1
|
Severini L, Tavagnacco L, Sennato S, Celi E, Chiessi E, Mazzuca C, Zaccarelli E. Unveiling the self-assembly process of gellan-chitosan complexes through a combination of atomistic simulations and experiments. Int J Biol Macromol 2025; 292:139098. [PMID: 39732239 DOI: 10.1016/j.ijbiomac.2024.139098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/12/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024]
Abstract
Polyelectrolyte complexes (PECs), formed via the self-assembly of oppositely charged polysaccharides, are highly valued for their biocompatibility, biodegradability, and hydrophilicity, offering significant potential for biotechnological applications. However, the complex nature and lack of insight at a molecular level into polyelectrolytes conformation and aggregation often hinders the possibility of achieving an optimal control of PEC systems, limiting their practical applications. To address this problem, an in-depth investigation of PECs microscopic structural organization is required. In this work, for the first time, a hybrid approach that combines experimental techniques with atomistic molecular dynamics simulations is used to elucidate, at a molecular level, the mechanisms underlying the aggregation and structural organization of complexes formed by gellan and chitosan, i.e. PECs commonly used in food technology. This combined analysis reveals a two-step complexation process: gellan initially self-assembles into a double-helix structure, subsequently surrounded and stabilized by chitosan via electrostatic interactions. Furthermore, these results show that complexation preserves the individual conformation and intrinsic functionality of both polyelectrolytes, thereby ensuring the efficacy of the PECs in biotechnological applications.
Collapse
Affiliation(s)
- Leonardo Severini
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy; Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy; Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Letizia Tavagnacco
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy; Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Simona Sennato
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy; Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Erika Celi
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy
| | - Ester Chiessi
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Claudia Mazzuca
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Emanuela Zaccarelli
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy; Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
2
|
Li H, Li Y, Liu L, Ren X, Yuan C, Li J. Effects of acetylated polysaccharide on the prebiotic properties of grape seed proanthocyanidins - Based on in vitro fermentation with Artemisia sphaerocephala Krasch glucomannan. Int J Biol Macromol 2024; 281:136950. [PMID: 39490883 DOI: 10.1016/j.ijbiomac.2024.136950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
This study evaluated the impact of Artemisia sphaerocephala Krasch glucomannan with different degrees of acetyl group substitution (DS) on the prebiotic properties of grape seed proanthocyanidins (GSP). UV spectra, CIELab, and dynamic light scattering analyses indicated DS-influenced variable interactions between GSP and glucomannan. In vitro fermentation demonstrated that glucomannan enhanced the solubility of some phenolic compounds, and decreased the pH value of fermentation liquids. The production of acetate acid and total short chain fatty acids in the GSP fermentation liquid increased with the degree of DS of glucomannan. Notably, acetylated glucomannan exerted dramatic effects on GSP-induced gut microbiota modulation. The relative abundances of Bacteroides ovatus and Bacteroides decreased as DS increased. Meanwhile, Bacteroides acidifaciens and Akkermansia muciniphila have a positive correlation, even though the GSP-promoted enrichment of A. muciniphila was inhibited by the added glucomannan. Moreover, glucomannan enhanced the metabolism of nucleotides, secondary bile acid, and glycan inhibited by GSP. These findings suggest that acetylated glucomannan affect the prebiotic properties of GSP with its DS serving as a key factor.
Collapse
Affiliation(s)
- Haocheng Li
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanyuan Li
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lin Liu
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiangbo Ren
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunlong Yuan
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China.
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China.
| |
Collapse
|
3
|
Ding W, Sun H, Li X, Li Y, Jia H, Luo Y, She D, Geng Z. Environmental applications of lignin-based hydrogels for Cu remediation in water and soil: adsorption mechanisms and passivation effects. ENVIRONMENTAL RESEARCH 2024; 250:118442. [PMID: 38368919 DOI: 10.1016/j.envres.2024.118442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Heavy metal pollution, particularly the excessive release of copper (Cu), is an urgent environmental concern. In this study, sodium lignosulfonate/carboxymethyl sa-son seed gum (SL-Cg-g-PAA) designed for remediation of Cu-contaminated water and soil was successfully synthesized through a free radical polymerization method using lignin as a raw material. This hydrogel exhibits remarkable Cu adsorption capability when applied to water, with a maximum adsorption capacity reaching 172.41 mg/g. Important adsorption mechanisms include surface complexation and electrostatic attraction between Cu(Ⅱ) and oxygen-containing functional groups (-OH, -COOH), as well as cation exchange involving -COONa and -SO3Na. Furthermore, SL/Cg-g-PAA effectively mitigated the bioavailability of heavy metals within soil matrices, as evidenced by a notable 14.1% reduction in DTPA extracted state Cu (DTPA-Cu) content in the S4 treatment (0.7% SL/Cg-g-PAA) compared to the control group. Concurrently, the Cu content in both the leaves and roots of pakchoi exhibited substantial decreases of 55.19% and 36.49%, respectively. These effects can be attributed to the precipitation and complexation reactions facilitated by the hydrogel. In summary, this composite hydrogel is highly promising for effective remediation of heavy metal pollution in water and soil, with a particular capability for the immobilization of Cu(Ⅱ) and reduction of its adverse effects on ecosystems.
Collapse
Affiliation(s)
- Wei Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hao Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianzhen Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yanyang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yanli Luo
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Diao She
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, CAS&MWR, Yangling 712100, China.
