1
|
Jaffali C, Synytsya A, Khadhri A, Aschi-Smiti S, Bleha R, Jozífek M, Kvasnička F, Klouček P. Structure and strain specificity for polysaccharides from king oyster mushroom (Pleurotus eryngii) fruiting bodies. Int J Biol Macromol 2025; 295:139286. [PMID: 39765292 DOI: 10.1016/j.ijbiomac.2024.139286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
King oyster mushroom Pleurotus eryngii is cultivated worldwide for culinary and to improve human health. However, the potential of some Mediterranean representatives of this species is still not evaluated. This work focuses on the study of polysaccharides from fruiting bodies of two Tunisian strains, P. eryngii var. elaeoselini and P. eryngii var. ferulae, and, for comparison, one deposited P. eryngii originated from Korea. Polysaccharides were successively extracted with hot water using microwave heating and 1 mol L-1 aqueous sodium hydroxide. The crude hot water extracts were purified by treating them with proteolytic enzymes, and the alkaline extracts were purified by re-dissolving with dimethyl sulphoxide. In both cases, a decrease or removal of proteins was detected. Glucans predominated in all these products; the insoluble parts also contained chitin. The purified hot water extracts contained glycogen, β-d-glucans and mannogalactan. Branching (1 → 3)(1 → 6)-β-d-glucan was the major polysaccharide in the alkali-soluble fractions, while (1 → 3)-α-d-glucan was only a minor component. The Tunisian strains demonstrated a higher proportion of water-soluble polysaccharides, compared to the alkaline soluble ones, and more β-d-glucan in the insoluble chitin-glucan complexes. Fruiting body proteins of these strains are more available for solubilisation and enzymatic or alkaline degradation and, thus, may have higher nutritional value than those of the reference strain. As a source of proteins or polysaccharides, the Tunisian endemic P. eryngii strains of this study are promising for the domestication and cultivation of fruiting bodies for gastronomic purposes in the North African region.
Collapse
Affiliation(s)
- Chahrazed Jaffali
- Laboratory of Plant, Soil and Environment Interactions, Faculty of Sciences, University of El-Manar, Campus Academia, 2092 Tunis, Tunisia; Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Czech Republic
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Czech Republic.
| | - Ayda Khadhri
- Laboratory of Plant, Soil and Environment Interactions, Faculty of Sciences, University of El-Manar, Campus Academia, 2092 Tunis, Tunisia
| | - Samira Aschi-Smiti
- Laboratory of Plant, Soil and Environment Interactions, Faculty of Sciences, University of El-Manar, Campus Academia, 2092 Tunis, Tunisia
| | - Roman Bleha
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Czech Republic
| | - Miroslav Jozífek
- Department of Horticulture, Czech University of Life Sciences Prague, Czech Republic
| | - František Kvasnička
- Department of Food Preservation, University of Chemistry and Technology Prague, Czech Republic
| | - Pavel Klouček
- Department of Crop Production, Czech University of Life Sciences Prague, Czech Republic
| |
Collapse
|
2
|
Ramalingam S, Ramalingam E, Azeez S, Thiyagarajan D, Sudarson J. Anti-proliferative potential of extracellular beta-glucans isolated from Trametes hirsuta in carcinoma and leukemic cell lines. Int J Biol Macromol 2025; 304:140644. [PMID: 39909278 DOI: 10.1016/j.ijbiomac.2025.140644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
This study aims to extract, purify, and characterize water-soluble extracellular polysaccharides (EPS) from Trametes hirsuta and evaluate their antiproliferative effects. The anionic fraction (AF), a purified form extracellular polysaccharide consisting of glucose-based polymeric units, was isolated through chromatographic purification. The FTIR spectrum showed characteristic absorption peaks at 876.12 cm-1 and 826.89 cm-1 corresponding to β configuration and absorption peaks at 1019.63 cm-1, 1118.10 cm-1, and 1187.92 cm-1 corresponding to pyranose form of the glucosyl residue. 1H NMR signals at δ 4.90 ppm and δ 4.28 ppm were representative of anomeric protons, while 13C NMR spectrum signals around δ 97.85 ppm, δ 93.12 ppm, δ 77.79 ppm, δ 75.89 ppm, δ 71.51 ppm, and δ 62.28 ppm attributed to C-1, C-3, C-5, C-2, C-4, and C-6 carbon atom of EPS. The aforementioned results showed that the purified EPS was made of β-D (1 → 3) glucan moiety. The anti-proliferative activity of EPS was screened against four carcinoma cell lines, HepG2, HEp-2, HT-29 and PC3, and one leukemic cell line, MOLT-4, was used. Purified EPS demonstrated significantly greater cytotoxicity against HT-29, followed by MOLT-4, HepG2, and HEp2, compared to crude EPS. However, it was ineffective against PC-3, a prostate cancer cell line.
Collapse
Affiliation(s)
- Shenbhagaraman Ramalingam
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | | | - Shajahan Azeez
- Centre for Nanotechnology Research, Aarupadaiveedu Institute of Technology, Vinayaka Mission Research Foundation, VMC Campus, Paiyanoor 603104, India
| | | | - Jenefar Sudarson
- Department of Biochemistry, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| |
Collapse
|
3
|
Tan Y, Cao W, Yang L, Gong X, Li H. Structural characterization of the glucan from Gastrodia elata Blume and its ameliorative effect on DSS-induced colitis in mice. Int J Biol Macromol 2024; 275:133718. [PMID: 38977052 DOI: 10.1016/j.ijbiomac.2024.133718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 06/06/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
The polysaccharide glucan was extracted from Gastrodia elata Blume, and its structural characterizations and beneficial effects against acute dextran sulfate sodium (DSS)-induced ulcerative colitis were investigated. The results showed that a polysaccharide GP with a molecular weight of 811.0 kDa was isolated from G. elata Blume. It had a backbone of α-D-1,4-linked glucan with branches of α-d-glucose linked to the C-6 position. GP exhibited protective effects against DSS-induced ulcerative colitis, and reflected in ameliorating weight loss and pathological damages in mice, increasing colon length, inhibiting the expression of inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), decreasing the levels of inflammatory related proteins NLRP3 and ASC, and elevating the anti-inflammatory cytokine interleukin-10 (IL-10) level in mouse colon tissues. GP supplementation also reinforced the intestinal barrier by promoting the expression of ZO-1, Occludin, and MUC2 of colon tissues, and positively regulated intestinal microbiota. Thus, GP treatment possessed a significant improvement in ulcerative colitis in mice, and it was expected to be developed as a functional food.
Collapse
Affiliation(s)
- Yulong Tan
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| | - Wanxiu Cao
- Marine biomedical research institute of Qingdao, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
| | - Lu Yang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Xinwei Gong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
| | - Hongyan Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China.
| |
Collapse
|
4
|
Chen X, Zhang J, Wang Y, Hu Q, Zhao R, Zhong L, Zhan Q, Zhao L. Structure and immunostimulatory activity studies on two novel Flammulina velutipes polysaccharides: revealing potential impacts of →6)-α-D-Glc p(1→ on the TLR-4/MyD88/NF-κB pathway. Food Funct 2024; 15:3507-3521. [PMID: 38465397 DOI: 10.1039/d3fo05468c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Two novel Flammulina velutipes (F. velutipes) polysaccharides, FVPH1 and FVPH2, were isolated and purified after hot water extraction. The structural characterization revealed that the backbone of FVPH1 consisted mainly of →6)-α-D-Glcp(1→, →3,4)-α-D-Galp(1→, →4)-α-L-Fucp(1→, and →4)-β-D-Manp(1→, while the backbone of FVPH2 consisted of →3)-α-D-Galp(1→, →3,4)-α-D-Manp(1→,→6)-α-D-Glcp(1→. The branches of FVPH1 contained →6)-α-D-Glcp(1→ and α-D-Glcp(1→ and the branches of FVPH2 consisted of →3)-α-D-Galp(1→, →6)-α-D-Glcp(1→, and β-L-Fucp(1→. FVPH2 exhibited significantly better immunostimulatory activity than FVPH1 (P < 0.05), as evidenced by the increased expression of NO, IL-1β, IL-6, and TNF-α and pinocytic activity of RAW264.7 cells. As the most abundant structure in the polysaccharides of F. velutipes, the content of →6)-α-D-Glcp(1→ might play a crucial role in influencing the immunostimulatory activity of F. velutipes polysaccharides. The F. velutipes polysaccharide with a lower content of →6)-α-D-Glcp(1→ and a higher branching degree could significantly enhance the immunostimulatory activity of F. velutipes polysaccharides via activating the TLR-4/MyD88/NF-κB pathway more effectively.
