1
|
Liu X, Zheng H, Wang F, Atia T, Fan B, Wang Q. Developments in the study of Chinese herbal medicine's assessment index and action mechanism for diabetes mellitus. Animal Model Exp Med 2024; 7:433-443. [PMID: 38973219 PMCID: PMC11369031 DOI: 10.1002/ame2.12455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/26/2024] [Indexed: 07/09/2024] Open
Abstract
In traditional Chinese medicine (TCM), based on various pathogenic symptoms and the 'golden chamber' medical text, Huangdi Neijing, diabetes mellitus falls under the category 'collateral disease'. TCM, with its wealth of experience, has been treating diabetes for over two millennia. Different antidiabetic Chinese herbal medicines reduce blood sugar, with their effective ingredients exerting unique advantages. As well as a glucose lowering effect, TCM also regulates bodily functions to prevent diabetes associated complications, with reduced side effects compared to western synthetic drugs. Chinese herbal medicine is usually composed of polysaccharides, saponins, alkaloids, flavonoids, and terpenoids. These active ingredients reduce blood sugar via various mechanism of actions that include boosting endogenous insulin secretion, enhancing insulin sensitivity and adjusting key enzyme activity and scavenging free radicals. These actions regulate glycolipid metabolism in the body, eventually achieving the goal of normalizing blood glucose. Using different animal models, a number of molecular markers are available for the detection of diabetes induction and the molecular pathology of the disease is becoming clearer. Nonetheless, there is a dearth of scientific data about the pharmacology, dose-effect relationship, and structure-activity relationship of TCM and its constituents. Further research into the efficacy, toxicity and mode of action of TCM, using different metabolic and molecular markers, is key to developing novel TCM antidiabetic formulations.
Collapse
Affiliation(s)
- Xin‐Yue Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijingChina
| | - Han‐Wen Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijingChina
- Sino‐Portugal TCM International Cooperation Centerthe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Feng‐Zhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijingChina
| | - Tul‐Wahab Atia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijingChina
| | - Qiong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijingChina
- Sino‐Portugal TCM International Cooperation Centerthe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
2
|
Liu W, Zhang L, Wei X, Xu Y, Fang Q, Qi S, Chen J, Wang C, Wang S, Qin L, Liu P, Wu J. Structural characterization of an inulin neoseries-type fructan from Ophiopogonis Radix and the therapeutic effect on liver fibrosis in vivo. Carbohydr Polym 2024; 327:121659. [PMID: 38171656 DOI: 10.1016/j.carbpol.2023.121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Ophiopogonis Radix is a well-known Traditional Chinese Medicine and functional food that is rich in polysaccharides and has fructan as a characteristic component. In this study, an inulin neoseries-type fructan designated as OJP-W2 was obtained and characterized from Ophiopogonis Radix, and its potential therapeutic effect on liver fibrosis in vivo were investigated. Structural studies revealed that OJP-W2 had a molecular weight of 5.76 kDa and was composed of glucose and fructose with a molar ratio of 1.00:30.87. Further analysis revealed OJP-W2 has a predominantly lineal (1-2)-linked β-D-fructosyl units linked to the glucose moiety of the sucrose molecule with (2-6)-linked β-D-fructosyl side chains. Pharmacological studies revealed that OJP-W2 exerted a marked hepatoprotective effect against liver fibrosis, the mechanism of action was involved in regulating collagen deposition (α-SMA, COL1A1 and liver Hyp contents) and TGF-β/Smads signaling pathway, alleviating liver inflammation (IL-1β, IL-6, CCL5 and F4/80) and MAPK signaling pathway, and inhibiting hepatic apoptosis (Bax, Bcl-2, ATF4 and Caspase 3). These data provide evidence for expanding Ophiopogonis Radix-acquired fructan types and advancing our understanding of the specific role of inulin neoseries-type fructan in liver fibrosis therapy.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Linzhang Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xia Wei
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongbin Xu
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Qinqin Fang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Shenglan Qi
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiamei Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Shunchun Wang
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Luping Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jianjun Wu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
3
|
Xue H, Zhang P, Zhang C, Gao Y, Tan J. Research progress in the preparation, structural characterization, and biological activities of polysaccharides from traditional Chinese medicine. Int J Biol Macromol 2024; 262:129923. [PMID: 38325677 DOI: 10.1016/j.ijbiomac.2024.129923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Traditional Chinese medicines are tremendous sources of polysaccharides, which are of great interest in the human welfare system as natural medicines, food, and cosmetics. This review aims to highlight the recent trends in extraction (conventional and non-conventional), purification and analytic techniques of traditional Chinese medicine polysaccharides (TCMPs), and the chemical structure, biological activities (anti-tumor, hypoglycemic, antioxidant, intestinal flora regulation, immunomodulatory, anti-inflammatory, anti-aging, hypolipidemic, hepatoprotective, and other activities), and the underlying mechanisms of polysaccharides extracted from 76 diverse traditional Chinese medicines were compared and discussed. With this wide coverage, a total of 164 scientific articles were searched from the database including Google Scholar, PubMed, Web of Science, and China Knowledge Network. This comprehensive survey from previous reports indicates that TCMPs are non-toxic, highly biocompatible, and good biodegradability. Besides, this review highlights that TCMPs may be excellent functional factors and effective therapeutic drugs. Finally, the current problems and future research advances of TCMPs are also introduced. New valuable insights for the future researches regarding TCMPs are also proposed in the fields of therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Pengqi Zhang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Can Zhang
- School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, No.74 Xuefu Road, Nangang District, Harbin 150080, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
4
|
A comparative study of fermented buffalo and camel milk with anti-inflammatory, ACE-inhibitory and anti-diabetic properties and release of bio active peptides with molecular interactions: In vitro, in silico and molecular study. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
5
|
Isolation, Characterization, and Compositional Analysis of Polysaccharides from Pinot Noir Wines: An Exploratory Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238330. [PMID: 36500422 PMCID: PMC9738191 DOI: 10.3390/molecules27238330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
It has been reported that polysaccharides in wine can interact with tannins and other wine components and modify the sensory properties of the wine. Unfortunately, the contribution of polysaccharides to wine quality is poorly understood, mainly due to their complicated structure and varied composition. In addition, the composition and molecular structure of polysaccharides in different wines can vary greatly. In this study, the polysaccharides were isolated from pinot noir wine, then separated into high-molecular-weight (PNWP-H) and low-molecular-weight (PNWP-L) fractions using membrane-based ultrafiltration. Each polysaccharide fraction was further studied using size exclusion chromatography, UV-Vis, FT-IR, matrix-assisted laser desorption/ionization-high-resolution mass spectrometry, and gas chromatography-mass spectrometry (GC-MS). The results showed that PNWP-L and PNWP-H had different chemical properties and compositions. The FT-IR analysis showed that PNWPs were acidic polysaccharides with α- and β-type glycosidic linkages. PNWP-L and PNWP-H had different α- and β-type glycosidic linkage structures. FT-IR showed stronger antisymmetric and symmetric stretching vibrations of carboxylate anions of uronic acids in PNWP-L, suggesting more uronic acid in PNWP-L. The size exclusion chromatography results showed that over 72% of the PNWP-H fraction had molecular sizes from 25 kDa to 670 kDa. Only a small percentage of smaller molecular polysaccharides was found in the PNWP-H fraction. In comparison, all of the polysaccharides in the PNWP-L fraction were below 25 KDa, with a majority distributed approximately 6 kDa (95.1%). GC-MS sugar composition analysis showed that PNWP-L was mainly composed of galacturonic acid, rhamnose, galactose, and arabinose, while PNWP-H was mainly composed of mannose, arabinose, and galactose. The molecular size distribution and sugar composition analysis suggested that the PNWP-L primarily consisted of rhamnogalacturonans and polysaccharides rich in arabinose and galactose (PRAG). In comparison, PNWP-H were mostly mannoproteins and polysaccharides rich in arabinose and galactose (PRAG). Further research is needed to understand the impacts of these fractions on wine organoleptic properties.
