role in GC, impacting tumorigenesis, diagnosis, progression, and therapy resistance. This review aims to summarize how circRNAs contribute to GC tumorigenesis and progression, examine their roles in the development of drug resistance, discuss their potential as biotechnological drugs, and summarize their response to therapeutic drugs and microorganism in GC.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
- Translational Medicine Research Center & School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Feifei Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bin Xiao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
- Translational Medicine Research Center & School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
| |
Collapse
|
10
|
Xu J, Wu F, Zhu Y, Wu T, Cao T, Gao W, Liu M, Qian W, Feng G, Xi X, Hou S. ANGPTL4 regulates ovarian cancer progression by activating the ERK1/2 pathway. Cancer Cell Int 2024; 24:54. [PMID: 38311733 PMCID: PMC10838463 DOI: 10.1186/s12935-024-03246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/25/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) has the highest mortality rate among all gynecological malignancies. A hypoxic microenvironment is a common feature of solid tumors, including ovarian cancer, and an important driving factor of tumor cell survival and chemo- and radiotherapy resistance. Previous research identified the hypoxia-associated gene angiopoietin-like 4 (ANGPTL4) as both a pro-angiogenic and pro-metastatic factor in tumors. Hence, this work aimed to further elucidate the contribution of ANGPTL4 to OC progression. METHODS The expression of hypoxia-associated ANGPTL4 in human ovarian cancer was examined by bioinformatics analysis of TCGA and GEO datasets. The CIBERSORT tool was used to analyze the distribution of tumor-infiltrating immune cells in ovarian cancer cases in TCGA. The effect of ANGPTL4 silencing and overexpression on the proliferation and migration of OVCAR3 and A2780 OC cells was studied in vitro, using CCK-8, colony formation, and Transwell assays, and in vivo, through subcutaneous tumorigenesis assays in nude mice. GO enrichment analysis and WGCNA were performed to explore biological processes and genetic networks associated with ANGPTL4. The results obtained were corroborated in OC cells in vitro by western blotting. RESULTS Screening of hypoxia-associated genes in OC-related TCGA and GEO datasets revealed a significant negative association between ANGPTL4 expression and patient survival. Based on CIBERSORT analysis, differential representation of 14 distinct tumor-infiltrating immune cell types was detected between low- and high-risk patient groups. Silencing of ANGPTL4 inhibited OVCAR3 and A2780 cell proliferation and migration in vitro and reduced the growth rate of xenografted OVCAR3 cells in vivo. Based on results from WGCNA and previous studies, western blot assays in cultured OC cells demonstrated that ANGPTL4 activates the Extracellular signal-related kinases 1 and 2 (ERK1/2) pathway and this results in upregulation of c-Myc, Cyclin D1, and MMP2 expression. Suggesting that the above mechanism mediates the pro-oncogenic actions of ANGPTL4T in OC, the pro-survival effects of ANGPTL4 were largely abolished upon inhibition of ERK1/2 signaling with PD98059. CONCLUSIONS Our work suggests that the hypoxia-associated gene ANGPTL4 stimulates OC progression through activation of the ERK1/2 pathway. These findings may offer a new prospect for targeted therapies for the treatment of OC.
Collapse
Affiliation(s)
- Jiaqi Xu
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University; Suzhou Municipal Hospital, No.26, Daoqian Street, Suzhou, 215002, Jiangsu, China
| | - Fei Wu
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University; Suzhou Municipal Hospital, No.26, Daoqian Street, Suzhou, 215002, Jiangsu, China
| | - Yue Zhu
- Department of Breast and Thyroid Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University; Suzhou Municipal Hospital, No.26, Daoqian Street, Suzhou, 215002, Jiangsu, China
| | - Tiantian Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Tianyue Cao
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University; Suzhou Municipal Hospital, No.26, Daoqian Street, Suzhou, 215002, Jiangsu, China
| | - Wenxin Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Meng Liu
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University; Suzhou Municipal Hospital, No.26, Daoqian Street, Suzhou, 215002, Jiangsu, China
| | - Weifeng Qian
- Department of Breast and Thyroid Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University; Suzhou Municipal Hospital, No.26, Daoqian Street, Suzhou, 215002, Jiangsu, China
| | - Guannan Feng
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University; Suzhou Municipal Hospital, No.26, Daoqian Street, Suzhou, 215002, Jiangsu, China
| | - Xiaoxue Xi
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University; Suzhou Municipal Hospital, No.26, Daoqian Street, Suzhou, 215002, Jiangsu, China.
