1
|
Gholizadeh S, Almasi H, Amjadi S, Moradi M, Ghadiri Alamdari N, Salmasi S, Divsalar E. Development and characterization of active packaging system based on zein nanofibers mat incorporated with geraniol-loaded nanoliposomes. Food Sci Nutr 2024; 12:5373-5387. [PMID: 39139939 PMCID: PMC11317749 DOI: 10.1002/fsn3.4180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 08/15/2024] Open
Abstract
In recent years, development of biopolymeric nanofibers as an active biodegradable packaging system has attracted specific attention. The objective of this research was to develop zein-based electrospun nanofibers (NFs) incorporated with geraniol-loaded nanoliposomes (G-loaded NLPs). Geraniol was encapsulated into NLPs with an efficiency of 79.23%. The particle size and zeta potential of G-loaded NLPs were 121.50 nm and -38.30 mV, respectively. The successful loading of geraniol in the NLPs was approved by Fourier transform infrared (FT-IR) spectroscopy. The liposomal vesicles showed spherical shapes. G-loaded NLPs were added in the zein-based electrospun NFs at three different concentrations (0.25, 0.5, and 1%w/v). All NFs samples exhibited fibrillar structure. The increase of NLPs concentration enhanced the thermal stability of the NFs. However, the crystalline structure of zein NFs did not change by the addition of G-loaded NLPs. The highest surface hydrophobicity was related to the NFs containing 1% G-loaded NLPs. The mechanical parameters of NFs depend on the concentration of NLPs. The NFs incorporated with G-loaded NLPs showed inhibition activity against four foodborne pathogenic bacteria (Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella typhimurium) with an inhibition zone of 4.5-22 mm. Moreover, the α-diphenyl-β-picrylhydrazyl (DPPH) scavenging activity of NFs samples was located at the range of 20%-48%. These findings represent the Efficiency of the G-loaded NLPs for use as bioactive compound in the zein-based NFs as an active packaging material.
Collapse
Affiliation(s)
- Sara Gholizadeh
- Department of Food Hygiene, Tabriz BranchIslamic Azad UniversityTabrizIran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Sajed Amjadi
- Department of Food NanotechnologyResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineUrmia UniversityUrmiaIran
| | - Nima Ghadiri Alamdari
- Department of Food Science and Technology, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Sorour Salmasi
- Department of Food Science and Technology, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Elahe Divsalar
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineUrmia UniversityUrmiaIran
| |
Collapse
|
2
|
Aminzare M, Soltan Ahmadi S, Azar HH, Nikfarjam N, Roohinejad S, Greiner R, Tahergorabi R. Characteristics, antimicrobial capacity, and antioxidant potential of electrospun zein/polyvinyl alcohol nanofibers containing thymoquinone and electrosprayed resveratrol nanoparticles. Food Sci Nutr 2024; 12:1023-1034. [PMID: 38370090 PMCID: PMC10867463 DOI: 10.1002/fsn3.3816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 02/20/2024] Open
Abstract
The aim of the present study was to fabricate, characterize, and evaluate the in vitro antimicrobial and antioxidant properties of zein/polyvinyl alcohol (ZN/PVA) nanofibers containing 2% and 4% of thymoquinone (TQ), either alone or in combination with electrosprayed ZN nanoparticles containing 1% and 2% of resveratrol (RS). According to scanning electron microscopy analysis, the diameter of nanofibers and nanoparticles increased with increasing TQ and RS concentrations, respectively. The molecular interaction between ZN or PVA polymers and TQ or RS was confirmed by Fourier transform infrared spectroscopy. Thermogravimetric analysis showed that the thermal stability of nanofibers did not change with the addition of TQ and RS. Moreover, incorporation of TQ in nanofibers along with RS nanoparticles increased their antibacterial and free radical scavenging activities based on broth dilution and DPPH methods, respectively (p ≤ .05). Escherichia coli O157:H7 (as a Gram-negative pathogenic bacteria) was more resistant to all treatments than Staphylococcus aureus (as a Gram-positive pathogenic bacteria). In addition, the combined use of TQ in nanofibers and RS nanoparticles had antagonistic antibacterial and synergistic antioxidant effects. The best results were obtained with ZN/PVA nanofiber containing 4% TQ and electrosprayed with 2% RS nanoparticles (p ≤ .05). According to the results of the present study, biodegradable ZN/PVA nanofiber containing TQ and electrosprayed with RS nanoparticles can be used as a novel active packaging material in the food industry.
Collapse
Affiliation(s)
- Majid Aminzare
- Department of Food Safety and Hygiene, School of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Saeideh Soltan Ahmadi
- Department of Food Safety and Hygiene, School of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Hassan Hassanzad Azar
- Department of Food Safety and Hygiene, School of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Nasser Nikfarjam
- Department of ChemistryInstitute for Advanced Studies in Basic SciencesZanjanIran
| | - Shahin Roohinejad
- Division of Food and Nutrition, Burn and Wound Healing Research CenterShiraz University of Medical SciencesShirazIran
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner‐InstitutFederal Research Institute of Nutrition and FoodKarlsruheGermany
| | - Reza Tahergorabi
- Food and Nutritional Sciences ProgramNorth Carolina Agricultural and Technical State UniversityGreensboroNorth CarolinaUSA
| |
Collapse
|
3
|
Ullah S, Hashmi M, Shi J, Kim IS. Fabrication of Electrospun PVA/Zein/Gelatin Based Active Packaging for Quality Maintenance of Different Food Items. Polymers (Basel) 2023; 15:2538. [PMID: 37299339 PMCID: PMC10255895 DOI: 10.3390/polym15112538] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
In this research, electrospun PVA/Zein/Gelatin based tri-component active food packaging has been fabricated to enhance the shelf life of food by assuring the food quality (freshness, taste, brittleness, color, etc.) for longer. Electrospinning imparts good morphological properties along with breathability in nanofibrous mats. Electrospun active food packaging has been characterized to investigate the morphological, thermal, mechanical, chemical, antibacterial and antioxidant properties. Results of all tests indicated that the PVA/Zein/Gelatin nanofiber sheet possessed good morphology, thermal stability, mechanical strength, good antibacterial properties along with excellent antioxidant properties, which makes it the most suitable food packaging for increasing the shelf life of different food items like sweet potatoes, potatoes and kimchi. Shelf life of sweet potatoes and potatoes was observed for a period of 50 days, and shelf life of the kimchi was observed for a period of 30 days. It was concluded that nanofibrous food packaging may enhance the shelf life of fruit and vegetables because of their better breathability and antioxidant properties.