Collapse
|
6
|
Shukla P, Sakure A, Maurya R, Bishnoi M, Kondepudi KK, Das S, Liu Z, Padhi S, Rai AK, Hati S. Antidiabetic, angiotensin‐converting enzyme inhibitory and anti‐inflammatory activities of fermented camel milk and characterisation of novel bioactive peptides from lactic‐fermented camel milk with molecular interaction study. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pratik Shukla
- Dairy Microbiology Department, SMC College of Dairy Science Anand Agricultural University Anand 388110 Gujarat India
| | - Amar Sakure
- Department of Plant Biotechnology B.A College of Agriculture Anand 388110 Gujarat India
| | - Ruchika Maurya
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, Centre of Excellence in Functional Foods National Agri‐Food Biotechnology Institute (NABI) Knowledge City, Sector 81, SAS Nagar Mohali Punjab 140306 India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, Centre of Excellence in Functional Foods National Agri‐Food Biotechnology Institute (NABI) Knowledge City, Sector 81, SAS Nagar Mohali Punjab 140306 India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, Centre of Excellence in Functional Foods National Agri‐Food Biotechnology Institute (NABI) Knowledge City, Sector 81, SAS Nagar Mohali Punjab 140306 India
| | - Sujit Das
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura Campus Chasingre 794002 Meghalaya India
| | - Zhenbin Liu
- School of Food and Biological Engineering Shaanxi University of Science and Technology 18 Xi'an 710021, China
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre Tadong 737102 Sikkim India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre Tadong 737102 Sikkim India
| | - Subrota Hati
- Dairy Microbiology Department, SMC College of Dairy Science Kamdhenu University Anand ‐388110 Gujarat India
| |
Collapse
|
7
|
Biodegradable Nanoparticles Prepared from Chitosan and Casein for Delivery of Bioactive Polysaccharides. Polymers (Basel) 2022; 14:polym14142966. [PMID: 35890742 PMCID: PMC9315736 DOI: 10.3390/polym14142966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Ophiopogon japonicus polysaccharides (OJPs) have great anti-inflammation and immunomodulatory abilities. However, the low bioavailability of OJPs reduces its applicability in the biomedical and pharmaceutical fields. Chitosan (CS) has excellent mucoadhesive properties and absorption-enhancing ability in oral administration. Casein hydrolysate (CL) has good interfacial diffusivity and emulsifying ability, and can interact with polysaccharides to form complexes combining the individual properties of both. Therefore, chitosan and casein hydrolysate are good candidates for developing nanoformulations for oral delivery. In this study, bioactive polysaccharides (OJPs), CS and CL, were combined to prepare CS/OJPs/CL co-assembled biodegradable nanoparticles. The interactions between polysaccharides (CS and OJPs) and peptide (CL) resulted in the formation of nanoparticles with an average particle size of 198 nm and high OJPs loading efficiency. The colloidal properties of the nanoparticles were pH-dependent, which were changed significantly in simulated digestive fluid at different pH values. OJPs released from the CS/OJPs/CL nanoparticles were greatly affected by pH and enzymatic degradation (trypsin and lysozyme). The nanoparticles were easily internalized by macrophages, thereby enhancing the OJPs’ inhibitory ability against Ni2+-induced cytotoxicity and LPS-induced nitric oxide production. This study demonstrates that prepared polysaccharide/protein co-assembled nanoparticles can be potential nanocarriers for the oral delivery of bioactive polysaccharides with anti-inflammatory functions.
Collapse
|
8
|
Xie M, Tao W, Wu F, Wu K, Huang X, Ling G, Zhao C, Lv Q, Wang Q, Zhou X, Chen Y, Yuan Q, Chen Y. Anti-hypertensive and cardioprotective activities of traditional Chinese medicine-derived polysaccharides: A review. Int J Biol Macromol 2021; 185:917-934. [PMID: 34229020 DOI: 10.1016/j.ijbiomac.2021.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023]
Abstract
Cardiovascular diseases (CVDs), a leading cause of death in modern society, have become a major public health issue globally. Although numerous approaches have been proposed to reduce morbidity and mortality, the pursuit of pharmaceuticals with more preventive and/or therapeutic value remains a focus of attention. Being a vast treasure trove of natural drug molecules, Traditional Chinese Medicine (TCM) has a long history of clinical use in the prophylaxis and remedy of CVDs. Increasing lines of preclinical evidence have demonstrated the effectiveness of TCM-derived polysaccharides on hindering the progression of CVDs, e.g. hypertension, myocardial infarction. However, to the best of our knowledge, there are few reviews on the application of TCM-derived polysaccharides in combating CVDs. Hence, we provide an overview of primary literature on the anti-hypertensive and cardioprotective activities of herbal polysaccharides. Additionally, we also discuss the current limitations and propose a new hypothesis about how polysaccharides exert cardiovascular effects based on the metabolism of polysaccharides.
