1
|
Yan B, Chen T, Tao Y, Zhang N, Zhao J, Zhang H, Chen W, Fan D. Fabrication, Functional Properties, and Potential Applications of Mixed Gellan-Polysaccharide Systems: A Review. Annu Rev Food Sci Technol 2024; 15:151-172. [PMID: 37906941 DOI: 10.1146/annurev-food-072023-034318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Gellan, an anionic heteropolysaccharide synthesized by Sphingomonas elodea, is an excellent gelling agent. However, its poor mechanical strength and high gelling temperature limit its application. Recent studies have reported that combining gellan with other polysaccharides achieves desirable properties for food- and biomaterial-related applications. This review summarizes the fabrication methods, functional properties, and potential applications of gellan-polysaccharide systems. Starch, pectin, xanthan gum, and konjac glucomannan are the most widely used polysaccharides in these composite systems. Heating-cooling and ionic-induced cross-linking approaches have been used in the fabrication of these systems. Composite gels fabricated using gellan and various polysaccharides exhibit different functional properties, possibly because of their distinct molecular interactions. In terms of applications, mixed gellan-polysaccharide systems have been extensively used in texture modification, edible coatings and films, bioactive component delivery, and tissue-engineering applications. Further scientific studies, including structural determinations of mixed systems, optimization of processing methods, and expansion of applications in food-related fields, are needed.
Collapse
Affiliation(s)
- Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Tiantian Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuan Tao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Nana Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Chen Y, Chen M, Wang K, Huang J, Gupta HIS, He K, Rui Y. Accelerating the remodeling of collagen in cutaneous full-thickness wound using FIR soldering technology with bio-targeting nanocomposites hydrogel. JOURNAL OF BIOPHOTONICS 2024; 17:e202300429. [PMID: 38332581 DOI: 10.1002/jbio.202300429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Accepted: 01/06/2024] [Indexed: 02/10/2024]
Abstract
A novel composite wound dressing hydrogel by incorporating single-walled carbon nanotubes and indocyanine green into a dual-crosslinked hydrogel through Schiff base reaction was developed. The objective was to prevent wound infection and enhance the thermal effect induced by laser energy. The hydrogel matrix was constructed using oxidized gelatin, pre-crosslinked with calcium ions, along with carboxymethyl chitosan, crosslinked via Schiff base reaction. Optimization of the blank hydrogel's gelation time, swelling index, degradation rate, and mechanical properties was achieved by adding 0.1% SWCNT and 0.1% ICG. Among them, the SWCNT-loaded hydrogel BCG-SWCNT exhibited superior performance overall: a gelation time of 102 s; a swelling index above 30 after equilibrium swelling; a degradation rate of 100.5% on the seventh day; and a compressive modulus of 8.8 KPa. It displayed significant inhibition against methicillin-resistant Staphylococcus aureus infection in wounds. When combined with laser energy usage, the composite hydrogel demonstrated excellent pro-healing activity in rats.
Collapse
Affiliation(s)
- Yuxin Chen
- Nanjing University of Science and Technology, Nanjing, China
- Queen Mary University of London, London, UK
| | - Mengying Chen
- Nanjing University of Science and Technology, Nanjing, China
| | - Kehong Wang
- Nanjing University of Science and Technology, Nanjing, China
| | - Jun Huang
- Nanjing University of Science and Technology, Nanjing, China
| | | | - Kexin He
- Nanjing Medical University, Nanjing, China
| | - Yunfeng Rui
- Nanjing Southeast University, Nanjing, China
| |
Collapse
|
3
|
Alharbi HY, Alnoman RB, Aljohani MS, Al-Anazia M, Monier M. Synthesis and characterization of gellan gum-based hydrogels for drug delivery applications. Int J Biol Macromol 2024; 258:128828. [PMID: 38141700 DOI: 10.1016/j.ijbiomac.2023.128828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
In this study, gellan gum (Gel) derivatives were allowed to interact via aqueous Diels-Alder chemistry without the need for initiators, producing a crosslinked hydrogel network that exhibited good potential as a drug carrier using tramadol as a drug model. Hydrogel conjugation was achieved by the synthesis of a maleimide and furan-functionalized Gel, and the pre- and post-gelation chemical structure of the resulting hydrogel precursors was fully investigated. Potential uses of the developed hydrogel in the pharmaceutical industry were also evaluated by looking at its gelation duration, temperature, morphologies, swelling, biodegradation, and mechanical characteristics. The Gel-FM hydrogels were safe, showed good antimicrobial activity, and had a low storage modulus, which meant that they could be used in many biochemical fields. The encapsulation and release of tramadol from the hydrogel system in phosphate-buffered saline (PBS) at 37 °C were investigated under acidic and slightly alkaline conditions, replicating the stomach and intestinal tracts, respectively. The in-vitro release profile showed promising results for drug encapsulation, revealing that the drug could safely be well-encapsulated in acidic stomach environments and released more quickly in slightly alkaline intestinal environments. This implies that the hydrogels produced could work well as polymers for specifically delivering medication to the colon.
Collapse
Affiliation(s)
- Hussam Y Alharbi
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia.
| | - Rua B Alnoman
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Majed S Aljohani
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Menier Al-Anazia
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - M Monier
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
4
|
Guo N, Song M, Liu W, Zhang F, Zhu G. Preparation of an elderberry anthocyanin film and fresh-keeping effect of its application on fresh shrimps. PLoS One 2023; 18:e0290650. [PMID: 38019852 PMCID: PMC10686496 DOI: 10.1371/journal.pone.0290650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/12/2023] [Indexed: 12/01/2023] Open
Abstract
A smart packaging film was developed employing the pH-indicating activity of elderberry anthocyanins to solve the problem of refrigerated food freshness monitoring. The effect of elderberry anthocyanins on the properties of gellan gum, gelatin composite films and preservation of fresh shrimp as an indicator of freshness was investigated. The results showed that the elderberry anthocyanin-gellan gum/gelatin film had improved on film thickness (7.8×10-2 mm), TS (tensile strength) (14.57×103 MPa), WVP (water vapor permeability) (36.96×10-8 g/m·s·Pa), and a reduced EAB (elongation at break) (17.92%), and water solubility (water-soluble time of 60.5 s). SEM (scanning electron microscopy) and FTIR (infrared spectrum analysis) showed excellent compatibility between its components. Moreover, the elderberry anthocyanin film exhibited good mechanical properties and pH indication effects. Therefore, the film can be considered suitable for maintaining the quality of fresh shrimp. The results could provide a reference for research and development into new active intelligent packaging films.
Collapse
Affiliation(s)
- Na Guo
- Department of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui, China
| | - Miaomiao Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Wei Liu
- Department of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui, China
| | - Fangyan Zhang
- Department of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui, China
| | - Guilan Zhu
- Department of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui, China
| |
Collapse
|
5
|
da Rocha LBN, Sousa RB, Dos Santos MVB, Neto NMA, da Silva Soares LL, Alves FLC, de Carvalho MAM, Osajima JA, Silva-Filho EC. Development of a new biomaterial based on cashew tree gum (Anarcadium occidentale L.) enriched with hydroxyapatite and evaluation of cytotoxicity in adipose-derived stem cell cultures. Int J Biol Macromol 2023; 242:124864. [PMID: 37192713 DOI: 10.1016/j.ijbiomac.2023.124864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023]
Abstract
Cashew tree gum is a polysaccharide material highly available in the Northeast region of Brazil. It has been explored for biocompatibility with human tissues. This research aimed to describe the synthesis and characterization of cashew gum/hydroxyapatite scaffold and evaluate the possible cytotoxicity in murine adipo-derived stem cells (ADSCs) cultures. ADSCs of the subcutaneous fat tissue of Wistar rats were collected, isolated, expanded, differentiated into three strains, and characterized immunophenotypically. The scaffolds were synthesized through chemical precipitation, lyophilized and characterized through scanning electron microscopy (SEM), infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal analysis (TG and DTG), and mechanical testing. The scaffold presented a crystalline structure and pores with an average diameter of 94.45 ± 50.57 μm. By mechanical tests, the compressive force and modulus of elasticity were like the cancellous bone. The isolated adipose-derived stem cells (ADSCs) presented fibroblast morphology, adhesion capacity to plastic, differentiation in osteogenic, adipogenic and chondrogenic lineages, positive expression for the CD105 and CD90 markers and negative expression for the CD45 and CD14 markers. The MTT test showed increased cell viability, and the biomaterial showed a high level of hemocompatibility (<5 %). This study allowed the development of a new scaffold for future surgical applicability in tissue regeneration.