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Northwest Plant Nutrition and Agro-Environment in Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
4
|
Xiao M, Jia X, Kang J, Liu Y, Zhang J, Jiang Y, Liu G, Cui SW, Guo Q. Unveiling the breadmaking transformation: Structural and functional insights into Arabinoxylan. Carbohydr Polym 2024; 330:121845. [PMID: 38368117 DOI: 10.1016/j.carbpol.2024.121845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024]
Abstract
To understand the changes in arabinoxylan (AX) during breadmaking, multi-step enzyme digestion was conducted to re-extract arabinoxylan (AX-B) from AX-fortified bread. Their structural changes were compared using HPSEC, HPAEC, FT-IR, methylation analysis, and 1H NMR analysis; their properties changes in terms of enzymatic inhibition activities and in vitro fermentability against gut microbiota were also compared. Results showed that AX-B contained a higher portion of covalently linked protein while the molecular weight was reduced significantly after breadmaking process (from 677.1 kDa to 15.6 kDa); the structural complexity of AX-B in terms of the degree of branching was increased; the inhibition activity against α-amylase (76.81 % vs 73.89 % at 4 mg/mL) and α-glucosidase (64.43 % vs 58.08 % at 4 mg/mL) was improved; the AX-B group produced a higher short-chain fatty acids concentration than AX (54.68 ± 7.86 mmol/L vs 44.03 ± 4.10 mmol/L). This study provides novel knowledge regarding the structural and properties changes of arabinoxylan throughout breadmaking, which help to predict the health benefits of fibre-fortified bread and achieve precision nutrition.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666, Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China.
| | - Jixiang Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yueru Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Guorong Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Steve W Cui
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
5
|
Li H, Wang G, Yan X, Hu X, Li J. Effects of acetyl groups on the prebiotic properties of glucomannan extracted from Artemisia sphaerocephala Krasch seeds. Carbohydr Polym 2024; 330:121805. [PMID: 38368082 DOI: 10.1016/j.carbpol.2024.121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/19/2024]
Abstract
This study explores the structural modification of glucomannan extracted from Artemisia sphaerocephala Krasch seeds (60S) to assess the impact of acetyl groups on its prebiotic characteristics. The structural changes were examined, with a focus on the degree of acetyl group substitution (DS). Both deacetylation and acetylation had limited influence on the molecular properties of 60S. Despite these modifications, the apparent viscosity of all samples remained consistently low. In vitro fermentation experiments revealed that Escherichia-Shigella decreased as DS increased, while Bacteroides ovatus was enriched. Acetylation had no significant impact on the utilization rate of 60S but led to a reduction in the production of propionic acid. Furthermore, untargeted metabolomics analysis confirmed the changes in propionic acid levels. Notably, metabolites such as N-acetyl-L-tyrosine, γ-muricholic acid, and taurocholate were upregulated by acetylated derivatives. Overall, acetyl groups are speculated to play a pivotal role in the prebiotic properties of 60S.
Collapse
Affiliation(s)
- Haocheng Li
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Gongda Wang
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ximei Yan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
Naji-Tabasi S, Shakeri MS, Modiri-Dovom A, Shahbazizadeh S. Investigating Baneh ( Pistacia atlantica) gum properties and applying its particles for stabilizing Pickering emulsions. Food Chem X 2024; 21:101111. [PMID: 38298356 PMCID: PMC10828642 DOI: 10.1016/j.fochx.2023.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024] Open
Abstract
The purpose of this research was to investigate Baneh gum (BG) properties and prepare Pickering emulsion stabilized by BG particles at different concentrations (0.1, 0.3, 0.5, and 0.7 % (w/w)). Average size of the particles was 948 nm, and the SEM images confirmed the presence of the particles. Surface and interfacial tension of the BG particles were 48.39 and 15.36 (mN/m), respectively. Contact angle of water- and oil-BG particles was 99° and 42.68°, respectively, which can stabilize oil-in-water emulsions. Increment of the Pickering particles concentration decreased the size of the emulsion droplets and increased the emulsion stability (p ≤ 0.05). The size of emulsion droplets was in the range of 1.65-1.76 μm and the highest zeta potential value was obtained by 0.7 % (w/w) BG particles (-30.02 mV). It can be concluded that increasing BG particles to 0.7 % resulted in creating the most stable emulsion.
Collapse
Affiliation(s)
- Sara Naji-Tabasi
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), PO Box 91895-157, 356 Mashhad, Iran
| | - Monir-sadat Shakeri
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), PO Box 91895-157, 356 Mashhad, Iran
| | - Atena Modiri-Dovom
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), PO Box 91895-157, 356 Mashhad, Iran
| | - Saeedeh Shahbazizadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), PO Box 91895-157, 356 Mashhad, Iran
| |
Collapse
|
7
|
Nadi M, Razavi SMA, Shahrampour D. Fabrication of green colorimetric smart packaging based on basil seed gum/chitosan/red cabbage anthocyanin for real-time monitoring of fish freshness. Food Sci Nutr 2023; 11:6360-6375. [PMID: 37823104 PMCID: PMC10563753 DOI: 10.1002/fsn3.3574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 10/13/2023] Open
Abstract
Novel green intelligent films based on basil seed gum (BSG)/chitosan containing red cabbage extract (RCA) (0, 2.5, 5, and 10, % (v/v)) as a colorimetric indicator for food freshness detection were fabricated by casting method. The physicochemical, barrier, mechanical, and antioxidant characteristics, as well as sensitivity to pH and ammonia gas of smart edible packaging films, were investigated. The interaction of anthocyanin extract as a natural dye with biopolymers in films characterized by FTIR spectroscopy and SEM images revealed their suitable compatibility. The film with maximum anthocyanin content (10% (v/v)) appeared robust color changes against various pH and ammonia gas levels. The color of indicator films when exposed to alkaline, neutral and acidic buffers are indicated with green, blue, and red colors, respectively. The DPPH radical scavenging activity of smart BSG/chitosan films improved from 23% to 90.32% with increasing RCA content from 2.5 to 10% (v/v). Generally, the incorporation of RCA in film structure enhanced their solubility, WVP, ΔE, turbidity, and flexibility, and reduced tensile strength. The observations successfully confirmed the efficacy of pH-sensitive indicator smart film based on BSG/chitosan for evaluation of fish spoilage during storage.
