1
|
Natangelo S, Trapani D, Koukoutzeli C, Boscolo Bielo L, Marvaso G, Jereczek-Fossa BA, Curigliano G. Radiation therapy, tissue radiosensitization, and potential synergism in the era of novel antibody-drug conjugates. Crit Rev Oncol Hematol 2024; 195:104270. [PMID: 38272150 DOI: 10.1016/j.critrevonc.2024.104270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Antibody-drug conjugates (ADCs) represent a therapeutic class of agents designed to selectively deliver cytotoxic payloads to cancer cells. With the increasingly positioning of ADCs in the clinical practice, combinations with other treatment modalities, including radiation therapy (RT), will open new opportunities but also challenges. This review evaluates ADC-RT interactions, examining therapeutic synergies and potential caveats. ADC payloads can be radiosensitizing, enhancing cytotoxicity when used in combination with RT. Antigens targeted by ADCs can have various tissue expressions, resulting in possible off-target toxicities by tissue radiosensitization. Notably, the HER-2-directed ADC trastuzumab emtansine has appeared to increase the risk of radionecrosis when used concomitantly with brain RT, as glial cells can express HER2, too. Other possible organ-specific effects are discussed, such as pulmonary and cardiac toxicities. The lack of robust clinical data on the ADC-RT combination raises concerns regarding specific side effects and the ultimate trade-off of toxicity and safety of some combined approaches. Clinical studies are needed to assess ADC-RT combination safety and efficacy.
Collapse
Affiliation(s)
- Stefano Natangelo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy; Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Chrysanthi Koukoutzeli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Giulia Marvaso
- Division of Radiation Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy; Division of Radiation Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Meattini I, Becherini C, Caini S, Coles CE, Cortes J, Curigliano G, de Azambuja E, Isacke CM, Harbeck N, Kaidar-Person O, Marangoni E, Offersen BV, Rugo HS, Salvestrini V, Visani L, Morandi A, Lambertini M, Poortmans P, Livi L. International multidisciplinary consensus on the integration of radiotherapy with new systemic treatments for breast cancer: European Society for Radiotherapy and Oncology (ESTRO)-endorsed recommendations. Lancet Oncol 2024; 25:e73-e83. [PMID: 38301705 DOI: 10.1016/s1470-2045(23)00534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 02/03/2024]
Abstract
Novel systemic therapies for breast cancer are being rapidly implemented into clinical practice. These drugs often have different mechanisms of action and side-effect profiles compared with traditional chemotherapy. Underpinning practice-changing clinical trials focused on the systemic therapies under investigation, thus there are sparse data available on radiotherapy. Integration of these new systemic therapies with radiotherapy is therefore challenging. Given this rapid, transformative change in breast cancer multimodal management, the multidisciplinary community must unite to ensure optimal, safe, and equitable treatment for all patients. The aim of this collaborative group of radiation, clinical, and medical oncologists, basic and translational scientists, and patient advocates was to: scope, synthesise, and summarise the literature on integrating novel drugs with radiotherapy for breast cancer; produce consensus statements on drug-radiotherapy integration, where specific evidence is lacking; and make best-practice recommendations for recording of radiotherapy data and quality assurance for subsequent studies testing novel drugs.
Collapse
Affiliation(s)
- Icro Meattini
- Department of Experimental and Clinical Biomedical Sciences "M Serio", University of Florence, Florence, Italy; Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy.
| | - Carlotta Becherini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Saverio Caini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network, Florence, Italy
| | | | - Javier Cortes
- International Breast Cancer Center, Pangaea Oncology, Quironsalud Group and Medical Scientia Innovation Research, Barcelona, Spain; Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Evandro de Azambuja
- Institut Jules Bordet and l'Université Libre de Bruxelles, Brussels, Belgium
| | - Clare M Isacke
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, UK
| | - Nadia Harbeck
- Breast Center, Department of Gynecology and Obstetrics and CCCMunich, LMU University Hospital, Munich, Germany
| | - Orit Kaidar-Person
- Breast Cancer Radiation Therapy Unit, Sheba Medical Center, Ramat Gan, Israel; The School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, Paris, France
| | - Birgitte V Offersen
- Department of Experimental Clinical Oncology, Danish Centre for Particle Therapy, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Hope S Rugo
- Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco, CA, USA
| | - Viola Salvestrini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Luca Visani
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences "M Serio", University of Florence, Florence, Italy
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy; Department of Medical Oncology, UOC Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Philip Poortmans
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk-Antwerp, Belgium; Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Lorenzo Livi
- Department of Experimental and Clinical Biomedical Sciences "M Serio", University of Florence, Florence, Italy; Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| |
Collapse
|
3
|
Hedegger K, Blutke A, Hommel T, Auer KE, Nataraj NB, Lindzen M, Yarden Y, Dahlhoff M. Trapping all ERBB ligands decreases pancreatic lesions in a murine model of pancreatic ductal adenocarcinoma. Mol Oncol 2023; 17:2415-2431. [PMID: 37341059 PMCID: PMC10620123 DOI: 10.1002/1878-0261.13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/11/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest of cancers. Attempts to develop targeted therapies still need to be established. Some oncogenic mechanisms in PDAC carcinogenesis harness the EGFR/ERBB receptor family. To explore the effects on pancreatic lesions, we attempted simultaneous blockade of all ERBB ligands in a PDAC mouse model. To this end, we engineered a molecular decoy, TRAP-FC , comprising the ligand-binding domains of both EGFR and ERBB4 and able to trap all ERBB ligands. Next, we generated a transgenic mouse model (CBATRAP/0 ) expressing TRAP-FC ubiquitously under the control of the chicken-beta-actin promoter and crossed these mice with KRASG12D/+ mice (Kras) to generate Trap/Kras mice. The resulting mice displayed decreased emergence of spontaneous pancreatic lesion areas and exhibited reduced RAS activity and decreased activities of ERBBs, with the exception of ERBB4, which showed increased activity. To identify the involved receptor(s), we employed CRISPR/Cas9 DNA editing to singly delete each ERBB receptor in the human pancreatic carcinoma cell line Panc-1. Ablation of each ERBB family member, especially the loss of EGFR or ERBB2/HER2, altered signaling downstream of the other three ERBB receptors and decreased cell proliferation, migration, and tumor growth. We conclude that simultaneously blocking the entire ERBB receptor family is therapeutically more effective than individually inhibiting only one receptor or ligand in terms of reducing pancreatic tumor burden. In summary, trapping all ERBB ligands can reduce pancreatic lesion area and RAS activity in a murine model of pancreatic adenocarcinoma; hence, it might represent a promising approach to treat PDAC in patients.