| | - Shunyu Hou
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University; Suzhou Municipal Hospital, No.26, Daoqian Street, Suzhou, 215002, Jiangsu, China.
| |
Collapse
|
11
|
Su Z, Li W, Lei Z, Hu L, Wang S, Guo L. Regulation of Angiogenesis by Non-Coding RNAs in Cancer. Biomolecules 2024; 14:60. [PMID: 38254660 PMCID: PMC10813527 DOI: 10.3390/biom14010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, have been identified as crucial regulators of various biological processes through epigenetic regulation, transcriptional regulation, and post-transcriptional regulation. Growing evidence suggests that dysregulation and activation of non-coding RNAs are closely associated with tumor angiogenesis, a process essential for tumor growth and metastasis and a major contributor to cancer-related mortality. Therefore, understanding the molecular mechanisms underlying tumor angiogenesis is of utmost importance. Numerous studies have documented the involvement of different types of non-coding RNAs in the regulation of angiogenesis. This review provides an overview of how non-coding RNAs regulate tumor angiogenesis. Additionally, we discuss emerging strategies that exploit non-coding RNAs for anti-angiogenic therapy in cancer treatment. Ultimately, this review underscores the crucial role played by non-coding RNAs in tumor angiogenesis and highlights their potential as therapeutic targets for anti-angiogenic interventions against cancer.
Collapse
Affiliation(s)
- Zhiyue Su
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wenshu Li
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhe Lei
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shengjie Wang
- Department of Basic Medicine, Kangda College, Nanjing Medical University, Lianyungang 222000, China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
12
|
Hua H, Su T, Han L, Zhang L, Huang Y, Zhang N, Yang M. LINC01226 promotes gastric cancer progression through enhancing cytoplasm-to-nucleus translocation of STIP1 and stabilizing β-catenin protein. Cancer Lett 2023; 577:216436. [PMID: 37806517 DOI: 10.1016/j.canlet.2023.216436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Gastric cancer (GC) remains one of the most common malignances and the leading cause of cancer-related mortality worldwide. Although the critical role of several long non-coding RNAs (lncRNAs) transcribed from several GC-risk loci has been established, we still know little about the biological significance of these lncRNAs at most gene loci and how they play in cell signaling. In the present study, we identified a novel oncogenic lncRNA LINC01226 transcribed from the 1p35.2 GC-risk locus. LINC01226 shows markedly higher expression levels in GC specimens compared with those in normal tissues. High expression of LINC01226 is evidently correlated with worse prognosis of GC cases. In line with these, oncogenic LINC01226 promotes proliferation, migration and metastasis of GC cells ex vivo and in vivo. Importantly, LINC01226 binds to STIP1 protein, leads to disassembly of the STIP1-HSP90 complex, elevates interactions between HSP90 and β-catenin, stabilizes β-catenin protein, activates the Wnt/β-catenin signaling and, thereby, promote GC progression. Together, our findings uncovered a novel layer regulating the Wnt signaling in cancers and uncovers a new epigenetic mode of GC tumorigenesis. These discoveries also shed new light on the importance of functional lncRNAs as innovative therapeutic targets through precisely controlling protein-protein interactions in cancers.
Collapse
Affiliation(s)
- Hui Hua
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Tao Su
- Shandong University Cancer Center, Jinan, Shandong Province, 250117, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Yizhou Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China; Shandong University Cancer Center, Jinan, Shandong Province, 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| |
Collapse
|
13
|
Ghaedrahmati F, Nasrolahi A, Najafi S, Mighani M, Anbiyaee O, Haybar H, Assareh AR, Kempisty B, Dzięgiel P, Azizidoost S, Farzaneh M. Circular RNAs-mediated angiogenesis in human cancers. Clin Transl Oncol 2023; 25:3101-3121. [PMID: 37039938 DOI: 10.1007/s12094-023-03178-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
Circular RNAs (circRNAs) as small non-coding RNAs with cell, tissue, or organ-specific expression accomplish a broad array of functions in physiological and pathological processes such as cancer development. Angiogenesis, a complicated multistep process driving a formation of new blood vessels, speeds up tumor progression by supplying nutrients as well as energy. Abnormal expression of circRNAs reported to affect tumor development through impressing angiogenesis. Such impacts are introduced as constant with different tumorigenic features known as "hallmarks of cancer". In addition, deregulated circRNAs show possibilities to prognosis and diagnosis both in the prophecy of prognosis in malignancies and also their prejudice from healthy individuals. In the present review article, we have evaluated the angiogenic impacts and anti-angiogenic managements of circRNAs in human cancers.