Collapse
Affiliation(s)
- Maryam Nadi
- Center of Excellence in Native Natural Hydrocolloids of IranFerdowsi University of Mashhad (FUM)MashhadIran
| | - Seyed Mohammad Ali Razavi
- Center of Excellence in Native Natural Hydrocolloids of IranFerdowsi University of Mashhad (FUM)MashhadIran
| | - Dina Shahrampour
- Department of Food Safety and Quality ControlResearch Institute of Food Science and Technology (RIFST)MashhadIran
| |
Collapse
|
8
|
Tang C, Lu T, Shi H, Ye J. Physicochemical properties and cytocompatibility of radiation-resistant and anti-washout calcium phosphate cement by introducing artemisia sphaerocephala krasch gum. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2161-2178. [PMID: 37368503 DOI: 10.1080/09205063.2023.2230844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
The anti-washout ability of calcium phosphate cement (CPC) determines the effectiveness of CPC in clinical application. The γ-ray irradiation method often used in the sterilization process of CPC products is easy to degrade some commonly polymer anti-washout agent, which greatly reduces its anti-washout performance. Artemisia sphaerocephala Krasch gum (ASKG) has the potential of radiation resistance and anti-washout, but no one has considered its performance as anti-washout agent of CPC and mechanism of radiation resistance and anti-washout so far. In this study, we report the effect of γ-ray on ASKG and the effectiveness of ASKG for enhancing of radiation resistance and anti-washout ability of CPC, the physical, chemical properties and in vitro cell behaviors of ASKG-CPCs were also investigated. The results showed that addition of ASKG before and after irradiation could significantly enhanced the anti-washout performance of CPC, which is differ from conventional anti-washout agents. Meanwhile, ASKG-CPCs had an excellent injectable property and biocompatibility, and low content of irradiated ASKG could promote bone differentiation well. We anticipate that the radiation-resistant and anti-washout ASKG-CPCs have potential application prospect in orthopaedic surgery.
Collapse
Affiliation(s)
- Chenyu Tang
- School of Materials Science and Engineering and, Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, China
| | - Teliang Lu
- School of Materials Science and Engineering and, Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, China
| | - Haishan Shi
- School of Stomatology, Jinan University, Guangzhou, China
| | - Jiandong Ye
- School of Materials Science and Engineering and, Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| |
Collapse
|
9
|
Bai Y, Niu Y, Qin S, Ma G. A New Biomaterial Derived from Aloe vera-Acemannan from Basic Studies to Clinical Application. Pharmaceutics 2023; 15:1913. [PMID: 37514099 PMCID: PMC10385217 DOI: 10.3390/pharmaceutics15071913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Aloe vera is a kind of herb rich in polysaccharides. Acemannan (AC) is considered to be a natural polysaccharide with good biodegradability and biocompatibility extracted from Aloe vera and has a wide range of applications in the biomedical field due to excellent immunomodulatory, antiviral, antitumor, and tissue regeneration effects. In recent years, clinical case reports on the application of AC as a novel biomedical material in tissue regenerative medicine have emerged; it is mainly used in bone tissue engineering, pulp-dentin complex regeneration engineering, and soft tissue repair, among other operations. In addition, multiple studies have proved that the new composite products formed by the combination of AC and other compounds have excellent biological and physical properties and have broader research prospects. This paper introduces the preparation process, surface structure, and application forms of AC; summarizes the influence of acetyl functional group content in AC on its functions; and provides a detailed review of the functional properties, laboratory studies, clinical cutting-edge applications, and combined applications of AC. Finally, the current application status of AC from basic research to clinical treatment is analyzed and its prospects are discussed.
Collapse
Affiliation(s)
- Yingjie Bai
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
| | - Yimeng Niu
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
| | - Shengao Qin
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
- Department of Stomatology, Stomatological Hospital Affiliated School, Stomatology of Dalian Medical University, NO. 397 Huangpu Road, Shahekou District, Dalian 116086, China
| |
Collapse
|
10
|
Yue J, Chen X, Yao X, Gou Q, Li D, Liu H, Yao X, Nishinari K. Stability improvement of emulsion gel fabricated by Artemisia sphaerocephala Krasch. polysaccharide fractions. Int J Biol Macromol 2022; 205:253-260. [PMID: 35183599 DOI: 10.1016/j.ijbiomac.2022.02.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 12/22/2022]
Abstract
Artemisia sphaerocephala Krasch. polysaccharide (ASKP) contained two fractions of 60P and 60S with different molecular weight. It was found the potential performance of interface adsorption and gelation activities for the high molecular weight of 60P in comparison with low molecular weight of 60S. The emulsion stability and droplets filling in gel network was highly dependent on the medium chain triglyceride (MCT) concentrations. The emulsion gels fabricated through a complexation of 60P and gelatin or collagen peptides exhibited significantly improved emulsifying activity and gel strength at higher concentration of MCT. Gelatin or collagen peptide could be adsorbed on the droplets interface and interact with 60P in gel matrix, thus presenting an active filling. However, 60P based emulsion gel complexed with pullulan contributed to a lower strength than hydrogel, which was probably due to the existence of spaces between droplets and gel matrix, weakening the stability of gel network, considered as an inactive filling.