Collapse
Affiliation(s)
- Sana Ullah
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University, Ueda Campus, Ueda 386-8567, Nagano, Japan;
- Institute of Inorganic Chemistry I, Helmholtz Institute of Ulm (HIU), Ulm University, Helmholtzstrasse 11, 89081 Ulm, Baden Württemberg, Germany
| | - Motahira Hashmi
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University, Ueda Campus, Ueda 386-8567, Nagano, Japan;
| | - Jian Shi
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Nagano, Japan;
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University, Ueda Campus, Ueda 386-8567, Nagano, Japan;
| |
Collapse
|
4
|
Ma J, Fan J, Xia Y, Kou X, Ke Q, Zhao Y. Preparation of aromatic β-cyclodextrin nano/microcapsules and corresponding aromatic textiles: A review. Carbohydr Polym 2023; 308:120661. [PMID: 36813345 DOI: 10.1016/j.carbpol.2023.120661] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Fragrance finishing of textiles is receiving substantial interest, with aromatherapy being one of the most popular aspects of personal health care. However, the longevity of aroma on textiles and presence after subsequent launderings are major concerns for aromatic textiles directly loaded with essential oils. These drawbacks can be weakened by incorporating essential oil-complexed β-cyclodextrins (β-CDs) onto various textiles. This article reviews various preparation methods of aromatic β-cyclodextrin nano/microcapsules, as well as a wide variety of methods for the preparation of aromatic textiles based on them before and after forming, proposing future trends in preparation processes. The review also covers the complexation of β-CDs with essential oils, and the application of aromatic textiles based on β-CD nano/microcapsules. Systematic research on the preparation of aromatic textiles facilitates the realization of green and simple industrialized large-scale production, providing needed application potential in the fields of various functional materials.
Collapse
Affiliation(s)
- Jiajia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jiaxuan Fan
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Yichang Xia
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qinfei Ke
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yi Zhao
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China.
| |
Collapse
|
5
|
Hou L, Zhang L, Yu C, Chen J, Ye X, Zhang F, Linhardt RJ, Chen S, Pan H. One-Pot Self-Assembly of Core-Shell Nanoparticles within Fibers by Coaxial Electrospinning for Intestine-Targeted Delivery of Curcumin. Foods 2023; 12:foods12081623. [PMID: 37107418 PMCID: PMC10137979 DOI: 10.3390/foods12081623] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Nanotechniques for curcumin (Cur) encapsulation provided a potential capability to avoid limitations and improve biological activities in food and pharmaceutics. Different from multi-step encapsulation systems, in this study, zein-curcumin (Z-Cur) core-shell nanoparticles could be self-assembled within Eudragit S100 (ES100) fibers through one-pot coaxial electrospinning with Cur at an encapsulation efficiency (EE) of 96% for ES100-zein-Cur (ES100-Z-Cur) and EE of 67% for self-assembled Z-Cur. The resulting structure realized the double protection of Cur by ES100 and zein, which provided both pH responsiveness and sustained release performances. The self-assembled Z-Cur nanoparticles released from fibermats were spherical (diameter 328 nm) and had a relatively uniform distribution (polydispersity index 0.62). The spherical structures of Z-Cur nanoparticles and Z-Cur nanoparticles loaded in ES100 fibermats could be observed by transmission electron microscopy (TEM). Fourier transform infrared spectra (FTIR) and X-ray diffractometer (XRD) revealed that hydrophobic interactions occurred between the encapsulated Cur and zein, while Cur was amorphous (rather than in crystalline form). Loading in the fibermat could significantly enhance the photothermal stability of Cur. This novel one-pot system much more easily and efficiently combined nanoparticles and fibers together, offering inherent advantages such as step economy, operational simplicity, and synthetic efficiency. These core-shell biopolymer fibermats which incorporate Cur can be applied in pharmaceutical products toward the goals of sustainable and controllable intestine-targeted drug delivery.
Collapse
Affiliation(s)
- Lijuan Hou
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Laiming Zhang
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chengxiao Yu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianle Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shiguo Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Haibo Pan
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| |
Collapse
|
6
|
Rather AH, Khan RS, Wani TU, Rafiq M, Jadhav AH, Srinivasappa PM, Abdal-Hay A, Sultan P, Rather SU, Macossay J, Sheikh FA. Polyurethane and cellulose acetate micro-nanofibers containing rosemary essential oil, and decorated with silver nanoparticles for wound healing application. Int J Biol Macromol 2023; 226:690-705. [PMID: 36513179 DOI: 10.1016/j.ijbiomac.2022.12.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
In this study, polyurethane (PU) and cellulose acetate (CA) electrospun fibers encapsulating rosemary essential oil (REO) and adsorbed silver (Ag) nanoparticles (NPs) were fabricated. The biologically inspired materials were analyzed for physicochemical characteristics using scanning electron microscopy, X-ray diffractometer, Fourier transform infrared, thermal gravimetric analysis, X-ray photoelectron spectroscopy, water contact angle, and water uptake studies. Results confirmed the presence of CA and Ag NPs on the PU micro-nanofibers increased the hydrophilicity from 107.1 ± 0.36o to 26.35 ± 1.06o. The water absorption potential increased from 0.07 ± 0.04 for pristine PU fibers to 12.43 ± 0.49 % for fibers with 7 wt% of CA, REO, and Ag NPs. The diffractometer confirmed the 2θ of 38.01°, 44.13o, and 64.33o, corresponding to the diffraction planes of Ag on the fibers. The X-ray photoelectron spectroscopy confirmed microfibers interfacial chemical interaction and surface changes due to CA, REO, and Ag presence. The inhibition tests on Staphylococcus aureus and Escherichia coli indicated that composites are antibacterial in activity. Moreover, synergistic interactions of REO and Ag NPs resulted in superior antibacterial activity. The cell viability and attachment assay showed improved hydrophilicity of the fibers, which resulted in better attachment of cells to the micro-nanofibers, similar to the natural extracellular matrix in the human body.