Collapse
Affiliation(s)
| | - Ricardo Barbosa Sousa
- Federal Institute of Education, Science, and Technology of Tocantins, Campus Araguaina, 56, Amazonas Avenue, 77826-170 Araguaina, TO, Brazil; Interdisciplinar Laboratory of Advanced Materials, LIMAV, UFPI, Teresina, PI, Brazil.
| | | | | | | | | | | | - Josy Anteveli Osajima
- Interdisciplinar Laboratory of Advanced Materials, LIMAV, UFPI, Teresina, PI, Brazil
| | - Edson C Silva-Filho
- Interdisciplinar Laboratory of Advanced Materials, LIMAV, UFPI, Teresina, PI, Brazil
| |
Collapse
|
6
|
Moon SH, Hwang HJ, Jeon HR, Park SJ, Bae IS, Yang YJ. Photocrosslinkable natural polymers in tissue engineering. Front Bioeng Biotechnol 2023; 11:1127757. [PMID: 36970625 PMCID: PMC10037533 DOI: 10.3389/fbioe.2023.1127757] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Natural polymers have been widely used in scaffolds for tissue engineering due to their superior biocompatibility, biodegradability, and low cytotoxicity compared to synthetic polymers. Despite these advantages, there remain drawbacks such as unsatisfying mechanical properties or low processability, which hinder natural tissue substitution. Several non-covalent or covalent crosslinking methods induced by chemicals, temperatures, pH, or light sources have been suggested to overcome these limitations. Among them, light-assisted crosslinking has been considered as a promising strategy for fabricating microstructures of scaffolds. This is due to the merits of non-invasiveness, relatively high crosslinking efficiency via light penetration, and easily controllable parameters, including light intensity or exposure time. This review focuses on photo-reactive moieties and their reaction mechanisms, which are widely exploited along with natural polymer and its tissue engineering applications.
Collapse
Affiliation(s)
- Seo Hyung Moon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Hye Jin Hwang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Hye Ryeong Jeon
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Sol Ji Park
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - In Sun Bae
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
- *Correspondence: Yun Jung Yang,
| |
Collapse
|
7
|
Tian L, Sun T, Fan M, Lu H, Sun C. Novel silk protein/hyaluronic acid hydrogel loaded with azithromycin as an immunomodulatory barrier to prevent postoperative adhesions. Int J Biol Macromol 2023; 235:123811. [PMID: 36841387 DOI: 10.1016/j.ijbiomac.2023.123811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/12/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Peritoneal adhesions, a common postoperative complication of laparotomy, are still treated with physical barriers, but their efficacy and ease of use are controversial. In this paper, we developed a wound microenvironment-responsive hydrogel composed of Antheraea pernyi silk protein (ASF) from wild cocoons and tyramine-modified hyaluronic acid (HA-Ph) loaded with azithromycin (AZI), glucose oxidase (GOX), and horseradish peroxidase (HRP). In addition, GOX-catalyzed oxygen production enhanced the antibacterial ability of the hydrogel. Moreover, the drug-loaded hydrogel increased macrophage CD206 expression while decreasing IL-6 and TNF-α expression. More importantly, the retarding effect of this novel hydrogel system on AZI almost eliminated the appearance of postoperative adhesions in rats. It was also found that the novel hydrogel enhanced the modulation of the TLR-4/Myd88/NF-κB pathway and TGF-β/Smad2/3 pathway by azithromycin in the locally damaged peritoneum of rats, which accelerated the remodeling of damaged tissues and dramatically reduced the deposition of collagen. Therefore, spraying the novel drug-loaded hydrogel on postoperative abdominal wounds can effectively inhibit the formation of postoperative adhesions.
Collapse
Affiliation(s)
- Linan Tian
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Tongtong Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Mengyao Fan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Hongyan Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Changshan Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
8
|
Dev MJ, Warke RG, Warke GM, Mahajan GB, Patil TA, Singhal RS. Advances in fermentative production, purification, characterization and applications of gellan gum. BIORESOURCE TECHNOLOGY 2022; 359:127498. [PMID: 35724911 DOI: 10.1016/j.biortech.2022.127498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Multiple microbial exopolysaccharides have been reported in recent decade with their structural and functional features. Gellan gum (GG) is among these emerging biopolymers with versatile properties. Low production yield, high downstream cost, and abundant market demand have made GG a high cost material. Hence, an understanding on the various possibilities to develop cost-effective gellan gum bioprocess is desirable. This review focuses on details of upstream and downstream process of GG from an industrial perspective. It emphasizes on GG producing Sphingomonas spp., updates on biosynthesis, strain and media engineering, kinetic modeling, bioreactor design and scale-up considerations. Details of the downstream operations with possible modifications to make it cost-effective and environmentally sustainable have been discussed. The updated regulatory criteria for GG as a food ingredient and analytical tools required to validate the same have been briefly discussed. Derivatives of GG and their applications in various industrial segments have also been highlighted.
Collapse
Affiliation(s)
- Manoj J Dev
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
| | - Rahul G Warke
- Microbiology Division, Hi-Media Laboratories Pvt. Ltd., Mumbai, India
| | - Gangadhar M Warke
- Microbiology Division, Hi-Media Laboratories Pvt. Ltd., Mumbai, India
| | - Girish B Mahajan
- Microbiology Division, Hi-Media Laboratories Pvt. Ltd., Mumbai, India
| | - Tanuja A Patil
- Microbiology Division, Hi-Media Laboratories Pvt. Ltd., Mumbai, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
9
|
Bark HS, Maeng I, Kim JU, Kim KD, Na JH, Min J, Byun J, Song Y, Cha BY, Oh SJ, Ji YB. Terahertz Spectral Properties of PEO-Based Anti-Adhesion Films Cross-Linked by Electron Beam Irradiation. Polymers (Basel) 2022; 14:polym14102008. [PMID: 35631892 PMCID: PMC9147511 DOI: 10.3390/polym14102008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
We investigated the spectral property changes in anti-adhesion films, which were cross-linked and surface-modified through electron beam irradiation, using terahertz time-domain spectroscopy (THz-TDS). Polyethylene oxide (PEO), which is a biocompatible and biodegradable polymer, was the main component of these anti-adhesion films being manufactured for testing. The terahertz characteristics of the films were affected by the porosity generated during the freeze-drying and compression processes of sample preparation, and this was confirmed using optical coherence tomography (OCT) imaging. An anti-adhesion polymer film made without porosity was measured by using the THz-TDS method, and it was confirmed that the refractive index and absorption coefficient were dependent on the crosslinking state. To our knowledge, this is the first experiment on the feasibility of monitoring cross-linking states using terahertz waves. The THz-TDS method has potential as a useful nondestructive technique for polymer inspection and analysis.
Collapse
Affiliation(s)
- Hyeon Sang Bark
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute (KAERI), Deajeon 34057, Korea;
| | - Inhee Maeng
- YUHS-KRIBB Medical Convergence Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Jin Un Kim
- HW Tech, Yangsan 50585, Korea; (J.U.K.); (K.D.K.)
| | | | - Jae Hun Na
- Gimhae Biomedical Center, Gimhae Biomedical Industry Promotion Agency (GBIA), Gimhae 50969, Korea; (J.H.N.); (J.M.); (J.B.); (Y.S.); (B.-y.C.)
| | - Junki Min
- Gimhae Biomedical Center, Gimhae Biomedical Industry Promotion Agency (GBIA), Gimhae 50969, Korea; (J.H.N.); (J.M.); (J.B.); (Y.S.); (B.-y.C.)
| | - Jungsup Byun
- Gimhae Biomedical Center, Gimhae Biomedical Industry Promotion Agency (GBIA), Gimhae 50969, Korea; (J.H.N.); (J.M.); (J.B.); (Y.S.); (B.-y.C.)
| | - Yongkeun Song
- Gimhae Biomedical Center, Gimhae Biomedical Industry Promotion Agency (GBIA), Gimhae 50969, Korea; (J.H.N.); (J.M.); (J.B.); (Y.S.); (B.-y.C.)
| | - Byung-youl Cha
- Gimhae Biomedical Center, Gimhae Biomedical Industry Promotion Agency (GBIA), Gimhae 50969, Korea; (J.H.N.); (J.M.); (J.B.); (Y.S.); (B.-y.C.)
| | - Seung Jae Oh
- YUHS-KRIBB Medical Convergence Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea;
- Correspondence: (S.J.O.); (Y.B.J.)
| | - Young Bin Ji
- Gimhae Biomedical Center, Gimhae Biomedical Industry Promotion Agency (GBIA), Gimhae 50969, Korea; (J.H.N.); (J.M.); (J.B.); (Y.S.); (B.-y.C.)
