1
|
Garmasheva I, Tomila T, Kharkhota M, Oleschenko L. Exopolysaccharides of lactic acid bacteria as protective agents against bacterial and viral plant pathogens. Int J Biol Macromol 2024; 276:133851. [PMID: 39004247 DOI: 10.1016/j.ijbiomac.2024.133851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
In this study, 25 exopolysaccharides produced by lactic acid bacteria (LAB) were screened for their effect on plant pathogens. The molecular masses of EPS were found to be 3,8-5,0 × 104 Da. The GC-MS analysis revealed that EPSs were majorly composed of glucose (85.85-97.98 %). The FT-IR spectra of EPSs were in agreement with the typical absorption peaks of polysaccharides. EPSs showed a hydroxyl radical scavenging ability. The scavenging rate of EPS ranged from 20 to 50 % at a concentration of 5.0 mg/mL. Significant growth delay of phytopathogenic bacteria was observed after 3-6 h of cultivation. Optical density values of indicator cultures growing in the medium with EPS (1 mg/mL) were lower compared to the control by 24-100 % for Pseudomonas fluorescens, 9-46 % for P. syringae, 47-79 % for Pectobacterium carotovorum, 14-90 % for Clavibacter michiganensis, 9-100 % for Xantomonas campestris, and 45-100 % for X. vesicatorium. EPS retained their inhibitory effect on the growth of X. campestris, X. vesicatorium and C. michiganensis strains after 24-48 h of cultivation, but stimulating effect on the growth of some strains also was observed. LAB EPS showed antibiofilm activity against P. carotovorum, P. syringae, and P. fluorescent, decreasing their biofilm formation by 16-50 %, 14-39 %, and 29-59 %, respectively. Also, stimulation of biofilm formation by X. campestris (by 8-29 %), X. vesicatorium (by 3-32 %) and C. michiganensis (by 31-41 %) strains was observed. EPSs showed antiviral activity against tobacco mosaic virus (TMV). At a concentration of 100 μg/mL, they decreased the infective ability of TMV by 61-92 %. This is the first study demonstrating that LAB EPS exhibited in vitro antibacterial and antibiofilm activity against phytopathogenic bacteria and anti-viral activity against TMV. Thus, LAB EPSs could have great potential for plant protection strategies.
Collapse
Affiliation(s)
- Inna Garmasheva
- Department of Physiology of Industrial Microorganisms, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Acad. Zabolotny str., 154, Kyiv 03143, Ukraine.
| | - Tamara Tomila
- Department of Physics, Chemistry and Technology of Nanotextured Ceramics and Nanocomposite Materials, Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Omeliana Pritsaka str., 3, Kyiv 03142, Ukraine
| | - Maxim Kharkhota
- Laboratory of biological polymer compounds, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Acad. Zabolotny str., 154, Kyiv 03143, Ukraine
| | - Ljubov Oleschenko
- Department of Physiology of Industrial Microorganisms, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Acad. Zabolotny str., 154, Kyiv 03143, Ukraine
| |
Collapse
|
2
|
Okada H, Yamamori A, Kawazoe N, Ueno K, Onodera S, Hirata M. Polysaccharides from a Fermented Beverage Induce Nitric Oxide and Cytokines in Murine Macrophage Cell Line. J Appl Glycosci (1999) 2024; 71:47-54. [PMID: 38863952 PMCID: PMC11163328 DOI: 10.5458/jag.jag.jag-2023_0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/27/2024] [Indexed: 06/13/2024] Open
Abstract
Super Ohtaka®, a fermented beverage of plant extracts, is prepared from approximately 50 kinds of fruits and vegetables. Natural fermentation is mainly performed by lactic acid bacteria (Leuconostoc spp.) and yeast (Zygosaccharomyces spp.). Four water-soluble polysaccharide fractions were obtained from Super Ohtaka® by dialysis, ion exchange chromatography, and gel filtration chromatography; these fractions were designated as OEP1-1, OEP1-2, OEP2, and OEP3. OEP1-1 is a polysaccharide composed solely of glucose. The other fractions contained polysaccharides composed of glucose, galactose, mannose, and a small amount of arabinose. OEP2 and OEP3 contained phosphorus, which was not detected in OEP1-1 and OEP1-2. Furthermore, the immunomodulatory activity of the polysaccharides was investigated in murine macrophage cell lines. OEP2 and OEP3 significantly induced nitric oxide (NO) secretion by macrophages in a dose-dependent manner (concentration range of 4 to 100 µg/mL). When the concentration of OEP3 was 100 µg/mL, NO production was almost identical to lipopolysaccharide (LPS; 10 ng/mL) used as a positive control. Notably, OEP3 induced NO secretion more strongly than OEP2. This trend was also observed for TNF-α, IL-1β, IL-6, and IL-12 p40 secretion. Overall, our in vitro studies on polysaccharides isolated from Super Ohtaka® suggest that the fermented beverage stimulates macrophages and activates the immune system.