Collapse
Affiliation(s)
- Jianxiong Yue
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Xiaoyu Chen
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Xiaolin Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China.
| | - Qingxia Gou
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Dan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Huabing Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Xiaoxue Yao
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| |
Collapse
|
11
|
Yao X, Yao X, Chen X, Yue J, Yang D, Liu N, Nishinari K. Construction of Artemisia sphaerocephala Krasch. Polysaccharide based hydrogel complexed with pullulan and gelatin crosslinked by ferric ions. Food Chem 2022; 373:131567. [PMID: 34802803 DOI: 10.1016/j.foodchem.2021.131567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/18/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022]
Abstract
Artemisia sphaerocephala Krasch. polysaccharide (ASKP) was found to be crosslinked with ferric ions to form hydrogels in the previous study. In this work, it was demonstrated that ASKP-Fe3+ hydrogel complexed with pullulan or gelatin contributed to a significantly enhanced gel strength at 1.5% ASKP, 60 mM Fe2+, pH 4.0, and the mixing ratio of 9: 1. The complexed hydrogels presented a dense semi-interpenetrating network along with the delay of gelation time and the increase of water retention. ASKP based complexes exhibited good compatibility, probably because pullulan and gelatin could be entangled with ASKP chain under hydrogen bonding and electrostatic interaction, respectively. The interaction between ASKP and pullulan or gelatin contributed to the formation of complexed hydrogels with dense network and significantly enhanced gel strength. It is inferred that ASKP would have great potential to be a new gelling material as well as for the ferric ions delivery.
Collapse
Affiliation(s)
- Xiaolin Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China.
| | - Xiaoxue Yao
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Xiaoyu Chen
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Jianxiong Yue
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Dan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Ning Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| |
Collapse
|
12
|
Severini L, De France KJ, Sivaraman D, Kummer N, Nyström G. Biohybrid Nanocellulose-Lysozyme Amyloid Aerogels via Electrostatic Complexation. ACS OMEGA 2022; 7:578-586. [PMID: 35036725 PMCID: PMC8757363 DOI: 10.1021/acsomega.1c05069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/25/2021] [Indexed: 05/04/2023]
Abstract
Modern science is increasingly turning to nature for inspiration to design sustainable biomaterials in a smart and effective way. Herein, we describe biohybrid aerogels based on electrostatic complexation between cellulose and proteins-two of the most abundant natural polymers on Earth. The effects of both particle surface charge and particle size are investigated with respect to aerogel properties including the morphology, surface area, stability, and mechanical strength. Specifically, negatively charged nanocellulose (cellulose nanocrystals and cellulose nanofibers) and positively charged lysozyme amyloid fibers (full-length and shortened via sonication) are investigated in the preparation of fibrillar aerogels, whereby the nanocellulose component was found to have the largest effect on the resulting aerogel properties. Although electrostatic interactions between these two classes of charged nanoparticles allow us to avoid the use of any cross-linking agents, the resulting aerogels demonstrate a simple additive performance as compared to their respective single-component aerogels. This lack of synergy indicates that although electrostatic complexation certainly leads to the formation of local aggregates, these interactions alone may not be strong enough to synergistically improve bulk aerogel properties. Nevertheless, the results reported herein represent a critical step toward a broader understanding of biohybrid materials based on cellulose and proteins.
Collapse
Affiliation(s)
- Leonardo Severini
- Department
of Chemical Sciences and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- Laboratory
for Cellulose & Wood Materials, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Kevin J. De France
- Laboratory
for Cellulose & Wood Materials, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Deeptanshu Sivaraman
- Laboratory
for Building Energy Materials and Components, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Nico Kummer
- Laboratory
for Cellulose & Wood Materials, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
- Department
of Health Science and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Gustav Nyström
- Laboratory
for Cellulose & Wood Materials, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
- Department
of Health Science and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
13
|
Sevgi A, Özçelik M, Yılmaz T. Extraction, characterization, and rheology of
Opuntia ficus indica
cladode polysaccharides. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anıl Sevgi
- Department of Food Engineering Manisa Celal Bayar University Manisa Turkey
| | - Melisa Özçelik
- Department of Food Engineering Manisa Celal Bayar University Manisa Turkey
| | - Tuncay Yılmaz
- Department of Food Engineering Manisa Celal Bayar University Manisa Turkey
| |
Collapse
|
14
|
Physical modification of Lepidium perfoliatum seed gum using cold atmospheric-pressure plasma treatment. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
The anti-obesity effects exerted by different fractions of Artemisia sphaerocephala Krasch polysaccharide in diet-induced obese mice. Int J Biol Macromol 2021; 182:825-837. [PMID: 33864863 DOI: 10.1016/j.ijbiomac.2021.04.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022]
Abstract
Artemisia sphaerocephala Krasch polysaccharide (ASKP) consists of two main fractions, 60P (molecular weight at 551 kDa) and 60S (molecular weight at 39 kDa). The anti-obesity effects of ASKP and its two fractions were investigated in high-fat-diet-fed mice and showed similar capability in efficiently preventing the development of obesity. The final body weight and body weight gain of obesity mice model were reduced by 12.44% and 35.33% by ASKP, 10.63% and 34.35% by 60P, and 7.82% and 20.04% by 60S. They also showed similar efficiency to ameliorate dyslipidemia, systematic inflammation, and gut dysbiosis. The colonic genes of barrier integrity were significantly upregulated and the genes of hepatic lipid metabolism and that of colonic inflammatory response were suppressed. They attenuated the gut dysbiosis in obese mice, such as the significant enrichment of beneficial genera (Bifidobacterium and Olsenella) and suppression of harmful ones (Mucispirillum and Helicobacter). Significant enrichment of carbohydrate metabolism associated with the promotion of short-chain fatty acid production and decrease of the metabolisms related to obesity and gut dysbiosis (valine, leucine, and isoleucine biosynthesis, and nitrogen metabolism) were also observed by the administration of ASKP, 60P, and 60S. Overall, these polysaccharides showed potential in acting as prebiotics in preventing high-fat-diet-induced obesity.