Collapse
Affiliation(s)
- Kathrin Hedegger
- Institute of Molecular Animal Breeding and Biotechnology, Gene CenterLMU MünchenGermany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Center for Clinical Veterinary MedicineLMU MünchenGermany
| | - Theresa Hommel
- Institute of in vivo and in vitro ModelsUniversity of Veterinary MedicineViennaAustria
| | - Kerstin E. Auer
- Institute of in vivo and in vitro ModelsUniversity of Veterinary MedicineViennaAustria
| | - Nishanth B. Nataraj
- Department of Immunology and Regenerative BiologyWeizmann Institute of ScienceRehovotIsrael
- Bugworks Research Inc, CCAMPBengaluruIndia
| | - Moshit Lindzen
- Department of Immunology and Regenerative BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Yosef Yarden
- Department of Immunology and Regenerative BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Maik Dahlhoff
- Institute of in vivo and in vitro ModelsUniversity of Veterinary MedicineViennaAustria
| |
Collapse
|
4
|
Beddok A, Cottu P, Fourquet A, Kirova Y. [Radiotherapy and targeted therapy for the management of breast cancer: A review]. Cancer Radiother 2023; 27:447-454. [PMID: 37173174 DOI: 10.1016/j.canrad.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 05/15/2023]
Abstract
The purpose of this study was to review the current knowledge regarding combinations of the most commonly used targeted therapies or those under development for the management of breast cancer with radiation therapy. Several studies have shown that the combination of radiation therapy and tamoxifen increased the risk of radiation-induced lung toxicity; therefore, the two modalities are generally not given concurrently. The combination of HER2 inhibitors (trastuzumab, pertuzumab) and radiation therapy appeared to be safe. However, trastuzumab emtansine (T-DM1) should not be given concomitantly with brain radiation therapy because this combination may increase the risk of brain radionecrosis. The combination of radiation therapy with other new targeted therapies such as new selective estrogen receptor modulators (SERDs), lapatinib, cell cycle inhibitors, immune checkpoint inhibitors, or molecules acting on DNA damage repair seems feasible but has been mainly evaluated on retrospective or prospective studies with small numbers of patients. Moreover, there is a great heterogeneity between these studies regarding the dose and fractionation used in radiotherapy, the dosage of systemic treatments and the sequence of treatments used. Therefore, the combination of these new molecules with radiotherapy should be proposed sparingly, under close monitoring, pending the ongoing prospective studies cited in this review.
Collapse
Affiliation(s)
- A Beddok
- Laboratoire d'imagerie translationnelle en oncologie (Lito), Institut Curie, université PSL, université Paris Saclay, Inserm, 91898 Orsay, France; Département de radiothérapie oncologique, institut Curie, université PSL, Centre de protonthérapie, centre universitaire, 91898 Orsay, France.
| | - P Cottu
- Département d'oncologie médicale, institut Curie, Paris, France
| | - A Fourquet
- Département de radiothérapie oncologique, institut Curie, université PSL, Paris, France
| | - Y Kirova
- Département de radiothérapie oncologique, institut Curie, université PSL, Paris, France
| |
Collapse
|
5
|
Debbi K, Grellier N, Loganadane G, Boukhobza C, Mahé M, Cherif MA, Rida H, Gligorov J, Belkacemi Y. Interaction between Radiation Therapy and Targeted Therapies in HER2-Positive Breast Cancer: Literature Review, Levels of Evidence for Safety and Recommendations for Optimal Treatment Sequence. Cancers (Basel) 2023; 15:cancers15082278. [PMID: 37190205 DOI: 10.3390/cancers15082278] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Purpose: Over the past twenty years, anti-HER2 targeted therapies have proven to be a revolution in the management of human epidermal growth receptor 2 (HER2)-positive breast cancers. Anti-HER2 therapies administered alone or in combination with chemotherapy have been specifically studied. Unfortunately, the safety of anti-HER2 therapies in combination with radiation remains largely unknown. Thus, we propose a literature review of the risks and safety of combining radiotherapy with anti-HER2 therapies. We will focus on the benefit/risk rationale and try to understand the risk of toxicity in early-stage and advanced breast cancer. Methods: Research was carried out on the following databases: PubMed, EMBASE, ClinicalTrial.gov, Medline, and Web of Science for the terms "radiotherapy", "radiation therapy", "radiosurgery", "local ablative therapy", and "stereotactic", combined with "trastuzumab", "pertuzumab", "trastuzumab emtansine", "TDM-1", "T-Dxd", "trastuzumab deruxtecan", "tucatinib", "lapatinib", "immune checkpoint inhibitors", "atezolizumab", "pembrolizumab", "nivolumab", "E75 vaccine", "interferon", "anti-IL-2", "anti-IL 12", and "ADC". Results: Association of radiation and monoclonal antibodies such as trastuzumab and pertuzumab (with limited data) seems to be safe, with no excess risk of toxicity. Preliminary data with radiation and of antibody-drug conjugate of trastuzumab combined cytotoxic (trastuzumab emtansine, trastuzumab deruxtecan), given the underlying mechanism of action, suggest that one must be particularly cautious with the association. The safety of the combination of a tyrosine kinase inhibitor (lapatinib, tucatinib) and radiation remains under-studied. The available evidence suggests that checkpoint inhibitors can be safely administrated with radiation. Conclusions: HER2-targeting monoclonal antibodies and checkpoint inhibitors can be combined with radiation, apparently with no excess toxicities. Caution is required when associating radiation with TKI and antibody drugs, considering the limited evidence.