- Correspondence: (S.J.O.); (Y.B.J.)
| |
Collapse
|
10
|
Villarreal-Otalvaro C, Coburn JM. Fabrication Methods and Form Factors of Gellan Gum-Based Materials for Drug Delivery and Anti-Cancer Applications. ACS Biomater Sci Eng 2021. [PMID: 34898174 DOI: 10.1021/acsbiomaterials.1c00685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite the success of cancer therapeutics, off target cell toxicity prevails as one of the main challenges of cancer treatment. Exploration of drug delivery methods is a growing field of research, which involves a variety of materials and processing techniques. A natural polymer, gellan gum presents physicochemical properties that enable drug loading for sustained release in a broad range of environmental conditions and anatomical locations. Gellan gum is an anionic exopolysaccharide, produced via fermentation by Sphingomonas elodea, which gels in the presence of cations. Additionally, it is biocompatible and nontoxic. Multiple physical and chemical gelation processes have been reported for the use of gellan gum in drug delivery applications to produced varying form factors, including hydrogels, nanohydrogels, beads, films, or patches, with tunable mechanical and physicochemical properties. The resulting formulations have shown promising outcomes for drug delivery including improving drug bioavailability, drug solubility, and drug release over time, without compromising biocompatibility or the introduction of adverse effects. This review presents studies in which gellan gum has been processed to enable the delivery of antibiotics, antiallergens, anti-inflammatory, or antifungal molecules with a special focus on drugs for anticancer applications.
Collapse
Affiliation(s)
- Carolina Villarreal-Otalvaro
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| |
Collapse
|
11
|
A Four-Step Cascade Drug-Release Management Strategy for Transcatheter Arterial Chemoembolization (TACE) Therapeutic Applications. Polymers (Basel) 2021; 13:polym13213701. [PMID: 34771257 PMCID: PMC8588239 DOI: 10.3390/polym13213701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study was to develop a four-step cascade drug-release system for transcatheter arterial chemoembolization (TACE) therapeutic applications according to disease-driven and patient-focused design theories. The four steps underlying these strategies involve the blockage of nutrient supply, nanoparticles, codelivery and the cell cytotoxic effect. Calibrated spherical gellan gum (GG) and nanoparticle-containing gellan gum microspheres were prepared using a water-in-oil emulsification method. Self-assembled nanoparticles featuring amine-functionalized graphene oxide (AFGO) as the doxorubicin (Dox) carrier were prepared. The results confirm that, as a drug carrier, AFGO–Dox nanoparticles can facilitate the transport of doxorubicin into HepG2 liver cancer cells. Subsequently, AFGO–Dox was introduced into gellan gum (GG) microspheres, thus forming GG/AFGO–Dox microspheres with a mean size of 200–700 μm. After a drug release experiment lasting 28 days, the amount of doxorubicin released from 674 and 226 μm GG/AFGO–Dox microspheres was 2.31 and 1.18 μg/mg, respectively. GG/AFGO–Dox microspheres were applied in a rabbit ear embolization model, where ischemic necrosis was visible on the ear after 12 days. Our aim for the future is to provide better embolization agents for transcatheter arterial chemoembolization (TACE) using this device.
Collapse
|
12
|
Li A, Khan IN, Khan IU, Yousaf AM, Shahzad Y. Gellan Gum-Based Bilayer Mucoadhesive Films Loaded with Moxifloxacin Hydrochloride and Clove Oil for Possible Treatment of Periodontitis. Drug Des Devel Ther 2021; 15:3937-3952. [PMID: 34556975 PMCID: PMC8453438 DOI: 10.2147/dddt.s328722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
Background/Objective Periodontitis is a widely spread oral infection and various antibiotics are utilized for its treatment, but high oral doses and development of antibiotic resistance limit their use. This study was aimed at development of natural polymer-based mucoadhesive bilayer films loaded with moxifloxacin hydrochloride (Mox) and clove essential oil (CEO) to potentially combat bacterial infection associated with periodontitis. Methods Films were synthesized by double solvent casting technique having an antibiotic in the gellan gum-based primary layer with clove oil in a hydroxyethyl cellulose-based secondary layer. Results Prepared films were transparent, flexible, and showed high antibacterial response against both gram-positive and gram-negative bacteria. The films showed excellent pharmaceutical attributes in terms of drug content, folding endurance, swelling index, and mucoadhesive strength. Solid state characterization of formulation showed successful incorporation of drug and oil in separate layers of hydrogel structure. An in-vitro release study showed an initial burst release of drug followed by sustained release for up to 48 hours. Conclusion The prepared mucoadhesive bilayer buccal films could be used as a potential therapeutic option for the management of periodontitis.
Collapse
Affiliation(s)
- Aiqin Li
- Department of Stomatology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ifrah Nabi Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore, Pakistan
| |
Collapse
|
13
|
Nalbadis A, Trutschel ML, Lucas H, Luetzkendorf J, Meister A, Mäder K. Selection and Incorporation of siRNA Carrying Non-Viral Vector for Sustained Delivery from Gellan Gum Hydrogels. Pharmaceutics 2021; 13:pharmaceutics13101546. [PMID: 34683839 PMCID: PMC8540443 DOI: 10.3390/pharmaceutics13101546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
The local controlled release of siRNA is an attractive and rational strategy to enhance and extend the effectiveness of gene therapy. Since naked and unmodified siRNA has a limited cell uptake and knockdown efficiency, the complexation of siRNA with non-viral carriers is often necessary for the delivery of bioactive RNA. We evaluated the performance of three different non-viral siRNA carriers, including DOTAP lipoplexes (DL), chitosan polyplexes (CP), and solid lipid complexes (SLC). The physicochemical properties of the siRNA-nanocarriers were characterized by dynamic light scattering and gel electrophoresis. After in vitro characterization, the carrier with the most appropriate properties was found to be the DL suspension, which was subsequently loaded into a gellan gum hydrogel matrix and examined for its drug load, stability, and homogeneity. The hydrogels microstructure was investigated by rheology to assess the impact of the rheological properties on the release of the siRNA nanocarriers. A controlled release of complexed siRNA over 60 days in vitro was observed. By comparing the results from fluorescence imaging with data received from HPLC measurements, fluorescence imaging was found to be an appropriate tool to measure the release of siRNA complexes. Finally, the bioactivity of the siRNA released from hydrogel was tested and compared to free DL for its ability to knockdown the GFP expression in a DLD1 colon cancer cell model. The results indicate controlled release properties and activity of the released siRNA. In conclusion, the developed formulation is a promising system to provide local controlled release of siRNA over several weeks.
Collapse
Affiliation(s)
- Anastasios Nalbadis
- Department of Pharmaceutical Technology, Faculty of Natural Sciences 1-Biosciences, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (A.N.); (M.-L.T.); (H.L.)
| | - Marie-Luise Trutschel
- Department of Pharmaceutical Technology, Faculty of Natural Sciences 1-Biosciences, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (A.N.); (M.-L.T.); (H.L.)
| | - Henrike Lucas
- Department of Pharmaceutical Technology, Faculty of Natural Sciences 1-Biosciences, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (A.N.); (M.-L.T.); (H.L.)
| | - Jana Luetzkendorf
- Department of Internal Medicine IV (Oncology/Hematology), Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
| | - Annette Meister
- ZIK HALOmem and Institute of Biochemistry and Biotechnology, Faculty of Natural Sciences 1-Biosciences, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
| | - Karsten Mäder
- Department of Pharmaceutical Technology, Faculty of Natural Sciences 1-Biosciences, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (A.N.); (M.-L.T.); (H.L.)
- Correspondence:
| |
Collapse
|
14
|
Fatehi Hassanabad A, Zarzycki AN, Jeon K, Dundas JA, Vasanthan V, Deniset JF, Fedak PWM. Prevention of Post-Operative Adhesions: A Comprehensive Review of Present and Emerging Strategies. Biomolecules 2021; 11:biom11071027. [PMID: 34356652 PMCID: PMC8301806 DOI: 10.3390/biom11071027] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Post-operative adhesions affect patients undergoing all types of surgeries. They are associated with serious complications, including higher risk of morbidity and mortality. Given increased hospitalization, longer operative times, and longer length of hospital stay, post-surgical adhesions also pose a great financial burden. Although our knowledge of some of the underlying mechanisms driving adhesion formation has significantly improved over the past two decades, literature has yet to fully explain the pathogenesis and etiology of post-surgical adhesions. As a result, finding an ideal preventative strategy and leveraging appropriate tissue engineering strategies has proven to be difficult. Different products have been developed and enjoyed various levels of success along the translational tissue engineering research spectrum, but their clinical translation has been limited. Herein, we comprehensively review the agents and products that have been developed to mitigate post-operative adhesion formation. We also assess emerging strategies that aid in facilitating precision and personalized medicine to improve outcomes for patients and our healthcare system.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Anna N. Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Kristina Jeon
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
| | - Jameson A. Dundas
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Vishnu Vasanthan
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Justin F. Deniset
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Paul W. M. Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
- Correspondence:
| |
Collapse
|
15
|
Liu KS, Kao CW, Tseng YY, Chen SK, Lin YT, Lu CJ, Liu SJ. Assessment of Antimicrobial Agents, Analgesics, and Epidermal Growth Factors-Embedded Anti-Adhesive Poly(Lactic-Co-Glycolic Acid) Nanofibrous Membranes: In vitro and in vivo Studies. Int J Nanomedicine 2021; 16:4471-4480. [PMID: 34234437 PMCID: PMC8257070 DOI: 10.2147/ijn.s318083] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/15/2021] [Indexed: 02/05/2023] Open
Abstract
Background Postoperative tissue adhesion is a major concern for most surgeons and is a nearly unpreventable complication after abdominal or pelvic surgeries. This study explored the use of sandwich-structured antimicrobial agents, analgesics, and human epidermal growth factor (hEGF)-incorporated anti-adhesive poly(lactic-co-glycolic acid) nanofibrous membranes for surgical wounds. Materials and Methods Electrospinning and co-axial electrospinning techniques were utilized in fabricating the membranes. After spinning, the properties of the prepared membranes were assessed. Additionally, high-performance liquid chromatography and enzyme-linked immunosorbent assays were utilized in assessing the in vitro and in vivo liberation profiles of the pharmaceuticals and the hEGF from the membranes. Results The measured data suggest that the degradable anti-adhesive membranes discharged high levels of vancomycin/ceftazidime, ketorolac, and hEGF in vitro for more than 30, 24, and 27 days, respectively. The in vivo assessment in a rat laparotomy model indicated no adhesion in the peritoneal cavity at 14 days post-operation, demonstrating the anti-adhesive capability of the sandwich-structured nanofibrous membranes. The nanofibers also released effective levels of vancomycin, ceftazidime, and ketorolac for more than 28 days in vivo. Histological examination revealed no adverse effects. Conclusion The outcomes of this study implied that the anti-adhesive nanofibers with sustained release of antimicrobial agents, analgesics, and growth factors might offer postoperative pain relief and infection control, as well as promote postoperative healing of surgical wounds.