Collapse
|
16
|
Liu Y, Liu Z, Zhu X, Hu X, Zhang H, Guo Q, Yada RY, Cui SW. Seed coat mucilages: Structural, functional/bioactive properties, and genetic information. Compr Rev Food Sci Food Saf 2021; 20:2534-2559. [PMID: 33836113 DOI: 10.1111/1541-4337.12742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/04/2023]
Abstract
Seed coat mucilages are mainly polysaccharides covering the outer layer of the seeds to facilitate seed hydration and germination, thereby improving seedling emergence and reducing seedling mortality. Four types of polysaccharides are found in mucilages including xylan, pectin, glucomannan, and cellulose. Recently, mucilages from flaxseed, yellow mustard seed, chia seed, and so on, have been used extensively in the areas of food, pharmaceutical, and cosmetics contributing to stability, texture, and appearance. This review, for the first time, addresses the similarities and differences in physicochemical properties, molecular structure, and functional/bioactive properties of mucilages among different sources; highlights their structure and function relationships; and systematically summarizes the related genetic information, aiming with the intent to explore the potential functions thereby extending their future industrial applications.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhenfei Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Xuerui Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Rickey Y Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steve W Cui
- Guelph Research and Development Centre, Agri- and Agri-food Canada, Guelph, Ontario, Canada
| |
Collapse
|
17
|
Liu S, Hu J, Li M, Zhu S, Guo S, Guo H, Wang T, Zhang Y, Zhang J, Wang J. The role of Se content in improving anti-tumor activities and its potential mechanism for selenized Artemisia sphaerocephala polysaccharides. Food Funct 2021; 12:2058-2074. [PMID: 33538724 DOI: 10.1039/d0fo03013a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drawing an instructive point on the correlation between Se content and anti-tumor effects is helpful to develop Se-polysaccharides with potential anti-tumor activities. In this work, Se content-related anti-tumor activities are assessed in vitro by multiple comparisons among Na2SeO3, Artemisia sphaerocephala polysaccharide (ASP), and selenized ASP (SeASPs, Se contents 4344-13 030 μg g-1) synthesized by a chemical modification method. The results suggest that SeASPs exhibit potent anti-proliferation activities against three kinds of tumor cells by inducing apoptosis and cell cycle arrest, which is positively correlated to Se content. Meanwhile, SeASPs display low cytotoxicity against normal cells as compared with Na2SeO3 and 5-FU. A mitochondrial membrane potential assay and western blotting analysis suggest that the SeASPs induce HepG2 cell apoptosis via mitochondrial and death receptor pathways, which is confirmed by the reduced mitochondrial membrane potential, upregulated Bax/Bcl-2 ratio, promoted Cyt C release, and increased expression level of caspase-3/-9/-8. In an in vivo anti-tumor assay, SeASP with a high Se content (13 030 μg g-1) also obviously inhibits H22 tumor growth in a dose-dependent manner, and a tumor suppression rate of 45.10% is observed. In addition, the results of ELISA analysis suggest that SeASPs obviously increase the concentration of serum NO, cytokines (IL-1β, IL-6, TNF-α), and Ig-G in a dose-dependent manner as compared with the control and ASP group. It could be concluded that adjusting the Se content might be an effective approach to improve the anti-tumor activities of Se-polysaccharides.
Collapse
Affiliation(s)
- Shuang Liu
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China.
| | - Jiahuan Hu
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China.
| | - Min Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China.
| | - Shengyong Zhu
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China.
| | - Shujuan Guo
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China.