Collapse
Affiliation(s)
- Kamel Debbi
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
- Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, i-Biot, UPEC, 94000 Créteil, France
| | - Noémie Grellier
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Gokoulakrichenane Loganadane
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
- Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, i-Biot, UPEC, 94000 Créteil, France
| | - Chahrazed Boukhobza
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Mathilde Mahé
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Mohamed Aziz Cherif
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Hanan Rida
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Joseph Gligorov
- APHP-Medical Oncology Department, Institut Universitaire de Cancérologie, Sorbonne Université, 75013 Paris, France
| | - Yazid Belkacemi
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
- Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, i-Biot, UPEC, 94000 Créteil, France
| |
Collapse
|
6
|
Zhang Y, Qiu MZ, Wang JF, Zhang YQ, Shen A, Yuan XL, Zhang T, Wei XL, Zhao HY, Wang DS, Zhao Q, Xiong GZ, Ji YP, Liang XJ, Xia G, Xu RH. Phase 1 multicenter, dose-expansion study of ARX788 as monotherapy in HER2-positive advanced gastric and gastroesophageal junction adenocarcinoma. Cell Rep Med 2022; 3:100814. [PMID: 36384091 PMCID: PMC9729820 DOI: 10.1016/j.xcrm.2022.100814] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
ARX788 is an anti-human epidermal growth factor receptor 2 (HER2) antibody-drug conjugate with AS269 as cytotoxic payload. In this phase 1 multicenter dose-expansion clinical trial, patients with HER2-positive advanced gastric/gastroesophageal junction adenocarcinoma failing to respond to prior trastuzumab-based standard treatment were enrolled. Between July 15th, 2019, and March 14th, 2022, 30 participants were enrolled. Twenty-eight (93.3%) patients experienced at least one drug-related adverse event (AE) and 13.3% experienced grade 3 ARX788-related AEs. The confirmed objective response rate is 37.9% (95% confidence interval [CI]: 20.7%-57.7%) and the disease control rate is 55.2% (95% CI: 35.7%-73.6%). With a median follow up of 10 months, the median progression-free survival and overall survival are 4.1 (95% CI: 1.4-6.4) and 10.7 months (95% CI: 4.8-not reached), respectively. The median duration of response is 8.4 (95% CI: 2.1-18.9) months. ARX788 is well tolerated and has promising anti-tumor activity in patients with HER2-positive advanced gastric adenocarcinoma (ChinaDrugTrials.org.cn: CTR20190639).
Collapse
Affiliation(s)
- Yang Zhang
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Miao-Zhen Qiu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, P.R. China
| | - Ju-Feng Wang
- Department of Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yan-Qiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, P.R. China
| | - Ao Shen
- Bioinformatics Platform, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Xiang-Lin Yuan
- Department of Medical Oncology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Tao Zhang
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiao-Li Wei
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, P.R. China
| | - Hong-Yun Zhao
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - De-Shen Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, P.R. China
| | - Qi Zhao
- Bioinformatics Platform, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | | | - Yan-Ping Ji
- Novocodex Biopharmaceuticals, Shaoxing, P.R. China
| | | | - Gang Xia
- Novocodex Biopharmaceuticals, Shaoxing, P.R. China
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, P.R. China.
| |
Collapse
|
7
|
Molecular perspective on targeted therapy in breast cancer: a review of current status. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:149. [PMID: 35834030 PMCID: PMC9281252 DOI: 10.1007/s12032-022-01749-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Breast cancer is categorized at the molecular level according to the status of certain hormone and growth factor receptors, and this classification forms the basis of current diagnosis and treatment. The development of resistance to treatment and recurrence of the disease have led researchers to develop new therapies. In recent years, most of the research in the field of oncology has focused on the development of targeted therapies, which are treatment methods developed directly against molecular abnormalities. Promising advances have been made in clinical trials investigating the effect of these new treatment modalities and their combinations with existing therapeutic treatments in the treatment of breast cancer. Monoclonal antibodies, tyrosine kinase inhibitors, antibody–drug conjugates, PI3K/Akt/mTOR pathway inhibitors, cyclin-dependent kinase 4/6 inhibitors, anti-angiogenic drugs, PARP inhibitors are among the targeted therapies used in breast cancer treatment. In this review, we aim to present a molecular view of recently approved target agents used in breast cancer.