Collapse
Affiliation(s)
- Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mighani
- School of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Reza Assareh
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland
- North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC, 27695, US
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
14
|
Liu Q, Bode AM, Chen X, Luo X. Metabolic reprogramming in nasopharyngeal carcinoma: Mechanisms and therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:189023. [PMID: 37979733 DOI: 10.1016/j.bbcan.2023.189023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
The high prevalence of metabolic reprogramming in nasopharyngeal carcinoma (NPC) offers an abundance of potential therapeutic targets. This review delves into the distinct mechanisms underlying metabolic reprogramming in NPC, including enhanced glycolysis, nucleotide synthesis, and lipid metabolism. All of these changes are modulated by Epstein-Barr virus (EBV) infection, hypoxia, and tumor microenvironment. We highlight the role of metabolic reprogramming in the development of NPC resistance to standard therapies, which represents a challenging barrier in treating this malignancy. Furthermore, we dissect the state of the art in therapeutic strategies that target these metabolic changes, evaluating the successes and failures of clinical trials and the strategies to tackle resistance mechanisms. By providing a comprehensive overview of the current knowledge and future directions in this field, this review sets the stage for new therapeutic avenues in NPC.
Collapse
Affiliation(s)
- Qian Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| | - Xiangjian Luo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
15
|
Liu T, Long K, Zhu Z, Song Y, Chen C, Xu G, Ke X. Roles of circRNAs in regulating the tumor microenvironment. Med Oncol 2023; 40:329. [PMID: 37819576 PMCID: PMC10567871 DOI: 10.1007/s12032-023-02194-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
CircRNAs, a type of non-coding RNA widely present in eukaryotic cells, have emerged as a prominent focus in tumor research. However, the functions of most circRNAs remain largely unexplored. Known circRNAs exert their regulatory roles through various mechanisms, including acting as microRNA sponges, binding to RNA-binding proteins, and functioning as transcription factors to modulate protein translation and coding. Tumor growth is not solely driven by gene mutations but also influenced by diverse constituent cells and growth factors within the tumor microenvironment (TME). As crucial regulators within the TME, circRNAs are involved in governing tumor growth and metastasis. This review highlights the role of circRNAs in regulating angiogenesis, matrix remodeling, and immunosuppression within the TME. Additionally, we discuss current research on hypoxia-induced circRNAs production and commensal microorganisms' impact on the TME to elucidate how circRNAs influence tumor growth while emphasizing the significance of modulating the TME.
Collapse
Affiliation(s)
- Tao Liu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Kaijun Long
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Zhengfeng Zhu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Yongxiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Cheng Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
| | - Gang Xu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
| | - Xixian Ke
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
16
|
Low YH, Loh CJL, Peh DYY, Chu AJM, Han S, Toh HC. Pathogenesis and therapeutic implications of EBV-associated epithelial cancers. Front Oncol 2023; 13:1202117. [PMID: 37901329 PMCID: PMC10600384 DOI: 10.3389/fonc.2023.1202117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023] Open
Abstract
Epstein-Barr virus (EBV), one of the most common human viruses, has been associated with both lymphoid and epithelial cancers. Undifferentiated nasopharyngeal carcinoma (NPC), EBV associated gastric cancer (EBVaGC) and lymphoepithelioma-like carcinoma (LELC) are amongst the few common epithelial cancers that EBV has been associated with. The pathogenesis of EBV-associated NPC has been well described, however, the same cannot be said for primary pulmonary LELC (PPLELC) owing to the rarity of the cancer. In this review, we outline the pathogenesis of EBV-associated NPC and EBVaGCs and their recent advances. By drawing on similarities between NPC and PPLELC, we then also postulated the pathogenesis of PPLELC. A deeper understanding about the pathogenesis of EBV enables us to postulate the pathogenesis of other EBV associated cancers such as PPLELC.