| | - Hongyun Guo
- Gansu Provincial Academic Institute for Medical Research, Lanzhou 730050, People's Republic of China
| | - Tao Wang
- Gansu Provincial Academic Institute for Medical Research, Lanzhou 730050, People's Republic of China
| | - Yongdong Zhang
- Gansu Provincial Academic Institute for Medical Research, Lanzhou 730050, People's Republic of China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China. and Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, People's Republic of China and Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Junlong Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China. and Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, People's Republic of China and Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
18
|
Zamani Z, Razavi SM. Physicochemical, rheological and functional properties of Nettle seed (Urtica pilulifera) gum. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106304] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Mzoughi Z, Majdoub H. Pectic polysaccharides from edible halophytes: Insight on extraction processes, structural characterizations and immunomodulatory potentials. Int J Biol Macromol 2021; 173:554-579. [PMID: 33508358 DOI: 10.1016/j.ijbiomac.2021.01.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The preparation, chemical properties and bio-activities of polysaccharides derived from halophytes have gained an increasing interest in the past few years. Phytochemical and pharmacological reports have shown that carbohydrates are important biologically active compounds of halophytes with numerous biological potentials. It is believed that the mechanisms involved in these bio-activities are due to the modulation of immune system. The main objective of this summary is to appraise available literature of a comparative study on the extraction, structural characterizations and biological potentials, particularly immunomodulatory effects, of carbohydrates isolated from halophytes (10 families). This review also attempts to discuss on bioactivities of polysaccharides related with their structure-activity relationship. Data indicated that the highest polysaccharides yield of around 35% was obtained under microwave irradiation. Structurally, results revealed that the most of extracted carbohydrates are pectic polysaccharides which mainly composed of arabinose (from 0.9 to 72%), accompanied by other monosaccharides (galactose, glucose, rhamnose, mannose and xylose), significant amounts of uronic acids (from 18.9 to 90.1%) and some proportions of fucose (from 0.2 to 8.3%). The molecular mass of these pectic polysaccharides was varied from 10 to 2650 kDa. Hence, the evaluation of these polysaccharides offers a great opportunity to discover novel therapeutic agents that presented especially beneficial immunomodulatory properties. Moreover, reports indicated that uronic acids, molecular weights, as well as the presence of sulfate and unmethylated acidic groups may play a significant role in biological activities of carbohydrates from halophyte species.
Collapse
Affiliation(s)
- Zeineb Mzoughi
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Monastir 5000, Tunisia.
| | - Hatem Majdoub
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
20
|
Physicochemical properties and surface activity characterization of water-soluble polysaccharide isolated from Balangu seed (Lallemantia royleana) gum. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Li J, Pang B, Yan X, Shang X, Hu X, Shi J. Prebiotic properties of different polysaccharide fractions from Artemisia sphaerocephala Krasch seeds evaluated by simulated digestion and in vitro fermentation by human fecal microbiota. Int J Biol Macromol 2020; 162:414-424. [DOI: 10.1016/j.ijbiomac.2020.06.174] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022]
|
22
|
Gao Y, Guo Q, Zhang K, Wang N, Li C, Li Z, Zhang A, Wang C. Polysaccharide from Pleurotus nebrodensis: Physicochemical, structural characterization and in vitro fermentation characteristics. Int J Biol Macromol 2020; 165:1960-1969. [PMID: 33080265 DOI: 10.1016/j.ijbiomac.2020.10.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/20/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
A high Mw (5012 kDa) polysaccharide (PNPS) from the fruiting body of Pleurotus nebrodensis was isolated using water extraction followed by ethanol precipitation. The structural characteristics and in vitro fermentation behaviors of this polysaccharide was investigated. Chemical composition analysis showed the total sugar content of PNPS was up to 97.20 ± 1.80 wt%. Monosaccharide composition analysis showed PNPS contained mainly glucose (89.22 ± 5.70 mol%) while small percentage of mannose (5.60 ± 0.74 mol%) and galactose (5.18 ± 0.33 mol%) were also detected. According to the linkage pattern analysis (methylation analysis), PNPS comprised mainly 4-β-D-Glcp (58.90 mol%), while other residues including α-D-Glcp, 6-α-D-Galp, 3,6-α-D-Manp, 3-β-D-Glcp and 6-α-D-Glcp were detected with a comparable amount. Combined with results from 1D and 2D NMR spectrum, a proposed structure of PNPS was presented. In vitro fermentation of PNPS by gut microbiota showed total SCFA production of all treatment groups was higher than negative control group (NC) significantly (p < 0.05) after 48 h of fermentation. The formation of SCFAs was mainly acetic acid, followed by propionic acid and butyric acid, and the pH was decreased from 6.95 to 4.70. After 72 h, the total sugar content decreased from 5.813 ± 0.87 mg/L to 0.23 ± 0.065 mg/L, and the molecular weight of PNPS decreased.
Collapse
Affiliation(s)
- Yingying Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China.
| | - Kunlin Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Nifei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Chunrong Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zhenjing Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ailin Zhang
- College of food science and Bioengineering, Tianjin Agricultural University, Tianjin 300384, China.
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China.
| |
Collapse
|
23
|
Kakar MU, Kakar IU, Mehboob MZ, Zada S, Soomro H, Umair M, Iqbal I, Umer M, Shaheen S, Syed SF, Deng Y, Dai R. A review on polysaccharides from Artemisia sphaerocephala Krasch seeds, their extraction, modification, structure, and applications. Carbohydr Polym 2020; 252:117113. [PMID: 33183585 DOI: 10.1016/j.carbpol.2020.117113] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 01/16/2023]
Abstract
Artemisia sphaerocephala Krasch (ASK) is an important member of Compositae (Asteraceae) family. Its seeds have been widely used as traditional medicine and to improve the quality of food. Water soluble and water insoluble polysaccharides are found in the seeds of this plant. Research has been conducted on the extraction of polysaccharides, their modification and determination of their structure. To date different techniques for extraction purposes have been applied which are reviewed here. Antioxidant, antidiabetic, anti-obesogenic, antitumor, and immunomodulatory activities have been explored using in vivo and in vitro methods. Moreover, these polysaccharides have been used as packaging material and as a sensing component for monitoring the freshness of packaged food. Some experimental results have shown that the quality of foods is also improved by using them as a food additive. We have also indicated some of the potential areas that are needed to be explored.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, PR China; Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Ihsan Ullah Kakar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Muhammad Zubair Mehboob
- CAS Center for Excellence in Biotic Interaction, College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Shah Zada
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China
| | | | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Imran Iqbal
- Department of Information and Computational Sciences, School of Mathematical Sciences and LMAM, Peking University, Beijing, 100871, China
| | - Muhammad Umer
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Shabnam Shaheen
- Department of Higher Education, Government Girls Degree College Lakki Marwat, City Lakki Marwat, KPK, Pakistan
| | - Shahid Faraz Syed
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, PR China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, PR China.