Collapse
Affiliation(s)
- Xin Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Jingsi Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yifan Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Qiuhui Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, P. R. China
| | - Ruiqiu Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210095, P. R. China
| | - Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
5
|
Tiwari ON, Bobby MN, Kondi V, Halder G, Kargarzadeh H, Ikbal AMA, Bhunia B, Thomas S, Efferth T, Chattopadhyay D, Palit P. Comprehensive review on recent trends and perspectives of natural exo-polysaccharides: Pioneering nano-biotechnological tools. Int J Biol Macromol 2024; 265:130747. [PMID: 38479657 DOI: 10.1016/j.ijbiomac.2024.130747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 04/18/2024]
Abstract
Exopolysaccharides (EPSs), originating from various microbes, and mushrooms, excel in their conventional role in bioremediation to showcase diverse applications emphasizing nanobiotechnology including nano-drug carriers, nano-excipients, medication and/or cell encapsulation, gene delivery, tissue engineering, diagnostics, and associated treatments. Acknowledged for contributions to adsorption, nutrition, and biomedicine, EPSs are emerging as appealing alternatives to traditional polymers, for biodegradability and biocompatibility. This article shifts away from the conventional utility to delve deeply into the expansive landscape of EPS applications, particularly highlighting their integration into cutting-edge nanobiotechnological methods. Exploring EPS synthesis, extraction, composition, and properties, the discussion emphasizes their structural diversity with molecular weight and heteropolymer compositions. Their role as raw materials for value-added products takes center stage, with critical insights into recent applications in nanobiotechnology. The multifaceted potential, biological relevance, and commercial applicability of EPSs in contemporary research and industry align with the nanotechnological advancements coupled with biotechnological nano-cleansing agents are highlighted. EPS-based nanostructures for biological applications have a bright future ahead of them. Providing crucial information for present and future practices, this review sheds light on how eco-friendly EPSs derived from microbial biomass of terrestrial and aquatic environments can be used to better understand contemporary nanobiotechnology for the benefit of society.
Collapse
Affiliation(s)
- Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh 522213, India
| | - Vanitha Kondi
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak 502313, Telangana, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, West Bengal 713209, India
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Seinkiewicza 112, 90-363 Lodz, Poland
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Sabu Thomas
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Priyadarshini Hills, Athirampuzha, Kerala, 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box, 17011, Doornfontein, 2028, Johannesburg, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata 700102, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India.
| |
Collapse
|
6
|
Patil S, Das M, Kumar GS, Murthy PS. Coffee leaf extract exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced C57BL6 obese mice. 3 Biotech 2023; 13:278. [PMID: 37476547 PMCID: PMC10353976 DOI: 10.1007/s13205-023-03698-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
In the present study, the effect of coffee leaf extract (CLE) on in vitro enzyme inhibition was studied. Furthermore, its impact on the high-fat diet (HFD)-induced obese mice (C57BL/6) at the levels of 100 and 200 mg/kg body weight along with positive control (orlistat) and the normal group maintained with starch-fed diet (SFD) was observed. CLE had significant α amylase and lipase enzyme inhibitory properties. In HFD-induced obese mice, treatment with CLE significantly reduced the body weight gain. The investigation demonstrated that CLE administration lowered blood glucose, total cholesterol, total triglycerides and LDL levels while increasing the HDL levels. It reduced the development of fatty liver by reducing hepatic fat accumulation and decreased the fat cell size in the adipose tissue. Further, CLE significantly increased the liver antioxidant enzyme activities and lowered the levels of hepatotoxicity markers in the serum when compared to the HFD-fed mice. The treatment also downregulated the mRNA expression of lipogenic transcription factors (SREBP-1c, CEBP-α) and enzymes (ACC, FAS) than HFD. Overall, the results indicate that coffee leaves have anti-obesity potential and can be used as functional ingredients in the development of innovative products for managing lifestyle disorders such as obesity.
Collapse
Affiliation(s)
- Siddhi Patil
- Department of Plantation Products, Spices and Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Moumita Das
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - G. Suresh Kumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Pushpa S. Murthy
- Department of Plantation Products, Spices and Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
7
|
Ishiwata A, Tanaka K, Ito Y, Cai H, Ding F. Recent Progress in 1,2- cis glycosylation for Glucan Synthesis. Molecules 2023; 28:5644. [PMID: 37570614 PMCID: PMC10420028 DOI: 10.3390/molecules28155644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 08/13/2023] Open
Abstract
Controlling the stereoselectivity of 1,2-cis glycosylation is one of the most challenging tasks in the chemical synthesis of glycans. There are various 1,2-cis glycosides in nature, such as α-glucoside and β-mannoside in glycoproteins, glycolipids, proteoglycans, microbial polysaccharides, and bioactive natural products. In the structure of polysaccharides such as α-glucan, 1,2-cis α-glucosides were found to be the major linkage between the glucopyranosides. Various regioisomeric linkages, 1→3, 1→4, and 1→6 for the backbone structure, and 1→2/3/4/6 for branching in the polysaccharide as well as in the oligosaccharides were identified. To achieve highly stereoselective 1,2-cis glycosylation, including α-glucosylation, a number of strategies using inter- and intra-molecular methodologies have been explored. Recently, Zn salt-mediated cis glycosylation has been developed and applied to the synthesis of various 1,2-cis linkages, such as α-glucoside and β-mannoside, via the 1,2-cis glycosylation pathway and β-galactoside 1,4/6-cis induction. Furthermore, the synthesis of various structures of α-glucans has been achieved using the recent progressive stereoselective 1,2-cis glycosylation reactions. In this review, recent advances in stereoselective 1,2-cis glycosylation, particularly focused on α-glucosylation, and their applications in the construction of linear and branched α-glucans are summarized.
Collapse
Affiliation(s)
| | - Katsunori Tanaka
- RIKEN, Cluster for Pioneering Research, Saitama 351-0198, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Yukishige Ito
- RIKEN, Cluster for Pioneering Research, Saitama 351-0198, Japan
- Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
8
|
Guo Y, Chen X, Gong P, Deng Z, Qi Z, Wang R, Long H, Wang J, Yao W, Yang W, Chen F. Recent advances in quality preservation of postharvest golden needle mushroom (Flammulina velutiper). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37014278 DOI: 10.1002/jsfa.12603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The golden needle mushroom (Flammulina velutiper) is one of the most productive mushrooms in the world. However, F. velutiper experiences continuous quality degradation in terms of changes in color and textural characteristics, loss of moisture, nutrition and flavor, and increased microbial populations due to its high respiratory activity during the postharvest phase. Postharvest preservation techniques, including physical, chemical and biological methods, play a vital role in maintaining postharvest quality and extending the shelf life of mushrooms. Therefore, in this study, the decay process of F. velutiper and the factors affecting its quality were comprehensively reviewed. Additionally, the preservation methods (e.g., low-temperature storage, packaging, plasma treatment, antimicrobial cleaning and 1-methylcyclopropene treatment) for F. velutiper used for the last 5 years were compared to provide an outlook on future research directions. Overall, this review aims to provide a reference for developing novel, green and safe preservation techniques for F. velutiper. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Zhenfang Deng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Zhuoya Qi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Ruotong Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Hui Long
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jiating Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wenbo Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, China
| |
Collapse
|
9
|
Nagae M, Isa A, Ishikawa S, Muta S, Shimizu K. Effect of Oral Intake of Flammulina velutipes (Enokitake) on Skin Condition in Healthy Adult Women: A Randomized, Double-Blind, Placebo-Controlled Study on Mental and Physical Health. COSMETICS 2023. [DOI: 10.3390/cosmetics10020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Nutritional foods are concentrated sources of molecules with a nutritional or physiological effect which contain nutrients. There is a category, “nutricosmetics”, defined as ingestible natural health products that enhance the function and appearance of human skin, nails, and hair. A new variety of Flammulina velutipes (F. velutipes), Oki-Shirayuki 919, was explored to ascertain whether its components have functions of nutricosmetics. We focused on physiological effects for enhancing the human skin condition, such as moisturizing or barrier functions in F. velutipes. A randomized, double-blind, placebo-controlled clinical study was performed between January and March 2022. Among healthy men and women (n = 30) aged 20 to 59 years, the test group (n = 15) took a test product which included F. velutipes dry powder, and the placebo group (n = 15) took a placebo (a similar product in which the F. velutipes dry powder was replaced with plum fruit paste). Since the amount of increase in skin hydration over four weeks in the test group was significantly larger than that in the placebo group, a significant difference between the two groups was observed (p = 0.033). F. velutipe was suggested to have some physiological functions such as improving skin moisture.