Collapse
Affiliation(s)
- Miaotian Xie
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Weili Tao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Fengjia Wu
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kunlin Wu
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiujie Huang
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Gensong Ling
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Chuanyi Zhao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qian Lv
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qiongjin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xianhuan Zhou
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ying Chen
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qin Yuan
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yicun Chen
- Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
9
|
Zhang M, Yang R, Yu S, Zhao W. A novel α‐glucosidase inhibitor polysaccharide from
Sargassum fusiforme. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mengqing Zhang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
- National Engineering Research Center for Functional Food Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
- National Engineering Research Center for Functional Food Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
| | - Shuhuai Yu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
- National Engineering Research Center for Functional Food Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
- National Engineering Research Center for Functional Food Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
| |
Collapse
|
10
|
Yu K, Liu W, Zhang N, Cheng X, Zhou S, Zuo T, Kang S, Wei F, Ma S. A Novel Method to Identify Three Quality Grades of Herbal Medicine Ophiopogonis Radix by Microscopic Quantification. Front Pharmacol 2021; 11:591310. [PMID: 33584266 PMCID: PMC7878543 DOI: 10.3389/fphar.2020.591310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
Maidong, the root tuber of Ophiopogon japonicus (Thunb.) Ker Gawl., is a commonly used herbal medicine in China. There are three quality grades of Maidong according to traditional opinion and modern research studies: superior quality (Zhe-Maidong), medium quality (Chuan-Maidong), and poorest quality (Chuan-Maidong with paclobutrazol, which is a kind of plant growth regulator). However, no efficient way to distinguish the three quality grades of Maidong exists; thus, the herbal markets and botanical pharmacies are flooded with Chuan-Maidong with paclobutrazol. To ensure the safety and quality of Maidong, a comparative microscopic study was performed on three quality grades of Maidong. The result was to establish a microscopic quantification method based on the area ratio between xylem and pith to distinguish the three quality grades of Maidong. Subsequently, Maidong from regional markets was evaluated by this method. In this study, we developed a novel quantification method to identify the three quality grades of Maidong, which could in turn make efforts on the quality improvement of Maidong. Our study is the first to demonstrate that microscopic technology could be used to distinguish different quality grades of a specific herbal medicine.
Collapse
Affiliation(s)
- Kunzi Yu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Wei Liu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Nanping Zhang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Xianlong Cheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Shiyu Zhou
- Chengdu Institute for Food and Drug Control, Chengdu, China
| | - Tiantian Zuo
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Shuai Kang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Shuangcheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
11
|
Liu K, Li XY, Luo JP, Zha XQ. Bioactivities. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Lin C, Kuo TC, Lin JC, Ho YC, Mi FL. Delivery of polysaccharides from Ophiopogon japonicus (OJPs) using OJPs/chitosan/whey protein co-assembled nanoparticles to treat defective intestinal epithelial tight junction barrier. Int J Biol Macromol 2020; 160:558-570. [DOI: 10.1016/j.ijbiomac.2020.05.151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
|
13
|
Feng J, Ma Y, Sun P, Thakur K, Wang S, Zhang J, Wei Z. Purification and characterisation of α‐glucosidase inhibitory peptides from defatted camellia seed cake. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jun Feng
- School of Food Science and Biological Engineering Hefei University of Technology Hefei 230009 China
| | - Yi‐Long Ma
- School of Food Science and Biological Engineering Hefei University of Technology Hefei 230009 China
| | - Ping Sun
- School of Food Science and Biological Engineering Hefei University of Technology Hefei 230009 China
| | - Kiran Thakur
- School of Food Science and Biological Engineering Hefei University of Technology Hefei 230009 China
| | - Shaoyun Wang
- College of Biological Science and Technology Fuzhou University Fuzhou 350108 China
| | - Jian‐Guo Zhang
- School of Food Science and Biological Engineering Hefei University of Technology Hefei 230009 China
| | - Zhao‐Jun Wei
- School of Food Science and Biological Engineering Hefei University of Technology Hefei 230009 China
- Biological Science and Engineering College North Minzu University Yinchuan 750021 China
| |
Collapse
|
14
|
Antidiabetic Potential of Prosopis farcta Roots: In Vitro Pancreatic Beta Cell Protection, Enhancement of Glucose Consumption, and Bioassay-Guided Fractionation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8048273. [PMID: 32419826 PMCID: PMC7201843 DOI: 10.1155/2020/8048273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/24/2019] [Indexed: 11/18/2022]
Abstract
By using the streptozotocin- (STZ-) induced cytotoxicity in β-TC3 cells as an assay model, a bioassay-guided fractionation study was employed to isolate and characterize the potential antidiabetic principles of roots of Prosopis farcta. A combination of open column chromatography on reverse-phase silica gel using a water-ethanol gradient (10 : 90 to 100 : 0) followed by HPLC-based fractionation led to an active compound that appears to be composed of carbohydrate/sugar. When cell viability under STZ was reduced to 49.8 ± 4% (mean ± SD), treatment with the active compound at the concentration of 0.5 mg/mL either as a coadministration or a pretreatment improved the viability to 93 ± 1.9% and 91.5 ± 7%, respectively. The reduction in the mitochondrial membrane potential by STZ (47.34 ± 8.9% of control) was similarly recovered to 84.5 ± 4.3 (coadministration) and 88 ± 5.5% (pretreatment) by the active fraction. The bioassay-guided fractionation, β-cell protective effect, and increased glucose consumption (up to 1.49-fold increase) in hepatocytes by the extracts and active fraction are also discussed.
Collapse
|
15
|
Chen R, Liu B, Wang X, Chen K, Zhang K, Zhang L, Fei C, Wang C, Yingchun L, Xue F, Gu F, Wang M. Effects of polysaccharide from Pueraria lobata on gut microbiota in mice. Int J Biol Macromol 2020; 158:S0141-8130(20)33067-1. [PMID: 32387359 DOI: 10.1016/j.ijbiomac.2020.04.201] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Polysaccharide was derived from Pueraria lobata (PPL) which was considered as one of the traditional Chinese medicinal and edible herbs. In the present study, PPL was administered in equal doses (12.5 mg/kg) to both normal mice and antibiotic-associated diarrhea (AAD) mice for two weeks, and was evaluated in terms of body weight, organ indices, gut structure, gut microbiota and short chain fatty acids. The results showed that normal mice treated with PPL not only reduced the isovaleric acid concentration (P < 0.05), but also significantly increased the abundance of beneficial bacteria, involving Oscillospira and Anaerotruncus (P < 0.05). In addition, PPL could relieve colonic pathological changes and gut microbiota dysbiosis caused by AAD. It indicated that PPL was a potential functional food ingredient by modulating gut microbiota.