Collapse
|
8
|
Guimond E, Tsai CJ, Hosni A, O'Kane G, Yang J, Barry A. Safety and Tolerability of Metastasis Directed Radiotherapy in the Era of Evolving Systemic, Immune and Targeted Therapies. Adv Radiat Oncol 2022; 7:101022. [PMID: 36177487 PMCID: PMC9513086 DOI: 10.1016/j.adro.2022.101022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractPurpose Systemic, immune, and target therapies are growing in use in the management of metastatic cancers. The aim of this review was to describe up-to-date published data on the safety and tolerability of metastasis-directed hypofractionated radiation therapy (RT) when combined with newer systemic, immune, and targeted therapies and to provide suggested strategies to mitigate potential toxicities in the clinical setting. Methods and Materials A comprehensive search was performed for the time period between 1946 and August 2021 using predetermined keywords describing the use of noncentral nervous system palliative RT with commonly used targeted systemic therapies on PubMed and Medline databases. A total of 1022 articles were screened, and 130 met prespecified criteria to be included in this review. Results BRAF and MEK inhibitors are reported to be toxic when given concurrently with RT; suspension 3 days and 1 to 2 days, respectively, prior and post-RT is suggested. Cetuximab, erlotinib/gefitinib, and osimertinib were generally safe to use concomitantly with conventional radiation. But in a palliative/hypofractionated RT setting, suspending cetuximab during radiation week, erlotinib/gefitinib 1 to 2 days, and osimertinib ≥2 days pre- and post-RT is suggested. Vascular endothelial growth factor inhibitors such as bevacizumab reported substantial toxicities, and the suggestion is to suspend 4 weeks before and after radiation. Less data exist on sorafenib and sunitinib; 5 to 10 days suspension before and after RT should be considered. As a precaution, until further data are available, for cyclin-dependent kinase 4-6 inhibitors, consideration of suspending treatment 1 to 2 days before and after RT should be given. Ipilimumab should be suspended 2 days before and after RT, and insufficient data exist for other immunotherapy agents. Trastuzumab and pertuzumab are generally safe to use in combination with RT, but insufficient data exist for other HER2 target therapy. Conclusions Suggested approaches are described, using up-to-date literature, to aid clinicians in navigating the integration of newer targeted agents with hypofractionated palliative and/or ablative metastatic RT. Further prospective studies are required.
Collapse
Affiliation(s)
- Elizabeth Guimond
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- University of Toronto, Toronto, Ontario
- Corresponding author: Elizabeth Guimond, MD, FRCPC
| | - Chiaojung Jillian Tsai
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ali Hosni
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- University of Toronto, Toronto, Ontario
| | - Grainne O'Kane
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- University of Toronto, Toronto, Ontario
| | - Jonathan Yang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aisling Barry
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- University of Toronto, Toronto, Ontario
| |
Collapse
|
9
|
Meattini I, Livi L, Lorito N, Becherini C, Bacci M, Visani L, Fozza A, Belgioia L, Loi M, Mangoni M, Lambertini M, Morandi A. Integrating radiation therapy with targeted treatments for breast cancer: from bench to bedside. Cancer Treat Rev 2022; 108:102417. [PMID: 35623219 DOI: 10.1016/j.ctrv.2022.102417] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
|
10
|
Mireştean CC, Iancu RI, Iancu DPT. Hypofractionated Whole-Breast Irradiation Focus on Coronary Arteries and Cardiac Toxicity-A Narrative Review. Front Oncol 2022; 12:862819. [PMID: 35463375 PMCID: PMC9021451 DOI: 10.3389/fonc.2022.862819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer is the most common cancer among women worldwide, which is often treated with radiotherapy. Whole breast irradiation (WBI) is one of the most common types of irradiation. Hypo-fractionated WBI (HF-WBI) reduces the treatment time from 5 to 3 weeks. Recent radiobiological and clinical evidence recommended the use of HF-WBI regardless of the age or stage of disease, and it is proven that hypo-fractionation is non-inferior to conventional fractionation regimen irradiation. However, some studies report an increased incidence of heart-related deaths in the case of breast irradiation by hypo-fractionation, especially in patients with pre-existing cardiac risk factors at the time of treatment. Due to the new technical possibilities of radiotherapy techniques, HF-WBI can reduce the risk of cardiac toxicity by controlling the doses received both by the heart and by the anatomical structures of the heart. The radiobiological “double trouble”, in particular “treble trouble”, for hypo-fractionated regimen scan be avoided by improving the methods of heart sparing based on image-guided irradiation (IGRT) and by using respiration control techniques so that late cardiac toxicity is expected to be limited. However, long-term follow-up of patients treated with HF-WBI with modern radiotherapy techniques is necessary considering the progress of systemic therapy, which is associated with long-term survival, and also the cardiac toxicity of new oncological treatments. The still unknown effects of small doses spread in large volumes on lung tissue may increase the risk of second malignancy, but they can also be indirectly involved in the later development of a heart disease. It is also necessary to develop multivariable radiobiological models that include histological, molecular, clinical, and therapeutic parameters to identify risk groups and dosimetric tolerance in order to limit the incidence of late cardiac events. MR-LINAC will be able to offer a new standard for reducing cardiac toxicity in the future, especially in neoadjuvant settings for small tumors.