| |
Collapse
|
24
|
Niknam R, Ghanbarzadeh B, Ayaseh A, Rezagholi F. Barhang (
Plantago major
L.) seed gum: Ultrasound‐assisted extraction optimization, characterization, and biological activities. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14750] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rasoul Niknam
- Faculty of Agriculture, Department of Food Science and Technology University of Tabriz Tabriz Iran
| | - Babak Ghanbarzadeh
- Faculty of Agriculture, Department of Food Science and Technology University of Tabriz Tabriz Iran
- Faculty of Engineering, Department of Food Engineering Near East University Nicosia Turkey
| | - Ali Ayaseh
- Faculty of Agriculture, Department of Food Science and Technology University of Tabriz Tabriz Iran
| | - Fatemeh Rezagholi
- Faculty of Engineering, Department of Food Engineering Near East University Nicosia Turkey
| |
Collapse
|
25
|
Guo Z, Wu X, Zhao X, Fan J, Lu X, Wang L. An edible antioxidant film of Artemisia sphaerocephala Krasch. gum with sophora japonica extract for oil packaging. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2019.100460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
The influence of extraction pH on the chemical compositions, macromolecular characteristics, and rheological properties of polysaccharide: The case of okra polysaccharide. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105586] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Lin GP, Wu DS, Xiao XW, Huang QY, Chen HB, Liu D, Fu HQ, Chen XH, Zhao C. Structural characterization and antioxidant effect of green alga Enteromorpha prolifera polysaccharide in Caenorhabditis elegans via modulation of microRNAs. Int J Biol Macromol 2020; 150:1084-1092. [DOI: 10.1016/j.ijbiomac.2019.10.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 01/14/2023]
|
28
|
Shi H, Wan Y, Li O, Zhang X, Xie M, Nie S, Yin J. Two-step hydrolysis method for monosaccharide composition analysis of natural polysaccharides rich in uronic acids. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Polysaccharides from sunflower stalk pith: Chemical, structural and functional characterization. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.04.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Artemisia sphaerocephala Krasch polysaccharide mediates lipid metabolism and metabolic endotoxaemia in associated with the modulation of gut microbiota in diet-induced obese mice. Int J Biol Macromol 2020; 147:1008-1017. [DOI: 10.1016/j.ijbiomac.2019.10.069] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022]
|
31
|
Yao X, Yao X, Xu K, Wu K, Chen X, Liu N, Nishinari K, Phillips GO, Jiang F. Trivalent iron induced gelation in Artemisia sphaerocephala Krasch. polysaccharide. Int J Biol Macromol 2020; 144:690-697. [DOI: 10.1016/j.ijbiomac.2019.12.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/02/2019] [Accepted: 12/14/2019] [Indexed: 11/24/2022]
|
32
|
Li X, Li J, Yin X, Wang X, Ren T, Ma Z, Li X, Hu X. Effect of Artemisia sphaerocephala Krasch polysaccharide on the gelatinization and retrogradation of wheat starch. Food Sci Nutr 2019; 7:4076-4084. [PMID: 31890187 PMCID: PMC6924306 DOI: 10.1002/fsn3.1273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/03/2019] [Accepted: 09/30/2019] [Indexed: 01/30/2023] Open
Abstract
The effect of Artemisia sphaerocephala Krasch polysaccharide (ASKP) on the gelatinization and retrogradation of wheat starch (WS) was studied. RVA results displayed that ASKP addition increased the setback values of WS, which indicated that ASKP might promote the short-term retrogradation of WS. DSC and XRD results demonstrated that the retrogradation percentage of WS during long-time storage significantly decreased with the addition of ASKP, suggesting the inhibition effect of ASKP on the long-term retrogradation of WS. As shown in TPA test, ASKP addition increased the hardness of starch gel at the beginning but decreased it after 14 days' storage. Results of FT-IR revealed that ASKP could promote the water retention and intermolecular hydrogen bonding formation. With the addition of ASKP, the spin-spin relaxation time measured by LF-NMR decreased from 358.47 ms to 274.15 ms, illustrating that the WS paste containing ASKP had higher water retention ability. Leached amylose content results manifested the interaction between WS and ASKP. In summary, ASKP has potential to be a modifier on the retrogradation of starch in food processing.