Collapse
Affiliation(s)
- Rong Chen
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Bo Liu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xiaoyang Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Kai Chen
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Keyu Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Lifang Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chenzhong Fei
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chunmei Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Liu Yingchun
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Feiqun Xue
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Feng Gu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Mi Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| |
Collapse
|
16
|
Preparation of complex microcapsules of soluble polysaccharide from Glycyrrhiza uralensis and its application in wound repair and scar inhibition. Int J Biol Macromol 2020; 156:906-917. [PMID: 32234447 DOI: 10.1016/j.ijbiomac.2020.03.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/03/2020] [Accepted: 03/13/2020] [Indexed: 01/01/2023]
Abstract
The extraction process of Glycyrrhiza soluble polysaccharide (GP) was optimized by RSM, a rat trauma model was established via longitudinal incision on the back skin. The effects of GP combined with microcapsule collagen on the repair of rat injury model were discussed at different levels, Based on the content of hydroxyproline at the whole animal level, the proliferation of granulation tissue stained by HE, the number of microvessels labeled by CD34, the production of collagen fibers stained by Masson, the level of phosphorylation of STAT3 protein and that of VEGF at protein level were investigated. The results showed that after the administration of GP combined with microcapsules, the content of hydroxyproline in granulation tissue increased, the proliferation of capillaries and fibroblasts in granulation tissue became active, and the number of microvessels in wound increased. The formation density of collagen fibers was uniform and orderly. GP combined with microcapsules could activate the expression of p-STAT3 and VEGF proteins and up-regulate the transcription level of VEGF mRNA and miRNA-21 genes. Furthermore, GP combined with microcapsules could accelerate wound healing and promote neovascularization.
Collapse
|
17
|
Anti-diabetic activity of crude polysaccharide and rhamnose-enriched polysaccharide from G. lithophila on Streptozotocin (STZ)-induced in Wistar rats. Sci Rep 2020; 10:556. [PMID: 31953455 PMCID: PMC6969100 DOI: 10.1038/s41598-020-57486-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to elucidate the anti-diabetic effects of the crude polysaccharide and rhamnose-enriched polysaccharide derived from G. lithophila on streptozotocin (STZ)-induced diabetic Wistar rats. Treatment with crude polysaccharide and rhamnose-enriched polysaccharide showed increases in body weight and pancreatic insulin levels and a decrease in blood glucose levels compared with control diabetic rats. The blood concentrations of total cholesterol (TC), triglycerides (TGs), low-density lipoprotein (LDL) and very-low-density lipoprotein (VLDL) decreased, and high-density lipoprotein (HDL) increased both in the crude polysaccharide- and rhamnose-enriched polysaccharide-treated rats. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels increased, and malondialdehyde (MDA) levels decreased in the livers, kidneys and pancreases of crude polysaccharide- and rhamnose-enriched polysaccharide-treated rats. Immunohistological examination further confirmed that restoration of the normal cellular size of the islets of Langerhans and the rebirth of β-cells were found to be greater in the body region than in the head and tail regions of the pancreas. The crude polysaccharide- and rhamnose-enriched polysaccharide-treated diabetic rats showed normal blood glucose levels and insulin production, and reversed cholesterol levels and enzymatic actions. Therefore, rhamnose-enriched polysaccharide from G. lithophila acts as a potent anti-diabetic agent to treat diabetes and can lead to the development of an alternative medicine for diabetes in the future.
Collapse
|
18
|
Fan S, Zhang J, Xiao Q, Liu P, Zhang Y, Yao E, Chen X. Cardioprotective effect of the polysaccharide from Ophiopogon japonicus on isoproterenol-induced myocardial ischemia in rats. Int J Biol Macromol 2020; 147:233-240. [PMID: 31923517 DOI: 10.1016/j.ijbiomac.2020.01.068] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
Abstract
The polysaccharide (OJP1), extracted from the root of Ophiopogon japonicus, is a well-known traditional Chinese medicine used to treat cardiovascular diseases. The present study was set up to investigate the cardioprotective effect of OJP1 on isoproterenol (ISO)-induced myocardial ischemia injury in rats. Results showed that pretreatment with OJP1 (100, 200 and 300 mg/kg) significantly reduced ISO-induced ST-segment elevation and the heart index, attenuated the levels of marker enzymes (AST, LDH, CK and CK-MB), along with a significantly enhanced the activities of ATPases. Moreover, pretreatment with OJP1 not only enhanced the activities of SOD, GPx and CAT in serum and myocardium, but also decreased the level of MDA. The biochemical and histopathological analysis also showed that OJP1 can alleviate the myocardial injury induced by ISO. Taken together, our results indicated that oral administration of OJP1 offered significant cardioprotective effect against the damage induced by ISO through enhancement of endogenous antioxidants.
Collapse
Affiliation(s)
- Sairong Fan
- Institute of Glycobiological Engineering/School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Junfeng Zhang
- Institute of Glycobiological Engineering/School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qi Xiao
- Institute of Glycobiological Engineering/School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Peng Liu
- Institute of Glycobiological Engineering/School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yining Zhang
- Institute of Glycobiological Engineering/School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Enze Yao
- Institute of Glycobiological Engineering/School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoming Chen
- Institute of Glycobiological Engineering/School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
19
|
Sun Q, Zhang Z, Xu L, Shi W, Liu X, Wang F. Increasing Production of Truffle Polysaccharides in the Solid-state Fermentation of Tuber melanosporum by Diosgenin Based on Orthogonal Matrix and Nonlinear Regression Analysis. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Quanshan Sun
- School of Food Science and Biological Engineering, Jiangsu University
| | - Zhicai Zhang
- Institute of Agro-production Processing Engineering, Jiangsu University
- Zhenjiang Yemaikang Food Bio-Technology Co., Ltd
| | - Ling Xu
- School of Food Science and Biological Engineering, Jiangsu University
| | - Wenjing Shi