Collapse
Affiliation(s)
- Yi Hua Low
- Duke-NUS Medical School, Singapore, Singapore
| | | | - Daniel Yang Yao Peh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Axel Jun Ming Chu
- Singapore Health Services Internal Medicine Residency Programme, Singapore, Singapore
| | - Shuting Han
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Lungu CN, Mehedinti MC. Molecular Motifs in Vascular Morphogenesis: Vascular Endothelial Growth Factor A (VEGFA) as the Leading Promoter of Angiogenesis. Int J Mol Sci 2023; 24:12169. [PMID: 37569543 PMCID: PMC10418718 DOI: 10.3390/ijms241512169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Tissular hypoxia stimulates vascular morphogenesis. Vascular morphogenesis shapes the cell and, consecutively, tissue growth. The development of new blood vessels is intermediated substantially through the tyrosine kinase pathway. There are several types of receptors inferred to be located in the blood vessel structures. Vascular endothelial growth factor A (VEGF-A) is the leading protagonist of angiogenesis. VEGF-A's interactions with its receptors VEGFR1, VEGFR2, and VEGFR3, together with disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1), connective tissue growth factor (CTGF), and neuropilin-1 (NRP1), independently, are studied computationally. Peripheral artery disease (PAD), which results in tissue ischemia, is more prevalent in the senior population. Presently, medical curatives used to treat cases of PAD-antiplatelet and antithrombotic agents, statins, antihypertensive remedies with ACE (angiotensin-converting enzyme) impediments, angiotensin receptor blockers (ARB) or β- blockers, blood glucose control, and smoking cessation-are not effective. These curatives were largely established from the treatment of complaint cases of coronary disease. However, these medical curatives do not ameliorate lower limb perfusion in cases of PAD. Likewise, surgical or endovascular procedures may be ineffective in relieving symptoms. Eventually, after successful large vessel revascularization, the residual microvascular circulation may well limit the effectiveness of curatives in cases of PAD. It would thus feel rational to attempt to ameliorate perfusion in PAD by enhancing vascular rejuvenescence and function. Likewise, stimulating specific angiogenesis in these cases (PAD) can ameliorate the patient's symptomatology. Also, the quality of life of PAD patients can be improved by developing new vasodilative and angiogenetic molecules that stimulate the tyrosine kinase pathway. In this respect, the VEGFA angiogenetic pathway was explored computationally. Docking methodologies, molecular dynamics, and computational molecular design methodologies were used. VEGFA's interaction with its target was primarily studied. Common motifs in the vascular morphogenesis pathway are suggested using conformational energy and Riemann spaces. The results show that interaction with VEGFR2 and ADAMTS1 is pivotal in the angiogenetic process. Also, the informational content of two VEGFA complexes, VEGFR2 and ADAMTS1, is crucial in the angiogenesis process.
Collapse
Affiliation(s)
- Claudiu N. Lungu
- Departament of Functional and Morphological Science, Faculty of Medicine and Pharamacy, Dunarea de Jos University, 800010 Galati, Romania
| | | |
Collapse
|
18
|
Zhang L, Zhang Y, Li X, Gao H, Chen X, Li P. CircRNA-miRNA-VEGFA: an important pathway to regulate cancer pathogenesis. Front Pharmacol 2023; 14:1049742. [PMID: 37234708 PMCID: PMC10206052 DOI: 10.3389/fphar.2023.1049742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Cancers, especially malignant tumors, contribute to high global mortality rates, resulting in great economic burden to society. Many factors are associated with cancer pathogenesis, including vascular endothelial growth factor-A (VEGFA) and circular RNAs (circRNA). VEGFA is a pivotal regulator of vascular development such as angiogenesis, which is an important process in cancer development. CircRNAs have covalently closed structures, making them highly stable. CircRNAs are widely distributed and participate in many physiological and pathological processes, including modulating cancer pathogenesis. CircRNAs act as transcriptional regulators of parental genes, microRNA (miRNA)/RNA binding protein (RBP) sponges, protein templates. CircRNAs mainly function via binding to miRNAs. CircRNAs have been shown to influence different diseases such as coronary artery diseases and cancers by regulating VEGFA levels via binding to miRNAs. In this paper, we explored the origin and functional pathways of VEGFA, reviewed the current understanding of circRNA properties and action mechanisms, and summarized the role of circRNAs in regulating VEGFA during cancer pathogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- *Correspondence: Lei Zhang, ; Peifeng Li,
