1
|
Gao Y, Sun L, Qiao C, Liu Y, Wang Y, Feng R, Zhang H, Zhang Y. Cyclodextrin-based delivery systems for chemical and genetic drugs: Current status and future. Carbohydr Polym 2025; 352:123174. [PMID: 39843078 DOI: 10.1016/j.carbpol.2024.123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/01/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Cyclodextrins (CDs) are cyclic polysaccharides characterized by their unique hollow structure, making them highly effective carriers for pharmaceutical agents. CD-based delivery systems are extensively utilized to enhance drug stability, increase solubility, improve oral bioavailability, and facilitate controlled release and targeted delivery. This review initially provides a concise overview of nano drug delivery systems, followed by a detailed introduction of the structural features and benefits of CDs. It further summarizes the applications of CD-based delivery systems and offers insights for the rational design of drug delivery systems. In this review, CD-based delivery systems are categorized into several types, such as covalently modified CD derivatives, non-modified CD inclusion complexes, poly-cyclodextrins and others. The application of CD-based systems for the delivery of genetic therapeutic agents and co-delivery of gene and drug is also presented. Finally, this review discusses potential challenges and opportunities that may arise in the future. With the development of nanotechnology and optimization of preparation process, CD-based drug delivery systems will provide a more effective, precise and safe approach to drug therapy.
Collapse
Affiliation(s)
- Yikun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Le Sun
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Chu Qiao
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yuqing Liu
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yang Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Rui Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Hong Zhang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Youxi Zhang
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
2
|
Molecular Dynamics Simulations of Essential Oil Ingredients Associated with Hyperbranched Polymer Drug Carriers. Polymers (Basel) 2022; 14:polym14091762. [PMID: 35566930 PMCID: PMC9105242 DOI: 10.3390/polym14091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
Our work concerns the study of four candidate drug compounds of the terpenoid family, found as essential oil ingredients in species of the Greek endemic flora, namely carvacrol, p-cymene, γ-terpinene, and thymol, via the simulation method of molecular dynamics. Aquatic solutions of each compound, as well as a solution of all four together in realistic (experimental) proportions, are simulated at atmospheric pressure and 37 °C using an OPLS force field combined with TIP3P water. As verified, all four compounds exhibit a strong tendency to phase-separate, thereby calling for the use of carrier molecules as aids for the drug to circulate in the blood and enter the cells. Systems of two such carrier molecules, the hyperbranched poly(ethylene imine) (HBPEI) polyelectrolyte and hyperbranched polyglycerol (HPG), are examined in mixtures with carvacrol, the most abundant among the four compounds, at a range of concentrations, as well as with all four compounds present in natural proportions. Although a tendency of the terpenoids to cluster separately persists at high concentrations, promising association effects are observed for all drug–polymer ratios. HBPEI systems tend to form diffuse structures comprising small mixed clusters as well as freely floating polymer and essential oil molecules, a finding attributed to the polymer–polymer electrostatic repulsions, which here are only partially screened by the counterions. On the other hand, the electrically neutral HPG molecules cluster together with essential oil species to form a single nanodroplet. Currently, terpenoid–polymer clusters near lipid bilayer membranes are being studied to determine the propensity of the formed complexes to enter cell membranes.
Collapse
|
3
|
Saadati A, Hasanzadeh M, Seidi F. Biomedical application of hyperbranched polymers: Recent Advances and challenges. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116308] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Mignani S, Shi X, Karpus A, Majoral JP. Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: An opportunity to develop new CNS drugs. Eur J Med Chem 2021; 209:112905. [PMID: 33069435 PMCID: PMC7548078 DOI: 10.1016/j.ejmech.2020.112905] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
There are several routes of administration to the brain, including intraparenchymal, intraventricular, and subarachnoid injections. The blood-brain barrier (BBB) impedes the permeation and access of most drugs to the central nervous system (CNS), and consequently, many neurological diseases remain undertreated. For past decades, to circumvent this effect, several nanocarriers have been developed to deliver drugs to the brain. Importantly, intranasal (IN) administration can allow direct delivery of drugs into the brain through the anatomical connection between the nasal cavity and brain without crossing the BBB. In this regard, dendrimers may possess great potential to deliver drugs to the brain by IN administration, bypassing the BBB and reducing systemic exposure and side effects, to treat diseases of the CNS. In this original concise review, we highlighted the few examples advocated regarding the use of dendrimers to deliver CNS drugs directly via IN. This review highlighed the few examples of the association of dendrimer encapsulating drugs (e.g., small compounds: haloperidol and paeonol; macromolecular compounds: dextran, insulin and calcitonin; and siRNA) using IN administration. Good efficiencies were observed. In addition, we will present the in vivo effects of PAMAM dendrimers after IN administration, globally, showing no general toxicity.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, Rue des Saints Peres, 75006, Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China.