Collapse
Affiliation(s)
| | | | | | - Keiji Ueno
- Department of Food Sciences and Human Wellness, Rakuno Gakuen University
| | - Shuichi Onodera
- Department of Food Sciences and Human Wellness, Rakuno Gakuen University
| | | |
Collapse
|
3
|
Kavitake D, Tiwari S, Devi PB, Shah IA, Reddy GB, Shetty PH. Production, purification, and functional characterization of glucan exopolysaccharide produced by Enterococcus hirae strain OL616073 of fermented food origin. Int J Biol Macromol 2024; 259:129105. [PMID: 38176508 DOI: 10.1016/j.ijbiomac.2023.129105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/16/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Microbial exopolysaccharides (EPS) are high molecular weight polymeric substances with great diversity and variety of applications in the food and pharma industry. In this study, we report the extraction of an EPS from Enterococcus hirae OL616073 strain originally isolated from Indian fermented food and its purification by ion exchange and size exclusion chromatography for physical-functional analyses. The EPS showed two prominent fractions (EPS F1 and EPS F2) with molecular mass 7.7 × 104 and 6.5 × 104 Da respectively by gel permeation chromatography. These fractions were further characterized by FTIR, HPTLC, GC-MS, and NMR as a homopolysaccharide of glucose linked with α-(1 → 6) and α-(1 → 3) glycosidic linkages. The porous, spongy, granular morphology of EPS was observed under scanning electron microscopy. EPS has revealed strong physico-functional properties like water solubility index (76.75 %), water contact angle (65.74°), water activity (0.35), hygroscopicity (3.05 %), water holding capacity (296.19 %), oil holding capacity (379.91 %), foaming capacity (19.58 %), and emulsifying activity (EA1-72.22 %). Rheological analysis showed that aqueous solution of EPS exhibited a non-Newtonian fluid behavior and shear-thinning characteristics. Overall, EPS exhibits techno functional properties with potential applications as a functional biopolymer in food and pharma industry.
Collapse
Affiliation(s)
- Digambar Kavitake
- Department of Biochemistry, National Institute of Nutrition, Hyderabad, Telangana 500007, India
| | - Swati Tiwari
- Department of Food Science and Technology, Pondicherry University, Pondicherry 605014, India
| | - Palanisamy Bruntha Devi
- Department of Food Science and Technology, Pondicherry University, Pondicherry 605014, India
| | - Irshad Ahmad Shah
- Department of Food Science and Technology, Pondicherry University, Pondicherry 605014, India
| | - G Bhanuprakash Reddy
- Department of Biochemistry, National Institute of Nutrition, Hyderabad, Telangana 500007, India
| | | |
Collapse
|
4
|
Jaglan A, Sadera G, Singh P, Singh BP, Goel G. Probiotic potential of gluten degrading Bacillus tequilensis AJG23 isolated from Indian traditional cereal-fermented foods as determined by Multiple Attribute Decision-Making analysis. Food Res Int 2023; 174:113516. [PMID: 37986423 DOI: 10.1016/j.foodres.2023.113516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
The present study reported the characterization of gluten hydrolyzing strains of Bacillus sp. from fermented cereal dough. The strains were characterized for probiotic as well as technological attributes. A total of 45 presumptive gluten degrading isolates were obtained on gliadin agar plate assay. Based on hemolytic and antibiotic susceptibility pattern, only six isolates were considered safe which also indicated gliadinase activity on zymography. All the six strains were able to resist the pH 2.0, 0.25% bile and also possessed ability to adhere to the organic solvents and mucin. The cell free supernatant of five strains exhibited antimicrobial activities against Gram-positive and Gram-negative pathogens. A more than 50% survival of the isolated strains was obtained at a salt concentration of 2%, phenol concentration of 0.1% and temperature upto 45 °C. All the strains exhibited antioxidant activities and biofilm forming ability. Furthermore, the ranking of strains based on probiotic as well as other functional attributes was determined using multidimensional Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). A matrix of multidimensional indicators was prepared using alternatives and criteria, the analysis indicated the strain Bacillus tequilensis AJG23 as the potential probiotic candidate based on all screening criteria. Further work still needs to be done about the protective role of the potential strain against gluten sensitivity using in vitro models.