Collapse
Affiliation(s)
- Kuo-Sheng Liu
- Department of Thoracic and Cardiovascular Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ching-Wei Kao
- Department of Anesthesiology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yuan-Yun Tseng
- Department of Neurosurgery, New Taipei Municipal Tu-Cheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Shih-Kuang Chen
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ting Lin
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Lu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Orthopedic Surgery, Bone and Joint Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Orthopedic Surgery, Bone and Joint Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
16
|
Fasolin L, Martins A, Cerqueira M, Vicente A. Modulating process parameters to change physical properties of bigels for food applications. FOOD STRUCTURE-NETHERLANDS 2021. [DOI: 10.1016/j.foostr.2020.100173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Pańczyszyn E, Jaśko M, Miłek O, Niedziela M, Męcik-Kronenberg T, Hoang-Bujnowicz A, Zięba M, Adamus G, Kowalczuk M, Osyczka AM, Tylko G. Gellan gum hydrogels cross-linked with carbodiimide stimulates vacuolation of human tooth-derived stem cells in vitro. Toxicol In Vitro 2021; 73:105111. [PMID: 33588021 DOI: 10.1016/j.tiv.2021.105111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/18/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
The natural polysaccharides are promising compounds for applications in regenerative medicine. Gellan gum (GG) is the bacteria-derived polysaccharide widely used in food industry. Simple modifications of its chemical properties make GG superior for the development of biocompatible hydrogels. Beside reversible cationic integration of GG chains, more efficient binding is accomplished with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). However, the side-products of polymer cross-linking might affect viability and differentiation of stem cells introduced into the hydrogels. We found that O-acylisourea (EDU) stimulates autophagy-based vacuolation in both periodontal ligament and dental pulp stem cells. 24-h treatment of cells with GG extracts cross-linked with 15 mM EDC developed large cytoplasmic vacuoles. Freshly prepared EDU (2-6 mM) but not 15 mM EDC solutions initiated vacuole development with concomitant reduction of cell viability/metabolism. Most of the vacuoles stained with acridine orange displayed highly acidic environment further confirmed by flow cytometric analysis. Western blot of the LC3 autophagy marker followed by a transmission electron microscopy indicated the process is autophagy-dependent. We propose that the high reactivity of EDU with intracellular components initiates autophagy, although the targets of EDU remain unknown. Nevertheless, a burst release of EDU from GG hydrogels might modulate negatively cellular processes and final effectiveness of tissue regeneration.
Collapse
Affiliation(s)
- Elżbieta Pańczyszyn
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Marta Jaśko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Oliwia Miłek
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Matylda Niedziela
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Tomasz Męcik-Kronenberg
- Department of Pathomorphology, Faculty of Medical Sciences, Medical University of Silesia, 3 Maja 13, 41-800 Zabrze, Poland.
| | - Agnieszka Hoang-Bujnowicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Magdalena Zięba
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowskiej 34, 41-819 Zabrze, Poland.
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowskiej 34, 41-819 Zabrze, Poland.
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowskiej 34, 41-819 Zabrze, Poland.
| | - Anna M Osyczka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
18
|
Han H, Song KB. Effects of ultraviolet‐C irradiation on the physicochemical properties of polysaccharide films prepared from the stalk base of oyster mushrooms (
Pleurotus ostreatus
). Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hee‐Seon Han
- Department of Food Science and Technology Chungnam National University Daejeon34134Korea
| | - Kyung Bin Song
- Department of Food Science and Technology Chungnam National University Daejeon34134Korea
| |
Collapse
|
19
|
Effect of pH variation and crosslinker absence on the gelling mechanism of high acyl gellan: Morphological, thermal and mechanical approaches. Carbohydr Polym 2021; 251:117002. [DOI: 10.1016/j.carbpol.2020.117002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022]
|
20
|
Gehrcke M, de Bastos Brum T, da Rosa LS, Ilha BD, Soares FZM, Cruz L. Incorporation of nanocapsules into gellan gum films: A strategy to improve the stability and prolong the cutaneous release of silibinin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111624. [PMID: 33321666 DOI: 10.1016/j.msec.2020.111624] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/28/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to develop gellan gum films containing silibinin-loaded nanocapsules as a novel approach for cutaneous administration of this flavonoid. The nanocapsule suspensions were prepared and presented mean size around 140 nm with homogenous distribution, negative zeta potential and silibinin encapsulation efficiency close to 100%. Then, these suspensions were converted into gellan gum films by solvent casting method. The films were transparent, flexible and maintained the gellan gum hydrophilicity. Nanocapsules provided the silibinin homogenous distribution in the films and prolonged its release, as well as improved the gellan gum occlusion potential. Besides, the nanosuspensions conversion into films improved the silibinin stability. Additionally, the nano-based films presented a swelling index 1.5 times higher than films containing non-nanoencapsulated silibinin. Microscopic analysis evidenced the homogeneous surface of the nano-based films, while films containing non-nanoencapsulated silibinin presented small cracks. The in vitro skin permeation profile confirmed the silibinin gradual release from the nano-based films and its greater retention in the dermis when the skin is damaged. Finally, the formulations presented no irritant effect in the HET-CAM assay. Therefore, the conversion of silibinin-loaded nanocapsule suspensions into films might be considered a promising platform for skin delivery of this flavonoid.
Collapse
Affiliation(s)
- Mailine Gehrcke
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Taíne de Bastos Brum
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Lucas Saldanha da Rosa
- Departamento de Odontologia Restauradora, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Bruna Dias Ilha
- Departamento de Odontologia Restauradora, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fabio Zovico Maxnuck Soares
- Departamento de Odontologia Restauradora, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
21
|
Kim N, Choi JH, Choi MJ, Kim JS, Kim W, Song JE, Khang G. Characterization of Platelet-Rich Plasma/Gellan Gum Hydrogel Composite for Biological Performance to Induce Chondrogenesis from Adipose-Derived Stem Cells. Macromol Res 2020. [DOI: 10.1007/s13233-020-8155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Zhang X, Pan Y, Li S, Xing L, Du S, Yuan G, Li J, Zhou T, Xiong D, Tan H, Ling Z, Chen Y, Hu X, Niu X. Doubly crosslinked biodegradable hydrogels based on gellan gum and chitosan for drug delivery and wound dressing. Int J Biol Macromol 2020; 164:2204-2214. [DOI: 10.1016/j.ijbiomac.2020.08.093] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/16/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022]
|
23
|
Mahmood H, Khan IU, Asif M, Khan RU, Asghar S, Khalid I, Khalid SH, Irfan M, Rehman F, Shahzad Y, Yousaf AM, Younus A, Niazi ZR, Asim M. In vitro and in vivo evaluation of gellan gum hydrogel films: Assessing the co impact of therapeutic oils and ofloxacin on wound healing. Int J Biol Macromol 2020; 166:483-495. [PMID: 33130262 DOI: 10.1016/j.ijbiomac.2020.10.206] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022]
Abstract
Herein, we report co-encapsulation of ofloxacin with tea tree or lavender oil in gellan gum based hydrogel films by solvent casting ionotropic gelation method as wound dressing. Prepared films were transparent, flexible, and displayed antioxidant activity with superior antibacterial response against common inhabitants of wound i.e. gram positive and negative bacteria. Solid-state characterization of optimized formulation (OL3 and OT3) revealed successful incorporation of drug and oils in hydrogel structure without any noticeable interaction. In vitro release studies showed an initial burst release but remaining portion released in controlled manner over 48 h from the films and furthermore, presence of oils did not affected the ofloxacin release. Optimized formulation containing ofloxacin and 25% w/w lavender/tea tree oil showed 98% wound contraction in rats after ten days of treatment. Histological images displayed completely healed epidermis. Taken together, our prepared hydrogel films demonstrated favorable features with appreciable antibacterial, wound healing activity and could be useful for the treatment of full thickness wounds.