Collapse
|
10
|
Li C, Feng Y, Li J, Lian R, Qin L, Wang C. Extraction, purification, structural characterization, and hepatoprotective effect of the polysaccharide from purple sweet potato. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2196-2206. [PMID: 36168747 DOI: 10.1002/jsfa.12239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Purple sweet potato Ipomoea batatas (L.) has long been used as a medicine and a food. It contains various bioactive substances such as polysaccharides, anthocyanins, and flavonoids. Purple sweet potato polysaccharides are known to have anti-oxidant, anti-tumor, and immunomodulatory functions. Nevertheless, studies on the structural characterization of purple sweet potato polysaccharides and their ability to prevent non-alcoholic fatty liver disease (NAFLD) have rarely been reported. RESULTS A novel polysaccharide (PSPP-A) was extracted and isolated from purple sweet potato, and its structural characteristics and preventive effects on NAFLD were investigated. The results indicated that PSPP-A was composed of l-rhamnose, d-arabinose, d-galactose, d-glucose, and d-glucuronic acid with molar ratios of 1.89:8.45:1.95:1.13:1. Its molecular weight was 2.63 × 103 kDa. Methylation and nuclear magnetic resonance (NMR) analysis indicated that the glycosidic linkages were →3)-α-L-Araf-(1→, α-L-Araf-(1→, →2,4)-α-L-Rhap-(1→, 4-O-Me-β-D-GlcAp-(1→, →4)-α-D-Glcp-(1→, →4)-β-D-Galp-(1→, and →6)-β-D-Galp-(1→. Scanning electron microscopy (SEM) indicated that the structure of PSPP-A was irregular. Subsequently, the protective effect of PSPP-A on NAFLD was investigated. The results indicated that bodyweight, liver index, and triglyceride (TG), total cholesterol (TC), aspartate transaminase (AST), and alanine transaminase (ALT) content were significantly reduced by intervention of purple sweet potato polysaccharide-A (PSPP-A) compared with the - high-fat diet group. Liver histopathological analysis indicated that PSPP-A attenuated irregular hepatocyte patterns and excessive lipid vacuoles. CONCLUSIONS The novel polysaccharide, PSPP-A, mainly contains arabinose, which has certain preventive effects on NAFLD. This study provides a theoretical basis for further elucidating the hepatoprotective effect of purple sweet potatoes as a functional food. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chenjing Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yihua Feng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jingyao Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Rui Lian
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Liehao Qin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Chunling Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
11
|
Teng S, Zhang Y, Jin X, Zhu Y, Li L, Huang X, Wang D, Lin Z. Structure and hepatoprotective activity of Usp10/NF-κB/Nrf2 pathway-related Morchella esculenta polysaccharide. Carbohydr Polym 2023; 303:120453. [PMID: 36657860 DOI: 10.1016/j.carbpol.2022.120453] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/19/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
The water-soluble Morchella esculenta polysaccharide 2 (MEP2) was purified and isolated from an aqueous extract of the Morchella esculenta fruiting bodies. MEP2, having a molecular weight of 959 kDa, has a →4)-α-D-Glcp-(1→ glucan backbone, and this branch was substituted at the H-6 position by an α-D-Glcp-(1 → 4)-α-D-Glcp-(1→ residue and an α-D-Glcp-(1→ residue. The hepatoprotective activity and potential mechanism of action of MEP2 were also investigated. MEP2 ameliorated severe liver damage and regulated the liver function indicators and the alcohol-related enzyme levels in chronic alcohol-induced mice. Combined with biochemical detection, the gut microbiota, metabolites, and proteomics results revealed that MEP2 regulates the levels of hepatic cytokines related to inflammatory response and oxidative stress, as well as those of intestinal Bacteroides, Oscillospira, Parabacteroides, Alistipes, and Prevotella, through the ubiquitin-specific peptidase 10 (Usp10)/nuclear factor κB (NF-κB)/nuclear factor erythroid-2 related factor 2 (Nrf2) signaling pathway in the liver of mice induced by long-term alcohol intake. These data provide experimental evidence for the application of MEP2 in chronic alcohol-induced liver injury.
Collapse
Affiliation(s)
- Shanshan Teng
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Xinghui Jin
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Xiaowei Huang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Zhe Lin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
12
|
Yuan Q, Liu W, Huang L, Wang L, Yu J, Wang Y, Wu D, Wang S. Quality evaluation of immunomodulatory polysaccharides from
Agaricus bisporus
by an integrated fingerprint technique. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Qin Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macao China
| | - Wen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macao China
| | - Ling Huang
- Institute of Food Processing and Safety College of Food Science Sichuan Agricultural University Ya'an China
| | - Liju Wang
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development Zhangzhou Pien Tze Huang Pharmaceutical Co. Ltd Zhangzhou China
| | - Juan Yu
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development Zhangzhou Pien Tze Huang Pharmaceutical Co. Ltd Zhangzhou China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macao China
| | - Ding‐Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering Chengdu University Chengdu China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macao China
- Macau Centre for Research and Development in Chinese Medicine University of Macau Macao China
| |
Collapse
|
13
|
Zhang S, Li Y, Li Z, Liu W, Zhang H, Ohizumi Y, Nakajima A, Xu J, Guo Y. Structure, anti-tumor activity, and potential anti-tumor mechanism of a fungus polysaccharide from Fomes officinalis. Carbohydr Polym 2022; 295:119794. [DOI: 10.1016/j.carbpol.2022.119794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 12/12/2022]
|
14
|
Xu Y, Zhang Z, Wang B, He X, Tang J, Peng W, Zhou J, Wang Y. Flammulina velutipes Polysaccharides Modulate Gut Microbiota and Alleviate Carbon Tetrachloride-Induced Hepatic Oxidative Injury in Mice. Front Microbiol 2022; 13:847653. [PMID: 35401429 PMCID: PMC8986159 DOI: 10.3389/fmicb.2022.847653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
A carbon tetrachloride-induced acute liver injury mouse model is used to study the regulation of gut microbiota and hepatoprotective effect of polysaccharides from Flammulina velutipes (FVPs). The hepatoprotective effect of the FVPs leads to reduced levels of serum aspartate transaminase (AST), alanine aminotransferase (ALT), triglyceride (TG), total cholesterol (TC), total bile acid (TBA) content, and change in liver histopathology. Their anti-oxidant activity is exhibited by decreased levels of hepatic malonaldehyde (MDA) and protein carbonyl (PC) content and increased catalase (CAT) and superoxide dismutase (SOD) content. The anti-inflammatory ability of the FVPs is reflected in a decrease in pro-inflammatory cytokines (including IL-6, IL-1β, and TNF-α). 16S rRNA sequencing shows that the FVPs change the composition of the gut microbiota. A subsequent metabolomics analysis of the gut bacteria (UHPLC-MS/MS-based) revealed that fatty acid biosynthesis, tryptophan metabolism, and metabolism of xenobiotics by cytochrome P450 play important roles in the hepatoprotective effect. This study provides a potential way to modulate gut microbiota and manage liver diseases using natural products.