Collapse
Affiliation(s)
- Anjali Jaglan
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, India
| | - Gunjan Sadera
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, India
| | - Phool Singh
- School of Engineering and Technology, Central University of Haryana, Mahendergarh 123031, India
| | - Brij Pal Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, India
| | - Gunjan Goel
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
5
|
Shi X, Gu R, Guo Y, Xiao H, Xu K, Li Y, Li C. Capsular polysaccharide-amikacin nanoparticles for improved antibacterial and antibiofilm performance. Int J Biol Macromol 2023:125325. [PMID: 37302623 DOI: 10.1016/j.ijbiomac.2023.125325] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Natural nanoscale polysaccharide and its application have attracted much attention in recent years. In this study, we report for the first time that a novel naturally occurring capsular polysaccharide (CPS-605) from Lactobacillus plantarum LCC-605, which can self-assemble into spherical nanoparticles with an average diameter of 65.7 nm. To endow CPS-605 with more functionalities, we develop amikacin-functionalized capsular polysaccharide (CPS) nanoparticles (termed CPS-AM NPs) with improved antibacterial and antibiofilm activities against both Escherichia coli and Pseudomonas aeruginosa. They also exhibit faster bactericidal activity than AM alone. The high local positive charge density of CPS-AM NPs facilitates the interaction between the NPs and bacteria, leading to extraordinary bactericidal efficiencies (99.9 % and 100 % for E. coli and P. aeruginosa, respectively, within 30 min) by damaging the cell wall. Very interestingly, CPS-AM NPs exhibit an unconventional antibacterial mechanism against P. aeruginosa, that is, they can induce plasmolysis, along with bacterial cell surface disruption, cell inclusion release and cell death. In addition, CPS-AM NPs exhibit low cytotoxicity and negligible hemolytic activity, showing excellent biocompatibility. The CPS-AM NPs provide a new strategy for the design of next-generation antimicrobial agents that can reduce the working concentration of antibiotics to fight against bacterial resistance.
Collapse
Affiliation(s)
- Xiaotong Shi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ruihan Gu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Kefei Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuan Li
- College of Resource & Environment, Yunnan Agriculture University, Kunming 650201, China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Li C, Zhang X, Guo Y, Seidi F, Shi X, Xiao H. Naturally Occurring Exopolysaccharide Nanoparticles: Formation Process and Their Application in Glutathione Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19756-19767. [PMID: 33881827 DOI: 10.1021/acsami.1c03489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Naturally occurring nanoscale exopolysaccharide (EPS) has attracted much attention in recent years. In this research, we obtained a new kind of naturally occurring spherical EPS nanoparticles (EPS-R503) from Lactobacillus plantarum R503. The secretion, self-assembly process, morphological structure, and surface characteristics of the as-prepared nanoparticles were comprehensively revealed with transmission electron microscopy (TEM) and atomic force microscope (AFM) for the first time. It was found that the EPS-R503 nanoparticles consist of negatively charged heteropolysaccharide composed of mannose, glucose, galactose, and glucuronide with several functional groups including -OH, -COOH, and -NH2. When different solvents were used to treat the EPS-R503 nanoparticles, the morphological structure and surface properties could be changed or manipulated. The forming mechanism of EPS-R503 was elucidated based on the aggregation processes from a fundamental point of view. Furthermore, EPS-R503 can serve as reducing and stabilizing agents for the biosynthesis of manganese dioxide nanosheets (MnO2 NSs), leading to EPS-MnO2 nanocomposite. The as-prepared nanocomposites can absorb fluorescein (FL) to form EPS-MnO2-FL, which can be used to detect glutathione (GSH) with a low limit of detection (0.16 μM) and a wide detection range from 0.05 to 4 mM. The excellent biocompatibility of EPS-MnO2-FL endows the feasibility of in vivo detection of GSH as well. Overall, the findings from this work not only benefit the exploitation of naturally occurring EPS nanomaterials but also provide a novel strategy for the green synthesis of metal-containing nanosheets for GSH detection.