Collapse
Affiliation(s)
- Camil Ciprian Mireştean
- Department of Medical Oncology and Radiotherapy, University of Medicine and Pharmacy Craiova, Craiova, Romania.,Department of Surgery, Railways Clinical Hospital, Iasi, Romania
| | - Roxana Irina Iancu
- Oral Pathology Department, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania.,Department of Clinical Laboratory, St. Spiridon Emergency Hospital, Iaşi, Romania
| | - Dragoş Petru Teodor Iancu
- Department of Medical Oncology and Radiotherapy Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania.,Department of Radiation Oncology, Regional Institute of Oncology, Iasi, Romania
| |
Collapse
|
11
|
Ippolito E, Silipigni S, Matteucci P, Greco C, Pantano F, D’Auria G, Quattrocchi CC, Floreno B, Fiore M, Gamucci T, Tonini G, Ramella S. Stereotactic Radiation and Dual Human Epidermal Growth Factor Receptor 2 Blockade with Trastuzumab and Pertuzumab in the Treatment of Breast Cancer Brain Metastases: A Single Institution Series. Cancers (Basel) 2022; 14:cancers14020303. [PMID: 35053467 PMCID: PMC8774076 DOI: 10.3390/cancers14020303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 01/19/2023] Open
Abstract
(1) Background: This study aims to assess the safety and efficacy of fractionated SRT (fSRT) and pertuzumab-trastuzumab (PT) in patients with breast cancer brain metastases (BCBM). (2) Methods: Patients with HER2+ BCBM who received FSRT from 2015 to 2019 were identified. Patients were included if they were treated with fSRT within 21 days of receiving PT. All lesions were treated with LINAC-based fSRT to a total dose of 27 Gy delivered in three consecutive fractions. All patients received concurrent PT. Patients were evaluated 4-6 weeks after SRS and subsequently every 2-3 months with MRI re-imaging (3) Results: A total of 49 patients with HER2+ brain metastases were identified. Of these patients, a total of 10 patients with 32 HER2+ BCBM were treated with concurrent SRT and PT and included in the analysis. No local progression was observed. Overall response rate was 68.7%. Only one patient developed asymptomatic radionecrosis. Median time to BM occurrence was 15.6 (range: 1-40.5 months). Distant intracranial failure occurred in 4/10 patients (40.0%). Overall BCBM median survival was 33.9 months (95%CI 24.1-43.6). Mean duration of PT treatment was 27.9 months (range: 10.1-53.7 months). (4) Conclusions: In our single institution experience, fSRT and PT showed to be a safe treatment for patients with BCBM with an adequate overall response rate.
Collapse
Affiliation(s)
- Edy Ippolito
- Department of Radiation Oncology, Campus Bio-Medico University, 00128 Rome, Italy; (S.S.); (P.M.); (C.G.); (B.F.); (M.F.); (S.R.)
- Correspondence: ; Tel.: +39-06-22541-1708
| | - Sonia Silipigni
- Department of Radiation Oncology, Campus Bio-Medico University, 00128 Rome, Italy; (S.S.); (P.M.); (C.G.); (B.F.); (M.F.); (S.R.)
| | - Paolo Matteucci
- Department of Radiation Oncology, Campus Bio-Medico University, 00128 Rome, Italy; (S.S.); (P.M.); (C.G.); (B.F.); (M.F.); (S.R.)
| | - Carlo Greco
- Department of Radiation Oncology, Campus Bio-Medico University, 00128 Rome, Italy; (S.S.); (P.M.); (C.G.); (B.F.); (M.F.); (S.R.)
| | - Francesco Pantano
- Department of Medical Oncology, Campus Bio-Medico University, 00128 Rome, Italy; (F.P.); (G.T.)
| | - Giuliana D’Auria
- Department of Medical Oncology, Sandro Pertini Hospital, 00157 Rome, Italy; (G.D.); (T.G.)
| | - Carlo Cosimo Quattrocchi
- Department of Diagnostic Imaging and Interventional Radiology, Campus Bio-Medico University, 00128 Rome, Italy;
| | - Barnaba Floreno
- Department of Radiation Oncology, Campus Bio-Medico University, 00128 Rome, Italy; (S.S.); (P.M.); (C.G.); (B.F.); (M.F.); (S.R.)
| | - Michele Fiore
- Department of Radiation Oncology, Campus Bio-Medico University, 00128 Rome, Italy; (S.S.); (P.M.); (C.G.); (B.F.); (M.F.); (S.R.)
| | - Teresa Gamucci
- Department of Medical Oncology, Sandro Pertini Hospital, 00157 Rome, Italy; (G.D.); (T.G.)
| | - Giuseppe Tonini
- Department of Medical Oncology, Campus Bio-Medico University, 00128 Rome, Italy; (F.P.); (G.T.)
| | - Sara Ramella
- Department of Radiation Oncology, Campus Bio-Medico University, 00128 Rome, Italy; (S.S.); (P.M.); (C.G.); (B.F.); (M.F.); (S.R.)
| |
Collapse
|
12
|
Beddok A, Cottu P, Fourquet A, Kirova Y. Combination of Modern Radiotherapy and New Targeted Treatments for Breast Cancer Management. Cancers (Basel) 2021; 13:cancers13246358. [PMID: 34944978 PMCID: PMC8699586 DOI: 10.3390/cancers13246358] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Since the introduction of hormone therapy for the treatment of breast cancer (BC) three decades ago, many new targeted therapies have been developed. Some of them are currently used, such as HER2 inhibitors, while others are still under development, such as cell cycle (CDK) inhibitors, immune checkpoint (PD1/PDL1) inhibitors, or molecules acting on DNA damage (PARP) repair. Besides this, radiation therapy (RT) is commonly used either as adjuvant treatment for early BC after breast conservative surgery or in palliative intent for the treatment of metastatic sites. Our research has shown that the combinations of the most commonly used targeted treatments and RT were feasible with a few toxicities. Nevertheless, most of the knowledge on this subject is based on retrospective studies and a small number of patients and care should be taken in this setting until these results would be confirmed in prospective randomized studies. Abstract Background: The objective of the present study was to review the essential knowledge about the combinations of the most commonly used or under development targeted treatments and radiation therapy (RT). Methods: Preclinical and clinical studies investigating this combination were extensively reviewed. Results: Several studies showed that the combination of RT and tamoxifen increased the risk of radiation-induced pulmonary toxicity; therefore, both modalities should not be given concomitantly. The combination of HER2 inhibitors (trastuzumab, pertuzumab) and RT seems to be safe. However, trastuzumab emtansine (T-DM1) should not be administered concurrently with brain RT since this combination could increase the risk of brain radionecrosis. The combination of RT and other new target treatments such as selective estrogen receptor degradants, lapatinib, cell cycle inhibitors, immune checkpoint inhibitors, or molecules acting on DNA damage repair seems feasible but was essentially evaluated on retrospective or prospective studies with a small number of patients. Furthermore, there is considerable heterogeneity among these studies regarding the dose and fractionation of radiation, the dosage of drugs, and the sequence of treatments used. Conclusions: The combination of RT with most targeted therapies for BC appears to be well-tolerated, but these results need to be confirmed in prospective randomized studies.