- School of Food Science and Biological Engineering, Jiangsu University
| | - Xiaocui Liu
- School of Food Science and Biological Engineering, Jiangsu University
| | - Feng Wang
- School of Food Science and Biological Engineering, Jiangsu University
| |
Collapse
|
20
|
Li T, Han X, Bao R, Hao Y, Li S. Preparation and properties of water-in-oil shiitake mushroom polysaccharide nanoemulsion. Int J Biol Macromol 2019; 140:343-349. [DOI: 10.1016/j.ijbiomac.2019.08.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022]
|
21
|
Fang Q, Hu J, Nie Q, Nie S. Effects of polysaccharides on glycometabolism based on gut microbiota alteration. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Gong X, Ji M, Xu J, Zhang C, Li M. Hypoglycemic effects of bioactive ingredients from medicine food homology and medicinal health food species used in China. Crit Rev Food Sci Nutr 2019; 60:2303-2326. [DOI: 10.1080/10408398.2019.1634517] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xue Gong
- Baotou Medical College, Baotou, Inner Mongolia, P. R. China
| | - Mingyue Ji
- Baotou Medical College, Baotou, Inner Mongolia, P. R. China
| | - Jianping Xu
- Baotou Medical College, Baotou, Inner Mongolia, P. R. China
| | - Chunhong Zhang
- Baotou Medical College, Baotou, Inner Mongolia, P. R. China
| | - Minhui Li
- Baotou Medical College, Baotou, Inner Mongolia, P. R. China
- Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, Inner Mongolia, P. R. China
- Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, P. R. China
| |
Collapse
|
23
|
Li Y, Liang M, Dou X, Feng C, Pang J, Cheng X, Liu H, Liu T, Wang Y, Chen X. Development of alginate hydrogel/gum Arabic/gelatin based composite capsules and their application as oral delivery carriers for antioxidant. Int J Biol Macromol 2019; 132:1090-1097. [PMID: 30902715 DOI: 10.1016/j.ijbiomac.2019.03.103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/24/2019] [Accepted: 03/17/2019] [Indexed: 12/16/2022]
Abstract
We have designed microcapsules-immobilized composite capsules and evaluated the oral delivery efficacy. The composite capsules were developed by encapsulating Perinereis aibuhitensis extract (PaE), a model substance possessing antioxidant activity, loaded gum Arabic/gelatin microcapsules in calcium alginate (CA) hydrogel (PaE:CA/GA/GE-CCs). In vitro antioxidant assay showed the obtained composite capsules were able to protect PaE from gastric acid, since O2- scavenging rate of encapsulated PaE was about 1.8 folds as that of free PaE after 5 h incubation in simulated gastrointestinal fluid. Moreover, in vivo study showed that after the treatment of oral administration for 30 days, the mice of PaE:CA/GA/GE-CCs group suffered significantly lower oxidative stress level than those of other groups, illustrated as higher SOD and catalase activity, as well as lower malondialdehyde content in liver cells. The results demonstrated the composite capsules could concentrate PaE in small intestine, and enhance the absorption efficiency and in vivo efficacy.
Collapse
Affiliation(s)
- Yang Li
- The Research Center for Processing and Quality Control of Aquaculture Production, Marine Biology Institute of Shandong Province, 7# Youyun Road, Qingdao 266100, PR China; College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, PR China
| | - Mengqi Liang
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, PR China
| | - Xiaoyu Dou
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, PR China
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, PR China
| | - Jianhui Pang
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, PR China
| | - Xiaojie Cheng
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, PR China
| | - Hongjun Liu
- The Research Center for Processing and Quality Control of Aquaculture Production, Marine Biology Institute of Shandong Province, 7# Youyun Road, Qingdao 266100, PR China
| | - Tianhong Liu
- The Research Center for Processing and Quality Control of Aquaculture Production, Marine Biology Institute of Shandong Province, 7# Youyun Road, Qingdao 266100, PR China
| | - Ying Wang
- The Research Center for Processing and Quality Control of Aquaculture Production, Marine Biology Institute of Shandong Province, 7# Youyun Road, Qingdao 266100, PR China.
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, PR China.
| |
Collapse
|
24
|
Chang CK, Ho WJ, Chang SL, Yeh CH, Liang ZC, Hsu TH, Hsieh CW. Fractionation, characterization and antioxidant activity of exopolysaccharide from fermentation broth of a Xylaria nigripes. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bcdf.2018.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Jiang M, Yan H, He R, Ma Y. Purification and a molecular docking study of α-glucosidase-inhibitory peptides from a soybean protein hydrolysate with ultrasonic pretreatment. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3111-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Animal models and natural products to investigate in vivo and in vitro antidiabetic activity. Biomed Pharmacother 2018; 101:833-841. [DOI: 10.1016/j.biopha.2018.02.137] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 11/17/2022] Open
|
27
|
Gomaa AAR, Samy MN, Desoukey SY, Kamel MS. Anti-inflammatory, analgesic, antipyretic and antidiabetic activities of Abutilon hirtum (Lam.) Sweet. CLINICAL PHYTOSCIENCE 2018. [DOI: 10.1186/s40816-018-0069-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
28
|
Fang J, Wang X, Lu M, He X, Yang X. Recent advances in polysaccharides from Ophiopogon japonicus and Liriope spicata var. prolifera. Int J Biol Macromol 2018; 114:1257-1266. [PMID: 29634971 DOI: 10.1016/j.ijbiomac.2018.04.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/20/2018] [Accepted: 04/04/2018] [Indexed: 01/01/2023]
Abstract
O. japonicus and L. spicata var. prolifera are distinguished as sources of highly promising yin-tonifying medicinals, namely Ophiopogonis Radix and Liriopes Radix. Liriopes Radix is generally medicinally used as a substitute for Ophiopogonis Radix in various prescriptions due to their extremely similar nature. Ophiopogonis Radix and Liriopes Radix are both very rich in bioactive polysaccharides, especially β‑fructans. Over the past twelve years, except for work on physical entrapment and chemical modification of obtained β‑fructans, the vast majority of studies are carried out to investigate the bioactivities of O. japonicus polysaccharides (OJP) and L. spicata var. prolifera polysaccharides (LSP), mainly including anti-diabetes, immunomodulation, anti-inflammation, antioxidation, anti-obesity, cardiovascular protection, etc. In addition, OJP and LSP are considered to have the potential to regulate intestinal flora. The main purpose of this review is to provide systematically reorganized information on structural characteristics and bioactivities of OJP and LSP to support their further therapeutic potentials and sanitarian functions.
Collapse
Affiliation(s)
- Jiacheng Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China.