Collapse
Affiliation(s)
- Chengcheng Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaodong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaotong Shi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
7
|
Tyagi B, Gupta B, Thakur IS. Biosorption of Cr (VI) from aqueous solution by extracellular polymeric substances (EPS) produced by Parapedobacter sp. ISTM3 strain isolated from Mawsmai cave, Meghalaya, India. ENVIRONMENTAL RESEARCH 2020; 191:110064. [PMID: 32846180 DOI: 10.1016/j.envres.2020.110064] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 05/06/2023]
Abstract
In the current study, EPS producing strain Parapedobacter sp. ISTM3 was isolated from Mawsmai cave, Meghalaya, India. The strain ISTM3 showed enhanced EPS production (4.65 ± 0.10 g L-1) at optimized parameters, i.e., pH 8 and 3% molasses as a carbon source. The extracted EPS was structurally characterized by GC-MS, NMR, and FTIR analysis to investigate its monomer compositions, functional groups, and linkage analysis. GC-MS study confirmed the heteropolymeric nature of EPS, whereas the FTIR study confirmed the presence of an aliphatic group, amine group, uronic acid, and saccharides group in the EPS structure. Biosorption of heavy metals by EPS from an aqueous solution was investigated by using heavy metals mixture (Zn2+, Cu2+, Pb2+, Cr6+, Fe2+, and Cd2+) with 20 mg L-1 concentration of each metal. EPS showed the highest removal efficiency and metal adsorption capability for Cr6+ as compared to other heavy metals studied. Also, metal adsorption capability (19.032 mg g-1) and removal efficiency (95.10%) of Cr6+ by EPS were further increased in acidic conditions (pH 5.0). FTIR and SEM-EDX analysis confirmed the biosorption mechanism of EPS. The Freundlich and Langmuir adsorption isotherms were employed to discover the biosorption parameters for Cr6+ uptake with a concentration range of 10-200 mg L-1 by EPS (1 g L-1). The Langmuir model was found to better fit the Cr6+ adsorption by EPS having a maximum adsorption capacity of 33.783 mg g-1. With this, the present study highlights the EPS production potential of Parapedobacter sp. ISTM3, as well as the potential of extracted EPS for heavy metals removals via adsorption.
Collapse
Affiliation(s)
- Bhawna Tyagi
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Bulbul Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
8
|
DINCER E, KIVANC M. Characterization of Lactobacillus plantarum strains isolated from Turkish pastırma and possibility to use of food industry. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.05819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Wang Y, Du R, Qiao X, Zhao B, Zhou Z, Han Y. Optimization and characterization of exopolysaccharides with a highly branched structure extracted from Leuconostoc citreum B-2. Int J Biol Macromol 2020; 142:73-84. [DOI: 10.1016/j.ijbiomac.2019.09.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022]
|
10
|
Almansoory AF, Al-Baldawi IA, Hazaimeh M. Optimization of the EPS production of a bacterial floc consortium using different parameters. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Phenotypic and Genotypic Characterization of Exopolysaccharide Producing Bacteria Isolated from Fermented Fruits, Vegetables and Dairy Products. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Min WH, Fang XB, Wu T, Fang L, Liu CL, Wang J. Characterization and antioxidant activity of an acidic exopolysaccharide from Lactobacillus plantarum JLAU103. J Biosci Bioeng 2019; 127:758-766. [DOI: 10.1016/j.jbiosc.2018.12.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 01/01/2023]
|
13
|
Gupta J, Rathour R, Singh R, Thakur IS. Production and characterization of extracellular polymeric substances (EPS) generated by a carbofuran degrading strain Cupriavidus sp. ISTL7. BIORESOURCE TECHNOLOGY 2019; 282:417-424. [PMID: 30884462 DOI: 10.1016/j.biortech.2019.03.054] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
The present study demonstrates EPS production by Cupriavidus sp. ISTL7 along with its capability to remediate a toxic carbamate pesticide, carbofuran. The strain ISTL7 efficiently degraded approximately 98% of carbofuran (400 ppm) within 96 h. GC-MS analysis showed catabolic metabolites of degradation which included carbofuran-7-phenol, methylamine, 2-hydroxy-3-(3-methylpropan-2-ol)benzene-N-methyl-carbamate etc. EPS production from the mineral medium supplemented with carbofuran was observed to be 3.112 ± 0.3682 g L-1. FTIR confirmed its carbohydrate composition and the monomeric sugars: glucose, xylose, sorbitol and fructose were identified by GC-MS analysis. The toxic potential of degradation experiment and the produced EPS was evaluated on HepG2 (mammalian liver cell line). The cytotoxicity of carbofuran was reduced upon bacterial degradation and the formed EPS was found to be non-toxic as inferred from percentage cell viability. The present research can possibly influence the development strategies of biological remediation.
Collapse
Affiliation(s)
- Juhi Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Rashmi Rathour
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Rashmi Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| |
Collapse
|
14
|
Ghosh T, Beniwal A, Semwal A, Navani NK. Mechanistic Insights Into Probiotic Properties of Lactic Acid Bacteria Associated With Ethnic Fermented Dairy Products. Front Microbiol 2019; 10:502. [PMID: 30972037 PMCID: PMC6444180 DOI: 10.3389/fmicb.2019.00502] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Gut microbes and their metabolites maintain the health and homeostasis of the host by communicating with the host via various biochemical and physical factors. Changing lifestyle, chronic intake of foods rich in refined carbohydrates and fats have caused intestinal dysbiosis and other lifestyle-based diseases. Thus, supplementation with probiotics has gained popularity as biotherapies for improving gut health and treating disorders. Research shows that probiotic organisms enhance gastrointestinal health, immunomodulation, generation of essential micronutrients, and prevention of cancer. Ethnically fermented milk and dairy products are hotspots for novel probiotic organisms and bioactive compounds. These ethnic fermented foods have been traditionally prepared by indigenous populations, and have preserved unique microflora for ages. To apply these unique microflora for amelioration of human health, it is important that probiotic properties of the bacterial species are well studied. Majority of the published research and reviews focus on the probiotic organisms and their properties, fermented food products, isolation techniques, and animal studies with their health pathologies. As a consequence, there is a dearth of information about the underlying molecular mechanism behind probiotics associated with ethnically prepared dairy foods. This review is targeted at stimulating research on understanding these mechanisms of bacterial species and beneficial attributes of ethnically fermented dairy products.