| | | | | | | | | | - Peifeng Li
- *Correspondence: Lei Zhang, ; Peifeng Li,
| |
Collapse
|
19
|
Sufentanil combined with parecoxib sodium inhibits proliferation and metastasis of HER2-positive breast cancer cells and regulates epithelial-mesenchymal transition. Clin Exp Metastasis 2023; 40:149-160. [PMID: 36807216 DOI: 10.1007/s10585-023-10199-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/10/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND Sufentanil combined with parecoxib sodium is a commonly used postoperative medication for cancer patients. However, the effects of this combination therapy on human epidermal growth factor receptor-2 (HER2)-positive breast cancer cells have still remained elusive. This study aimed to investigate the effects and potential mechanisms of sufentanil combined with parecoxib sodium on HER2-positive breast cancer cells. METHODS The cell counting kit-8 (CCK-8), colony formation, flow cytometry, scratch, transwell invasion, and angiogenesis assays were used to assess the proliferation, cell cycling, migration, invasion, and angiogenesis of HER2-positive breast cancer BT474 cells. Western blot assay was employed for detecting the expression levels of proteins involved in the cell cycle, migration, invasion, angiogenesis, and epithelial-mesenchymal transition (EMT). The in vivo effects of tumor growth and metastasis were examined by establishing an orthotopic transplantation mouse model of HER2-positive breast cancer (MMTV-PyMT). RESULTS Functional assays indicated that sufentanil combined with parecoxib sodium induced blockade of HER2-positive breast cancer BT474 cells in the G1 phase of the cell cycle and inhibited cell proliferation, migration, angiogenesis, and invasion in vitro. Western blot assay revealed that sufentanil combined with parecoxib sodium downregulated the expression levels of cyclin D1, matrix metalloproteinase-9 (MMP-9), cyclooxygenase-2 (COX-2), vascular endothelial growth factor A (VEGFA), and EMT-related proteins (N-cadherin, Vimentin, and Snail), while up-regulated the expression level of E-cadherin in BT474 cells. In addition, it was found that sufentanil combined with parecoxib sodium inhibited tumor growth and metastasis in the orthotopic transplantation mouse model of HER2-positive breast cancer. CONCLUSION Sufentanil combined with parecoxib sodium inhibited HER2-positive breast cancer progression, including cell proliferation, cell cycle, migration, invasion, and angiogenesis, and regulated EMT.
Collapse
|
20
|
Wu YL, Lou XJ, Fan YJ. Role of circRNAs in gastric cancer. Shijie Huaren Xiaohua Zazhi 2023; 31:85-91. [DOI: 10.11569/wcjd.v31.i3.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs (circRNAs) are a large class of non-coding RNAs with single-strand covalently closed loops, formed by reverse splicing, which widely exist in many cell lines and diverse species. Some circRNAs have highly evolutionarily conserved sequences, or tissue-specific or cell-specific expression patterns, and many circRNAs are extremely stable. In the past decades, accumulating evidence has indicated that circRNAs participate in the mechanisms associated with the development of many kinds of tumors, exert important biological functions by acting as microRNA or protein ‘sponges’, transcriptional regulatory factors, and protein translation templates, and play key roles in the occurrence and development of gastric cancer. This review comprehensively summarizes the biogenesis, characteristics, and biological functions of circRNAs, and the molecular mechanisms underlying the role of circRNAs in the carcinogenesis and progression of gastric cancer.