Collapse
Affiliation(s)
- Huma Mahmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Pakistan
| | - Rizwan Ullah Khan
- Department of Pathology, Prince Faisal Cancer Centre, Buraydah Al Qassim, Saudi Arabia
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ikrima Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Fauzia Rehman
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan; School of Pharmacy, The University of Faisalabad, Faisalabad, Pakistan
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Adnan Younus
- Global Medical Solutions Hospital Management LLC, Abu Dhabi, United Arab Emirates
| | - Zahid Rasul Niazi
- Department of Pharmacology, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, KPK, Pakistan
| | - Muhammad Asim
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
24
|
Wang B, Li W, Harrison J. An Evaluation of Wound Healing Efficacy of a Film Dressing Made from Polymer-integrated Amnion Membrane. Organogenesis 2020; 16:126-136. [PMID: 33164697 PMCID: PMC7714469 DOI: 10.1080/15476278.2020.1844507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022] Open
Abstract
A film dressing is an easy and common wound management, which is flexible to cover many types of superficial injuries. In a recent study, we developed a scaffold from poly (1,8-octanediolco-citrate) incorporated decellularized amnion membrane (DAM-POC). The DAM-POC scaffold was biocompatible and could enhance soft and hard tissue regeneration when applied to repair the cleft palate in rat. The efficacy of the DAM-POC scaffold in oral repair had led us to hypothesize that it could be employed extensively in the medical field as a wound dressing. This study aimed to investigate the feasibility and efficacy of the DAM-POC scaffold as a film dressing in accelerating wound healing when applied in multiple tissue injuries. Our results demonstrated that both the DAM and DAM-POC scaffolds were biocompatible and anti-adhesive without causing severe foreign body reactions when covering wounds in abdominal wall, back muscle, tibia bone, and liver. In addition, the DAM-POC scaffold was superior to the DAM scaffold in reducing inflammation, preventing fibrosis, and regenerating tissues. In conclusion, the DAM-POC scaffold might potentially be adopted as a film dressing in a wide range of therapeutic applications and healing situations to protect the damaged tissues from the external environment and prevent infections.
Collapse
Affiliation(s)
- Bo Wang
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Wuwei Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian, China
| | - Justin Harrison
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| |
Collapse
|
25
|
Li C, Sheng L, Sun G, Wang L. The application of ultraviolet-induced photo-crosslinking in edible film preparation and its implication in food safety. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
26
|
Modification of Collagen/Gelatin/Hydroxyethyl Cellulose-Based Materials by Addition of Herbal Extract-Loaded Microspheres Made from Gellan Gum and Xanthan Gum. MATERIALS 2020; 13:ma13163507. [PMID: 32784521 PMCID: PMC7476022 DOI: 10.3390/ma13163507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/25/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022]
Abstract
Because consumers are nowadays focused on their health and appearance, natural ingredients and their novel delivery systems are one of the most developing fields of pharmacy, medicine, and cosmetics. The main goal of this study was to design, prepare, and characterize composite materials obtained by incorporation of microspheres into the porous polymer materials consisting of collagen, gelatin, and hydroxyethyl cellulose. Microspheres, based on gellan gum and xanthan gum with encapsulated Calendula officinalis flower extract, were produced by two methods: extrusion and emulsification. The release profile of the extract from both types of microspheres was compared. Then, obtained microparticles were incorporated into polymeric materials with a porous structure. This modification had an influence on porosity, density, swelling properties, mechanical properties, and stability of materials. Besides, in vitro tests were performed using mouse fibroblasts. Cell viability was assessed with the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The obtained materials, especially with microspheres prepared by emulsion method, can be potentially helpful when designing cosmetic forms because they were made from safely for skin ingredients used in this industry and the herbal extract was successfully encapsulated into microparticles.
Collapse
|
27
|
Designing and investigation of photo-active gellan gum for the efficient immobilization of catalase by entrapment. Int J Biol Macromol 2020; 161:539-549. [PMID: 32544585 DOI: 10.1016/j.ijbiomac.2020.06.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
A photo-active gellan gum (Gel) derivative was developed by amide bond combination with trans-4-[p-(amino)styryl]pyridine (SP). The SP-Gel was cross-linked by UV curing via the intermolecular 2π + 2π cycloaddition of the inserted SP-CH=CH- moieties. The chemical structure of the obtained photo-crosslinkable biopolymer was investigated before and after the UV curing and the progress of the performed 2π + 2π cycloaddition-based cross-linking was detected via UV-visible light spectra. SP-Gel was evaluated as a polymeric matrix for the immobilization of catalase via entrapment technique. The synthesized biopolymer was mixed with the catalase and molded in the form of membranes that were UV cured to encapsulate the enzyme. The membranes were able to entrap 0.75 mg/cm2 with retained activity reached above 95%. The immobilized catalase displayed higher thermal stability and higher resistance toward the environmental pH disturbances compared to the free enzyme. Also, despite the observed lower catalase-H2O2 affinity upon the entrapment that was indicated from the performed kinetic studies, the reusability and storage stability experiments revealed the economic value of the entire process by preserving around 95% and 83% of the initial catalase activity after the fifth and tenth operation cycles, respectively.
Collapse
|
28
|
Ding Y, Jiang F, Chen L, Lyu W, Chi Z, Liu C, Chi Z. An Alternative Hard Capsule Prepared with the High Molecular Weight Pullulan and Gellan: Processing, Characterization, and In Vitro Drug Release. Carbohydr Polym 2020; 237:116172. [DOI: 10.1016/j.carbpol.2020.116172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
|
29
|
Production and physicochemical characterization of a new amine derivative of gellan gum and rheological study of derived hydrogels. Carbohydr Polym 2020; 236:116033. [DOI: 10.1016/j.carbpol.2020.116033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/23/2020] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
|
30
|
Mayes SM, Davis J, Scott J, Aguilar V, Zawko SA, Swinnea S, Peterson DL, Hardy JG, Schmidt CE. Polysaccharide-based films for the prevention of unwanted postoperative adhesions at biological interfaces. Acta Biomater 2020; 106:92-101. [PMID: 32097711 PMCID: PMC8552357 DOI: 10.1016/j.actbio.2020.02.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 01/05/2023]
Abstract
Postoperative adhesions protect, repair, and supply nutrients to injured tissues; however, such adhesions often remain permanent and complicate otherwise successful surgeries by tethering tissues together that are normally separated. An ideal adhesion barrier should not only effectively prevent unwanted adhesions but should be easy to use, however, those that are currently available have inconsistent efficacy and are difficult to handle or to apply. A robust hydrogel film composed of alginate and a photo-crosslinkable hyaluronic acid (HA) derivative (glycidyl methacrylate functionalized hyaluronic acid (GMHA)) represents a solution to this problem. A sacrificial porogen (urea) was used in the film manufacture process to impart macropores that yield films that are more malleable and tougher than equivalent films produced without the sacrificial porogen. The robust mechanical behavior of these templated alginate/GMHA films directly facilitated handling characteristics of the barrier film. In a rat peritoneal abrasion model for adhesion formation, the polysaccharide films successfully prevented adhesions with statistical equivalence to the leading anti-adhesion technology on the market, Seprafilm®. STATEMENT OF SIGNIFICANCE: Postoperative adhesions often remain permanent and complicate otherwise successful surgeries by tethering tissues together that are normally separated and pose potentially significant challenges to patients. Therefore, the generation of adhesion barriers that are easy to deploy during surgery and effectively prevent unwanted adhesions is a big challenge. In this study robust hydrogel films composed of alginate and a photo-crosslinkable hyaluronic acid (HA) derivative (glycidyl methacrylate functionalized HA, GMHA) were fabricated and investigated for their potential to act as a solution to this problem using a rat peritoneal abrasion model for adhesion formation. We observed the polysaccharide films successfully prevented adhesions with statistical equivalence to the leading anti-adhesion technology on the market, Seprafilm®, suggesting that such films represent a promising strategy for the prevention of postoperative adhesions.