Collapse
Affiliation(s)
- Xiaowen Li
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi’anShaanxiChina
| | - Junjun Li
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi’anShaanxiChina
| | - Xiuxiu Yin
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi’anShaanxiChina
| | - Xiaolong Wang
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi’anShaanxiChina
| | - Tian Ren
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi’anShaanxiChina
| | - Zhen Ma
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi’anShaanxiChina
| | - Xiaoping Li
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi’anShaanxiChina
| | - Xinzhong Hu
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi’anShaanxiChina
| |
Collapse
|
33
|
Antidiabetic effects of different polysaccharide fractions from Artemisia sphaerocephala Krasch seeds in db/db mice. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Wang S, Zhao L, Li Q, Liu C, Han J, Zhu L, Zhu D, He Y, Liu H. Rheological properties and chain conformation of soy hull water-soluble polysaccharide fractions obtained by gradient alcohol precipitation. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.12.054] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Wan YJ, Xu MM, Gilbert RG, Yin JY, Huang XJ, Xiong T, Xie MY. Colloid chemistry approach to understand the storage stability of fermented carrot juice. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
A pH and NH3 sensing intelligent film based on Artemisia sphaerocephala Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.028] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Mirarab Razi S, Motamedzadegan A, Shahidi A, Rashidinejad A. The effect of basil seed gum (BSG) on the rheological and physicochemical properties of heat-induced egg albumin gels. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.01.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Liang T, Wang L. Preparation and characterization of a novel edible film based on Artemisia sphaerocephala Krasch. gum: Effects of type and concentration of plasticizers. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.10.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Li J, Hu X, Yan X, Li X, Ma Z, Liu L. Effects of hydrolysis by xylanase on the emulsifying properties of Artemisia sphaerocephala Krasch. polysaccharide. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2016.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
|
41
|
Guo Q, Ai L, Cui SW. Fourier Transform Infrared Spectroscopy (FTIR) for Carbohydrate Analysis. SPRINGERBRIEFS IN MOLECULAR SCIENCE 2018. [DOI: 10.1007/978-3-319-96370-9_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
A systematical rheological study of polysaccharide from Sophora alopecuroides L. seeds. Carbohydr Polym 2018; 180:63-71. [DOI: 10.1016/j.carbpol.2017.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/16/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
|
43
|
Hashemi Gahruie H, Ziaee E, Eskandari MH, Hosseini SMH. Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydr Polym 2017; 166:93-103. [DOI: 10.1016/j.carbpol.2017.02.103] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 12/31/2022]
|
44
|
Khoshakhlagh K, Koocheki A, Mohebbi M, Allafchian A. Development and characterization of electrosprayed Alyssum homolocarpum seed gum nanoparticles for encapsulation of d-limonene. J Colloid Interface Sci 2017; 490:562-575. [DOI: 10.1016/j.jcis.2016.11.067] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/13/2016] [Accepted: 11/19/2016] [Indexed: 10/20/2022]
|
45
|
Dilute solution, flow behavior, thixotropy and viscoelastic characterization of cress seed ( Lepidium sativum ) gum fractions. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.09.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Zheng Q, Ren D, Yang N, Yang X. Optimization for ultrasound-assisted extraction of polysaccharides with chemical composition and antioxidant activity from the Artemisia sphaerocephala Krasch seeds. Int J Biol Macromol 2016; 91:856-66. [DOI: 10.1016/j.ijbiomac.2016.06.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/23/2016] [Accepted: 06/13/2016] [Indexed: 11/29/2022]
|
47
|
Cong L, Ma JT, Jin ZJ, Duan LW, Su WP, Zheng J, Zhang LJ, Xu J, Li DF. Efficacy and Safety of High Specific Volume Polysaccharide-A New Type of Dietary Fiber for Treatment of Functional Constipation and IBS-C. J Nutr Sci Vitaminol (Tokyo) 2016; 61:326-31. [PMID: 26440640 DOI: 10.3177/jnsv.61.326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated the efficacy and safety of a new type of dietary fiber (high specific volume polysaccharide) for use in treating constipation of different etiologies. Functional constipation patients and irritable bowel syndrome-constipation (IBS-C) patients were administrated high specific volume polysaccharide (HSVP) three times daily for a period of 2 wk to relieve their symptoms. Scores on a stool form scale, and patient reports of straining during a bowel movement, having sensations of an incomplete bowel movement or a blocked anorectum, and abnormal defecation intervals were recorded, graded, and scored by a functional constipation sample group. Similarly, a cohort of IBS-C patients reported their occurrence of abdominal discomfort or pain, abnormal stool formation, defecation frequency, and straining during a bowel movement. Additionally, both groups reported any adverse reactions associated with taking HSVP. All patients in both groups returned for follow-up visits, and no adverse reactions to treatment with HSVP were reported. In the functional constipation group, HSVP was effective for treating symptoms of constipation in 81.46% and 93.17% of patients after 7 and 14 d of dosing, respectively (both p<0.05). In the IBS-C group, symptoms of constipation were relieved in 71.67% and 88.34% of patients after 7 and 14 d of dosing, respectively (both p<0.05). High specific volume polysaccharide was shown be effective for treatment of functional constipation and IBS-C, without causing significant adverse events.
Collapse
Affiliation(s)
- Liang Cong
- Digestive System Department, The Second Hospital of Jilin University
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Razmkhah S, Razavi SMA, Mohammadifar MA, Koocheki A, Ale MT. Stepwise extraction of Lepidium sativum seed gum: Physicochemical characterization and functional properties. Int J Biol Macromol 2016; 88:553-64. [DOI: 10.1016/j.ijbiomac.2016.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/02/2016] [Accepted: 04/10/2016] [Indexed: 11/30/2022]
|
49
|
Effects of acetylation on the emulsifying properties of Artemisia sphaerocephala Krasch. polysaccharide. Carbohydr Polym 2016; 144:531-40. [DOI: 10.1016/j.carbpol.2016.02.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/14/2016] [Indexed: 11/17/2022]
|
50
|
Identification of pivotal components on the antioxidant activity of polysaccharide extract from Ganoderma atrum. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.bcdf.2016.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|