Collapse
Affiliation(s)
- Yingyin Xu
- Department of Preservation and Processing, Sichuan Institute of Edible Fungi, Chengdu, China
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Zhiyuan Zhang
- Department of Preservation and Processing, Sichuan Institute of Edible Fungi, Chengdu, China
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Bo Wang
- Department of Preservation and Processing, Sichuan Institute of Edible Fungi, Chengdu, China
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Xiaolan He
- Department of Preservation and Processing, Sichuan Institute of Edible Fungi, Chengdu, China
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Jie Tang
- Department of Preservation and Processing, Sichuan Institute of Edible Fungi, Chengdu, China
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Weihong Peng
- Department of Preservation and Processing, Sichuan Institute of Edible Fungi, Chengdu, China
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Jie Zhou
- Department of Preservation and Processing, Sichuan Institute of Edible Fungi, Chengdu, China
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Yong Wang
- Department of Preservation and Processing, Sichuan Institute of Edible Fungi, Chengdu, China
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
15
|
Anusiya G, Gowthama Prabu U, Yamini NV, Sivarajasekar N, Rambabu K, Bharath G, Banat F. A review of the therapeutic and biological effects of edible and wild mushrooms. Bioengineered 2021; 12:11239-11268. [PMID: 34738876 PMCID: PMC8810068 DOI: 10.1080/21655979.2021.2001183] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/27/2023] Open
Abstract
Throughout history, mushrooms have occupied an inseparable part of the diet in many countries. Mushrooms are considered a rich source of phytonutrients such as polysaccharides, dietary fibers, and other micronutrients, in addition to various essential amino acids, which are building blocks of vital proteins. In general, mushrooms offer a wide range of health benefits with a large spectrum of pharmacological properties, including antidiabetic, antioxidative, antiviral, antibacterial, osteoprotective, nephroprotective, hepatoprotective, etc. Both wild edible and medicinal mushrooms possess strong therapeutic and biological activities, which are evident from their in vivo and in vitro assays. The multifunctional activities of the mushroom extracts and the targeted potential of each of the compounds in the extracts have a broad range of applications, especially in the healing and repair of various organs and cells in humans. Owing to the presence of the aforementioned properties and rich phytocomposition, mushrooms are being used in the production of nutraceuticals and pharmaceuticals. This review aims to provide a clear insight on the commercially cultivated, wild edible, and medicinal mushrooms with comprehensive information on their phytochemical constituents and properties as part of food and medicine for futuristic exploitation. Future outlook and prospective challenges associated with the cultivation and processing of these medicinal mushrooms as functional foods are also discussed.
Collapse
Affiliation(s)
- G Anusiya
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - U Gowthama Prabu
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - N V Yamini
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - N Sivarajasekar
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - K Rambabu
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - G Bharath
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
16
|
Reddy Shetty P, Batchu UR, Buddana SK, Sambasiva Rao K, Penna S. A comprehensive review on α-D-Glucans: Structural and functional diversity, derivatization and bioapplications. Carbohydr Res 2021; 503:108297. [PMID: 33813321 DOI: 10.1016/j.carres.2021.108297] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Glucans are the most abundant natural polysaccharides across the living kingdom with tremendous biological activities. Now a days, α-D-glucans are gaining importance as a prebiotics, nutraceuticals, immunostimulants, antiproliferative agents and biodegradable polymers in pharmaceutical and cosmetic sectors. A wide variety of bioresources including bacteria, fungi, lichens, algae, plants and animals produce α-D-glucans either as an exopolysaccharide (EPS) or a cell wall component or an energy storage polymer. The α-D-glucans exhibit great structural and functional diversity as the type of linkage and percentage of branching dictate the functional properties of glucans. Among the different linkages, bioactivities are greatly confined to the α-D-(1 → 3) linkages whereas starch and other polymers consisting of α-D-(1 → 4) (1 → 6) linkages are specific for food and pharmaceutical applications. However, the bioactivities of the α-D-(1 → 3) glucans in native form is limited mainly due to their hydrophobic nature. Hence several derivatization techniques have been developed to improve the bioavailability as well as bioactive features such as antiviral, antimicrobial, anti-inflammatory, antioxidant, immunomodulatory and antitumor properties. Though, several reports have presented about α-D-glucans, still there is an ambiguity in terms of their structure among different natural sources and moreover no comprehensive information was available on their derivatization techniques and application potential. Therefore, the present review summarizes distinct description on diverse sources, type of linkages, derivatization techniques as well as the application potential of the native and modified α-D-glucans.
Collapse
Affiliation(s)
- Prakasham Reddy Shetty
- Medicinal Chemistry and Biotechnology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India.
| | - Uma Rajeswari Batchu
- Medicinal Chemistry and Biotechnology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India.
| | - Sudheer Kumar Buddana
- Medicinal Chemistry and Biotechnology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology, Ghaziabad, 201001, New Delhi, India.
| | - Krs Sambasiva Rao
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, 522510, Andhra Pradesh, India.
| | - Suprasanna Penna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre (BARC), Mumbai, 400085, Maharashtra, India.
| |
Collapse
|
17
|
Structural Identification and Coagulation Effect of Flammulina velutipes Polysaccharides. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041736] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two polysaccharides were isolated successfully from Flammulina velutipes and identified as CHFVP-1 (24.44 kDa) and CHFVP-2 (1497 kDa). Based on the results of Fourier transform-infrared spectroscopy (FT-IR), gas chromatography (GC), gas chromatography–mass spectrometry (GC–MS), and nuclear magnetic resonance (NMR) spectroscopy regarding the structure of CHFVP-1 and CHFVP-2, CHFVP-1 was constructed with the backbone of→6)-α-D-Galp-(1→ and the branch of Galp by an →3,6)-α-D-Manp-(1→attached with T-β-D-Glcp or t-α-L-Fucp side chains. Meanwhile, the CHFVP-2 was a glucan with the construction of →6)-β-D-Glcp-(1→ and T-β-D-Glcp. Moreover, the coagulant activity in vitro of CHFVP-1 and CHFVP-2 was evaluated, and the results showed that CHFVP-1 exerts procoagulant activity by shortening the activated partial thromboplastin time (APTT) and thrombin time (TT), while CHFVP-2 did not reveal a definite coagulant activity. The finding would benefit the further application of F. velutipes in the field of medicine.
Collapse
|
18
|
Wang Y, Zhang H. Advances in the extraction, purification, structural-property relationships and bioactive molecular mechanism of Flammulina velutipes polysaccharides: A review. Int J Biol Macromol 2020; 167:528-538. [PMID: 33278442 DOI: 10.1016/j.ijbiomac.2020.11.208] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/20/2022]
Abstract
With the further research in recent years, Flammulina velutipes (F. velutipes), an edible mushroom, has great application value in many fields. As one of the main bioactive components in F. velutipes, polysaccharide has a series of functions such as anti-oxidation, immune regulation, anti-inflammation, liver protection, anti-tumor, anti-hyperlipidemia and so on. In this paper, the current progress in the extraction, purification, structural characteristics and bioactivities of F. velutipes polysaccharides (FVPs) were reviewed. Meanwhile, the structural-property relationships of FVPs were further discussed. In addition, based on in vitro and in vivo experiments, the possible mechanisms of bioactivities of FVPs were summarized. In order to understand FVPs more comprehensively, the application status and the future research work of FVPs were also introduced. Finally, we hope that our research can provide a reference for further research and development of FVPs.