| | - Xiaoxiao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China
| | - Mengxin Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China
| | - Xirui He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China; Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, PR China
| | - Xinhua Yang
- Chongqing Jiangbei Hospital of Traditional Chinese Medicine, Chongqing 400020, PR China
| |
Collapse
|
29
|
Ye Y, Ji D, You L, Zhou L, Zhao Z, Brennan C. Structural properties and protective effect of Sargassum fusiforme polysaccharides against ultraviolet B radiation in hairless Kun Ming mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.01.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
30
|
Characterization, antioxidant and hypoglycemic activities of degraded polysaccharides from blackcurrant ( Ribes nigrum L.) fruits. Food Chem 2018; 243:26-35. [DOI: 10.1016/j.foodchem.2017.09.107] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/23/2017] [Accepted: 09/20/2017] [Indexed: 11/20/2022]
|
31
|
Alasmari WA, Faruk EM, Abourehab MAS, Elshazly AME, El Sawy NA. The Effect of Metformin versus Vitamin E on the Testis of Adult Diabetic Albino Rats: Histological, Biochemical and Immunohistochemistry Study. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/arsci.2018.64010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Wang J, Lian P, Yu Q, Wei J, Kang W. Antithrombotic mechanism of polysaccharides in Blackberry ( Rubus spp.) seeds. Food Nutr Res 2017; 61:1379862. [PMID: 29056892 PMCID: PMC5642186 DOI: 10.1080/16546628.2017.1379862] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/10/2017] [Indexed: 11/10/2022] Open
Abstract
The blackberry seed was typically removed as a byproduct and waste from blackberry fruits for juices. Developing value-added utilization of berry seeds will significantly expand the market for berry products as well as improve benefit to berry producers. However, the research on blackberry seed is limited. The objective of this paper was to research antithrombotic mechanism of polysaccharides in blackberry seeds. Polysaccharides in blackberry seeds were extracted, purified and identified by high-performance gel permeation chromatography (HPSEC), gas chromatography (GC), fourier transform infrared (FT-IR) spectrometer and nuclear magnetic resonance spectra (NMR). Anticoagulant activities were evaluated in vivo by measuring activated partial thromboplastin time (APTT), thrombin time (TT), prothrombin time (PT), fibrinogen (FIB) and plasma recalcification time (RRT). Four polysaccharides named BSP-1a, BSP-1b, BSP-2 and BSP-3 were isolated from Blackberry (Rubus spp.) seeds. The results indicated that BSP-1b, BSP-2 and BSP-3 exhibited the anticoagulant activity. Therefore, the anti-thrombosis effects of BSP-1b, BSP-2 and BSP-3 were investigated in vivo by 6-Keto-PGF1α, thromboxane B2 (TXB2), endothelial nitric oxide synthase (eNOS), endothelin-1 (ET-1), whole blood viscosity (WBV), plasma viscosity (PV), hematocrit (Hct), erythrocyte sedimentation rate (ESR), APTT, TT, PT and FIB. The results suggested that BSP-1b, BSP-2 and BSP-3 had the inhibition effect on thrombus formation, and the antithrombotic effects were associated with the regulation of vascular endothelium active substance, activating blood flow and anticoagulation effect.
Collapse
Affiliation(s)
- Jinmei Wang
- Institute of Chinese Materia Medica, Henan University, KaifengChina
- Kaifeng Key Laboratory of functional components in health food, KaifengChina
| | - Pengli Lian
- Institute of Chinese Materia Medica, Henan University, KaifengChina
| | - Qi Yu
- Institute of Chinese Materia Medica, Henan University, KaifengChina
| | - Jinfeng Wei
- Institute of Chinese Materia Medica, Henan University, KaifengChina
- Kaifeng Key Laboratory of functional components in health food, KaifengChina
| | - Wenyi Kang
- Institute of Chinese Materia Medica, Henan University, KaifengChina
- Kaifeng Key Laboratory of functional components in health food, KaifengChina
| |
Collapse
|
33
|
Structure features and in vitro hypoglycemic activities of polysaccharides from different species of Maidong. Carbohydr Polym 2017; 173:215-222. [DOI: 10.1016/j.carbpol.2017.05.076] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/05/2017] [Accepted: 05/24/2017] [Indexed: 01/03/2023]
|
34
|
Ji D, You L, Ren Y, Wen L, Zheng G, Li C. Protective effect of polysaccharides from Sargassum fusiforme against UVB-induced oxidative stress in HaCaT human keratinocytes. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
35
|
Purification, Preliminary Characterization and Hepatoprotective Effects of Polysaccharides from Dandelion Root. Molecules 2017; 22:molecules22091409. [PMID: 28841174 PMCID: PMC6151742 DOI: 10.3390/molecules22091409] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022] Open
Abstract
In this study, purification, preliminary characterization and hepatoprotective effects of water-soluble polysaccharides from dandelion root (DRP) were investigated. Two polysaccharides, DRP1 and DRP2, were isolated from DRP. The two polysaccharides were α-type polysaccharides and didn't contain protein. DRP1, with a molecular weight of 5695 Da, was composed of glucose, galactose and arabinose, whereas DRP2, with molecular weight of 8882 Da, was composed of rhamnose, galacturonic acid, glucose, galactose and arabinose. The backbone of DRP1 was mainly composed of (1→6)-linked-α-d-Glc and (1→3,4)-linked-α-d-Glc. DRP2 was mainly composed of (1→)-linked-α-d-Ara and (1→)-linked-α-d-Glc. A proof-of-concept study was performed to assess the therapeutic potential of DRP1 and DRP2 in a mouse model that mimics acetaminophen (APAP) -induced liver injury (AILI) in humans. The present study shows DRP1 and DRP2 could protect the liver from APAP-induced hepatic injury by activating the Nrf2-Keap1 pathway. These conclusions demonstrate that the DRP1 and DRP2 might be suitable as functional foods and natural drugs in preventing APAP-induced liver injury.
Collapse
|
36
|
Wang J, Hu W, Li L, Huang X, Liu Y, Wang D, Teng L. Antidiabetic activities of polysaccharides separated from Inonotus obliquus via the modulation of oxidative stress in mice with streptozotocin-induced diabetes. PLoS One 2017; 12:e0180476. [PMID: 28662169 PMCID: PMC5491251 DOI: 10.1371/journal.pone.0180476] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/15/2017] [Indexed: 12/24/2022] Open
Abstract
This study evaluated the effects of Inonotus obliquus polysaccharides (IOs) on diabetes and other underlying mechanisms related to inflammatory factors and oxidative stress in a mouse model of streptozotocin (STZ)-induced diabetes. Four weeks administration of metformin (120 mg/kg) and IO1-4 (50%-80% alcohol precipitation), or IO5 (total 80% alcohol precipitation) at doses of 50 mg/kg reverses the abnormal changes of bodyweights and fasting blood glucose levels of diabetic mice. IOs significantly increased the insulin and pyruvate kinase levels in serum, and improved the synthesis of glycogen, especially for IO5. IOs restored the disturbed serum levels of superoxide dismutase, catalase, glutathione peroxidase, and malondialdehyde. The down-regulation of interleukin-2 receptor, matrix metalloproteinase-9, and the enhancement of interleukin-2 in serum of diabetic mice were significantly attenuated by IOs. Histologic and morphology examinations showed that IOs repaired the damage on kidney tissues, inhibited inflammatory infiltrate and extracellular matrix deposit injuries in diabetic mice. Compared with untreated diabetic mice, IOs decreased the expression of phosphor-NF-κB in the kidneys. These results show that IOs treatment attenuated diabetic and renal injure in STZ-induced diabetic mice, possibly through the modulation of oxidative stress and inflammatory factors. These results provide valuable evidences to support the use of I. obliquus as a hypoglycemic functional food and/or medicine.