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination Du CNRS, 205 Route de Narbonne, 31077, Toulouse, Cedex 4, France; Université Toulouse 118 Route de Narbonne, 31077, Toulouse, Cedex 4, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination Du CNRS, 205 Route de Narbonne, 31077, Toulouse, Cedex 4, France; Université Toulouse 118 Route de Narbonne, 31077, Toulouse, Cedex 4, France.
| |
Collapse
|
5
|
Rahman M, Alrobaian M, Almalki WH, Mahnashi MH, Alyami BA, Alqarni AO, Alqahtani YS, Alharbi KS, Alghamdi S, Panda SK, Fransis A, Hafeez A, Beg S. Superbranched polyglycerol nanostructures as drug delivery and theranostics tools for cancer treatment. Drug Discov Today 2020; 26:1006-1017. [PMID: 33217598 DOI: 10.1016/j.drudis.2020.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/03/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022]
Abstract
Hyperbranched polymers (HBPs), such as hyperbranched polyglycerols (HPGs) with a dendritic configuration, have been recognized for their excellent biocompatibility and multifunctionalization. HPGs have been studied for use in the delivery diagnostic, imaging and therapeutic molecules in the area of nanobiomedicine. They show superior characteristics to linear polymers and dendrimers, such as compact structure, a simple manufacturing process with easy functionalization ability, low viscosity, and high stability. Owing to these advantages, HPGs are now considered promising carriers for drug delivery, diagnostics, imaging, and theranostics applications for cancer treatment. In this review, we also discuss safety aspects of HPG-based nanoformulations in various animal models and the clinical translation status of such polymers for real-time applications.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India.
| | - Majed Alrobaian
- Department of Pharmaceutics & and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Saudi Arabia
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Bandar A Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali O Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Khalid S Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sunil Kumar Panda
- Research Director, Menovo Pharmaceuticals Research Lab, Ningbo, People's Republic of China
| | - Alberte Fransis
- Department of Biochemistry, Dezhou People's Hospital, Dezhou, China
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Nanomedicine Research Lab, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
6
|
Jafari M, Abolmaali SS, Najafi H, Tamaddon AM. Hyperbranched polyglycerol nanostructures for anti-biofouling, multifunctional drug delivery, bioimaging and theranostic applications. Int J Pharm 2020; 576:118959. [DOI: 10.1016/j.ijpharm.2019.118959] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
|
7
|
Sivakumar PM, Peimanfard S, Zarrabi A, Khosravi A, Islami M. Cyclodextrin-Based Nanosystems as Drug Carriers for Cancer Therapy. Anticancer Agents Med Chem 2019; 20:1327-1339. [PMID: 31490765 DOI: 10.2174/1871520619666190906160359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/01/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVE Cyclodextrins have been of great interest as excellent candidates for fabricating versatile nano-drug delivery systems due to their commercial availability, easy functionalization, low immunogenicity, biocompatibility and safety. The possibility of reversible inclusion complex formation between cyclodextrins and various guest molecules in association with versatile exclusive properties of cyclodextrins offer a route towards the fabrication of highly sophisticated nanostructures with enormous potential for cancer treatment. METHODS AND RESULTS The current review discusses important recent advances in the fabrication and development of cyclodextrin-based nanostructures for cancer therapy. Firstly, the formation of inclusion complexes between cyclodextrin derivatives and anticancer compounds, as well as their application, are summarized. Secondly, the cyclodextrins -based nanosystems including cyclodextrin-containing polymers, cyclodextrin-based supramolecular necklaces, which consist of polyrotaxanes and polypseudorotaxanes and cyclodextrin based hydrogels accompanied by their applications in cancer treatment are highlighted. In the end, the future perspective of this field is discussed. CONCLUSION Numerous investigations in this area pave the way for the flourishing of the next generation of nano-therapeutics towards enhanced cancer therapy.