Collapse
Affiliation(s)
- Anjum Hamid Rather
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Rumysa Saleem Khan
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Taha Umair Wani
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Muheeb Rafiq
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Arvind H Jadhav
- Centre for Nano and Material Science (CNMS), Jain University, Jain Global Campus, Bangalore 562112, Karnataka, India
| | - Puneethkumar M Srinivasappa
- Centre for Nano and Material Science (CNMS), Jain University, Jain Global Campus, Bangalore 562112, Karnataka, India
| | - Abdalla Abdal-Hay
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt; The University of Queensland, School of Dentistry, Oral Health Centre Herston, 288 Herston Road, Herston, QLD 4006, Australia
| | - Phalisteen Sultan
- Department of Cellular and Molecular Biotechnology, CSIR-Indian Institute of Integrative Medicine, Sanantnagar, Srinagar 190005, Jammu and Kashmir, India
| | - Sami-Ullah Rather
- Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Javier Macossay
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States of America
| | - Faheem A Sheikh
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|
7
|
Zhang H, Zhang C, Wang X, Huang Y, Xiao M, Hu Y, Zhang J. Antifungal electrospinning nanofiber film incorporated with Zanthoxylum bungeanum essential oil for strawberry and sweet cherry preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Doğan N, Doğan C, Eticha AK, Gungor M, Akgul Y. Centrifugally spun micro-nanofibers based on lemon peel oil/gelatin as novel edible active food packaging: Fabrication, characterization, and application to prevent foodborne pathogens E. coli and S. aureus in cheese. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Maroufi LY, Shahabi N, Ghanbarzadeh MD, Ghorbani M. Development of Antimicrobial Active Food Packaging Film Based on Gelatin/Dialdehyde Quince Seed Gum Incorporated with Apple Peel Polyphenols. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02774-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Cai M, Zhang G, Wang J, Li C, Cui H, Lin L. Application of glycyrrhiza polysaccharide nanofibers loaded with tea tree essential oil/ gliadin nanoparticles in meat preservation. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Shen C, Cao Y, Rao J, Zou Y, Zhang H, Wu D, Chen K. Application of solution blow spinning to rapidly fabricate natamycin-loaded gelatin/zein/polyurethane antimicrobial nanofibers for food packaging. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Taktak W, Nasri R, López-Rubio A, Chentir I, Gómez-Mascaraque LG, Boughriba S, Nasri M, Karra-Chaâbouni M. Design and characterization of novel ecofriendly European fish eel gelatin-based electrospun microfibers applied for fish oil encapsulation. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Xiao Z, Zhang Y, Niu Y, Ke Q, Kou X. Cyclodextrins as carriers for volatile aroma compounds: A review. Carbohydr Polym 2021; 269:118292. [PMID: 34294318 DOI: 10.1016/j.carbpol.2021.118292] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Cyclodextrins (CDs) are edible and biocompatible natural cyclic compounds that can encapsulate essential oils, flavours, volatile aroma compounds, and other substances. Complexation with CD-based materials improves the solubility and stability of volatile compounds and protects the bioactivity of the core materials. Therefore, the development of CD/volatile compound nanosystems is a key research area in the food, cosmetic, and pharmaceutical industries. This review briefly introduces the main types of natural CD; preparation methods of CD-based materials as carriers for aromatic substances or essential oils; characterisation methods used to calculate the interaction between CDs and volatile aroma compounds; molecular docking and simulation methods; and the application of CD-based nanosystems in different industries. The review aims to provide guidance for relevant practitioners in selecting appropriate CD materials and characterisation methods.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yaqi Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Qinfei Ke
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
14
|
Popov Pereira da Cunha MD, Caracciolo PC, Abraham GA. Latest advances in electrospun plant-derived protein scaffolds for biomedical applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2020.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Ansarifar E, Moradinezhad F. Preservation of strawberry fruit quality via the use of active packaging with encapsulated thyme essential oil in zein nanofiber film. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15130] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Elham Ansarifar
- Social Determinants of Health Research Center Department of Public Health School of Health Birjand University of Medical Science Birjand Iran
| | - Farid Moradinezhad
- Department of Horticultural Science Faculty of Agriculture University of Birjand P. O. Box: 331 Birjand Iran
| |
Collapse
|
16
|
Pedram Rad Z, Mokhtari J, Abbasi M. Biopolymer based three‐dimensional biomimetic micro/nanofibers scaffolds with porous structures via tailored charge repulsions for skin tissue regeneration. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zahra Pedram Rad
- Department of Textile Engineering, Faculty of Engineering University of Guilan Rasht Iran
| | - Javad Mokhtari
- Department of Textile Engineering, Faculty of Engineering University of Guilan Rasht Iran
- Department of Polymer and Color Engineering, School of Material Eng & Advanced Processes Amirkabir University of Technology Tehran Iran
| | - Marjan Abbasi
- Department of Textile Engineering, Faculty of Engineering University of Guilan Rasht Iran
| |
Collapse
|
17
|
Dodero A, Schlatter G, Hébraud A, Vicini S, Castellano M. Polymer-free cyclodextrin and natural polymer-cyclodextrin electrospun nanofibers: A comprehensive review on current applications and future perspectives. Carbohydr Polym 2021; 264:118042. [PMID: 33910745 DOI: 10.1016/j.carbpol.2021.118042] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
The present review discusses the use of cyclodextrins and their derivatives to prepare electrospun nanofibers with specific features. Cyclodextrins, owing to their unique capability to form inclusion complexes with hydrophobic and volatile molecules, can indeed facilitate the encapsulation of bioactive compounds in electrospun nanofibers allowing fast-dissolving products for food, biomedical, and pharmaceutical purposes, filtering materials for wastewater and air purification, as well as a variety of other technological applications. Additionally, cyclodextrins can improve the processability of naturally occurring biopolymers helping the fabrication of "green" materials with a strong industrial relevance. Hence, this review provides a comprehensive state-of-the-art of different cyclodextrins-based nanofibers including those made of pure cyclodextrins, of polycyclodextrins, and those made of natural biopolymer functionalized with cyclodextrins. To this end, the advantages and disadvantages of such approaches and their possible applications are investigated along with the current limitations in the exploitation of electrospinning at the industrial level.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy
| | - Guy Schlatter
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS UMR 7515, ECPM - University of Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France.
| | - Anne Hébraud
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS UMR 7515, ECPM - University of Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy.
| |
Collapse
|
18
|
Hashmi M, Ullah S, Ullah A, Saito Y, Haider MK, Bie X, Wada K, Kim IS. Carboxymethyl Cellulose (CMC) Based Electrospun Composite Nanofiber Mats for Food Packaging. Polymers (Basel) 2021; 13:302. [PMID: 33477920 PMCID: PMC7835877 DOI: 10.3390/polym13020302] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 01/19/2023] Open
Abstract
Cellulose is one of the most abundantly available natural polymers. Carboxymethyl cellulose (CMC) belongs to the cellulose family and has different degrees of substitution. Current research comprises the fabrication and characterization of CMC nanofibers using polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) as capping agents and carriers for sustainable food packaging applications. Recently authors successfully fabricated smooth and uniform nanofibers of stated polymers and optimized the ratios of three polymers for continuous production. However, in this research, it was further characterized for mechanical properties, surface properties, structural properties, air permeability, and chemical properties to confirm the suitability and scope of tri-component nanofibrous mats in food packaging applications. Different fruits and vegetables were packed in a plastic container and closed by nanofiber mats and by a plastic lid. All samples were observed after a specific period of time (fruits were kept for 40 days while vegetables were kept for 10 days in the controlled environment). It was observed in the results that fruits and vegetables closed by nanofiber based webs exhibited better freshness and lower accumulation of moisture as compared to that of containers with plastic lids. From the results of performed tests, it was observed that nanofiber mats possess enough mechanical, structural, and morphological properties to be used as food packaging.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ick Soo Kim
- Nano Fusion Technology Research Group, Shinshu University Ueda Campus, Nagano 386-8567, Japan; (M.H.); (S.U.); (A.U.); (Y.S.); (M.K.H.); (X.B.); (K.W.)