Collapse
Affiliation(s)
- Juan Wang
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wenji Hu
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Lanzhou Li
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xinping Huang
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yange Liu
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, Jilin, China
- Zhuhai College of Jilin University, Zhuhai, Guangdong, China
- * E-mail: (DW); (LT)
| | - Lirong Teng
- School of Life Sciences, Jilin University, Changchun, Jilin, China
- Zhuhai College of Jilin University, Zhuhai, Guangdong, China
- * E-mail: (DW); (LT)
| |
Collapse
|
37
|
Mohammed SI, Salunkhe NS, Vishwakarma KS, Maheshwari VL. Experimental Validation of Antidiabetic Potential of Cayratia trifolia (L.) Domin: An Indigenous Medicinal Plant. Indian J Clin Biochem 2017; 32:153-162. [PMID: 28428689 DOI: 10.1007/s12291-016-0598-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/29/2016] [Indexed: 11/29/2022]
Abstract
The present study was undertaken to evaluate antidiabetic and antioxidant activities of Cayratia trifolia root extract against streptozotocin induced diabetes in experimental rats to scientifically validate its use against diabetes in some parts of India. Ethanolic extract, showing the highest activity in in vitro experiments, was prepared in saline and administered orally to streptozotocin induced albino Wistar diabetic rats for 21 days. Biochemical parameters liver and muscles glycogen and in vivo antioxidant activity in normal, diabetic control, standard (metformin) and treated animals were determined and compared. Attempt was made to isolate, purify and characterize one of the major secondary metabolites in extract by range of chromatographic and spectroscopic techniques. Treatment of streptozotocin induced diabetic rats with ethanolic root extract (500 mg/kg) caused significant (P < 0.01) reduction in blood glucose (312-178 mg/dL), increase in body weight (181-219 g) and serum insulin (1.28-2.26 IU/dL). It also maintained lipid profile and tests of liver and kidney functions within normal range as compared to diabetic control rats and almost at par with standard drug metformin. The oxidative stress induced decline in glutathione and catalase in liver and kidney tissues showed recovery nearly to normal level as a function of treatment. The GC-MS profile of the extract showed relatively high concentration of β-sitosterol which was characterized by different spectroscopic and chromatographic techniques. The result scientifically and comprehensively validate the reported use of roots of this indigenous plant against diabetes. A strong antioxidant activity of the ethanolic root extract suitably compliments the antidiabetic effect.
Collapse
|
38
|
Chen T, Li H, Chen C, Wei L, Li Y. Large-Scale Preparation of a Specific Xanthone from Swertia mussotii and Evaluation of Its α-Glucosidase Inhibitory Activity. J Chromatogr Sci 2017; 55:638-644. [DOI: 10.1093/chromsci/bmx020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/28/2017] [Indexed: 11/12/2022]
|
39
|
Li XZ, Zhang S. Effervescent Granules Prepared Using Eucommia ulmoides Oliv. and Moso Bamboo Leaves: Hypoglycemic Activity in HepG2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:6362094. [PMID: 27656239 PMCID: PMC5021894 DOI: 10.1155/2016/6362094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 11/17/2022]
Abstract
Eucommia ulmoides Oliv. (E. ulmoides Oliv.) and moso bamboo (Phyllostachys pubescens) leaves are used as folk medicines in central-western China to treat diabetes. To investigate the hypoglycemic activity of the effervescent granules prepared using E. ulmoides Oliv. and moso bamboo leaves (EBEG) in HepG2 cells, EBEG were prepared with 5% of each of polysaccharides and chlorogenic acids from moso bamboo and E. ulmoides Oliv. leaves, respectively. HepG2 cells cultured in a high-glucose medium were classified into different groups. The results displayed EBEG-treated cells showed better glucose utilization than the negative controls; thus, the hypoglycemic effect of EBEG was much greater than that of granules prepared using either component alone, thereby indicating that this effect was due to a synergistic action of the components. Further, glucose consumption levels in the cells treated with EBEG (156.35% at 200 μg/mL) and the positive controls (metformin, 162.29%; insulin, 161.52%) were similar. Thus, EBEG exhibited good potential for use as a natural antidiabetic agent. The hypoglycemic effect of EBEG could be due to the synergistic action of polysaccharides from the moso bamboo leaves and chlorogenic acids from E. ulmoides Oliv. leaves via the inhibition of alpha-glucosidase and glucose-6-phosphate displacement enzyme.
Collapse
Affiliation(s)
- Xiang-Zhou Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
- State Key Laboratory of Ecological Applied Technology in Forest Area of South China, Changsha, Hunan 410004, China
| | - Sheng Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
40
|
Chen T, Zhang M, Li J, Surhio MM, Li B, Ye M. Structural characterization and hypoglycemic activity of Trichosanthes peel polysaccharide. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.02.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Mechanisms underlying the effect of polysaccharides in the treatment of type 2 diabetes: A review. Carbohydr Polym 2016; 144:474-94. [DOI: 10.1016/j.carbpol.2016.02.040] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/18/2016] [Accepted: 02/14/2016] [Indexed: 12/11/2022]
|
42
|
Xu Y, Liu G, Yu Z, Song X, Li X, Yang Y, Wang L, Liu L, Dai J. Purification, characterization and antiglycation activity of a novel polysaccharide from black currant. Food Chem 2016; 199:694-701. [DOI: 10.1016/j.foodchem.2015.12.078] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 01/11/2023]
|
43
|
Chen MH, Chen XJ, Wang M, Lin LG, Wang YT. Ophiopogon japonicus--A phytochemical, ethnomedicinal and pharmacological review. JOURNAL OF ETHNOPHARMACOLOGY 2016; 181:193-213. [PMID: 26826325 DOI: 10.1016/j.jep.2016.01.037] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 12/30/2015] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ophiopogonis Radix (Maidong in Chinese), the root of Ophiopogon japonicus, is widely used in local medicines of China, Japan and some south-eastern Asian countries. According to the traditional Chinese medicine (TCM) principle, Ophiopogonis Radix nourishes the yin, promotes body fluid production, moistens the lung, eases the mind and clears away heart fire. This review summarizes the achievements of the investigations in botany, phytochemistry, quality control, traditional uses, pharmacological activities and clinical studies on O. japonicus; this review also describes the shortcomings of studies on this herbal drug and thus serves as the basis of further scientific research and development of this traditional herbal drug. MATERIALS AND METHODS O. japonicus-related information was collected from various resources, including books on Chinese herbs and the Internet databases, such as Google Scholar, SciFinder, Web of Science, Elsevier, ACS, PubMed and China Knowledge Resource Integrated (CNKI). RESULTS O. japonicus is widely distributed in East Asia, especially in China. Numerous compounds were identified from this plant. The main components of O. japonicus include steroidal saponins, homoisoflavonoids and polysaccharides, which exhibited various pharmacological activities, such as cardiovascular protection, anti-inflammation, anticancer, anti-oxidation, immunomodulation, cough relief, antimicrobial, and anti-diabetes. CONCLUSIONS O. japonicus is a common traditional Chinese herbal drug used as the main ingredient in many prescriptions. Modern researches verified that O. japonicus can be used either as a healthy food or a therapeutic agent for disease prevention and treatment. The molecular mechanisms and chemical principles of this herbal medicine should be further explored.