Collapse
Affiliation(s)
| | | | | | - Naveen Kumar Navani
- Chemical Biology Lab, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
15
|
Kumar M, Kumar M, Pandey A, Thakur IS. Genomic analysis of carbon dioxide sequestering bacterium for exopolysaccharides production. Sci Rep 2019; 9:4270. [PMID: 30862945 PMCID: PMC6414628 DOI: 10.1038/s41598-019-41052-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/20/2019] [Indexed: 02/05/2023] Open
Abstract
In the present study, genomic analysis of a previously reported carbon dioxide (CO2) sequestering bacterium Serratia sp. ISTD04 was performed along with exopolysaccharide (EPS) production. Genomic analysis identified key and accessory enzymes responsible for CO2 sequestration. EPS synthesis genes were discovered in the genome and identified 8 putative clusters responsible for lipopolysaccharide, stewartan, emulsan, polysaccharide B, capsular polysaccharide and fatty acid-saccharide production. The production of EPS was found to be 0.88 ± 0.08, 1.25 ± 0.13 and 1.44 ± 0.10 g L-1 on glucose, bicarbonate (NaHCO3) and NaHCO3 plus glucose respectively at pH 7.8. After optimizing process parameters, the EPS production increased more than 3 folds. The morphology of strain and elemental composition of EPS was characterized by SEM-EDX. The functional groups, monomer composition, linkage analysis and structure of purified EPS was characterized by FTIR, GC-MS and 1H and 13C NMR. Glucose, galactose, mannose and glucosamine are the monomers detected in the EPS. EPS was further applied for bioflocculation (kaolin test) and dye removal. The EPS showed 68% ± 0.9 flocculating activity and decolorized cationic dye acridine orange (80%) and crystal violet (95%). The results highlight CO2 sequestration and EPS production potential of Serratia sp. ISTD04 that can be harnessed in future.
Collapse
Affiliation(s)
- Manish Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Madan Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, 31 MG Marg, Lucknow, 226 001, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
16
|
Pessôa MG, Vespermann KA, Paulino BN, Barcelos MC, Pastore GM, Molina G. Newly isolated microorganisms with potential application in biotechnology. Biotechnol Adv 2019; 37:319-339. [DOI: 10.1016/j.biotechadv.2019.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/23/2022]
|
17
|
Sun N, Liu H, Liu S, Zhang X, Chen P, Li W, Xu X, Tian W. Purification, Preliminary Structure and Antitumor Activity of Exopolysaccharide Produced by Streptococcus thermophilus CH9. Molecules 2018; 23:E2898. [PMID: 30404213 PMCID: PMC6278328 DOI: 10.3390/molecules23112898] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/24/2018] [Accepted: 11/03/2018] [Indexed: 12/16/2022] Open
Abstract
In the present study, the preliminary structure and in vitro antitumor activity of three exopolysaccharides (EPSs) from Streptococcus thermophilus CH9 were investigated. Then, three purified fractions of EPS-1a, EPS-2a, and EPS-3a were obtained by chromatography using DEAE-52 cellulose and Sephadex G-100, respectively. The average molecular weight of EPS-1a, EPS-2a, and EPS-3a, were 1.80 × 10⁶, 1.06 × 10⁶ and 1.05 × 10⁶. The monosaccharide composition of EPS-3a was dramatically different from the others. The EPS-1a and EPS-2a were mainly composed of mannose, in a ratio of 69.82% and 57.09%, respectively, while EPS-3a was mainly composed of glucose (63.93%), without mannose. In addition, the surface morphology observed suggested that there were protein particles on the sugar chain of EPS-3a and EPS-3a was a protein-containing polysaccharide. Furthermore, EPS-3a exhibited higher antitumor activity against human liver cancer HepG2 cells in vitro. The antitumor activity of EPS-3a in HepG2 cells was associated with cell apoptosis. HE staining and Hoechst 33342 staining showed that with the treatment of EPS-3a, HepG2 cells had typical morphological changes. Flow cytometry analysis showed that the cell cycle was arrested at G0/G1 phase.