| |
Collapse
|
19
|
Stretchable, tough and elastic nanofibrous hydrogels with dermis-mimicking network structure. J Colloid Interface Sci 2021; 582:387-395. [DOI: 10.1016/j.jcis.2020.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 01/12/2023]
|
20
|
Facchi DP, Souza PR, Almeida VC, Bonafé EG, Martins AF. Optimizing the Ecovio® and Ecovio®/zein solution parameters to achieve electrospinnability and provide thin fibers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Mendes AC, Saldarini E, Chronakis IS. Electrohydrodynamic Processing of Potato Protein into Particles and Fibers. Molecules 2020; 25:E5968. [PMID: 33339397 PMCID: PMC7766494 DOI: 10.3390/molecules25245968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Potato protein particles and fibers were produced using electrohydrodynamic processing (electrospray and electrospinning). The effect of different solvents and protein concentration on the morphology of the potato protein particles and fibers was investigated. Electrosprayed particles with average diameters ranging from 0.3 to 1.4 µm could be obtained using water and mixtures of water: ethanol (9:1) and water:glycerol (9:1). Electrosprayed particles were also obtained using the solvent hexafluoro-2-propanol (HFIP) at a protein concentration of 5% wt/v. For protein concentrations above 10% wt/v, using HFIP, electrospun fibers were produced. The release of vitamin B12, as a model bioactive compound, from potato protein electrospun fibers, was also investigated, demonstrating their potential to be utilized as encapsulation and delivery systems.
Collapse
Affiliation(s)
- Ana C. Mendes
- DTU-Food, Technical University of Denmark, Kemitorvet 202, 2800 Kgs. Lyngby, Denmark;
| | | | - Ioannis S. Chronakis
- DTU-Food, Technical University of Denmark, Kemitorvet 202, 2800 Kgs. Lyngby, Denmark;
| |
Collapse
|
22
|
Hyaluronan alkyl derivatives-based electrospun membranes for potential guided bone regeneration: Fabrication, characterization and in vitro osteoinductive properties. Colloids Surf B Biointerfaces 2020; 197:111438. [PMID: 33166935 DOI: 10.1016/j.colsurfb.2020.111438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/10/2020] [Accepted: 10/19/2020] [Indexed: 01/16/2023]
Abstract
The aim of the work was to determine the effects of the chemical functionalization of hyaluronic acid (HA) with pendant aliphatic tails at different lengths and free amino groups in terms of chemical reactivity, degradation rate, drug-eluting features, and surface properties when processed as electrospun membranes (EM) evaluating the osteoinductive potential for a possible application as guided bone regeneration (GBR). To this end, a series of HA derivatives with different aliphatic tails (DD-Cx mol% ≈ 12.0 mol%) and decreasing derivatization of free amino groups (DDEDA mol% from 70.0 to 30.0 mol%) were first synthesized, namely Hn. Then dexamethasone-loaded Hn EM, i.e. HnX were prepared from aqueous polymeric solutions with polyvinyl alcohol (PVA), as a non-ionogenic linear flexible polymeric carrier, and the multifunctional 2-hydroxypropyl- cyclodextrin (HPCD) which acted as a rheological modifier, a stabilizer of Taylor's cone, and a solubilizing agent. A comprehensive characterization of the membranes was carried out through ATR-IR, XRD, and WCA measurements. According to the in vitro hydrolytic and enzymatic degradation and drug release in different aqueous media for two months, the insertion of alkyl pendant grafts and the crosslinking process provided tuneable additional resistance to the whole membrane suitably for the final application of the membranes. Cell culture showed the cytocompatibility and cell proliferation until 7 days. Osteogenic differentiation and mineralization of pre-osteoblastic MC3T3 cells occurred for most of membranes after 35 days as valued by measuring ALP activity (50 nmol 4-np/h/nf DNA) and the deposition of calcium (120-140 μg ml-1).
Collapse
|
23
|
Silva SCM, Fuzatto RHS, Botrel DA, Ugucioni JC, Oliveira JE. Development of zein nanofibers for the controlled delivery of essential amino acids for fish nutrition. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03616-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
24
|
Poudel D, Swilley-Sanchez S, O’keefe S, Matson J, Long T, Fernández-Fraguas C. Novel Electrospun Pullulan Fibers Incorporating Hydroxypropyl-β-Cyclodextrin: Morphology and Relation with Rheological Properties. Polymers (Basel) 2020; 12:E2558. [PMID: 33142774 PMCID: PMC7693914 DOI: 10.3390/polym12112558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
Fibers produced by electrospinning from biocompatible, biodegradable and naturally occurring polymers have potential advantages in drug delivery and biomedical applications because of their unique functionalities. Here, electrospun submicron fibers were produced from mixtures containing an exopolysaccharide (pullulan) and a small molecule with hosting abilities, hydroxypropyl-β-cyclodextrin (HP-β-CD), thus serving as multi-functional blend. The procedure used water as sole solvent and excluded synthetic polymers. Rheological characterization was performed to evaluate the impact of HP-β-CD on pullulan entanglement concentration (CE); the relationship with electrospinnability and fiber morphology was investigated. Neat pullulan solutions required three times CE (~20% w/v pullulan) for effective electrospinning and formation of bead-free nanofibers. HP-β-CD (30% w/v) facilitated electrospinning, leading to the production of continuous, beadless fibers (average diameters: 853-1019 nm) at lower polymer concentrations than those required in neat pullulan systems, without significantly shifting the polymer CE. Rheological, Differential Scanning Calorimetry (DSC) and Dynamic Light Scattering (DLS) measurements suggested that electrospinnability improvement was due to HP-β-CD assisting in pullulan entanglement, probably acting as a crosslinker. Yet, the type of association was not clearly identified. This study shows that blending pullulan with HP-β-CD offers a platform to exploit the inherent properties and advantages of both components in encapsulation applications.
Collapse
Affiliation(s)
- Deepak Poudel
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (D.P.); (S.O.)
| | - Sarah Swilley-Sanchez
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (S.S.-S.); (J.M.); (T.L.)
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sean O’keefe
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (D.P.); (S.O.)
| | - John Matson
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (S.S.-S.); (J.M.); (T.L.)
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Timothy Long
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (S.S.-S.); (J.M.); (T.L.)
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Cristina Fernández-Fraguas
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (D.P.); (S.O.)