Collapse
Affiliation(s)
- Min-Hui Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiao-Jia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Sino-Dutch Center for Preventive and Personalized Medicine/Leiden Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Mei Wang
- Sino-Dutch Center for Preventive and Personalized Medicine/Leiden Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
44
|
Zhang J, Fan S, Mao Y, Ji Y, Jin L, Lu J, Chen X. Cardiovascular protective effect of polysaccharide from Ophiopogon japonicus in diabetic rats. Int J Biol Macromol 2016; 82:505-13. [DOI: 10.1016/j.ijbiomac.2015.09.069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 01/08/2023]
|
45
|
Huang D, Li Y, Cui F, Chen J, Sun J. Purification and characterization of a novel polysaccharide-peptide complex from Clinacanthus nutans Lindau leaves. Carbohydr Polym 2015; 137:701-708. [PMID: 26686182 DOI: 10.1016/j.carbpol.2015.10.102] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 01/28/2023]
Abstract
A novel polysaccharide-peptide complex CNP-1-2 with molecular weight of 9.17 × 10(4) Da was obtained from Clinacanthus nutans Lindau leaves by hot water extraction, ethanol precipitation, and purification with Superdex 200 and DEAE-Sepharose Fast Flow column chromatography. CNP-1-2 exhibited the highest growth inhibitory effect on human gastric cancer cells SGC-7901 with inhibition ratio of 92.34% and stimulated activation of macrophages with NO secretion level of 47.53 μmol/L among the polysaccharide fractions. CNP-1-2 comprised approximately 87.25% carbohydrate and 9.37% protein. Monosaccharide analysis suggested that CNP-1-2 was composed of L-rhamnose, l-arabinose, D-mannose, D-glucose and D-galactose with a molar ratio of 1.30:1.00:2.56:4.95:5.09. Methylation analysis, FT-IR, and (1)H NMR spectroscopy analysis revealed that CNP-1-2 might have a backbone consisting of 1,4-linked Glcp, 1,3-linked Glcp, 1,3-linked Manp, 1,4-linked Galp, 1,2,6-linked Galp and 1,2,6-linked Galp. Its side chain might be composed of 1-linked Araf, 1,6-linked Galp and 1-linked Rhap residues. AFM (atomic force micrograph) analysis revealed that CNP-1-2 had the molecular aggregation along with branched and entangled structure.
Collapse
Affiliation(s)
- Danmin Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Bio Nice Food Science Sdn Bhd, No. 5, Jalan Silc 1/4, Perindustrian Silc, Nusajaya, 79200 Johor, Malaysia.
| | - Yunhong Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Jun Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Jiamin Sun
- Second Teaching Hospital, Fujian Medical University, Longyan City 364000, China
| |
Collapse
|
46
|
Tang HL, Chen C, Wang SK, Sun GJ. Biochemical analysis and hypoglycemic activity of a polysaccharide isolated from the fruit of Lycium barbarum L. Int J Biol Macromol 2015; 77:235-42. [DOI: 10.1016/j.ijbiomac.2015.03.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/15/2015] [Accepted: 03/18/2015] [Indexed: 02/08/2023]
|
47
|
Yılmaz T, Tavman Ş. Ultrasound assisted extraction of polysaccharides from hazelnut skin. FOOD SCI TECHNOL INT 2015; 22:112-21. [DOI: 10.1177/1082013215572415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 01/12/2015] [Indexed: 11/17/2022]
Abstract
In this study ultrasound assisted extraction (UAE) of polysaccharides from hazelnut skin has been studied. Optimum sonication time has been evaluated depending on responses such as amount of carbohydrate and dried sample and thermogravimetric analysis. Chemical and structural properties of extracted material have been determined by Fourier transform spectroscopy attenuated-total reflectance (FTIR-ATR) spectroscopy. Pretreated hazelnut skin powders were extracted in distilled water. Mixture was sonicated by ultrasonic processor probe for 15, 30, 45, 60, 90, and 120 min. The results of UAE showed that maximum ethanol insoluble extracts in 60 min and the highest dry matter content could be obtained in 120 min extraction. Although total carbohydrate content of ethanol insoluble dry extract decreased with time, total carbohydrate in ethanol soluble fraction increased. Polysaccharides extracted from hazelnut skin were assumed to be pectic polysaccharide according to the literature survey of FTIR analysis result. Application time of UAE has an important effect on extraction of polysaccharide from hazelnut skin. This affect could be summarized by enhancing extraction yield up to critical level. Decrease of the yield in ethanol insoluble part could be explained by polymer decomposition. Most suitable model was hyperbolic model by having the lowest root mean square error and the highest R2 values.
Collapse
Affiliation(s)
- Tuncay Yılmaz
- Food Engineering Department, Engineering Faculty, Celal Bayar University, Manisa, Turkey
| | - Şebnem Tavman
- Food Engineering Department, Engineering Faculty, Ege University, Izmir, Turkey
| |
Collapse
|
48
|
Inhibition of α-glucosidase by polysaccharides from the fruit hull of Camellia oleifera Abel. Carbohydr Polym 2015; 115:38-43. [DOI: 10.1016/j.carbpol.2014.08.059] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 08/15/2014] [Accepted: 08/17/2014] [Indexed: 01/18/2023]
|
49
|
Fan S, Wang J, Mao Y, Ji Y, Jin L, Chen X, Lu J. Characterization and Antioxidant Properties of OJP2, a Polysaccharide Isolated from <i>Ophiopogon japonicus</i>. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/abb.2015.68054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
WANG H, QI J, HAN DQ, XU T, LIU JH, QIN MJ, ZHU DN, Bo-Yang YU. Cause and control of Radix Ophiopogonis browning during storage. Chin J Nat Med 2015; 13:73-80. [DOI: 10.1016/s1875-5364(15)60010-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Indexed: 11/25/2022]
|