Collapse
Affiliation(s)
- Naxin Sun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Department of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Huiping Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Department of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Shaojuan Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Department of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Xinyuan Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Department of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Pei Chen
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Department of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Weihong Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Department of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Xiangxin Xu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Department of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wentan Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Department of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
18
|
Ziadi M, Bouzaiene T, M'Hir S, Zaafouri K, Mokhtar F, Hamdi M, Boisset-Helbert C. Evaluation of the Efficiency of Ethanol Precipitation and Ultrafiltration on the Purification and Characteristics of Exopolysaccharides Produced by Three Lactic Acid Bacteria. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1896240. [PMID: 30320131 PMCID: PMC6167595 DOI: 10.1155/2018/1896240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/09/2018] [Indexed: 11/18/2022]
Abstract
Exopolysaccharides (EPS) produced by three Lactic Acid Bacteria strains, Lactococcus lactis SLT10, Lactobacillus plantarum C7, and Leuconostoc mesenteroides B3, were isolated using two methods: ethanol precipitation (EPS-ETOH) and ultrafiltration (EPS-UF) through a 10 KDa cut-off membrane. EPS recovery by ultrafiltration was higher than ethanol precipitation for Lactococcus lactis SLT10 and Lactobacillus plantarum C7. However, it was similar with both methods for Leuconostoc mesenteroides B3. The monomer composition of the EPS fractions revealed differences in structures and molar ratios between the two studied methods. EPS isolated from Lactococcus lactis SLT10 are composed of glucose and mannose for EPS-ETOH against glucose, mannose, and rhamnose for EPS-UF. EPS extracted from Lactobacillus plantarum C7 and Leuconostoc mesenteroides B3 showed similar composition (glucose and mannose) but different molar ratios. The molecular weights of the different EPS fractions ranged from 11.6±1.83 to 62.4±2.94 kDa. Molecular weights of EPS-ETOH fractions were higher than those of EPS-UF fractions. Fourier transform infrared (FTIR) analysis revealed a similarity in the distribution of the functional groups (O-H, C-H, C=O, -COO, and C-O-C) between the EPS isolated from the three strains.
Collapse
Affiliation(s)
- Manel Ziadi
- Laboratory of Microbial Ecology and Technology, LETMi-INSAT, National Institute of Applied Sciences and Technology INSAT, Carthage University, 2 Boulevard de la Terre, BP 676, 1080 Tunis, Tunisia
| | - Taroub Bouzaiene
- Laboratory of Microbial Ecology and Technology, LETMi-INSAT, National Institute of Applied Sciences and Technology INSAT, Carthage University, 2 Boulevard de la Terre, BP 676, 1080 Tunis, Tunisia
| | - Sana M'Hir
- Laboratory of Microbial Ecology and Technology, LETMi-INSAT, National Institute of Applied Sciences and Technology INSAT, Carthage University, 2 Boulevard de la Terre, BP 676, 1080 Tunis, Tunisia
| | - Kaouther Zaafouri
- Laboratory of Microbial Ecology and Technology, LETMi-INSAT, National Institute of Applied Sciences and Technology INSAT, Carthage University, 2 Boulevard de la Terre, BP 676, 1080 Tunis, Tunisia
| | - Ferid Mokhtar
- Centre de Recherche sur les Macromolécules Végétales, CERMAV, CNRS, 601 rue de la Chimie, 38041 Grenoble Cedex 9, France
| | - Mokhtar Hamdi
- Laboratory of Microbial Ecology and Technology, LETMi-INSAT, National Institute of Applied Sciences and Technology INSAT, Carthage University, 2 Boulevard de la Terre, BP 676, 1080 Tunis, Tunisia
| | - Claire Boisset-Helbert
- National Research Center for Materials Science, Borj-Cedria Technopark, BP N°73, 8027 Soliman, Tunisia
| |
Collapse
|
19
|
Ogunsakin A, Vanajakshi V, Anu-Appaiah K, Vijayendra S, Walde S, Banwo K, Sanni A, Prabhasankar P. Evaluation of functionally important lactic acid bacteria and yeasts from Nigerian sorghum as starter cultures for gluten-free sourdough preparation. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.04.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Zeidan AA, Poulsen VK, Janzen T, Buldo P, Derkx PMF, Øregaard G, Neves AR. Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol Rev 2017; 41:S168-S200. [DOI: 10.1093/femsre/fux017] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 01/14/2023] Open
|
21
|
Gupta A, Thakur IS. Study of optimization of wastewater contaminant removal along with extracellular polymeric substances (EPS) production by a thermotolerant Bacillus sp. ISTVK1 isolated from heat shocked sewage sludge. BIORESOURCE TECHNOLOGY 2016; 213:21-30. [PMID: 26906445 DOI: 10.1016/j.biortech.2016.02.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
The present work involved study of wastewater contaminant removal along with EPS production by a thermotolerant bacterium Bacillus sp. ISTVK1, isolated from heat shocked sewage sludge. EPS production in basal and mineral medium containing 50% filter sterilized wastewater and 0.5% sucrose was found to be 0.83±0.12gL(-1) and 0.31±0.10gL(-1) culture, respectively. GC-MS analysis of EPS revealed the presence of β-d-glucose, α-d-galactose and β-d-arabinose. FT-IR spectrum confirmed the presence carbohydrates. Box-Behnken design was used to optimize process parameters for enhanced EPS production along with % COD reduction of wastewater. The optimised conditions when used in a 1.5L bioreactor showed EPS production of 1.67±0.06gL(-1) culture and 93.0±0.21 % COD removal.