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
25
|
Gaona‐Sánchez VA, Calderón‐Domínguez G, Morales‐Sánchez E, Moreno‐Ruiz LA, Terrés‐Rojas E, Salgado‐Cruz MDLP, Escamilla‐García M, Barrios‐Francisco R. Physicochemical and superficial characterization of a bilayer film of zein and pectin obtained by electrospraying. J Appl Polym Sci 2020. [DOI: 10.1002/app.50045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Victor A. Gaona‐Sánchez
- División Ingeniería en Industrias Alimentarias Tecnológico Nacional de México/TES de San Felipe del Progreso San Felipe del Progreso Mexico
| | - Georgina Calderón‐Domínguez
- Departamento de Ingeniería Bioquímica Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Wilfrido Massieu s/n. Esq. Miguel Stampa CIUDAD DE MEXICO México Mexico
| | - Eduardo Morales‐Sánchez
- Centro de Investigación en Ciencias Aplicadas y Tecnología Avanzada‐Unidad Querétaro Instituto Politécnico Nacional Santiago de Querétaro Mexico
| | - Luis A. Moreno‐Ruiz
- Centro de Nanociencias y Micro y Nanotecnologías Instituto Politécnico Nacional Wilfrido Massieu s/n. Esq. Miguel Stampa CIUDAD DE MEXICO México Mexico
| | - Eduardo Terrés‐Rojas
- Laboratorio de Caracterización de Materiales Sinteticos y Naturales Instituto Mexicano del Petróleo Ciudad de México Mexico
| | - Ma. de la Paz Salgado‐Cruz
- Departamento de Ingeniería Bioquímica Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Wilfrido Massieu s/n. Esq. Miguel Stampa CIUDAD DE MEXICO México Mexico
- Cátedra CONACYT Consejo Nacional de Ciencia y Tecnología (CONACYT) Ciudad de México Mexico
| | - Monserrat Escamilla‐García
- Departamento de Investigación en Alimentos y Estudios de Postgrado C.U. Universidad Autónoma de Querétaro Santiago de Querétaro Mexico
| | - Rigoberto Barrios‐Francisco
- División Ingeniería en Industrias Alimentarias Tecnológico Nacional de México/TES de San Felipe del Progreso San Felipe del Progreso Mexico
| |
Collapse
|
26
|
Guan X, Li L, Li S, Liu J, Huang K. A food-grade continuous electrospun fiber of hordein/chitosan with water resistance. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100687] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Wang Z, Zou W, Liu L, Wang M, Li F, Shen W. Characterization and bacteriostatic effects of β-cyclodextrin/quercetin inclusion compound nanofilms prepared by electrospinning. Food Chem 2020; 338:127980. [PMID: 32927201 DOI: 10.1016/j.foodchem.2020.127980] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022]
Abstract
Quercetin has various biological activities, but its poor water solubility and stability limit its applications. In this study, β-cyclodextrin was used as the host and quercetin was encapsulated in its cavity to prepare an inclusion compound. Then, a nanofilm was formed using electrospinning. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric differential scanning calorimetry (TG-DSC) were used to characterize the properties of the inclusion compound nanofilms. SEM images showed that the nanofilm prepared by optimizing the electrospinning process parameters had a good nanofiber structure. XRD, FTIR and TG/DSC characterization of the nanofilm showed that quercetin was encapsulated in the cavity of β-cyclodextrin and was present in the nanofilm. The quercetin was slowly released from the nanofilm and still had good bacteriostatic effects on Staphylococcus aureus and Escherichia coli, indicating that the process of embedding and electrospinning did not affect the antibacterial activity of quercetin.
Collapse
Affiliation(s)
- Zhan Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, Hubei, PR China
| | - Wei Zou
- Jiangxi Vocational Technical College of Industry & Trade, Nanchang 330038, Jiangxi, PR China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, United States.
| | - Min Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China
| | - Fang Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, Hubei, PR China
| | - Wangyang Shen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, Hubei, PR China.
| |
Collapse
|
28
|
Rodríguez-Sánchez IJ, Fuenmayor CA, Clavijo-Grimaldo D, Zuluaga-Domínguez CM. Electrospinning of ultra-thin membranes with incorporation of antimicrobial agents for applications in active packaging: a review. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1785450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Carlos Alberto Fuenmayor
- Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Sede Bogotá, Colombia
| | - Dianney Clavijo-Grimaldo
- Departamento de Morfología, Facultad de Medicina, Universidad Nacional de Colombia, Sede Bogotá, Colombia
| | - Carlos Mario Zuluaga-Domínguez
- Departamento de Desarrollo Rural y Agroalimentario, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Colombia
| |
Collapse
|
29
|
Incorporation of zein nanofibers produced by needle-less electrospinning within the casted gelatin film for improvement of its physical properties. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Akhmetova A, Lanno GM, Kogermann K, Malmsten M, Rades T, Heinz A. Highly Elastic and Water Stable Zein Microfibers as a Potential Drug Delivery System for Wound Healing. Pharmaceutics 2020; 12:E458. [PMID: 32443445 PMCID: PMC7284525 DOI: 10.3390/pharmaceutics12050458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
The development of biomaterials for wound healing applications requires providing a number of properties, such as antimicrobial action, facilitation of cell proliferation, biocompatibility and biodegradability. The aim of the present study was to investigate morphological and mechanical properties of zein-based microfibers, ultimately aimed at creating an environment suitable for wound healing. This was achieved through co-axial electrospinning of core-shell microfibers, with zein protein in the core and polyethylene oxide (PEO) in the shell. Small amounts of PEO or stearic acid were additionally incorporated into the fiber core to modify the morphology and mechanical properties of zein fibers. The presence of PEO in the core was found to be essential for the formation of tubular fibers, whereas PEO in the shell enhanced the stability of the microfibers in water and ensured high elasticity of the microfiber mats. Tetracycline hydrochloride was present in an amorphous form within the fibers, and displayed a burst release as a result of pore-formation in the fibers. The developed systems exhibited antimicrobial activity against Staphylococcus aureus and Escherichia coli, and showed no cytotoxic effect on fibroblasts. Biocompatibility, antimicrobial activity and favorable morphological and mechanical properties make the developed zein-based microfibers a potential biomaterial for wound healing purposes.
Collapse
Affiliation(s)
- Alma Akhmetova
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.A.); (M.M.); (T.R.)
| | | | - Karin Kogermann
- Institute of Pharmacy, University of Tartu, 50411 Tartu, Estonia;
| | - Martin Malmsten
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.A.); (M.M.); (T.R.)
- Department of Physical Chemistry, Lund University, 221 00 Lund, Sweden
| | - Thomas Rades
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.A.); (M.M.); (T.R.)