Collapse
Affiliation(s)
- Yongxia Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Hua Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
19
|
Isolation and structure elucidation of polysaccharides from fruiting bodies of mushroom Coriolus versicolor and evaluation of their immunomodulatory effects. Int J Biol Macromol 2020; 166:1387-1395. [PMID: 33161080 DOI: 10.1016/j.ijbiomac.2020.11.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 01/18/2023]
Abstract
Coriolus versicolor is an edible medicinal mushroom in China. Two polysaccharides, named as CVPn and CVPa were separated from the dried fruiting bodies of Coriolus versicolor by water extraction and ethanol precipitation. Their chemical structures were well elucidated with overall consideration of monosaccharide composition, methylation analysis and 1D/2D-NMR spectra data. The bioactivities on RAW 264.7 macrophages cells were evaluated, and further structure-bioactivity relationships were concluded. With molecular weight of 29.7 kDa for CVPn and 50.8 kDa for CVPa, the two isolated polysaccharides were both composed of (l → 4)-β-/(1 → 3)-β-d-glucopyranosyl group as backbone with branches attached at O-6 site. Comparing to CVPn, CVPa with relative high molecular weight and less branches showed significant induction of NO production, obvious augmentation of iNOS and TNF-α mRNA expression level, and phagocytosis on RAW 264.7 cells. These results clarified that CVP polysaccharides with less branches and high molecular weight possessed enhanced immunomodulatory ability, and this finding could be a reference for the utilization of Coriolus versicolor.
Collapse
|
20
|
Hao Y, Sun H, Zhang X, Wu L, Zhu Z. A novel acid polysaccharide from fermented broth of Pleurotus citrinopileatus: Hypoglycemic activity in vitro and chemical structure. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Hao Y, Sun H, Zhang X, Wu L, Zhu Z. A novel polysaccharide from Pleurotus citrinopileatus mycelia: Structural characterization, hypoglycemic activity and mechanism. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Antunes F, Marçal S, Taofiq O, M. M. B. Morais A, Freitas AC, C. F. R. Ferreira I, Pintado M. Valorization of Mushroom By-Products as a Source of Value-Added Compounds and Potential Applications. Molecules 2020; 25:molecules25112672. [PMID: 32526879 PMCID: PMC7321189 DOI: 10.3390/molecules25112672] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 01/08/2023] Open
Abstract
Nowadays, the food sector is highly concerned with environmental issues and foreseen to develop strategies to reduce waste and losses resulting from activities developed in the food system. An approach is to increment added value to the agro-industrial wastes, which might provide economic growth and environmental protection, contributing to a circular economy. Mushroom by-products represent a disposal problem, but they are also promising sources of important compounds, which may be used due to their functional and nutritional properties. Research has been developed in different fields to obtain value added solutions for the by-products generated during mushroom production and processing. Bioactive compounds have been obtained and applied in the development of nutraceutical and pharmaceutical formulations. Additionally, other applications have been explored and include animal feed, fertilizer, bioremediation, energy production, bio-based materials, cosmetics and cosmeceuticals. The main purpose of this review is to highlight the relevant composition of mushroom by-products and discuss their potential as a source of functional compounds and other applications. Future research needs to explore pilot and industrial scale extraction methods to understand the technological feasibility and the economic sustainability of the bioactive compounds extraction and valorization towards different applications.
Collapse
Affiliation(s)
- Filipa Antunes
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
| | - Sara Marçal
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
| | - Oludemi Taofiq
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (O.T.); (I.C.F.R.F.)
| | - Alcina M. M. B. Morais
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
| | - Ana Cristina Freitas
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (O.T.); (I.C.F.R.F.)
| | - Manuela Pintado
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
- Correspondence:
| |
Collapse
|
23
|
Cui F, Jiang L, Qian L, Sun W, Tao T, Zan X, Yang Y, Wu D, Zhao X. A macromolecular α-glucan from fruiting bodies of Volvariella volvacea activating RAW264. 7 macrophages through MAPKs pathway. Carbohydr Polym 2020; 230:115674. [DOI: 10.1016/j.carbpol.2019.115674] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 01/16/2023]
|
24
|
Mingyi Y, Belwal T, Devkota HP, Li L, Luo Z. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: A comprehensive review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Cui H, Li H, Wang Y, Li S, Xue C. Structural characterization and biological activity of galactoglucan from Castanea mollissima Blume. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1630838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Huanhuan Cui
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hongyan Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- College of Chemistry and Environment Science, Hebei University, Baoding, China
| | - Yingxing Wang
- College of Chemistry and Environment Science, Hebei University, Baoding, China
| | - Shenghui Li
- College of Chemistry and Environment Science, Hebei University, Baoding, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
26
|
Zhang Y, Mi DY, Wang J, Luo YP, Yang X, Dong S, Ma XM, Dong KZ. Constituent and effects of polysaccharides isolated from Sophora moorcroftiana seeds on lifespan, reproduction, stress resistance, and antimicrobial capacity in Caenorhabditis elegans. Chin J Nat Med 2018; 16:252-260. [PMID: 29703325 DOI: 10.1016/s1875-5364(18)30055-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 12/31/2022]
Abstract
Sophora moorcroftiana (S. moorcroftiana) is an endemic leguminous dwarf shrub in Tibet, China. Decoctions of the seeds have been used in Chinese folk medicine for dephlogistication, detoxication, and infectious diseases. The present study aimed to investigate the constituent and biological effects of polysaccharides from S. moorcroftiana seeds in Caenorhabditis elegans (C. elegans). Polysaccharides from S. moorcroftiana seeds (SMpol) were extracted with 60% ethanol and constituent was analyzed by GC-MS. SMpol was composed of glucose, galactose and inositol in the molar ratio of 35.7 : 1.3 : 17.0. Synchronized worms were treated with SMpol and then lifespan, motility, reproduction, stress resistance and antimicrobial activity were examined. Compared with the control group, the lifespan was increased to the average of 27.3 days and the number of laying eggs showed a 1.3-fold increase in nematodes treated with SMpol (4 mg·mL-1). In SMpol (4 mg·mL-1) treated worms, there was a 1.1-fold increase in 24-h survival of acute heat stress and a 1.6-fold increase in 2-h survival of oxidative stress The colonization of the bacteria in the SMpol treated nematode was significantly lower than that of the untreated group by 68.3%. In vivo studies showed SMpol significantly extended the life span, improved reproduction, increased stress resistance and antimicrobial capacity of C. elegans. In conclusion, those results indicated that the polysaccharides from S. moorcroftiana seeds were involved in a variety of biological activities leading to its modulatory effects on C. elegans which may be developed as a natural supplement agent.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dan-Yang Mi
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jin Wang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yan-Ping Luo
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xu Yang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shi Dong
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xing-Ming Ma
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou 730000, China.
| | - Kai-Zhong Dong
- Department of Microbiology, Medical College, Northwest University for Nationalities, Lanzhou 730000, China.
| |
Collapse
|
27
|
Structural characteristics and bioactive properties of a novel polysaccharide from Flammulina velutipes. Carbohydr Polym 2018; 197:147-156. [PMID: 30007599 DOI: 10.1016/j.carbpol.2018.05.069] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/08/2018] [Accepted: 05/24/2018] [Indexed: 01/04/2023]
Abstract
A new water-soluble polysaccharide (FVP1) was extracted from Flammulina velutipes by traditional method "water extraction and alcohol precipitation" and purified by column chromatography. Physicochemical characterization showed that FVP1 was a homogeneous polysaccharide with a relative molecular weight of 54.78 kDa. It is composed of mannose (7.74%), glucose (70.41%), and galactose (16.38%). FVP1 (1000 mg/mL) possessed significant immune activity by increasing the secretion of nitric oxide (NO), tumour necrosis factor-α (TNF-α) (3183 ± 133.84 pg/mL), interleukin (IL)-6 (1133.21 ± 39.05 pg/mL), and IL-12 (579.96 ± 74.53 pg/mL) in macrophages. Furthermore, FVP1 showed significant hepatitis B surface antibody (anti-HBV) activity through reducing the expression of hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg) and hepatitis B virus (HBV) DNA replication. These results suggest a novel role for FVP1 to be applied as an immunomodulators in dietary supplements to prevent HBV infection.