Collapse
Affiliation(s)
- Asmita Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
22
|
Biosynthesis of selenium rich exopolysaccharide (Se-EPS) by Pseudomonas PT-8 and characterization of its antioxidant activities. Carbohydr Polym 2016; 142:230-9. [PMID: 26917395 DOI: 10.1016/j.carbpol.2016.01.058] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
Abstract
Biosynthesis of organo-selenium is achieved by submerged fermentation of selenium-tolerant Pseudomonas PT-8. The end product of metabolic process is selenium-bearing exopolysaccharide (Se-EPS), which contains a higher content of uronic acid than the exopolysaccharide (EPS) by the strain without selenium in the culture medium. Selenium content in Se-EPS reached a maximum yield of 256.7 mg/kg when using an optimized culture condition. Crude Se-EPS was purified into two fractions-a pH neutral Se-EPS-1 and an acidic Se-EPS-2. Structure and chemical composition of Se-EPS-2 were investigated by chromatographic analyses. Results showed that Se-EPS-2 was a homogenous polysaccharide with molecular weight of 7.3 kDa, consisting of monosaccharides, rhamnose, arabinose, xylose, mannose, glucose and galactose with a molar ratio of 19.58:19.28:5.97:18.99:23.70:12.48, respectively. Compared to the EPS, the content of rhamnose in Se-EPS increased and molecular weight decreased. The Se-EPS had strong scavenging actions on DPPH•, •OH and •O2(-), which is much higher than the EPS.
Collapse
|
23
|
Wang J, Zhao X, Tian Z, Yang Y, Yang Z. Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibet Kefir. Carbohydr Polym 2015; 125:16-25. [PMID: 25857955 DOI: 10.1016/j.carbpol.2015.03.003] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 11/30/2022]
Abstract
An exopolysaccharide (EPS)-producing strain YW11 isolated from Tibet Kefir was identified as Lactobacillus plantarum, and the strain was shown to produce 90 mgL(-1) of EPS when grown in a semi-defined medium. The molecular mass of the EPS was 1.1 × 10(5)Da. The EPS was composed of glucose and galactose in a molar ratio of 2.71:1, with possible presence of N-acetylated sugar residues in the polysaccharide as confirmed by NMR spectroscopy. Rheological studies showed that the EPS had higher viscosity in skim milk, at lower temperature, or at acidic pH. The viscous nature of the EPS was confirmed by observation with scanning electron microscopy that demonstrated a highly branched and porous structure of the polysaccharide. The atomic force microscopy of the EPS further revealed presence of many spherical lumps, facilitating binding with water in aqueous solution. The EPS had a higher degradation temperature (287.7°C), suggesting high thermal stability of the EPS.
Collapse
Affiliation(s)
- Ji Wang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China; School of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Xiao Zhao
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Zheng Tian
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Yawei Yang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Zhennai Yang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China; School of Biological and Agricultural Engineering, Jilin University, Changchun, China.