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.A.); (M.M.); (T.R.)
| |
Collapse
|
31
|
Aghaei Z, Ghorani B, Emadzadeh B, Kadkhodaee R, Tucker N. Protein-based halochromic electrospun nanosensor for monitoring trout fish freshness. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107065] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Jia X, Yang N, Qi X, Chen L, Zhao Y. Adsorptive removal of cholesterol by biodegradable zein-graft-β-cyclodextrin film. Int J Biol Macromol 2020; 155:293-304. [PMID: 32224171 DOI: 10.1016/j.ijbiomac.2020.03.193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 12/16/2022]
Abstract
A novel bio-based zein-graft-β-cyclodextrin film was synthesized for cholesterol adsorption at room temperature. Immobilization of β-cyclodextrin (β-CD) to zein was achieved by the Maillard reaction and the zein-graft-β-CD powders showed higher glass transition temperature and higher solubility in water. Zein-graft-β-CD films, prepared by solvent evaporation casting, showed excellent capacity for cholesterol adsorption. The F1:1 has the best adsorption properties, and the maximum adsorption capacity can reach 5.70 ± 0.56 mg cholesterol/g film. The adsorption cholesterol mechanism of zein-graft-β-CD film was correspond to the pseudo-first order kinetic model. In addition, the zein-graft-β-CD film retained an adsorption capacity of 3.10 ± 0.89 mg cholesterol/g film after three reuses. Using composite enzyme (1 mg/mL papain and 1 mg/mL amylase), the film (F1:1) degradation reached 98.81% in 1 week. These results suggest that zein-graft-β-CD film has potential as a nature-based adsorbent for cholesterol adsorption and could be used in the food industry.
Collapse
Affiliation(s)
- Xuemeng Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China
| | - Ning Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China.
| | - Xuchao Qi
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China.
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China
| |
Collapse
|
33
|
Zein Beta-Cyclodextrin Micropowders for Iron Bisglycinate Delivery. Pharmaceutics 2020; 12:pharmaceutics12010060. [PMID: 31940787 PMCID: PMC7023128 DOI: 10.3390/pharmaceutics12010060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Given the limited number of materials available to design delivery platforms for nutrients, the rational combination of raw materials already approved as food ingredients and their processing through nano-micro technology can offer a unique tool for innovation. Here, we propose a nano-in-micro strategy to produce powders based on the hydrophobic protein zein, useful for the oral delivery of a hydrophilic iron source (iron bisglycinate) in anaemic patients. Iron-loaded powders were prepared through a two-step strategy consisting in the formation of a zein pseudolatex followed by a spray-drying step. To extend the manipulation space for zein and entrap iron bisglycinate, β-cyclodextrin (βCD) was selected as helping excipient. Addition of βCD allowed iron loading in the pseudolatex and greatly increased product yields after the drying process as compared to zein alone. Iron-loaded micro-sized powders were characterised by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to elucidate the role of βCD as a compatibilizer for the zein-iron system. Remarkably, micropowders released only 20% of FeBIS in a simulated gastric fluid, whereas release in a simulated intestinal fluid was almost completed in 7 h. In summary, βCD association to zein is a novel strategy to expand applications in the oral delivery of iron bisglycinate and, prospectively, to micronutrient chelates.
Collapse
|
34
|
Yıldız A, Kara AA, Acartürk F. Peptide-protein based nanofibers in pharmaceutical and biomedical applications. Int J Biol Macromol 2020; 148:1084-1097. [PMID: 31917213 DOI: 10.1016/j.ijbiomac.2019.12.275] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
In recent years, electrospun fibers have found wide use, especially in pharmaceutical area and biomedical applications, related to the various advantages such as high surface-volume ratio, high solubility and having wide usage areas they have provided. Biocompatible and biodegradable fibers can be obtained by using peptide-protein structures of plant and animal derived along with synthetic polymers. Plant-derived proteins used in nanofiber production can be listed as, zein, soy protein, and gluten and animal derived proteins can be listed as casein, silk fibroin, hemoglobine, bovine serum albumin, elastin, collagen, gelatin, and keratin. Plant and animal proteins and synthetic peptides used in electrospun fiber production were reviewed in detail. In addition, the important physical properties of these materials for the electrospinning process and their use in pharmaceutical and biomedical areas were discussed.
Collapse
Affiliation(s)
- Ayşegül Yıldız
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Adnan Altuğ Kara
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Füsun Acartürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
35
|
Amjadi S, Almasi H, Ghorbani M, Ramazani S. Reinforced ZnONPs/ rosemary essential oil-incorporated zein electrospun nanofibers by κ-carrageenan. Carbohydr Polym 2019; 232:115800. [PMID: 31952599 DOI: 10.1016/j.carbpol.2019.115800] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/06/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022]
Abstract
In this study, the reinforced ZnONPs/ rosemary essential oil-incorporated zein nanofibers with κ-carrageenan (Z/KC/ZnONPs/RE) were fabricated using the electrospinning technique for application in food packaging. The SEM images of Z/KC/ZnONPs/RE nanofiber displayed bead-free homogeneous morphology that its average fiber diameter was 672 ± 240 nm. The formation of new hydrogen bonds by addition of κ-carrageenan and active agents was approved by FT-IR and DSC structural conformations. The Z/KC/ZnONPs/RE nanofiber exhibited satisfactory thermal and mechanical properties, as well as high surface hydrophobicity. In addition, the Z/KC/ZnONPs/RE sample showed inhibition activity against S. aureus (18.5 ± 1.9 mm) and E. coli (14.7 ± 1.5 mm) bacteria. The DPPH scavenging activity of Z/KC/ZnONPs/RE nanofiber was 54.5 ± 3.6 %. Additionally, the fabricated nanofibers showed no cell cytotoxicity, indicating their good biocompatibility. Thus, we believe that the fabricated Z/KC/ZnONPs/RE electrospun nanofiber is a potential candidate for using as an active layer in food packaging system.
Collapse
Affiliation(s)
- Sajed Amjadi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran
| | - Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soghra Ramazani
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, Zanjan, Iran.