Collapse
Affiliation(s)
- Arnaud Beddok
- Department of Radiation Oncology, Institut Curie, 75005 Paris, France; (A.F.); (Y.K.)
- Department of Radiation Oncology, Institut Curie, 91400 Orsay, France
- Laboratory of Translational Imaging in Oncology (LITO), UMR (U1288), Institut Curie, 91400 Orsay, France
- Correspondence: or ; Tel.: +33-144324504
| | - Paul Cottu
- Department of Medical Oncology, Institut Curie, 75005 Paris, France;
| | - Alain Fourquet
- Department of Radiation Oncology, Institut Curie, 75005 Paris, France; (A.F.); (Y.K.)
| | - Youlia Kirova
- Department of Radiation Oncology, Institut Curie, 75005 Paris, France; (A.F.); (Y.K.)
| |
Collapse
|
13
|
Witt JS, Wisinski KB, Anderson BM. Concurrent Radiation and Modern Systemic Therapies for Breast Cancer: An Ever-Expanding Frontier. Clin Breast Cancer 2021; 21:120-127. [PMID: 34030859 DOI: 10.1016/j.clbc.2020.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/28/2020] [Indexed: 11/29/2022]
Abstract
Radiotherapy is a critical tool for reducing locoregional recurrence, extending survival, and palliating symptoms in patients with breast cancer. With an ever-expanding armamentarium of systemic agents available, and an increasing trend toward the use of hypofractionated radiation regimens, it can be difficult to determine the safety of concurrent therapy. In particular, new targeted agents in both the adjuvant and metastatic setting have limited prospective or long-term data demonstrating safety when delivered concurrently with radiotherapy. Other systemic agents, including chemotherapy and endocrine therapy, are also important components of the overall treatment strategy for localized and metastatic breast cancer, and are often delivered concurrently with radiation in certain clinical scenarios. This review explores the safety, efficacy, and pitfalls of delivering radiation in conjunction with systemic therapies for breast cancer.
Collapse
Affiliation(s)
- Jacob S Witt
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, WI
| | - Kari B Wisinski
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI; Carbone Cancer Center, University of Wisconsin, Madison, WI
| | - Bethany M Anderson
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, WI; Carbone Cancer Center, University of Wisconsin, Madison, WI.
| |
Collapse
|
14
|
Ben Dhia S, Loap P, Loirat D, Vincent-Salomon A, Cao K, Escalup L, Fourquet A, Kirova Y. [Concurrent radiation therapy and dual HER2 blockade in breast cancer: Assessment of toxicity]. Cancer Radiother 2021; 25:424-431. [PMID: 33771453 DOI: 10.1016/j.canrad.2020.06.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/03/2023]
Abstract
PURPOSE The tolerance of the concurrent use of radiotherapy, pertuzumab and trastuzumab is unknown. The purpose of this study was to evaluate the toxicity of this association in patients treated for HER2 positive metastatic and/or locally recurrent unrespectable breast cancer. MATERIAL AND METHODS A retrospective study was performed in our institution for all consecutive patients treated with concurrent irradiation, pertuzumab and trastuzumab. The radiotherapy was performed while pertuzumab and trastuzumab were administrated as a maintenance treatment at the dose of 420mg (total dose) and 6mg/kg respectively every 3 weeks without chemotherapy. Toxicity was assessed according to the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0. Left ventricular ejection fraction (LVEF) was measured at baseline and then every 3-4 months. RESULTS We studied 77 patients. treated in between 2013 and 2019 with median follow-up of 38 months (range 0-264 months). Median age was 53 years (33-86). There were 50 patients (64.9%) with metastatic and 27 patients (35.1%) with recurrent disease. All patients received docetaxel followed by P-T as first line treatment and they received 34 cycles (10-85) of pertuzumab and trastuzumab. All patients experienced partial or complete response according to RECIST criteria. Irradiation volumes were whole breast (41 patients, 53.2%) and chest wall (29 patients, 37.7%) at a dose of 50Gy with a median duration of 39 days. Radiotherapy of lymph nodes was performed in 53 patients (68.8%) as following: supraclavicular-infraclavicular and axillary lymph nodes in 52 patients (67.5%), and internal mammary nodes in 31 patients (40.3%). For 20 patients. (26.0%) radiotherapy was palliative: bone irradiation (12 patients, 15.6%), whole-brain radiotherapy (2 patients, 2.6%), cerebral metastasis irradiation (6 patients). As early toxicity we observed: radio dermatitis as following: 36 patients (46.8%) presented grade I, 17 patients (22.1%) presented grade II, and 3 patients (3.9%) presented grade III. One patient (1.3%) presented grade II esophagitis. One patient (1.3%) presented asymptomatic decrease of LVEF during treatment and 6 patients (7.7%) presented a decrease of LVEF. There was no radiation-induced pneumonitis. As late toxicity, we observed 1 (1.3%) case of grade I and 1 (1.3%) with grade II telangiectasia. There was 1 case (1.3%) of grade III cardiac toxicity, 8 months after the concurrent treatment. CONCLUSION The concurrent use of radiotherapy, pertuzumab and trastuzumab is feasible with good tolerance. Larger prospective data with longer follow-up is needed to confirm these results.