Collapse
Affiliation(s)
- Ponnurengam M Sivakumar
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam
| | - Shohreh Peimanfard
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research & Application Center (SUNUM), Orta Mh. Üniversite Cd. No: 27/1
- 34956 Tuzla, Istanbul, Turkey
| | - Arezoo Khosravi
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran
| | - Matin Islami
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| |
Collapse
|
8
|
Efficacy of polyurethane graft on cyclodextrin to control drug release for tumor treatment. J Colloid Interface Sci 2019; 534:215-227. [DOI: 10.1016/j.jcis.2018.09.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 02/03/2023]
|
9
|
Rassu G, Ferraro L, Pavan B, Giunchedi P, Gavini E, Dalpiaz A. The Role of Combined Penetration Enhancers in Nasal Microspheres on In Vivo Drug Bioavailability. Pharmaceutics 2018; 10:E206. [PMID: 30373187 PMCID: PMC6321492 DOI: 10.3390/pharmaceutics10040206] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/23/2022] Open
Abstract
Microspheres based on both methyl-β-cyclodextrins and chitosan were prepared by spray-drying as nasal formulations of a model polar drug to analyze, firstly, how the composition of the carrier affects drug permeation across synthetic membranes and, secondly, how it induces systemic or brain delivery of the drug. Microparticles with different weight ratios of the two penetration enhancers (10⁻90, 50⁻50, 90⁻10) were characterized with respect to morphology, size, structural composition, water uptake, and the in vitro drug permeation profile. The leader formulation (weight ratio of 50⁻50) was then nasally administered to rats; systemic and cerebrospinal fluid (CSF) drug concentrations were analyzed by high performance liquid chromatography (HPLC) over time. Microspheres obtained with a single enhancer, methyl-β-cyclodextrins or chitosan, were administered in vivo as a comparison. The in vitro properties of combined microspheres appeared modified with regard to the polymeric matrix ratio. In vivo results suggest that the optimal drug distribution between CSF and bloodstream can be easily obtained by varying the amount of these two penetration enhancers studied in the matrix of nasal microspheres.
Collapse
Affiliation(s)
- Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy.
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, via Borsari 46, 44121 Ferrara, Italy.
| | - Barbara Pavan
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, via Borsari 46, 44121 Ferrara, Italy.
| | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy.
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100 Sassari, Italy.
| | - Alessandro Dalpiaz
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, via Fossato di Mortara 19, 44121 Ferrara, Italy.
| |
Collapse
|
10
|
Bhat SI, Ahmadi Y, Ahmad S. Recent Advances in Structural Modifications of Hyperbranched Polymers and Their Applications. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01969] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shahidul Islam Bhat
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Younes Ahmadi
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Sharif Ahmad
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
11
|
Retrograded starch/pectin coated gellan gum-microparticles for oral administration of insulin: A technological platform for protection against enzymatic degradation and improvement of intestinal permeability. Eur J Pharm Biopharm 2018; 123:84-94. [DOI: 10.1016/j.ejpb.2017.11.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/06/2017] [Accepted: 11/23/2017] [Indexed: 01/01/2023]
|
12
|
Muankaew C, Loftsson T. Cyclodextrin-Based Formulations: A Non-Invasive Platform for Targeted Drug Delivery. Basic Clin Pharmacol Toxicol 2017; 122:46-55. [PMID: 29024354 DOI: 10.1111/bcpt.12917] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/20/2017] [Indexed: 12/26/2022]
Abstract
Cyclodextrins (CDs) are recognized as promising pharmaceutical excipients due to their unique ability to form water-soluble inclusion complexes with various poorly soluble compounds. The numerous investigations on CDs and their use in nanomedicine have received considerable attention in the last three decades, leading to the rapid development of new CD-containing formulations that significantly facilitate targeted drug delivery and controlled drug release, with consequent improvements in drug bioavailability. This MiniReview highlights the efficacy and recent uses of CDs for non-invasive drug delivery. Using ophthalmic and nasal drug delivery as examples, an overview of chemical properties, mechanisms of CDs on drug solubilization, stabilization and permeation, along with their toxicological profiles relevant to nasal and ocular administration, are provided and discussed. The recent development and application of CD-based nanocarrier systems for targeted drug delivery are summarized.
Collapse
Affiliation(s)
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
13
|
Abbina S, Vappala S, Kumar P, Siren EMJ, La CC, Abbasi U, Brooks DE, Kizhakkedathu JN. Hyperbranched polyglycerols: recent advances in synthesis, biocompatibility and biomedical applications. J Mater Chem B 2017; 5:9249-9277. [DOI: 10.1039/c7tb02515g] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hyperbranched polyglycerol is one of the most widely studied biocompatible dendritic polymer and showed promising applications. Here, we summarized the recent advancements in the field.