| |
Collapse
|
36
|
Singh R, Khan S, Basu SM, Chauhan M, Sarviya N, Giri J. Fabrication, Characterization, and Biological Evaluation of Airbrushed Gelatin Nanofibers. ACS APPLIED BIO MATERIALS 2019; 2:5340-5348. [DOI: 10.1021/acsabm.9b00636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruby Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Salman Khan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Nandini Sarviya
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| |
Collapse
|
37
|
Meral R, Alav A, Karakas C, Dertli E, Yilmaz MT, Ceylan Z. Effect of electrospun nisin and curcumin loaded nanomats on the microbial quality, hardness and sensory characteristics of rainbow trout fillet. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108292] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Encapsulation of allopurinol by glucose cross-linked gelatin/zein nanofibers: Characterization and release behavior. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Lv R, Qi L, Zou Y, Zou J, Luo Z, Shao P, Tamer TM. Preparation and structural properties of amylose complexes with quercetin and their preliminary evaluation in delivery application. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1651736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rui Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Liang Qi
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yuxiao Zou
- Sericultural & Agri-Food Research Institute GAAS, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jinfeng Zou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zhigang Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- South China Institute of Collaborative Innovation, Dongguan, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Tamer Mahmoud Tamer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| |
Collapse
|
40
|
Ciera L, Beladjal L, Van Landuyt L, Menger D, Holdinga M, Mertens J, Van Langenhove L, De Clerk K, Gheysens T. Electrospinning repellents in polyvinyl alcohol-nanofibres for obtaining mosquito-repelling fabrics. ROYAL SOCIETY OPEN SCIENCE 2019; 6:182139. [PMID: 31598223 PMCID: PMC6731725 DOI: 10.1098/rsos.182139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Recently, the use of repellents for preventing the transmission of mosquito-borne diseases is getting increasingly more attention. However, most of the current repellents are volatile in nature and must be frequently re-applied as their efficacy is only limited to a short period of time. Therefore, a slow release and abrasion-resistant mechanism is needed for prolonging the protection time of the repellents. The focus of this study is on the direct micro-encapsulation of repellents from an emulsion and integration of already encapsulated repellents into nanofibres via electrospinning. Different repellents were electrospun in polyvinyl alcohol (PVA) nanofibrous structures, namely p-menthane-3,8-diol micro-capsules, permethrin, chilli and catnip oil. The repellents were successfully incorporated in the nanofibres and the tensile properties of the resulting samples did not have a significant change. This means that the newly created textiles were identical to current PVA nanofibrous textiles with the added benefit of being mosquito repellent. Principally, all incorporated repellents in the nanofibrous structures showed a significantly reduced number of mosquito landings compared to the control. Consequently, the currently described method resulted in a new and very effective repelling textile material that can be used in the prevention against mosquito-associated diseases.
Collapse
Affiliation(s)
- Lucy Ciera
- The Technical University of Kenya, Nairobi, Kenya
| | - Lynda Beladjal
- Biology Department, Ghent University, Terrestrial Ecology Unit, Gent, Belgium
| | - Lieve Van Landuyt
- Textile Department, Ghent University, Technologiepark, Zwijnaarde, Belgium
| | - David Menger
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Maarten Holdinga
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Johan Mertens
- Biology Department, Ghent University, Terrestrial Ecology Unit, Gent, Belgium
| | | | - Karen De Clerk
- Textile Department, Ghent University, Technologiepark, Zwijnaarde, Belgium
| | - Tom Gheysens
- Textile Department, Ghent University, Technologiepark, Zwijnaarde, Belgium
- Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
41
|
Adsorption of Cu(II) ion by a novel hordein electrospun nanofiber modified by β-cyclodextrin. Int J Biol Macromol 2019; 135:691-697. [DOI: 10.1016/j.ijbiomac.2019.05.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/26/2019] [Accepted: 05/18/2019] [Indexed: 12/12/2022]
|
42
|
Monfared A, Ghaee A, Ebrahimi‐Barough S. Preparation and characterisation of zein/polyphenol nanofibres for nerve tissue regeneration. IET Nanobiotechnol 2019; 13:571-577. [DOI: 10.1049/iet-nbt.2018.5368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Amin Monfared
- Department of Life science EngineeringFaculty of New Sciences & Technologies University of TehranTehran 14399‐57131Iran
| | - Azadeh Ghaee
- Department of Life science EngineeringFaculty of New Sciences & Technologies University of TehranTehran 14399‐57131Iran
| | - Somayeh Ebrahimi‐Barough
- Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehran 14177‐55469Iran
| |
Collapse
|
43
|
Gim S, Zhu Y, Seeberger PH, Delbianco M. Carbohydrate-based nanomaterials for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1558. [PMID: 31063240 DOI: 10.1002/wnan.1558] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Carbohydrates are abundant biomolecules, with a strong tendency to form supramolecular networks. A host of carbohydrate-based nanomaterials have been exploited for biomedical applications. These structures are based on simple mono- or disaccharides, as well as on complex, polymeric systems. Chemical modifications serve to tune the shapes and properties of these materials. In particular, carbohydrate-based nanoparticles and nanogels were used for drug delivery, imaging, and tissue engineering applications. Due to the reversible nature of the assembly, often based on a combination of hydrogen bonding and hydrophobic interactions, carbohydrate-based materials are valuable substrates for the creations of responsive systems. Herein, we review the current research on carbohydrate-based nanomaterials, with a particular focus on carbohydrate assembly. We will discuss how these systems are formed and how their properties are tuned. Particular emphasis will be placed on the use of carbohydrates for biomedical applications. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soeun Gim
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Yuntao Zhu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
44
|
Wang Y, Zhao M, Barker S, Belton P, Craig D. A spectroscopic and thermal investigation into the relationship between composition, secondary structure and physical characteristics of electrospun zein nanofibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:409-418. [DOI: 10.1016/j.msec.2018.12.134] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 06/29/2018] [Accepted: 12/28/2018] [Indexed: 11/26/2022]
|
45
|
Asadi H, Ghaee A, Nourmohammadi J, Mashak A. Electrospun zein/graphene oxide nanosheet composite nanofibers with controlled drug release as antibacterial wound dressing. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1552861] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hamid Asadi
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Jhamak Nourmohammadi
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Arezou Mashak
- Department of novel drug delivery systems, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
46
|
Food-grade gliadin microstructures obtained by electrohydrodynamic processing. Food Res Int 2019; 116:1366-1373. [DOI: 10.1016/j.foodres.2018.10.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/27/2018] [Accepted: 10/07/2018] [Indexed: 11/18/2022]
|
47
|
Ghorani B, Kadkhodaee R, Rajabzadeh G, Tucker N. Assembly of odour adsorbent nanofilters by incorporating cyclodextrin molecules into electrospun cellulose acetate webs. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2018.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Ullah S, Hashmi M, Khan MQ, Kharaghani D, Saito Y, Yamamoto T, Kim IS. Silver sulfadiazine loaded zein nanofiber mats as a novel wound dressing. RSC Adv 2019; 9:268-277. [PMID: 35521573 PMCID: PMC9059336 DOI: 10.1039/c8ra09082c] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/19/2018] [Indexed: 11/21/2022] Open