Collapse
Affiliation(s)
- Yu-Lin Wu
- The Fourth Clinical College of Zhejiang Chinese Medicine University, Hangzhou 310053, Zhejiang Province, China
| | - Xiao-Jun Lou
- Jiaxing Hospital of T.C.M, Jiaxing 314000, Zhejiang Province, China
| | - Yi-Jing Fan
- The Fourth Clinical College of Zhejiang Chinese Medicine University, Hangzhou 310053, Zhejiang Province, China
| |
Collapse
|
21
|
Kim B, Kim KM. Role of Exosomes and Their Potential as Biomarkers in Epstein-Barr Virus-Associated Gastric Cancer. Cancers (Basel) 2023; 15:cancers15020469. [PMID: 36672418 PMCID: PMC9856651 DOI: 10.3390/cancers15020469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Exosomes are a subtype of extracellular vesicles ranging from 30 to 150 nm and comprising many cellular components, including DNA, RNA, proteins, and metabolites, encapsulated in a lipid bilayer. Exosomes are secreted by many cell types and play important roles in intercellular communication in cancer. Viruses can hijack the exosomal pathway to regulate viral propagation, cellular immunity, and the microenvironment. Cells infected with Epstein-Barr virus (EBV), one of the most common oncogenic viruses, have also been found to actively secrete exosomes, and studies on their roles in EBV-related malignancies are ongoing. In this review, we focus on the role of exosomes in EBV-associated gastric cancer and their clinical applicability in diagnosis and treatment.
Collapse
Affiliation(s)
- Binnari Kim
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44610, Republic of Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Center of Companion Diagnostics, Samsung Medical Center, Seoul 06351, Republic of Korea
- Correspondence: ; Tel.: +82-2-3410-2807; Fax: +82-2-3410-6396
| |
Collapse
|
22
|
Wang X, Zhang J, Cao G, Hua J, Shan G, Lin W. Emerging roles of circular RNAs in gastric cancer metastasis and drug resistance. J Exp Clin Cancer Res 2022; 41:218. [PMID: 35821160 PMCID: PMC9277821 DOI: 10.1186/s13046-022-02432-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/04/2022] [Indexed: 02/08/2023] Open
Abstract
Gastric cancer (GC) is an aggressive malignancy with a high mortality rate and poor prognosis, primarily caused by metastatic lesions. Improved understanding of GC metastasis at the molecular level yields meaningful insights into potential biomarkers and therapeutic targets. Covalently closed circular RNAs (circRNAs) have emerged as crucial regulators in diverse human cancers including GC. Furthermore, accumulating evidence has demonstrated that circRNAs exhibit the dysregulated patterns in GC and have emerged as crucial regulators in GC invasion and metastasis. However, systematic knowledge regarding the involvement of circRNAs in metastatic GC remains obscure. In this review, we outline the functional circRNAs related to GC metastasis and drug resistance and discuss their underlying mechanisms, providing a comprehensive delineation of circRNA functions on metastatic GC and shedding new light on future therapeutic interventions for GC metastases.
Collapse
|
23
|
Ding P, Liu P, Wu H, Yang P, Tian Y, Zhao Q. Functional properties of circular RNAs and research progress in gastric cancer. Front Oncol 2022; 12:954637. [DOI: 10.3389/fonc.2022.954637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of closed circular non-coding RNAs widely exist in eukaryotes, with high stability and species conservation. A large number of studies have shown that circRNAs are abnormally expressed in various tumor tissues, and are abundant in plasma with long half-life and high specificity, which may be served as potential tumor biomarkers for early diagnosis, treatment and prognosis of malignant tumors. However, the role of circRNAs is still poorly understood in gastric cancer. This article reviews the research progress of circRNAs in gastric cancer in recent years so as to explore the relationship between circRNAs and the occurrence and the development of gastric cancer, and provide new ideas for the diagnosis and treatment of gastric cancer.
Collapse
|
24
|
Xu CY, Zeng XX, Xu LF, Liu M, Zhang F. Circular RNAs as diagnostic biomarkers for gastric cancer: A comprehensive update from emerging functions to clinical significances. Front Genet 2022; 13:1037120. [PMID: 36386850 PMCID: PMC9650219 DOI: 10.3389/fgene.2022.1037120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/10/2022] [Indexed: 08/30/2023] Open
Abstract
The incidence and mortality of gastric cancer ranks as a fouth leading cause of cancer death worldwide, especially in East Asia. Due to the lack of specific early-stage symptoms, the majority of patients in most developing nations are diagnosed at an advanced stage. Therefore, it is urgent to find more sensitive and reliable biomarkers for gastric cancer screening and diagnosis. Circular RNAs (circRNAs), a novel type of RNAs with covalently closed loops, are becoming a latest hot spot in the field of. In recent years, a great deal of research has demonstrated that abnormal expression of circRNAs was associated with the development of gastric cancer, and suggested that circRNA might serve as a potential biomarker for gastric cancer diagnosis. In this review, we summarize the structural characteristics, formation mechanism and biological function of circRNAs, and elucidate research progress and existing problems in early screening of gastric cancer.