Collapse
|
28
|
Metabonomic profiling in study hepatoprotective effect of polysaccharides from Flammulina velutipes on carbon tetrachloride-induced acute liver injury rats using GC–MS. Int J Biol Macromol 2018; 110:285-293. [DOI: 10.1016/j.ijbiomac.2017.12.149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/22/2017] [Accepted: 12/27/2017] [Indexed: 12/17/2022]
|
29
|
Structural characterization and macrophage activation of a hetero-galactan isolated from Flammulina velutipes. Carbohydr Polym 2018; 183:207-218. [DOI: 10.1016/j.carbpol.2017.12.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/31/2017] [Accepted: 12/07/2017] [Indexed: 01/29/2023]
|
30
|
Mustonen AM, Määttänen M, Kärjä V, Puukka K, Aho J, Saarela S, Nieminen P. Myo- and cardiotoxic effects of the wild winter mushroom ( Flammulina velutipes) on mice. Exp Biol Med (Maywood) 2018; 243:639-644. [PMID: 29495884 DOI: 10.1177/1535370218762340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rhabdomyolysis (destruction of striated muscle) is a novel form of mushroom poisoning in Europe and Asia indicated by increased circulating creatine kinase levels. Particular wild fungi have also been reported to induce elevated creatine kinase activities in mice. Flammulina velutipes (enokitake or winter mushroom) is one of the most actively cultivated mushroom species globally. As it is marketed as a medicinal mushroom and functional food, it is important to examine whether it could induce potentially harmful health effects similar to some previously studied edible fungi. The present study examined the effects of F. velutipes consumption on the plasma clinical chemistry, hematology, and organ histology of laboratory mice. Wild F. velutipes were dried, pulverized, mixed with a regular laboratory rodent diet, and fed to the animals at 0, 3, 6, or 9 g/kg body mass/day for five days ( n = 6/group). F. velutipes consumption caused increased activities of plasma creatine kinase and the MB-fraction of creatine kinase at 6-9 g/kg/d, indicating potentially deleterious effects on both skeletal and cardiac muscle. The plasma total and high-density lipoprotein cholesterol concentrations (at 9 g/kg/d) and white blood cell and lymphocyte counts (at 6-9 g/kg/d) decreased. Although the cholesterol-lowering properties of F. velutipes can be beneficial, the previously unexamined, potentially hazardous side effects of mushroom consumption (myo- and cardiotoxicity) should be thoroughly investigated before recommending this mushroom species as a health-promoting food item. Impact statement This work is important to the field of functional foods, as it provides novel information about the potential myo- and cardiotoxic properties of an edible mushroom, Flammulina velutipes. The results are useful and of importance because F. velutipes is an actively cultivated mushroom and marketed as a health-promoting food item. The findings contribute to the understanding of the complexity of the balance between the beneficial and potentially harmful effects of mushroom consumption.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- 1 Institute of Biomedicine/Anatomy, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland.,2 Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, Joensuu FI-80101, Finland
| | - Maija Määttänen
- 3 Department of Food and Environmental Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki FI-00014, Finland
| | - Vesa Kärjä
- 4 Department of Pathology, Kuopio University Hospital, Kuopio FI-70211, Finland
| | - Katri Puukka
- 5 NordLab Oulu, Oulu University Hospital, Oulu FI-90029, Finland.,6 Department of Clinical Chemistry, Faculty of Medicine, University of Oulu, Oulu FI-90014, Finland
| | - Jari Aho
- 7 Municipal Veterinary Clinic of Joensuu, Joensuu FI-80110, Finland
| | - Seppo Saarela
- 8 Department of Ecology and Genetics, Faculty of Science, University of Oulu, Oulu FI-90014, Finland
| | - Petteri Nieminen
- 1 Institute of Biomedicine/Anatomy, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland.,2 Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, Joensuu FI-80101, Finland
| |
Collapse
|
31
|
Cheng J, He S, Wan Q, Jing P. Multiple fingerprinting analyses in quality control of Cassiae Semen polysaccharides. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1077-1078:22-27. [PMID: 29413573 DOI: 10.1016/j.jchromb.2018.01.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 11/16/2022]
Abstract
Quality control issue overshadows potential health benefits of Cassiae Semen due to the analytic limitations. In this study, multiple-fingerprint analysis integrated with several chemometrics was performed to assess the polysaccharide quality of Cassiae Semen harvested from different locations. FT-IR, HPLC, and GC fingerprints of polysaccharide extracts from the authentic source were established as standard profiles, applying to assess the quality of foreign sources. Analyses of FT-IR fingerprints of polysaccharide extracts using either Pearson correlation analysis or principal component analysis (PCA), or HPLC fingerprints of partially hydrolyzed polysaccharides with PCA, distinguished the foreign sources from the authentic source. However, HPLC or GC fingerprints of completely hydrolyzed polysaccharides couldn't identify all foreign sources and the methodology using GC is quite limited in determining the monosaccharide composition. This indicates that FT-IR/HPLC fingerprints of non/partially-hydrolyzed polysaccharides, respectively, accompanied by multiple chemometrics methods, might be potentially applied in detecting and differentiating sources of Cassiae Semen.
Collapse
Affiliation(s)
- Jing Cheng
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Siyu He
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Wan
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pu Jing
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
32
|
Mau JL, Chen YL, Chien RC, Lo YC, Lin SD. Taste Quality of the Hot Water Extract from <i>Flammulina velutipes</i> and its Application in Umami Seasoning. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jeng-Leun Mau
- Department of Food Science and Biotechnology, National Chung Hsing University (NCHU)
- NCHU-UCD Plant and Food Biotechnology Center, NCHU
- Agricultural Biotechnology Center, NCHU
| | - Yi-Lin Chen
- Department of Food Science and Biotechnology, National Chung Hsing University (NCHU)
| | - Rao-Chi Chien
- Department of Food Science and Biotechnology, National Chung Hsing University (NCHU)
| | - Yu-Chang Lo
- Department of Food Science and Biotechnology, National Chung Hsing University (NCHU)
| | - Sheng-Dun Lin
- Department of Food Science and Technology, Hungkuang University
| |
Collapse
|
33
|
Antimicrobial and antioxidant activities of Flammulina velutipes polysacchrides and polysacchride-iron(III) complex. Carbohydr Polym 2017; 161:26-32. [DOI: 10.1016/j.carbpol.2016.12.069] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 11/22/2022]
|
34
|
Mahfuz S, Hui S, Zhongjun L. Improved Production Performance and Health Status with Winter Mushroom Stem (Flammulina velutipes) in Laying Chicken: Review. INTERNATIONAL JOURNAL OF POULTRY SCIENCE 2017; 16:112-117. [DOI: 10.3923/ijps.2017.112.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
35
|
Liao N, Zhong J, Zhang R, Ye X, Zhang Y, Wang W, Wang Y, Chen S, Liu D, Liu R. Protein-Bound Polysaccharide from Corbicula fluminea Inhibits Cell Growth in MCF-7 and MDA-MB-231 Human Breast Cancer Cells. PLoS One 2016; 11:e0167889. [PMID: 27959954 PMCID: PMC5154514 DOI: 10.1371/journal.pone.0167889] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022] Open
Abstract
A novel protein-bound polysaccharide, CFPS-1, isolated from Corbicula fluminea, is composed predominantly of mannose (Man) and glucose (Glc) in a molar ratio of 3.1:12.7. The polysaccharide, with an average molecular weight of about 283 kDa, also contains 10.8% protein. Atomic force microscopy, high-performance liquid chromatography, Fourier transform infrared spectroscopy, gas chromatography/mass spectrometry, and nuclear magnetic resonance spectroscopy analyses revealed that CFPS-1 has a backbone of 1,6-linked and 1,4,6-linked-α-D-Glc, which is terminated with a 1-linked-α-D-Man residue at the O-4 position of 1,4,6-linked-α-D-Glc, in a molar ratio of 3:1:1. Preliminary in vitro bioactivity tests revealed that CFPS-1 effectively and dose-dependently inhibits human breast cancer MCF-7 and MDA-MB-231 cell growth, with an IC50 of 243 ± 6.79 and 1142 ± 14.84 μg/mL, respectively. In MCF-7, CFPS-1 produced a significant up-regulation of p53, p21, Bax and cleaved caspase-7 and down-regulation of Cdk4, cyclin D1, Bcl-2 and caspase-7. These effects resulted in cell cycle blockade at the S-phase and apoptosis induction. In contrast, in MDA-MB-231, with limited degree of change in cell cycle distribution, CFPS-1 increases the proportion of cells in apoptotic sub-G1 phase executed by down-regulation of Bcl-2 and caspase-7 and up-regulation of Bax and cleaved caspase-7. This study extends our understanding of the anticancer mechanism of C. fluminea protein-bound polysaccharide.