Collapse
Affiliation(s)
- Srinivas Abbina
- Department of Pathology and Laboratory Medicine
- University of British Columbia
- Vancouver
- Canada
- Center for Blood Research
| | - Sreeparna Vappala
- Department of Pathology and Laboratory Medicine
- University of British Columbia
- Vancouver
- Canada
- Center for Blood Research
| | - Prashant Kumar
- Center for Blood Research
- University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| | - Erika M. J. Siren
- Center for Blood Research
- University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| | - Chanel C. La
- Center for Blood Research
- University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| | - Usama Abbasi
- Department of Pathology and Laboratory Medicine
- University of British Columbia
- Vancouver
- Canada
- Center for Blood Research
| | - Donald E. Brooks
- Department of Pathology and Laboratory Medicine
- University of British Columbia
- Vancouver
- Canada
- Center for Blood Research
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Laboratory Medicine
- University of British Columbia
- Vancouver
- Canada
- Center for Blood Research
| |
Collapse
|
14
|
Biocompatible hyperbranched polyglycerol modified β-cyclodextrin derivatives for docetaxel delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:965-972. [PMID: 27987795 DOI: 10.1016/j.msec.2016.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/19/2016] [Accepted: 11/02/2016] [Indexed: 01/24/2023]
Abstract
The development of biocompatible vector for hydrophobic drug delivery remains a longstanding issue in cancer therapy. We design and synthesis a drug delivery system based on HPG modified β-CD (β-CD-HPG) by conjugating HPG branches onto β-CD core and its structure was confirmed by NMR, FTIR, GPC and solubility. In vitro biocompatibility tests showed that HPG modification significantly improved red blood cells morphology alteration and hemolysis cause by β-CD and β-CD-HPG displayed cell safety apparently in a wide range of 0.01-1mg/mL. An anti-cancer drug, docetaxel, was effectively encapsulated into β-CD-HPG which was confirmed by DSC analysis. This copolymer could form nanoparticles with small size (<200nm) and exhibited better DTX loading capacity and controlled release kinetics without initial burst release behavior compared with β-CD. Furthermore, antitumor assay in vitro show that β-CD-HPG/DTX effectively inhibited proliferation of human breast adenocarcinoma cells. Therefore, β-CD-HPG/DTX exhibit great potential for cancer chemotherapy.
Collapse
|
15
|
Gosecki M, Gadzinowski M, Gosecka M, Basinska T, Slomkowski S. Polyglycidol, Its Derivatives, and Polyglycidol-Containing Copolymers-Synthesis and Medical Applications. Polymers (Basel) 2016; 8:E227. [PMID: 30979324 PMCID: PMC6432134 DOI: 10.3390/polym8060227] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 12/24/2022] Open
Abstract
Polyglycidol (or polyglycerol) is a biocompatible polymer with a main chain structure similar to that of poly(ethylene oxide) but with a ⁻CH₂OH reactive side group in every structural unit. The hydroxyl groups in polyglycidol not only increase the hydrophilicity of this polymer but also allow for its modification, leading to polymers with carboxyl, amine, and vinyl groups, as well as to polymers with bonded aliphatic chains, sugar moieties, and covalently immobilized bioactive compounds in particular proteins. The paper describes the current state of knowledge on the synthesis of polyglycidols with various topology (linear, branched, and star-like) and with various molar masses. We provide information on polyglycidol-rich surfaces with protein-repelling properties. We also describe methods for the synthesis of polyglycidol-containing copolymers and the preparation of nano- and microparticles that could be derived from these copolymers. The paper summarizes recent advances in the application of polyglycidol and polyglycidol-containing polymers as drug carriers, reagents for diagnostic systems, and elements of biosensors.
Collapse
Affiliation(s)
- Mateusz Gosecki
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Mariusz Gadzinowski
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Monika Gosecka
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Teresa Basinska
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Stanislaw Slomkowski
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| |
Collapse
|
16
|
How to overcome the limitations of current insulin administration with new non-invasive delivery systems. Ther Deliv 2015; 6:83-94. [DOI: 10.4155/tde.14.82] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Non-invasive insulin delivery systems have potential to overcome the most pressing problem regarding effective treatment of diabetic patients: therapy compliance. To overcome this disadvantage, non-invasive routes such as oral, buccal, pulmonary, nasal and transdermal have been proposed. These new routes of insulin administration may help to suppress hypoglycemia episodes and aid to control weight gain and post-meal glucose. Despite all efforts the invasive route remains preferential, since studies on insulin administration by non-invasive routes conducted to date have not demonstrated clinical efficacy and safety, including some products introduced in the market. Therefore, the aim of this review is to make an update of the current state of administration of insulin by non-invasive routes as alternatives to the conventional invasive route.