Collapse
Affiliation(s)
- Chun-Yi Xu
- Zhejiang Chinese Medical University, Hangzhou, China
- Core Facility, Quzhou People’s Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Xi-Xi Zeng
- Core Facility, Quzhou People’s Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Li-Feng Xu
- Core Facility, Quzhou People’s Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Ming Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- The Joint Innovation Center for Engineering in Medicine, Quzhou, China
- University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhang
- Core Facility, Quzhou People’s Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| |
Collapse
|
25
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Mechanism underlying circRNA dysregulation in the TME of digestive system cancer. Front Immunol 2022; 13:951561. [PMID: 36238299 PMCID: PMC9550895 DOI: 10.3389/fimmu.2022.951561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Circular RNAs (circRNAs) are a new series of noncoding RNAs (ncRNAs) that have been reported to be expressed in eukaryotic cells and have a variety of biological functions in the regulation of cancer pathogenesis and progression. The TME, as a microscopic ecological environment, consists of a variety of cells, including tumor cells, immune cells and other normal cells, ECM and a large number of signaling molecules. The crosstalk between circRNAs and the TME plays a complicated role in affecting the malignant behaviors of digestive system cancers. Herein, we summarize the mechanisms underlying aberrant circRNA expression in the TME of the digestive system cancers, including immune surveillance, angiogenesis, EMT, and ECM remodelling. The regulation of the TME by circRNA is expected to be a new therapeutic method.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhi Guo, ; Yuting He,
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhi Guo, ; Yuting He,
| |
Collapse
|
26
|
NREP is a Diagnostic and Prognostic Biomarker, and Promotes Gastric Cancer Cell Proliferation and Angiogenesis. Biochem Genet 2022; 61:669-686. [PMID: 36094607 DOI: 10.1007/s10528-022-10276-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
Abstract
Neuronal regeneration related protein (NREP), also known as P311, has been reported to participate in multiple biological processes. The detection of tumor biomarker favored a non-invasive early entry for cancer diagnosis and disease monitoring to prevent its worsening symptoms. This study is intended to investigate the clinical roles of NREP in gastric cancer (GC) and its effect on gastric cancer cell proliferation and angiogenesis. Our results demonstrated that NREP was typically upregulated in GC tissues compared with normal control. The Kaplan-Meier analysis showed correlations between increased NREP level and poor survival, indicating the prognostic value of NREP in GC patients. The expression levels of NREP varied by races, clinical T stages, and histologic grades. NREP expression was associated with tumor-associated immune infiltration. The NREP expression was powerfully associated with clinical characteristics of GC patients, in particular, with T stage and histologic grade. Gene ontology and KEGG signaling analysis indicated that NREP-related genes were predominantly enriched in various pathways. Additionally, knockdown of NREP inhibited human gastric adenocarcinoma cell proliferation and angiogenesis. Collectively, our results suggested that NREP may be an excellent biomarker for the clinical diagnosis, prognosis, and therapy of GC.
Collapse
|
27
|
Guo L, Jia L, Luo L, Xu X, Xiang Y, Ren Y, Ren D, Shen L, Liang T. Critical Roles of Circular RNA in Tumor Metastasis via Acting as a Sponge of miRNA/isomiR. Int J Mol Sci 2022; 23:ijms23137024. [PMID: 35806027 PMCID: PMC9267010 DOI: 10.3390/ijms23137024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs), a class of new endogenous non-coding RNAs (ncRNAs), are closely related to the carcinogenic process and play a critical role in tumor metastasis. CircRNAs can lay the foundation for tumor metastasis via promoting tumor angiogenesis, make tumor cells gain the ability of migration and invasion by regulating epithelial-mesenchymal transition (EMT), interact with immune cells, cytokines, chemokines, and other non-cellular components in the tumor microenvironment, damage the normal immune function or escape the immunosuppressive network, and further promote cell survival and metastasis. Herein, based on the characteristics and biological functions of circRNA, we elaborated on the effect of circRNA via circRNA-associated competing endogenous RNA (ceRNA) network by acting as miRNA/isomiR sponges on tumor angiogenesis, cancer cell migration and invasion, and interaction with the tumor microenvironment (TME), then explored the potential interactions across different RNAs, and finally discussed the potential clinical value and application as a promising biomarker. These results provide a theoretical basis for the further application of metastasis-related circRNAs in cancer treatment. In summary, we briefly summarize the diverse roles of a circRNA-associated ceRNA network in cancer metastasis and the potential clinical application, especially the interaction of circRNA and miRNA/isomiR, which may complicate the RNA regulatory network and which will contribute to a novel insight into circRNA in the future.