Collapse
Affiliation(s)
- Sarah M Mayes
- Department of Biomedical Engineering, University of Texas at Austin, 107W Dean Keeton St, Austin, TX 78712, USA.
| | - Jessica Davis
- Department of Biomedical Engineering, University of Texas at Austin, 107W Dean Keeton St, Austin, TX 78712, USA.
| | - Jessica Scott
- Department of Biomedical Engineering, University of Texas at Austin, 107W Dean Keeton St, Austin, TX 78712, USA.
| | - Vanessa Aguilar
- Department of Biomedical Engineering, University of Texas at Austin, 107W Dean Keeton St, Austin, TX 78712, USA
| | - Scott A Zawko
- Department of Chemical Engineering, University of Texas at Austin, 200 E Dean Keeton St, Austin, TX 78712, USA
| | - Steve Swinnea
- Department of Chemical Engineering, University of Texas at Austin, 200 E Dean Keeton St, Austin, TX 78712, USA.
| | - Daniel L Peterson
- Department of Biomedical Engineering, University of Texas at Austin, 107W Dean Keeton St, Austin, TX 78712, USA.
| | - John G Hardy
- Department of Biomedical Engineering, University of Texas at Austin, 107W Dean Keeton St, Austin, TX 78712, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611-6131, USA.
| | - Christine E Schmidt
- Department of Biomedical Engineering, University of Texas at Austin, 107W Dean Keeton St, Austin, TX 78712, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611-6131, USA.
| |
Collapse
|
31
|
Palumbo FS, Federico S, Pitarresi G, Fiorica C, Giammona G. Gellan gum-based delivery systems of therapeutic agents and cells. Carbohydr Polym 2020; 229:115430. [DOI: 10.1016/j.carbpol.2019.115430] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/16/2019] [Accepted: 10/02/2019] [Indexed: 01/23/2023]
|
32
|
Muthukumar T, Song JE, Khang G. Biological Role of Gellan Gum in Improving Scaffold Drug Delivery, Cell Adhesion Properties for Tissue Engineering Applications. Molecules 2019; 24:E4514. [PMID: 31835526 PMCID: PMC6943741 DOI: 10.3390/molecules24244514] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, gellan gum (GG) has attracted substantial research interest in several fields including biomedical and clinical applications. The GG has highly versatile properties like easy bio-fabrication, tunable mechanical, cell adhesion, biocompatibility, biodegradability, drug delivery, and is easy to functionalize. These properties have put forth GG as a promising material in tissue engineering and regenerative medicine fields. Nevertheless, GG alone has poor mechanical strength, stability, and a high gelling temperature in physiological conditions. However, GG physiochemical properties can be enhanced by blending them with other polymers like chitosan, agar, sodium alginate, starch, cellulose, pullulan, polyvinyl chloride, xanthan gum, and other nanomaterials, like gold, silver, or composites. In this review article, we discuss the comprehensive overview and different strategies for the preparation of GG based biomaterial, hydrogels, and scaffolds for drug delivery, wound healing, antimicrobial activity, and cell adhesion. In addition, we have given special attention to tissue engineering applications of GG, which can be combined with another natural, synthetic polymers and nanoparticles, and other composites materials. Overall, this review article clearly presents a summary of the recent advances in research studies on GG for different biomedical applications.
Collapse
Affiliation(s)
| | | | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Chonbuk National University, Deokjin-gu, Jeonju 561-756, Korea; (T.M.); (J.E.S.)
| |
Collapse
|
33
|
Leone G, Consumi M, Pepi S, Pardini A, Bonechi C, Tamasi G, Donati A, Lamponi S, Rossi C, Magnani A. Enriched Gellan Gum hydrogel as visco-supplement. Carbohydr Polym 2019; 227:115347. [PMID: 31590845 DOI: 10.1016/j.carbpol.2019.115347] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/29/2019] [Accepted: 09/18/2019] [Indexed: 01/27/2023]
Abstract
Viscosupplementation, i.e. intra-articular injection of hyaluronic acid derivatives, is considered as the most effective treatment for patients with mild to moderate osteoarthritis. Even if hyaluronic acid is still considered as the gold standard, research is now focusing on the development of new products with enhanced injectability and yet reasonable viscoelastic behavior for OA treatment. A Gellan Gum (GG) hydrogel was synthesized and coated with crosslinked polyvinyl alcohol (PVA) to protect the polysaccharide from degradation during sterilization and improve its performance for the foreseen application. Thermal analyses indicated that mixed hydrogel showed a higher degree of structuring than the bare polysaccharide core without losing its swelling properties, thanks to the hydrophylicity of both coating and cross-linking agent. The PVA coating increased elastic and viscous moduli of the polysaccharide core conferring it a higher resistance to shear and compression and better thixotropic properties. Despite the double crosslinking, hydrogel was injectable. Cytocompatibility towards chondrocytes was verified.
Collapse
Affiliation(s)
- Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, Siena 53100, Italy; INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Marco Consumi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, Siena 53100, Italy; INSTM, via G. Giusti 9, 50121 Firenze, Italy
| | - Simone Pepi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, Siena 53100, Italy
| | - Alessio Pardini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, Siena 53100, Italy
| | - Claudia Bonechi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, Siena 53100, Italy; CSGI, via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, Siena 53100, Italy; CSGI, via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Alessandro Donati
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, Siena 53100, Italy; CSGI, via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, Siena 53100, Italy; INSTM, via G. Giusti 9, 50121 Firenze, Italy
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, Siena 53100, Italy; CSGI, via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, Siena 53100, Italy; INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| |
Collapse
|
34
|
Coelho J, Eusébio D, Gomes D, Frias F, Passarinha LA, Sousa Â. Biosynthesis and isolation of gellan polysaccharide to formulate microspheres for protein capture. Carbohydr Polym 2019; 220:236-246. [DOI: 10.1016/j.carbpol.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 01/11/2023]
|
35
|
Vinicius Beserra Dos Santos M, Bastos Nogueira Rocha L, Gomes Vieira E, Leite Oliveira A, Oliveira Lobo A, de Carvalho MAM, Anteveli Osajima J, Cavalcanti Silva-Filho E. Development of Composite Scaffolds Based on Cerium Doped-Hydroxyapatite and Natural Gums-Biological and Mechanical Properties. MATERIALS 2019; 12:ma12152389. [PMID: 31357470 PMCID: PMC6695794 DOI: 10.3390/ma12152389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 01/06/2023]
Abstract
Hydroxyapatite (HAp) is a ceramic material composing the inorganic portion of bones. Ionic substitutions enhance characteristics of HAp, for example, calcium ions (Ca2+) by cerium ions (Ce3+). The use of HAp is potentialized through biopolymers, cashew gum (CG), and gellan gum (GG), since CG/GG is structuring agents in the modeling of structured biocomposites, scaffolds. Ce-HApCG biocomposite was synthesized using a chemical precipitation method. The obtained material was frozen (–20 °C for 24 h), and then vacuum dried for 24 h. The Ce-HApCG was characterized by X-Ray diffractograms (XRD), X-ray photoemission spectra (XPS), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and energy dispersive spectroscopy (EDS). XRD and FTIR showed that Ce-HApCG was successfully synthesized. XRD showed characteristic peaks at 2θ = 25.87 and 32.05, corresponding to the crystalline planes (0 0 2) and (2 1 1), respectively, while phosphate bands were present at 1050 cm−1 and 1098 cm−1, indicating the success of composite synthesis. FESEM showed pores and incorporated nanostructured granules of Ce-HApCG. The mechanical test identified that Ce-HApCG has a compressive strength similar to the cancellous bone’s strength and some allografts used in surgical procedures. In vitro tests (MTT assay and hemolysis) showed that scaffold was non-toxic and exhibited low hemolytic activity. Thus, the Ce-HApCG has potential for application in bone tissue engineering.
Collapse
Affiliation(s)
- Marcus Vinicius Beserra Dos Santos
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64049-550 Piaui, Brazil
| | - Lorenna Bastos Nogueira Rocha
- NUPCELT, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64064-260 Piaui, Brazil
| | - Ewerton Gomes Vieira
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64049-550 Piaui, Brazil
| | - Ana Leite Oliveira
- Center of Biotechnology and Fine Chemical, Universidade Catolica Portuguesa, 4169-005 Porto, Portugal
| | - Anderson Oliveira Lobo
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64049-550 Piaui, Brazil
| | - Maria Acelina Martins de Carvalho
- NUPCELT, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64064-260 Piaui, Brazil
| | - Josy Anteveli Osajima
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64049-550 Piaui, Brazil
| | - Edson Cavalcanti Silva-Filho
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64049-550 Piaui, Brazil.
| |
Collapse
|
36
|
Kao CW, Tseng YY, Liu KS, Liu YW, Chen JC, He HL, Kau YC, Liu SJ. Anesthetics and human epidermal growth factor incorporated into anti-adhesive nanofibers provide sustained pain relief and promote healing of surgical wounds. Int J Nanomedicine 2019; 14:4007-4016. [PMID: 31213812 PMCID: PMC6549740 DOI: 10.2147/ijn.s202402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022] Open
Abstract
Background: This study exploited sheath-core-structured lidocaine/human EGF (hEGF)-loaded anti-adhesive poly[(d,l)-lactide-co-glycolide] (PLGA) nanofibrous films for surgical wounds via a co-axial electrospinning technique. Materials and methods: After spinning, the properties of the co-axially spun membranes were characterized by scanning electron microscopy, laser-scanning confocal microscopy, Fourier Transform Infrared spectrometry, water contact angle measurements, and tensile tests. Furthermore, a HPLC analysis and an ELISA evaluated the in vitro and in vivo release curves of lidocaine and hEGF from the films. Results: PLGA anti-adhesion nanofibers eluted high levels of lidocaine and hEGF for over 32 and 27 days, respectively, in vitro. The in vivo evaluation of post-surgery recovery in a rat model demonstrated that no adhesion was noticed in tissues at 2 weeks after surgery illustrating the anti-adhesive performance of the sheath-core-structured nanofibers. Nanofibrous films effectively released lidocaine and hEGF for >2 weeks in vivo. In addition, rats implanted with the lidocaine/hEGF nanofibrous membranes exhibited greater activities than the control demonstrating the pain relief efficacy of the films. Conclusion: The empirical outcomes suggested that the anti-adhesive nanofibrous films with extended release of lidocaine and hEGF offer post-operative pain relief and wound healing.