Collapse
Affiliation(s)
- S Ben Dhia
- Institut Curie, 26, rue d'Ulm, 75005 Paris, France
| | - P Loap
- Institut Curie, 26, rue d'Ulm, 75005 Paris, France
| | - D Loirat
- Institut Curie, 26, rue d'Ulm, 75005 Paris, France
| | | | - K Cao
- Institut Curie, 26, rue d'Ulm, 75005 Paris, France
| | - L Escalup
- Institut Curie, 26, rue d'Ulm, 75005 Paris, France
| | - A Fourquet
- Institut Curie, 26, rue d'Ulm, 75005 Paris, France
| | - Y Kirova
- Institut Curie, 26, rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
15
|
Kirova Y, Tallet A, Aznar MC, Loap P, Bouali A, Bourgier C. Radio-induced cardiotoxicity: From physiopathology and risk factors to adaptation of radiotherapy treatment planning and recommended cardiac follow-up. Cancer Radiother 2020; 24:576-585. [PMID: 32830054 DOI: 10.1016/j.canrad.2020.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022]
Abstract
Cancer and cardiovascular disease (CVD) are the leading cause of mortality worldwide, and breast cancer (BC) the most common malignancy affecting women worldwide. Radiotherapy is an important component of BC treatment and participates in CVD occurrence. It seems, therefore, crucial to gather both radiation oncology and cardiology medical fields to improve the follow-up quality of our BC patients. This review aims at updating our knowledge regarding cardiotoxicities risk factors, and consequently, doses constraints in case of 3D-conformal and IMRT treatment planning. Then we will develop how to reduce cardiac exposure and what kind of cardiac follow-up we could recommend to our breast cancer patients.
Collapse
Affiliation(s)
- Y Kirova
- Department of radiation oncology, institut Curie, 75005 Paris, France
| | - A Tallet
- Department of radiation oncology, institut Paoli-Calmette, Marseille, France
| | - M C Aznar
- Division of cancer sciences, faculty of biology, medicine and health, the university of Manchester, The Christie NHS Foundation Trust, Manchester, and Nuffield department of population health, university of Oxford, Oxford, UK
| | - P Loap
- Department of radiation oncology, institut Curie, 75005 Paris, France
| | - A Bouali
- Cardiology department, Lyon Sud Hospital, Hospices civils de Lyon, Lyon, France
| | - C Bourgier
- Fédération universitaire d'oncologie radiothérapie, ICM, institut régional du cancer Montpellier, rue Croix-Verte, 34298 Montpellier cedex 05, France; IRCM, institut de recherche en cancérologie de Montpellier, inserm U1194, université Montpellier, avenue des Apothicaires, 34298 Montpellier cedex 05, France.
| |
Collapse
|
16
|
Hackshaw MD, Danysh HE, Singh J, Ritchey ME, Ladner A, Taitt C, Camidge DR, Iwata H, Powell CA. Incidence of pneumonitis/interstitial lung disease induced by HER2-targeting therapy for HER2-positive metastatic breast cancer. Breast Cancer Res Treat 2020; 183:23-39. [PMID: 32591987 PMCID: PMC7376509 DOI: 10.1007/s10549-020-05754-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/13/2020] [Indexed: 12/19/2022]
Abstract
Purpose Anti-human epidermal growth factor receptor 2 (HER2) therapies are associated with interstitial lung disease (ILD), also referred to as pneumonitis. In this literature review, we describe the incidence of ILD among patients with HER2-positive metastatic breast cancer (MBC) receiving anti-HER2 therapies, and we describe existing recommendations for monitoring and managing drug-induced ILD among these patients. Methods We searched PubMed and Embase to identify clinical trials and postmarket observational studies that investigated anti-HER2 therapies for HER2-positive MBC, reported on ILD, and were published during January 1, 2009 to July 15, 2019. Articles were screened by two researchers; data were extracted from the full-text articles. Results The 18 articles selected for this review assessed 9,886 patients who received trastuzumab (8 articles), lapatinib (4 articles), trastuzumab emtansine (3 articles), trastuzumab deruxtecan (2 articles), or trastuzumab duocarmazine (1 article). The overall incidence of all-grade ILD was 2.4% (n = 234), with 66.7% (n = 156) occurring as grade 1–2 events, 0.5% grade 3–4 (n = 54; incidence), and 0.2% grade 5 (n = 16; incidence). The highest ILD incidence (21.4%) was among patients receiving trastuzumab combined with everolimus and paclitaxel. Ten studies indicated that ILD events were managed via dose interruption, dose reduction, or treatment discontinuation; two studies included detailed guidelines on managing drug-induced ILD. Conclusions ILD is a well-described adverse drug reaction associated with several anti-HER2 drugs. Published ILD management guidelines are available for few anti-HER2 treatment regimens; however, guidance for monitoring for anti-HER2 drug-induced ILD is lacking. Electronic supplementary material The online version of this article (10.1007/s10549-020-05754-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle D Hackshaw
- Daiichi Sankyo, Inc., 211 Mount Airy, 1A-453, Basking Ridge, NJ, 07920, USA.
| | | | - Jasmeet Singh
- Daiichi Sankyo, Inc., 211 Mount Airy, 1A-453, Basking Ridge, NJ, 07920, USA
| | | | - Amy Ladner
- RTI Health Solutions, Research Triangle Park, NC, USA
| | - Corina Taitt
- Daiichi Sankyo, Inc., 211 Mount Airy, 1A-453, Basking Ridge, NJ, 07920, USA
| | | | | | | |
Collapse
|
17
|
Arscott WT, Emmett J, Ghiam AF, Jones JA. Palliative Radiotherapy: Inpatients, Outpatients, and the Changing Role of Supportive Care in Radiation Oncology. Hematol Oncol Clin North Am 2019; 34:253-277. [PMID: 31739947 DOI: 10.1016/j.hoc.2019.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Palliative radiotherapy is an effective treatment in alleviating many symptoms of advanced cancer. Short courses of radiotherapy provide rapid symptom relief and minimize impact on patients. Patients referred for palliative radiotherapy have many concerns beyond radiotherapy; often, these concerns are not fully addressed in traditional radiotherapy clinics. Discussions of prognosis, patient goals, and concerns are areas for improved collaboration. Innovative, dedicated palliative radiotherapy programs have developed over the past 20 years to provide holistic care to patients referred for palliative radiotherapy and have improved patient-focused outcomes. Advanced radiotherapy techniques may provide opportunities to further improve palliative radiotherapy outcomes.