Collapse
Affiliation(s)
- Ningbo Liao
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Jianjun Zhong
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ronghua Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xingqian Ye
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanjun Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Wenjun Wang
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuexia Wang
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou, Zhejiang, China
| | - Shiguo Chen
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Donghong Liu
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruihai Liu
- Department of Food Science, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
36
|
Tang C, Hoo PCX, Tan LTH, Pusparajah P, Khan TM, Lee LH, Goh BH, Chan KG. Golden Needle Mushroom: A Culinary Medicine with Evidenced-Based Biological Activities and Health Promoting Properties. Front Pharmacol 2016; 7:474. [PMID: 28003804 PMCID: PMC5141589 DOI: 10.3389/fphar.2016.00474] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023] Open
Abstract
Flammulina velutipes (enoki, velvet shank, golden needle mushroom or winter mushroom), one of the main edible mushrooms on the market, has long been recognized for its nutritional value and delicious taste. In recent decades, research has expanded beyond detailing its nutritional composition and delved into the biological activities and potential health benefits of its constituents. Many bioactive constituents from a range of families have been isolated from different parts of the mushroom, including carbohydrates, protein, lipids, glycoproteins, phenols, and sesquiterpenes. These compounds have been demonstrated to exhibit various biological activities, such as antitumour and anticancer activities, anti-atherosclerotic and thrombosis inhibition activity, antihypertensive and cholesterol lowering effects, anti-aging and antioxidant properties, ability to aid with restoring memory and overcoming learning deficits, anti-inflammatory, immunomodulatory, anti-bacterial, ribosome inactivation and melanosis inhibition. This review aims to consolidate the information concerning the phytochemistry and biological activities of various compounds isolated from F. velutipes to demonstrate that this mushroom is not only a great source of nutrients but also possesses tremendous potential in pharmaceutical drug development.
Collapse
Affiliation(s)
- Calyn Tang
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Pearl Ching-Xin Hoo
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Priyia Pusparajah
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Tahir Mehmood Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Department of Pharmacy, Abasyn University PeshawarPeshawar, Pakistan
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia
| |
Collapse
|
37
|
Liu XB, Feng B, Li J, Yan C, Yang ZL. Genetic diversity and breeding history of Winter Mushroom (Flammulina velutipes) in China uncovered by genomic SSR markers. Gene 2016; 591:227-235. [DOI: 10.1016/j.gene.2016.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/04/2016] [Accepted: 07/03/2016] [Indexed: 01/07/2023]
|
38
|
Zhu Y, Ding X, Wang M, Hou Y, Hou W, Yue C. Structure and antioxidant activity of a novel polysaccharide derived from Amanita caesarea. Mol Med Rep 2016; 14:3947-54. [PMID: 27600603 DOI: 10.3892/mmr.2016.5693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 08/10/2016] [Indexed: 11/06/2022] Open
Abstract
A heteropolysaccharide was isolated from the fruiting bodies of Amanita caesarea using a diethylaminoethyl-cellulose column, Sephacryl S‑300 gel column and Sephadex G‑200 column. The Amanita caesarea polysaccharide was predominantly composed of α-D-glucose and α-D-lyxose at a ratio of 2:1, and it had a molecular weight of 19,329 Da. The structural features of the Amanita caesarea polysaccharide were investigated by a combination of total hydrolysis, methylation analysis, gas chromatography-mass spectrometry, and infrared spectra and nuclear magnetic resonance spectroscopy. The results showed that Amanita caesarea polysaccharide (termed AC‑1) had a backbone of 1,4‑linked α‑D‑glucose and 1,3,6‑linked α‑D‑glucose, with branches of one 1‑linked α‑D‑lyxose residue. The antioxidant activity of AC‑1 was evaluated by two biochemical methods, 2,2-azino-bis diammonium (ABTS+) radical scavenging activity and 1,1-diphenyl-2-picrylhydrazyl (DPPH-) radical scavenging activity. The uncontrolled production of free radicals is involved in various diseases, including cancer, atherosclerosis and degenerative aging processes. The results indicated that the Amanita caesarea polysaccharide exhibits strong antioxidant activity, thus, it may be a useful natural product antioxidant.
Collapse
Affiliation(s)
- Yuanxiu Zhu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Xiang Ding
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Mei Wang
- National Center for Sweet Potato Improvement Centre of Nanchong, Nanchong Academy of Agricultural Sciences, Nanchong, Sichuan 637001, P.R. China
| | - Yiling Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Wanru Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Changwu Yue
- Key Laboratory of Characteristic Microbial Resources & Drug Development of Guizhou Provincial Education Department, Zunyi Medical University, Zunyi, Guizhou 561000, P.R. China
| |
Collapse
|
39
|
Huang X, Nie S. The structure of mushroom polysaccharides and their beneficial role in health. Food Funct 2016; 6:3205-17. [PMID: 26345165 DOI: 10.1039/c5fo00678c] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mushroom is a kind of fungus that has been popular for its special flavour and renowned biological values. The polysaccharide contained in mushroom is regarded as one of the primary bioactive constituents and is beneficial for health. The structural features and bioactivities of mushroom polysaccharides have been studied extensively. It is believed that the diverse biological bioactivities of polysaccharides are closely related to their structure or conformation properties. In this review, the structural characteristics, conformational features and bioactivities of several mushroom polysaccharides are summarized, and their beneficial mechanisms and the relationships between their structure and bioactivities are also discussed.
Collapse
Affiliation(s)
- Xiaojun Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | | |
Collapse
|
40
|
Liu Y, Zhang B, Ibrahim S, Gao SS, Yang H, Huang W. Purification, characterization and antioxidant activity of polysaccharides from Flammulina velutipes residue. Carbohydr Polym 2016; 145:71-7. [DOI: 10.1016/j.carbpol.2016.03.020] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/06/2016] [Accepted: 03/09/2016] [Indexed: 12/13/2022]
|
41
|
Lin L, Cui F, Zhang J, Gao X, Zhou M, Xu N, Zhao H, Liu M, Zhang C, Jia L. Antioxidative and renoprotective effects of residue polysaccharides from Flammulina velutipes. Carbohydr Polym 2016; 146:388-95. [PMID: 27112888 DOI: 10.1016/j.carbpol.2016.03.071] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/10/2016] [Accepted: 03/23/2016] [Indexed: 12/20/2022]
Abstract
Three extractable polysaccharides including Ac-RPS, Al-RPS and En-RPS were extracted from the residue of Flammulina velutipes and their antioxidative and renoprotective effects on STZ-induced mice were investigated. Biochemical and antioxidant analysis showed that the En-RPS had potential effects in decreasing the serum levels of CRE, BUN, ALB and GLU significantly, increasing the renal activities of SOD, CAT and GSH-Px remarkably, and reducing the renal contents of MDA prominently. Furthermore, the histopathological observations also displayed that En-RPS could alleviate kidney damage. These results demonstrated that En-RPS extracted from the residue of F. velutipes possessed potent antioxidant activities, and could be used as a promising therapeutic agent for inhibiting the progression of diabetic nephropathy. In addition, the monosaccharide compositions of these three RPS were also analyzed.