Collapse
Affiliation(s)
- Ching-Wei Kao
- Department of Anesthesiology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan.,Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Yuan-Yun Tseng
- Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Sheng Liu
- Department of Thoracic and Cardiovascular Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yen-Wei Liu
- Department of Thoracic and Cardiovascular Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Science, Chang Gung University, Taoyuan, Taiwan
| | - Hong-Lin He
- Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yi-Chuan Kau
- Department of Anesthesiology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Orthopedic Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
37
|
Ter Horst B, Moakes RJA, Chouhan G, Williams RL, Moiemen NS, Grover LM. A gellan-based fluid gel carrier to enhance topical spray delivery. Acta Biomater 2019; 89:166-179. [PMID: 30904549 DOI: 10.1016/j.actbio.2019.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 12/27/2022]
Abstract
Autologous cell transplantation was introduced to clinical practice nearly four decades ago to enhance burn wound re-epithelialisation. Autologous cultured or uncultured cells are often delivered to the surface in saline-like suspensions. This delivery method is limited because droplets of the sprayed suspension form upon deposition and run across the wound bed, leading to uneven coverage and cell loss. One way to circumvent this problem would be to use a gel-based material to enhance surface retention. Fibrin systems have been explored as co-delivery system with keratinocytes or as adjunct to 'seal' the cells following spray delivery, but the high costs and need for autologous blood has impeded its widespread use. Aside from fibrin gel, which can exhibit variable properties, it has not been possible to develop a gel-based carrier that solidifies on the skin surface. This is because it is challenging to develop a material that is sprayable but gels on contact with the skin surface. The manuscript reports the use of an engineered carrier device to deliver cells via spraying, to enhance retention upon a wound. The device involves shear-structuring of a gelling biopolymer, gellan, during the gelation process; forming a yield-stress fluid with shear-sensitive behaviours, known as a fluid gel. In this study, a formulation of gellan gum fluid gels are reported, formed with from 0.75 or 0.9% (w/v) polymer and varying the salt concentrations. The rheological properties and the propensity of the material to wet a surface were determined for polymer modified and non-polymer modified cell suspensions. The gellan fluid gels had a significantly higher viscosity and contact angle when compared to the non-polymer carrier. Viability of cells was not impeded by encapsulation in the gellan fluid gel or spraying. The shear thinning property of the material enabled it to be applied using an airbrush and spray angle, distance and air pressure were optimised for coverage and viability. STATEMENT OF SIGNIFICANCE: Spray delivery of skin cells has successfully translated to clinical practice. However, it has not yet been widely accepted due to limited retention and disputable cell viability in the wound. Here, we report a method for delivering cells onto wound surfaces using a gellan-based shear-thinning gel system. The viscoelastic properties allow the material to liquefy upon spraying and restructure rapidly on the surface. Our results demonstrate reduced run-off from the surface compared to currently used low-viscosity cell carriers. Moreover, encapsulated cells remain viable throughout the process. Although this paper studies the encapsulation of one cell type, a similar approach could potentially be adopted for other cell types. Our data supports further studies to confirm these results in in vivo models.
Collapse
Affiliation(s)
- B Ter Horst
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, United Kingdom; University Hospital Birmingham Foundation Trust, Burns Centre, Mindelsohn Way, B15 2TH Birmingham, United Kingdom; The Scar Free Foundation Birmingham Burn Research Centre, United Kingdom.
| | - R J A Moakes
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| | - G Chouhan
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| | - R L Williams
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| | - N S Moiemen
- University Hospital Birmingham Foundation Trust, Burns Centre, Mindelsohn Way, B15 2TH Birmingham, United Kingdom
| | - L M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| |
Collapse
|
38
|
A pH and NH3 sensing intelligent film based on Artemisia sphaerocephala Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.028] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Manufacture and Characterization of Mucoadhesive Buccal Films Based on Pectin and Gellan Gum Containing Triamcinolone Acetonide. INT J POLYM SCI 2018. [DOI: 10.1155/2018/2403802] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The treatment of canker sores can be quite compromised by the short period of the drug in the place of action. In this context, there is a need to develop drug dosage forms that allow more contact with the oral mucosa providing prolonged drug release. Therefore, the aim of this work was to obtain and characterize buccal films based on pectin and gellan gum in order to evaluate the potential use of these natural polymers in the production of pharmaceutical dosage forms for controlled release of TA in the oral mucosa. Using a 23 full factorial design, eight formulations were prepared by solvent casting method. The raw materials and films were characterized using techniques such as FTIR, DSC, and TG. In addition, thickness, mechanical properties, mucoadhesive strength, swelling, drug content, and dissolution profile of the films were evaluated. The results of FTIR, DSC, and TG showed that new chemical species are not formed in the production of films, and that these dosage forms have an adequate thermal behavior. All formulation showed a high degree of swelling, good mechanical resistance and elasticity, and a good mucoadhesive strength as well as able to act as a controlled release system.
Collapse
|
40
|
Stevens LR, Gilmore KJ, Wallace GG, In Het Panhuis M. Tissue engineering with gellan gum. Biomater Sci 2018; 4:1276-90. [PMID: 27426524 DOI: 10.1039/c6bm00322b] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Engineering complex tissues for research and clinical applications relies on high-performance biomaterials that are amenable to biofabrication, maintain mechanical integrity, support specific cell behaviours, and, ultimately, biodegrade. In most cases, complex tissues will need to be fabricated from not one, but many biomaterials, which collectively fulfill these demanding requirements. Gellan gum is an anionic polysaccharide with potential to fill several key roles in engineered tissues, particularly after modification and blending. This review focuses on the present state of research into gellan gum, from its origins, purification and modification, through processing and biofabrication options, to its performance as a cell scaffold for both soft tissue and load bearing applications. Overall, we find gellan gum to be a highly versatile backbone material for tissue engineering research, upon which a broad array of form and functionality can be built.
Collapse
Affiliation(s)
- L R Stevens
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - K J Gilmore
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - G G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - M In Het Panhuis
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia. and Soft Materials Group, School of Chemistry, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
41
|
Hyaluronic acid-based nano-sized drug carrier-containing Gellan gum microspheres as potential multifunctional embolic agent. Sci Rep 2018; 8:731. [PMID: 29335649 PMCID: PMC5768792 DOI: 10.1038/s41598-018-19191-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to develop a gellan gum-based multifunctional embolic agent. Calibrated spherical gellan gum and nanoparticle-containing gellan gum microspheres were prepared via water-in oil emulsification method. Self-assembled nanoparticles composed of short-chain hyaluronic acid and polyethylenimine as the doxorubicin carrier were prepared. The short-chain hyaluronic acid/polyethylenimine/ doxorubicin (sHH/PH/Dox) with the mean size was 140 ± 8 nm. To examine sHH/PH/Dox nanoparticle uptake into cells, the results confirmed that sHH/PH nanoparticles as drug carrier can facilitate the transport of doxorubicin into HepG2 liver cancer cells. Subsequently, sHH/PH/Dox merged into the gellan gum (GG) microspheres forming GG/sHH/PH/Dox microsphere. After a drug release experiment lasting 45 days, the amount of released doxorubicin from 285, 388, and 481 μm GG/sHH/PH/Dox microspheres were approximately 4.8, 1.8 and 1.1-fold above the IC50 value of the HepG2 cell. GG/sHH/PH/Dox microspheres were performed in rabbit ear embolization model and ischemic necrosis on ear was visible due to the vascular after 8 days. Regarding the application of this device in the future, we aim to provide better embolization agents for transcatheter arterial chemoembolization (TACE).