Collapse
Affiliation(s)
- Li Guo
- Smart Health Big Data Analysis and Location Services Engineering Laboratory of Jiangsu Province, Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.X.); (Y.R.); (D.R.)
| | - Lin Jia
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (L.J.); (L.L.); (X.X.); (L.S.)
| | - Lulu Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (L.J.); (L.L.); (X.X.); (L.S.)
| | - Xinru Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (L.J.); (L.L.); (X.X.); (L.S.)
| | - Yangyang Xiang
- Smart Health Big Data Analysis and Location Services Engineering Laboratory of Jiangsu Province, Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.X.); (Y.R.); (D.R.)
| | - Yujie Ren
- Smart Health Big Data Analysis and Location Services Engineering Laboratory of Jiangsu Province, Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.X.); (Y.R.); (D.R.)
| | - Dekang Ren
- Smart Health Big Data Analysis and Location Services Engineering Laboratory of Jiangsu Province, Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.X.); (Y.R.); (D.R.)
| | - Lulu Shen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (L.J.); (L.L.); (X.X.); (L.S.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (L.J.); (L.L.); (X.X.); (L.S.)
- Correspondence:
| |
Collapse
|
28
|
Hu T, Zhang H, Du Y, Luo S, Yang X, Zhang H, Feng J, Chen X, Tu X, Wang C, Zhang Y. ELOVL2 restrains cell proliferation, migration, and invasion of prostate cancer via regulation of the tumor suppressor INPP4B. Cell Signal 2022; 96:110373. [DOI: 10.1016/j.cellsig.2022.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022]
|
29
|
Li L, Lu Y, Liu Y, Wang D, Duan L, Cheng S, Liu G. Network Pharmacology Analysis of Huangqi Jianzhong Tang Targets in Gastric Cancer. Front Pharmacol 2022; 13:882147. [PMID: 35462892 PMCID: PMC9024123 DOI: 10.3389/fphar.2022.882147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The Chinese medicine, Huangqi Jianzhong Tang (HJT), is widely used to treat gastric cancer (GC). In this study, network pharmacological methods were used to analyze the potential therapeutic targets and pharmacological mechanisms of HJT in GC. Methods: Bioactive components and targets of HJT and GC-related targets were identified using public databases. The protein-protein interaction network of potential targets of HJT in GC was constructed using the Cytoscape plug-in (v3.8.0), CytoHubba. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed, in addition to molecular docking and animal experiments to verify the results of network pharmacology analysis. Results: A total of 538 GC-related targets were identified. The bioactive components of HJT were selected for drug-likeness evaluation and binomial statistical model screening, which revealed 63 bioactive components and 72 targets. Based on GO enrichment analysis, all targets in the protein-protein interaction network were mainly involved in the response to oxidative stress and neuronal death. Further, KEGG enrichment analysis suggested that the treatment of GC with HJT mainly involved the Wnt signaling pathway, PI3K-Akt signaling pathway, TGF-β signaling pathway, and MAPK signaling pathway, thereby providing insights into the mechanism of the effects of HJT on GC. Conclusion: This study revealed the potential bioactive components and molecular mechanisms of HJT, which may be useful for the treatment of GC, and provided insights into the development of new drugs for GC.
Collapse
Affiliation(s)
- Long Li
- School of Medicine, Xiamen University, Xiamen, China
| | - Yizhuo Lu
- Department of General Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, China
| | - Yanling Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Dan Wang
- School of Medicine, Xiamen University, Xiamen, China
| | - Linshan Duan
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Shuyu Cheng
- School of Medicine, Xiamen University, Xiamen, China
| | - Guoyan Liu
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, China.,School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|