Collapse
|
17
|
Abstract
The recent research progress in biological and biomedical applications of hyperbranched polymers has been summarized in this review.
Collapse
Affiliation(s)
- Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Tianyu Zhao
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Wenxin Wang
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| |
Collapse
|
18
|
Wang L, Yang YW, Zhu M, Qiu G, Wu G, Gao H. β-Cyclodextrin-conjugated amino poly(glycerol methacrylate)s for efficient insulin delivery. RSC Adv 2014. [DOI: 10.1039/c3ra47150k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
19
|
Daimon Y, Izawa H, Kawakami K, Żywicki P, Sakai H, Abe M, Hill JP, Ariga K. Media-dependent morphology of supramolecular aggregates of β-cyclodextrin-grafted chitosan and insulin through multivalent interactions. J Mater Chem B 2014; 2:1802-1812. [DOI: 10.1039/c3tb21528h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Zhang J, Ma PX. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 2013; 65:1215-33. [PMID: 23673149 PMCID: PMC3885994 DOI: 10.1016/j.addr.2013.05.001] [Citation(s) in RCA: 581] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 04/28/2013] [Accepted: 05/03/2013] [Indexed: 12/25/2022]
Abstract
The excellent biocompatibility and unique inclusion capability as well as powerful functionalization capacity of cyclodextrins and their derivatives make them especially attractive for engineering novel functional materials for biomedical applications. There has been increasing interest recently to fabricate supramolecular systems for drug and gene delivery based on cyclodextrin materials. This review focuses on state of the art and recent advances in the construction of cyclodextrin-based assemblies and their applications for controlled drug delivery. First, we introduce cyclodextrin materials utilized for self-assembly. The fabrication technologies of supramolecular systems including nanoplatforms and hydrogels as well as their applications in nanomedicine and pharmaceutical sciences are then highlighted. At the end, the future directions of this field are discussed.
Collapse
Affiliation(s)
- Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Peter X Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Zhang X, Zhang X, Yu P, Han Y, Li Y, Li C. Hydrotropic polymeric mixed micelles based on functional hyperbranched polyglycerol copolymers as hepatoma-targeting drug delivery system. J Pharm Sci 2012; 102:145-53. [PMID: 23132353 DOI: 10.1002/jps.23344] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/11/2012] [Accepted: 10/03/2012] [Indexed: 11/07/2022]
Abstract
Mixed copolymer nanoparticles (NPs) self-assembled from β-cyclodextrin-grafted hyperbranched polyglycerol (HPG-g-CD) and lactobionic acid (LA)-grafted hyperbranched polyglycerol (HPG-g-LA) were applied as carriers for a hydrophobic antitumor drug, paclitaxel (PTX), achieving hepatocellular carcinoma-targeted delivery. The resulting NPs exhibited high drug loading capacity and substantial stability in aqueous solution. In vitro drug release studies demonstrated a controlled drug release profile with increased release at acidic pH. Remarkably, tumor proliferation assays showed that PTX-loaded mixed copolymer NPs inhibited asialoglycoprotein (ASGP) receptor positive HepG2 cell proliferation in a concentration-dependent manner in comparison with ASGP receptor negative BGC-823 cells. Moreover, the competition assay demonstrated that the small molecular LA inhibited the cellular uptake of the PTX-loaded mixed copolymer NPs, indicating the ASGP receptor-mediated endocytosis in HepG2 cells. In addition, the intracellular uptake tests by confocal laser scanning microscopy showed that the mixed copolymer NPs were more efficiently taken up by HepG2 cells compared with HPG-g-CD NPs. These results suggest a feasible application of the mixed copolymer NPs as nanocarriers for hepatoma-targeted delivery of potent antitumor drugs.
Collapse
Affiliation(s)
- Xuejiao Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | |
Collapse
|
22
|
de Araújo MVG, Vieira JVF, da Silva TA, Kubota T, Barboza FM, Farago PV, Zawadzki SF. Innovative Cross-Linked Polyurethane Networks Based on Cyclodextrins and Polyethylene Glycols: Inclusion Capacity and Potential Use as Controlled Release Carrier for Nifedipine. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/masy.201100160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|