Collapse
|
42
|
Agnello S, Palumbo FS, Pitarresi G, Fiorica C, Giammona G. Synthesis and evaluation of thermo-rheological behaviour and ionotropic crosslinking of new gellan gum-alkyl derivatives. Carbohydr Polym 2018; 185:73-84. [PMID: 29421062 DOI: 10.1016/j.carbpol.2018.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 12/22/2022]
Abstract
This paper reports the synthesis and the physicochemical characterization of two series of gellan gum (GG) derivatives functionalized with alkyl chains with different number of carbon, from 8 to 18. In particular, low molecular weight gellan gum samples with 52.6 or 96.7 kDa, respectively, were functionalized with octylamine (C8), dodecylamine (C12) and octadecylamine (C18) by using bis(4-nitrophenyl) carbonate (4-NPBC) as a coupling agent. Thermo-rheological and ionotropic crosslinking properties of these gellan gum-alkyl derivatives were evaluated and related to the degree of derivatization in alkyl chains. Results suggested as length and degree of derivatization differently influenced coil-to-helix gelation mechanism of GG derivatives, ionotropic crosslinking, and strength of crosslinked hydrogels obtained in CaCl2 0.102 M and NaCl 0.15 M. Statement of hypothesis: The insertion of alkyl chains on the gellan gum backbone interferes with coil-to-helix transition mechanism and allows the production of hydrophobically assembled hydrogels.
Collapse
Affiliation(s)
- Stefano Agnello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - Fabio Salvatore Palumbo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - Giovanna Pitarresi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - Calogero Fiorica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; Mediterranean Center of Human Health Advanced Biotechnologies (CHAB), AteN Center, Viale delle Scienze, Edificio 18, 90128 Palermo, Italy; Institute of Biophysics at Palermo, Italian National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
43
|
Tsai W, Tsai H, Wong Y, Hong J, Chang S, Lee M. Preparation and characterization of gellan gum/glucosamine/clioquinol film as oral cancer treatment patch. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:317-322. [DOI: 10.1016/j.msec.2017.05.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/24/2017] [Accepted: 05/04/2017] [Indexed: 01/10/2023]
|
44
|
Gellan Gum-Based Hydrogels for Osteochondral Repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:281-304. [DOI: 10.1007/978-3-319-76711-6_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
Moghaddas Kia E, Ghasempour Z, Alizadeh M. Fabrication of an eco-friendly antioxidant biocomposite: Zedo gum/sodium caseinate film by incorporating microalgae (Spirulina platensis
). J Appl Polym Sci 2017. [DOI: 10.1002/app.46024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ehsan Moghaddas Kia
- Department of Food Science and Technology; Maragheh University of Medical Sciences; Maragheh Iran
| | - Zahra Ghasempour
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mohammad Alizadeh
- Department of Food Science and Technology, Agricultural Faculty; Urmia University; Urmia Iran
| |
Collapse
|
46
|
Zia KM, Tabasum S, Khan MF, Akram N, Akhter N, Noreen A, Zuber M. Recent trends on gellan gum blends with natural and synthetic polymers: A review. Int J Biol Macromol 2017; 109:1068-1087. [PMID: 29157908 DOI: 10.1016/j.ijbiomac.2017.11.099] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/04/2017] [Accepted: 11/15/2017] [Indexed: 01/14/2023]
Abstract
Gellan gum (GG), a linear negatively charged exopolysaccharide,is biodegradable and non-toxic in nature. It produces hard and translucent gel in the presence of metallic ions which is stable at low pH. However, GG has poor mechanical strength, poor stability in physiological conditions, high gelling temperature and small temperature window.Therefore,it is blended with different polymers such as agar, chitosan, cellulose, sodium alginate, starch, pectin, polyanaline, pullulan, polyvinyl chloride, and xanthan gum. In this article, a comprehensive overview of combination of GG with natural and synthetic polymers/compounds and their applications in biomedical field involving drug delivery system, insulin delivery, wound healing and gene therapy, is presented. It also describes the utilization of GG based materials in food and petroleum industry. All the technical scientific issues have been addressed; highlighting the recent advancement.
Collapse
Affiliation(s)
- Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad, 38030, Pakistan.
| | - Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad, 38030, Pakistan
| | - Muhammad Faris Khan
- Institute of Chemistry, Government College University, Faisalabad, 38030, Pakistan; Department of Allied Health Sciences, Government College University, Faisalabad, 38030, Pakistan
| | - Nadia Akram
- Institute of Chemistry, Government College University, Faisalabad, 38030, Pakistan
| | - Naheed Akhter
- Department of Allied Health Sciences, Government College University, Faisalabad, 38030, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad, 38030, Pakistan
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad, 38030, Pakistan
| |
Collapse
|
47
|
Wu W, Cheng R, das Neves J, Tang J, Xiao J, Ni Q, Liu X, Pan G, Li D, Cui W, Sarmento B. Advances in biomaterials for preventing tissue adhesion. J Control Release 2017; 261:318-336. [DOI: 10.1016/j.jconrel.2017.06.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
|
48
|
Kao CW, Lee D, Wu MH, Chen JK, He HL, Liu SJ. Lidocaine/ketorolac-loaded biodegradable nanofibrous anti-adhesive membranes that offer sustained pain relief for surgical wounds. Int J Nanomedicine 2017; 12:5893-5901. [PMID: 28860755 PMCID: PMC5566388 DOI: 10.2147/ijn.s140825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to develop and evaluate the effectiveness of biodegradable nanofibrous lidocaine/ketorolac-loaded anti-adhesion membranes to sustainably release analgesics on abdominal surgical wounds. The analgesic-eluting membranes with two polymer-to-drug ratios (6:1 and 4:1) were produced via an electrospinning technique. A high-performance liquid chromatography (HPLC) assay was employed to characterize the in vivo and in vitro release behaviors of the pharmaceuticals from the membranes. It was found that all biodegradable anti-adhesion nanofibers released effective concentrations of lidocaine and ketorolac for over 20 days post surgery. In addition, a transverse laparotomy was setup in a rat model for an in vivo assessment of activity of postoperative recovery. No tissue adhesion was observed at 2 weeks post surgery, demonstrating the potential anti-adhesion capability of the drug-eluting nanofibrous membrane. The postoperative activities were recorded for two groups of rats as follows: rats that did not have any membrane implanted (group A) and rats that had the analgesic-eluting membrane implanted (group B). Rats in group B exhibited faster recovery times than those in group A with regard to postoperative activities, confirming the pain relief effectiveness of the lidocaine- and ketorolac-loaded nanofibrous membranes. The experimental results suggested that the anti-adhesion nanofibrous membranes with sustainable elution of lidocaine and ketorolac are adequately effective and durable for the purposes of postoperative pain relief in rats.
Collapse
Affiliation(s)
- Ching-Wei Kao
- Department of Anesthesiology, Chiayi Chang Gung Memorial Hospital, Chiayi.,Department of Mechanical Engineering
| | - Demei Lee
- Department of Mechanical Engineering
| | | | - Jan-Kan Chen
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan
| | - Hong-Lin He
- Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung
| | - Shih-Jung Liu
- Department of Mechanical Engineering.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
49
|
Injectable thermosensitive hydrogel containing hyaluronic acid and chitosan as a barrier for prevention of postoperative peritoneal adhesion. Carbohydr Polym 2017; 173:721-731. [PMID: 28732919 DOI: 10.1016/j.carbpol.2017.06.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/16/2017] [Accepted: 06/05/2017] [Indexed: 01/28/2023]
Abstract
Peritoneal adhesion is one of the common complications after abdominal surgery. Injectable thermosensitive hydrogel could serve as an ideal barrier to prevent this postoperative tissue adhesion. In this study, poly(N-isopropylacrylamide) (PNIPAm) was grafted to chitosan (CS) and the polymer was further conjugated with hyaluronic acid (HA) to form thermosensitive HA-CS-PNIPAm hydrogel. Aqueous solutions of PNIPAm and HA-CS-PNIPAm at 10%(w/v) are both free-flowing and injectable at room temperature and exhibit sol-gel phase transition around 31°C; however, HA-CS-PNIPAm shows less volume shrinkage after gelation and higher complex modulus than PNIPAm. Cell culture studies indicate both injectable hydrogel show barrier effects to reduce fibroblasts penetration while induce little cytotoxicity in vitro. From a sidewall defect-bowel abrasion model in rats, significant reduction of postoperative peritoneal adhesion was found for peritoneal defects treated with HA-CS-PNIPAm compared with those treated with PNIPAm and untreated controls from gross and histological evaluation. Furthermore, HA-CS-PNIPAm did not interfere with normal peritoneal tissue healing and did not elicit acute toxicity from blood analysis and tissue biopsy examination. By taking advantage of the easy handling and placement properties of HA-CS-PNIPAm during application, this copolymer hydrogel would be a potentially ideal injectable anti-adhesion barrier after abdominal surgeries.
Collapse
|
50
|
Yu I, Kaonis S, Chen R. A Study on Degradation Behavior of 3D Printed Gellan Gum Scaffolds. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.procir.2017.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|