Collapse
Affiliation(s)
| | - Jaclyn Emmett
- Inpatient Oncology, Department of Hematology/Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Alireza Fotouhi Ghiam
- Department of Radiation Oncology, British Columbia Cancer Agency (BCCA), University of British Columbia, 2410 Lee Avenue, Victoria, British Columbia V8R 6V5, Canada
| | - Joshua A Jones
- Palliative Radiotherapy Service, Department of Radiation Oncology, University of Pennsylvania Health System, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Occurrence of pneumonitis following radiotherapy of breast cancer - A prospective study. Strahlenther Onkol 2018; 194:520-532. [PMID: 29450591 PMCID: PMC5960004 DOI: 10.1007/s00066-017-1257-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/22/2017] [Indexed: 01/17/2023]
Abstract
AIM of this study is to determine the temporal resolution of therapy-induced pneumonitis, and to assess promoting factors in adjuvant treated patients with unilateral mammacarcinoma. PATIENTS AND METHODS A total of 100 post-surgery patients were recruited. The cohort was treated by 2 field radiotherapy (2FRT; breast and chest wall, N = 75), 3 field radiotherapy (3FRT; + supraclavicular lymphatic region, N = 8), or with 4 field radiotherapy (4FRT; + parasternal lymphatic region, N = 17). Ninety-one patients received various systemic treatments prior to irradiation. Following an initial screening visit post-RT, two additional visits after 12 and 25 weeks were conducted including radiographic examination. In addition, general anamnesis and the co-medication were recorded. The endpoint was reached as soon as a pneumonitis was developed or at maximum of six months post-treatment. RESULTS A pneumonitis incidence of 13% was determined. Of 91 patients with prior systemic therapy, 11 patients developed pneumonitis. Smoking history and chronic obstructive pulmonary disease (COPD) appeared to be positive predictors, whereas past pneumonia clearly promoted pneumonitis. Further pneumonitis-promoting predictors are represented by the applied field extensions (2 field radiotherapy [2FRT] < 3 field radiotherapy [3FRT] < 4 field radiotherapy [4FRT]) and the type of combined initial systemic therapies. As a consequence, all of the three patients in the study cohort treated with 4FRT and initial chemotherapy combined with anti-hormone and antibody protocols developed pneumonitis. A combination of the hormone antagonists tamoxifen and goserelin might enhance the risk for pneumonitis. Remarkably, none of the 11 patients co-medicated with statins suffered from pneumonitis. CONCLUSIONS The rapidly increasing use of novel systemic therapy schedules combined with radiotherapy (RT) needs more prospective studies with larger cohorts. Our results indicate that contribution to pneumonitis occurrence of various (neo)adjuvant therapy approaches followed by RT is of minor relevance, whereas mean total lung doses of >10 Gy escalate the risk of lung tissue complications. The validity of potential inhibitors of therapy-induced pneumonitis as observed for statin co-medication should further be investigated in future trials.
Collapse
|
19
|
Thery L, Arsene-Henry A, Carroll S, Peurien D, Bazire L, Robilliard M, Fourquet A, Kirova YM. Use of helical tomotherapy in locally advanced and/or metastatic breast cancer for locoregional treatment. Br J Radiol 2018; 91:20170822. [PMID: 29350548 DOI: 10.1259/bjr.20170822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Helical tomotherapy (HT) is a new promising tool whose use remains to be studied. This work assesses its impact for local irradiation in terms of side effects, as well as tumour control in locally advanced (LABC) and metastatic breast cancer (MBC). METHODS We retrospectively reviewed data of 66 patients with LABC and MBC. Patients received standard fractionated radiotherapy by HT, with or without concurrent systemic treatment. RESULTS The median age was 60 years (28-77). The median follow-up of the population was 35.9 months (10.6-95.8). For 91% of patients, HT was concomitant with systemic treatments. Three patients experienced grade 3 skin toxicity and all had concurrent 5FU-vinorelbine. One patient who was receiving concurrent treatment with trastuzumab-pertuzumab had a decreased left ventricular ejection fraction by 14%. No late cardiac or lung toxicity was observed. A clinical benefit was observed in 75% of cases. At 2 months after HT, we observed tumour regression in 7/8 patients, as following: 1 complete, 4 partial responses, and 2 stable disease. The median survival for MBC group was 64.4 months (42.6-65.8) and 21.1 (6.1-36.1) months for LABC. CONCLUSION This study suggests that the use of HT is well tolerated and feasible with a multimodal strategy that includes concurrent systemic treatments for patients with LABC and MBC. Advances in knowledge: The survival of LABC and MBC increases and new safe tools are needed to determine optimal strategies of treatment. To our knowledge, this is the first paper describing the use of HT for this population.
Collapse
|
20
|
Kirova YM, Fourquet A. Concurrent Use of Radiation Therapy and Targeted Molecules in the Breast Cancer Treatment. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|