Collapse
Affiliation(s)
- Lin Lin
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Fangyuan Cui
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Xia Gao
- Shandong Agricultural Technology Extending Station, Ji'nan, Shandong 250100, PR China
| | - Meng Zhou
- Quality and Safety Monitoring Center of Animal Products, Ji'nan, Shandong 250002, PR China
| | - Nuo Xu
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Huajie Zhao
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Min Liu
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Chen Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
42
|
Yuan Q, Zhao L, Cha Q, Sun Y, Ye H, Zeng X. Structural Characterization and Immunostimulatory Activity of a Homogeneous Polysaccharide from Sinonovacula constricta. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7986-7994. [PMID: 26317410 DOI: 10.1021/acs.jafc.5b03306] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Sinonovacula constricta has been widely used as a health food and medicine in China, Japan, and Korea. In the present study, a water-soluble polysaccharide fraction (SCP-1) was prepared from S. constricta by enzyme-assisted extraction and purification of chromatography with DEAE-52 cellulose anion-exchange column and Sephadex G-100 size exclusion column. On the basis of the analytical results of high-performance liquid chromatography, Fourier transform-infrared spectroscopy, methylation analysis, and NMR spectroscopy, SCP-1 was found to have an average molecular weight of 15.63 kDa and a linear backbone of (1→4)-linked α-D-Glcp residue with one branch, α-D-Glcp, attached to the main chain by a (1→6) glycosidic bond at every five α-D-Glcp units. Furthermore, it was found that SCP-1 could significantly increase the viability of macrophages, enhance the capability of macrophage phagocytosis, increase the activity of acid phosphatase, and promote the production of nitric oxide, mouse tumor necrosis factor (TNF)-α, mouse interferon (IFN)-γ, and mouse interleukin (IL)-1β. The results suggest that SCP-1 possesses potent immunomodulating effect and may be explored as a potential biological response modifier.
Collapse
Affiliation(s)
- Qingxia Yuan
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Longyan Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming, Yunnan 650201, People's Republic of China
| | - Qianqian Cha
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| |
Collapse
|
43
|
CUI HY, WANG CL, WANG YR, LI ZJ, ZHANG YN. The polysaccharide isolated from Pleurotus nebrodensis (PN-S) shows immune-stimulating activity in RAW264.7 macrophages. Chin J Nat Med 2015; 13:355-60. [DOI: 10.1016/s1875-5364(15)30026-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Liu SW, Chang XD, Song ZZ. Study on F
lammulina Velutipes
Ready-to-Eat Snacks Prepared by Microwave Vacuum Osmotic Dehydration Combined with Hot-Air Drying. J FOOD PROCESS ENG 2015. [DOI: 10.1111/jfpe.12228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Su-Wen Liu
- Department of Food Science and Technology; Hebei Normal University of Science and Technology; Qinhuangdao Hebei Province 066004 China
| | - Xue-Dong Chang
- Department of Food Science and Technology; Hebei Normal University of Science and Technology; Qinhuangdao Hebei Province 066004 China
| | - Zi-Zi Song
- Department of Food Science and Technology; Hebei Normal University of Science and Technology; Qinhuangdao Hebei Province 066004 China
| |
Collapse
|
45
|
Fan Y, He Q, Luo A, Wang M, Luo A. Characterization and antihyperglycemic activity of a polysaccharide from Dioscorea opposita Thunb roots. Int J Mol Sci 2015; 16:6391-401. [PMID: 25809611 PMCID: PMC4394538 DOI: 10.3390/ijms16036391] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/01/2015] [Accepted: 03/16/2015] [Indexed: 11/17/2022] Open
Abstract
A polysaccharide DOTP-80 from Dioscorea opposita Thunb was obtained by using the method of acid water-extraction and ethanol-precipitation. After being purified by chromatography, the structure characteristics of DOTP-80 were established. Based on the calibration curve obtained with standard dextrans, the molecular weight of the polysaccharide fraction DOTP-80 was calculated to be 123 kDa. The results of Infrared spectrum (FT-IR) indicated that the polysaccharide contained the α-configuration of sugar units. GC-MS analysis revealed that DOTP-80 was mainly composed of mannose and glucose. Alloxan-induced diabetic rats and mice models were developed to evaluate the in vivo hypoglycemic activity of the polysaccharide. The results indicated that a high dose DOTP-80 (400 mg/kg) had strong hypoglycemic activity. Moreover, DOTP-80 could increase the level of antioxidant enzymes (SOD) activity in alloxan-induced diabetic mice and stimulate an increase in glucose disposal in diabetic rats. Therefore, the polysaccharide DOTP-80 should be evaluated as a candidate for future studies on diabetes mellitus.
Collapse
Affiliation(s)
- Yijun Fan
- Department of Landscape Plants, Sichuan Agriculture University, Chengdu 611130, China.
| | - Qinyi He
- Department of Landscape Plants, Sichuan Agriculture University, Chengdu 611130, China.
| | - Aoshuang Luo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Miaoyu Wang
- Department of Landscape Plants, Sichuan Agriculture University, Chengdu 611130, China.
| | - Aoxue Luo
- Department of Landscape Plants, Sichuan Agriculture University, Chengdu 611130, China.
| |
Collapse
|
46
|
Jing P, Zhao SJ, Lu MM, Cai Z, Pang J, Song LH. Multiple-fingerprint analysis for investigating quality control of Flammulina velutipes fruiting body polysaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12128-12133. [PMID: 25372841 DOI: 10.1021/jf504349r] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Quality control issues overshadow potential health benefits of the edible mushroom Flammulina velutipes, with the detection and isolation of polysaccharides posing particular problems. In this study, multiple-fingerprint analysis was performed using chemometrics to assess polysaccharide quality and antioxidant activity of F. velutipes fruiting bodies from different sources. The authentic source exhibited differences in both oxygen radical absorbance capacity and ferric reducing antioxidant power from foreign sources. IR spectroscopic/HPLC fingerprints of polysaccharide extracts from the authentic source were established and applied to assess the polysaccharide quality of foreign sources. Analysis of IR fingerprints using Pearson correlation coefficient gave correlation coefficient r values of 0.788 and 0.828 for two foreign sources, respectively, indicating distinctness from the authentic source. Analysis of HPLC fingerprints using the supervised method by Traditional Chinese Medicine could not discriminate between sources (r > 0.9), but principal component analysis of IR and HPLC fingerprints distinguished the foreign sources.
Collapse
Affiliation(s)
- Pu Jing
- Research Center for Food Safety and Nutrition, Key Laboratory of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University , Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
47
|
Compositional analysis of the fruiting body of transgenic Flammulina velutipes producing resveratrol. Food Chem 2014; 164:211-8. [DOI: 10.1016/j.foodchem.2014.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 01/19/2023]
|
48
|
Antioxidant and immunomodulatory activities of a polysaccharide from Flammulina velutipes. J TRADIT CHIN MED 2014; 34:733-40. [DOI: 10.1016/s0254-6272(15)30089-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Preparation of the oligosaccharides derived from Flammulina velutipes and their antioxidant activities. Carbohydr Polym 2014; 118:41-3. [PMID: 25542105 DOI: 10.1016/j.carbpol.2014.10.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 11/21/2022]
Abstract
The oligosaccharides were prepared from Flammulina velutipes by hydrolysis of F. velutipes polysaccharides with hydrogen peroxide (H2O2). The yields of F. velutipes derived oligosaccharides (FVOs) were monitored during the hydrolysis process. FVOs yields were affected by three factors, i.e. reaction temperature, H2O2 concentration, and time, which were optimized by using an orthogonal design experiments as follows: reaction temperature 70°C, H2O2 concentration 3%, and reaction time 6h. Under these optimum conditions, the maximal yield of the oligosaccharides reached 17.10%, which was higher than that of hot water extraction method. The oligosaccharides were partially characterized by Fourier transform infrared spectrum, monosaccharide composition, and antioxidant activity. The results indicate that the oligosaccharides derived from F. velutipes showed strong hydroxyl radical activity and reducing capacity at the concentration of 100 μg/mL.
Collapse
|
50
|
Purification, characterization, antioxidant activity and anti-aging of exopolysaccharides by Flammulina velutipes SF-06. Antonie van Leeuwenhoek 2014; 107:73-82. [DOI: 10.1007/s10482-014-0305-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/13/2014] [Indexed: 11/26/2022]
|