| |
Collapse
|
24
|
Han Y, Liu E, Liu L, Zhang B, Wang Y, Gui M, Wu R, Li P. Rheological, emulsifying and thermostability properties of two exopolysaccharides produced by Bacillus amyloliquefaciens LPL061. Carbohydr Polym 2015; 115:230-7. [DOI: 10.1016/j.carbpol.2014.08.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/09/2014] [Accepted: 08/11/2014] [Indexed: 11/17/2022]
|
25
|
Ahn J. Physicochemical, Microbial, and Sensory Properties of Yogurt with Ulmus davidiana var. japonica During Storage. ACTA ACUST UNITED AC 2014. [DOI: 10.7856/kjcls.2014.25.4.601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Bonomo MG, Salzano G. Genotypic and technological diversity ofLeuconostoc mesenteroidesandLactobacillus paracaseisubsp.paracaseistrains for use as adjunct starter cultures in Pecorino di Filiano cheese. INT J DAIRY TECHNOL 2013. [DOI: 10.1111/1471-0307.12040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maria G Bonomo
- Dipartimento di Scienze; Università degli Studi della Basilicata; Viale dell'Ateneo Lucano 10; 85100; Potenza; Italy
| | - Giovanni Salzano
- Dipartimento di Scienze; Università degli Studi della Basilicata; Viale dell'Ateneo Lucano 10; 85100; Potenza; Italy
| |
Collapse
|
27
|
Lee SB, Ganesan P, Kwak HS. Comparison of Nanopowdered and Powdered Ginseng-added Yogurt on Its Physicochemical and Sensory Properties during Storage. Korean J Food Sci Anim Resour 2013. [DOI: 10.5851/kosfa.2013.33.1.24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
Molecular characterization of an exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510 and its efficacy to improve the texture of starchy food. Journal of Food Science and Technology 2013; 51:4012-8. [PMID: 25477674 DOI: 10.1007/s13197-013-0928-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/05/2013] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
The weight average molecular weight (Mw), number average molecular weight (Mn) and size average molecular weight (Mz) of an exopolysaccharide from probiotic Lactobacillus plantarum MTCC 9510 was found to be 2.68 × 10(5) Da, 2.55 × 10(5) Da and 2.83 × 10(5) Da, respectively by Gel permeation Chromatography employing the third order polynomial model. The polydispersity index (Mw/Mn) of the polysaccharide was obtained as 1.05. The exopolysaccharide and the starch-exopolysaccharide hydrocolloid exhibited a non-Newtonian and pseudo-plastic behaviour with improvement in the texture of starch containing food by preventing syneresis.
Collapse
|
29
|
Ahn YJ, Ganesan P, Kwak HS. Comparison of Nanopowdered and Powdered Peanut Sprout-Added Yogurt on its Physicochemical and Sensory Properties during Storage. Korean J Food Sci Anim Resour 2012. [DOI: 10.5851/kosfa.2012.32.5.553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
30
|
Prasanna P, Bell A, Grandison A, Charalampopoulos D. Emulsifying, rheological and physicochemical properties of exopolysaccharide produced by Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205. Carbohydr Polym 2012; 90:533-40. [DOI: 10.1016/j.carbpol.2012.05.075] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/17/2012] [Accepted: 05/19/2012] [Indexed: 01/24/2023]
|
31
|
Wang Y, Li C, Liu P, Ahmed Z, Xiao P, Bai X. Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2010.06.013] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Nieto-Arribas P, Seseña S, Poveda JM, Palop L, Cabezas L. Genotypic and technological characterization of Leuconostoc isolates to be used as adjunct starters in Manchego cheese manufacture. Food Microbiol 2009; 27:85-93. [PMID: 19913697 DOI: 10.1016/j.fm.2009.08.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 08/28/2009] [Indexed: 11/25/2022]
Abstract
Twenty-seven Leuconostoc (Ln.) isolates from Manchego cheese were characterized by phenotypic and genotypic methods, and their technological abilities studied in order to test their potential use as dairy starter components. While phenotypic diversity was evaluated by studying the biochemical characteristics of technological interest (i.e. acidifying and aminopeptidase activities), genotypic diversity was evidenced by using Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR). Additional technological abilities such as lipolytic, proteolytic and autolytic activities, salt and pH tolerance and production of dextran, flavour compounds and biogenic amines, were investigated. The marked differences among strains reflected the existing biodiversity in naturally fermented products. After statistically evaluating their performance, strains C0W2, belonging to Ln. lactis, and C16W5 and N2W5, belonging to Ln. mesenteroides subsp. dextranicum, revealed the best properties to be used in mixed dairy starter cultures. This study evidences the fact that natural environments can be considered as a proper source of useful strains, for the dairy industry.
Collapse
Affiliation(s)
- Pedro Nieto-Arribas
- Departamento de Química Analítica y Tecnología de Alimentos, Facultad de Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | | | | | | | | |
Collapse
|
33
|
Physico-chemical characterization of a new heteropolysaccharide produced by a native isolate of heterofermentative Lactobacillus sp. CFR-2182. Arch Microbiol 2008; 191:303-10. [DOI: 10.1007/s00203-008-0453-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 11/30/2008] [Accepted: 12/04/2008] [Indexed: 11/29/2022]
|
34
|
Vijayendra S, Sharath Babu R. Optimization of a new heteropolysaccharide production by a native isolate of Leuconostoc sp. CFR-2181. Lett Appl Microbiol 2008; 46:643-8. [DOI: 10.1111/j.1472-765x.2008.02361.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|