Abstract
In this report a novel antibacterial wound dressing was prepared and then characterized for required testing. We loaded silver sulfadiazine (AgSD) for the first time by electrospinning. AgSD was added in zein (0.3%, 0.4%, 0.5%, and 0.6% by weight) and was electrospun to fabricate nanofiber mats for wound dressings. Nanofiber mats were characterized by Fourier transform infrared spectroscopy (FTIR) to check if there was any chemical reaction between AgSD and zein. Morphological properties were analyzed by Scanning Electron Microscopy (SEM), which showed uniform nanofibers without any bead formation. The diameter of the nanofibers gradually decreased with an increase in the amount of AgSD, which can be associated with strong physical bonding between zein and AgSD. Thermal properties of nanofiber mats were analyzed by Thermogravimetric Analysis (TGA). X-Ray Diffraction (XRD) further demonstrated the crystalline structure of the nanofiber mats, and X-ray Photoelectron spectroscopy (XPS) was performed to confirm Ag and S contents in the prepared wound dressings. In order to investigate antibacterial properties, a disc diffusion method was employed. Bacillus and E. coli bacteria strains were used as Gram-positive and Gram-negative strains respectively. The antibacterial effectiveness of AgSD released from zein nanofibers was determined from the zone inhibition of the bacteria. The antibacterial activity of zein nanofibers loaded with drug was observed with both strains of bacteria in comparison to a control. Excellent antibacterial efficacy was attributed to the sample with 0.6% AgSD. Excellent release properties were also associated with the sample with 0.6% AgSD in zein nanofibers. Keeping in mind the abovementioned characteristics, prepared nanofiber mats would be effective for application in wound dressings. In this report a novel antibacterial wound dressing was prepared and then characterized for required testing. We loaded silver sulfadiazine (AgSD) for the first time by electrospinning.![]()
Collapse
Affiliation(s)
- Sana Ullah
- Nano Fusion Technology Research Group
- Institute of Frontier Fiber Engineering
- Shinshu University
- Ueda
- Japan
| | - Motahira Hashmi
- Nano Fusion Technology Research Group
- Institute of Frontier Fiber Engineering
- Shinshu University
- Ueda
- Japan
| | - Muhammad Qamar Khan
- Nano Fusion Technology Research Group
- Institute of Frontier Fiber Engineering
- Shinshu University
- Ueda
- Japan
| | - Davood Kharaghani
- Nano Fusion Technology Research Group
- Institute of Frontier Fiber Engineering
- Shinshu University
- Ueda
- Japan
| | - Yuseke Saito
- Nano Fusion Technology Research Group
- Institute of Frontier Fiber Engineering
- Shinshu University
- Ueda
- Japan
| | - Takayuki Yamamoto
- Nano Fusion Technology Research Group
- Institute of Frontier Fiber Engineering
- Shinshu University
- Ueda
- Japan
| | - Ick Soo Kim
- Nano Fusion Technology Research Group
- Institute of Frontier Fiber Engineering
- Shinshu University
- Ueda
- Japan
| |
Collapse
|
49
|
Séon-Lutz M, Couffin AC, Vignoud S, Schlatter G, Hébraud A. Electrospinning in water and in situ crosslinking of hyaluronic acid / cyclodextrin nanofibers: Towards wound dressing with controlled drug release. Carbohydr Polym 2018; 207:276-287. [PMID: 30600010 DOI: 10.1016/j.carbpol.2018.11.085] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/30/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
Hyaluronic acid (HA) is widely investigated due to its high potential for wound dressing applications. The fabrication of biomimetic HA-based scaffolds by electrospinning is thus extensively studied. However, HA is often dissolved in toxic organic solvents to allow the efficient production of electrospun nanofibers. Indeed, although HA is soluble in water, its ionic nature leading to long-range electrostatic interactions and the presence of counter ions induce a dramatic increase of the viscosity of aqueous HA solutions without insuring enough chain entanglements necessary for a stable and efficient electrospinning. In this study, biocompatible insoluble HA-based nanofibers were fabricated by electrospinning in pure water. To this end, poly(vinyl alcohol) (PVA) was added as a carrier polymer and it was found that the addition of hydroxypropyl-βcyclodextrin (HPβCD) stabilized the process of electrospinning and led to the efficient formation of uniform nanofibrous scaffolds. An in situ crosslinking process of the scaffolds is also proposed, insuring a whole fabrication process without any toxicity. Furthermore, the beneficial presence of HPβCD in the HA-based scaffolds paves the way for wound dressing applications with controlled drug encapsulation-release properties. As a proof of concept, naproxen (NAP), a non-steroidal anti-inflammatory drug was chosen as a model drug. NAP was impregnated into the scaffolds either in aqueous solution or under supercritical CO2. The resulting functional scaffolds showed a regular drug release profile along several days without losing the fibrous structure. This study proposes a simple approach to form stable HA-based nanofibrous scaffolds embedding HPβCD using water as the only solvent, enabling the development of safe functional wound dressings.
Collapse
Affiliation(s)
- Morgane Séon-Lutz
- CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; ICPEES, Institut de Chimie et Procédé pour l'Energie l'Environnement et la Santé, CNRS UMR 7515, ECPM-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Anne-Claude Couffin
- CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; Université Grenoble Alpes, 38000 Grenoble, France
| | - Séverine Vignoud
- CEA-LETI, Microtechnologies for Biology and Healthcare Division, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France; Université Grenoble Alpes, 38000 Grenoble, France
| | - Guy Schlatter
- ICPEES, Institut de Chimie et Procédé pour l'Energie l'Environnement et la Santé, CNRS UMR 7515, ECPM-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Anne Hébraud
- ICPEES, Institut de Chimie et Procédé pour l'Energie l'Environnement et la Santé, CNRS UMR 7515, ECPM-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| |
Collapse
|
50
|
Silva FTD, Cunha KFD, Fonseca LM, Antunes MD, Halal SLME, Fiorentini ÂM, Zavareze EDR, Dias ARG. Action of ginger essential oil (Zingiber officinale) encapsulated in proteins ultrafine fibers on the antimicrobial control in situ. Int J Biol Macromol 2018; 118:107-115. [PMID: 29928909 DOI: 10.1016/j.ijbiomac.2018.06.079] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/09/2018] [Accepted: 06/15/2018] [Indexed: 12/28/2022]
Abstract
The ultrafine fibers were produced using a polymeric blend of soy protein isolate (SPI), polyethylene oxide (PEO), and zein at a ratio of 1:1:1 (v/v/v) by electrospinning. The ginger essential oil (GEO) was encapsulated in the ultrafine fibers and the morphology, Fourier-Transform Infrared Spectroscopy (FTIR) analysis, thermal properties and relative crystallinity were evaluated. The antimicrobial activity of ginger essential oil was evaluated against five bacteria (Listeria monocytogenes, Staphylococcus aureus, Escherichia coli 0157:H7, Salmonella typhimurium, and Pseudomonas aeruginosa). Based on the preliminary tests, the concentration of GEO selected to add in the polymer solution was 12% (v/v; GEO/polymer solution). The fiber produced with 12% (v/v) GEO was used for antimicrobial analysis and in situ application (in fresh Minas cheese) against L. monocytogenes by micro-atmosphere. The ultrafine fibers produced, regardless the concentration of the essential oil, presented homogeneous morphology with cylindrical shape without the presence of beads. The application of the active fibers containing 12% GEO showed high potential to be applied in food packaging to reduce microbial contamination.
Collapse
Affiliation(s)
- Francine Tavares da Silva
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Kamila Furtado da Cunha
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Laura Martins Fonseca
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Mariana Dias Antunes
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | - Ângela Maria Fiorentini
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| |
Collapse
|