1
|
Bardajee GR, Ghadimkhani R, Jafarpour F. A biocompatible double network hydrogel based on poly (acrylic acid) grafted onto sodium alginate for doxorubicin hydrochloride anticancer drug release. Int J Biol Macromol 2024; 260:128871. [PMID: 38123038 DOI: 10.1016/j.ijbiomac.2023.128871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
This study involved the synthesis of a new biocompatible slow-release hydrogel named poly (acrylic acid) grafted onto sodium alginate (poly (AA-g-SA)) double network hydrogel (DNH). The hydrogel was created by polymerization of acrylic acid grafted onto sodium alginate polysaccharide using crosslinkers N,N'-methylenebisacrylamide and calcium chloride via free radical polymerization. The water absorbency of the poly (AA-g-SA) double network hydrogel was improved by optimizing the quantities of ammonium persulfate initiator, pH-sensitive monomer of acrylic acid, and crosslinkers. Various analytical techniques including attenuated total reflection Fourier-transformed infrared (ATR-FTIR), X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), and Brunauer-Emmett-Teller specific surface area analysis (BET) were used to characterize the synthesized hydrogels. The swelling and on-off switching behaviors of the hydrogels were investigated in deionized (DI) water at different temperatures and pH values. The optimum poly (AA-g-SA) DNH was tested for in vitro release of a hydrophilic chemotherapeutic drug, doxorubicin hydrochloride (DOX). The eco-friendly hydrogel favorably optimized the DOX slow release owing to its swelling rate, high absorption and regeneration capabilities. The findings of this study may have significant implications for medical and scientific research.
Collapse
Affiliation(s)
| | - Roghieh Ghadimkhani
- Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran
| | - Farnaz Jafarpour
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran
| |
Collapse
|
2
|
Jia G, Van Valkenburgh J, Chen AZ, Chen Q, Li J, Zuo C, Chen K. Recent advances and applications of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1749. [PMID: 34405552 PMCID: PMC8850537 DOI: 10.1002/wnan.1749] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Transarterial chemoembolization (TACE) is a recommended treatment for patients suffering from intermediate and advanced hepatocellular carcinoma (HCC). As compared to the conventional TACE, drug-eluting bead TACE demonstrates several advantages in terms of survival, treatment response, and adverse effects. The selection of embolic agents is critical to the success of TACE. Many studies have been performed on the modification of the structure, size, homogeneity, biocompatibility, and biodegradability of embolic agents. Continuing efforts are focused on efficient loading of versatile chemotherapeutics, controlled sizes for sufficient occlusion, real-time detection intra- and post-procedure, and multimodality imaging-guided precise treatment. Here, we summarize recent advances and applications of microspheres and nanoparticles in TACE for HCC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Guorong Jia
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Nuclear Medicine, Changhai Hospital of Shanghai, Shanghai, China
| | - Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Austin Z. Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Quan Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jindian Li
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital of Shanghai, Shanghai, China,Corresponding authors ,(Changjing Zuo); , (Kai Chen)
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Corresponding authors ,(Changjing Zuo); , (Kai Chen)
| |
Collapse
|
3
|
Asialoglycoprotein receptor targeted optical and magnetic resonance imaging and therapy of liver fibrosis using pullulan stabilized multi-functional iron oxide nanoprobe. Sci Rep 2021; 11:18324. [PMID: 34526590 PMCID: PMC8443657 DOI: 10.1038/s41598-021-97808-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/24/2021] [Indexed: 11/24/2022] Open
Abstract
Early diagnosis and therapy of liver fibrosis is of utmost importance, especially considering the increased incidence of alcoholic and non-alcoholic liver syndromes. In this work, a systematic study is reported to develop a dual function and biocompatible nanoprobe for liver specific diagnostic and therapeutic applications. A polysaccharide polymer, pullulan stabilized iron oxide nanoparticle (P-SPIONs) enabled high liver specificity via asialogycoprotein receptor mediation. Longitudinal and transverse magnetic relaxation rates of 2.15 and 146.91 mM−1 s−1 respectively and a size of 12 nm, confirmed the T2 weighted magnetic resonance imaging (MRI) efficacy of P-SPIONs. A current of 400A on 5 mg/ml of P-SPIONs raised the temperature above 50 °C, to facilitate effective hyperthermia. Finally, a NIR dye conjugation facilitated targeted dual imaging in liver fibrosis models, in vivo, with favourable histopathological results and recommends its use in early stage diagnosis using MRI and optical imaging, and subsequent therapy using hyperthermia.
Collapse
|
4
|
Patel SR, Patel MP. Green and facile preparation of ultrasonic wave-assisted chitosan-g-poly-(AA/DAMPB)/Fe3O4 composite hydrogel for sequestration of reactive black 5 dye. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03662-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Li X, Ji X, Chen K, Ullah MW, Li B, Cao J, Xiao L, Xiao J, Yang G. Immobilized thrombin on X-ray radiopaque polyvinyl alcohol/chitosan embolic microspheres for precise localization and topical blood coagulation. Bioact Mater 2021; 6:2105-2119. [PMID: 33511310 PMCID: PMC7807145 DOI: 10.1016/j.bioactmat.2020.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
Trans-catheter arterial embolization (TAE) plays an important role in treating various diseases. The available embolic agents lack X-ray visibility and do not prevent the reflux phenomenon, thus hindering their application for TAE therapy. Herein, we aim to develop a multifunctional embolic agent that combines the X-ray radiopacity with local procoagulant activity. The barium sulfate nanoparticles (BaSO4 NPs) were synthesized and loaded into the polyvinyl alcohol/chitosan (PVA/CS) to prepare the radiopaque BaSO4/PVA/CS microspheres (MS). Thereafter, thrombin was immobilized onto the BaSO4/PVA/CS MS to obtain the thrombin@BaSO4/PVA/CS MS. The prepared BaSO4/PVA/CS MS were highly spherical with diameters ranging from 100 to 300 μm. In vitro CT imaging showed increased X-ray visibility of BaSO4/PVA/CS MS with the increased content of BaSO4 NPs in the PVA/CS MS. The biocompatibility assessments demonstrated that the MS were non-cytotoxic and possessed permissible hemolysis rate. The biofunctionalized thrombin@BaSO4/PVA/CS MS showed improved hemostatic capacity and facilitated hemostasis in vitro. Additionally, in vivo study performed on a rabbit ear embolization model confirmed the excellent X-ray radiopaque stability of the BaSO4/PVA/CS MS. Moreover, both the BaSO4/PVA/CS and thrombin@BaSO4/PVA/CS MS achieved superior embolization effects with progressive ischemic necrosis on the ear tissue and induced prominent ultrastructural changes in the endothelial cells. The findings of this study suggest that the developed MS could act as a radiopaque and hemostatic embolic agent to improve the embolization efficiency. Excellent in vitro and in vivo visibility of BaSO4/PVA/CS MS. Excellent cytocompatibility and hemocompatibility of BaSO4/PVA/CS MS. Enhanced hemostatic capacity and hemostasis of thrombin@BaSO4/PVA/CS MS. Potential application of thrombin@BaSO4/PVA/CS MS for in vivo embolization.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiongfa Ji
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Kun Chen
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Basen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiameng Cao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lin Xiao
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jun Xiao
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
6
|
Jaafari J, Barzanouni H, Mazloomi S, Amir Abadi Farahani N, Sharafi K, Soleimani P, Haghighat GA. Effective adsorptive removal of reactive dyes by magnetic chitosan nanoparticles: Kinetic, isothermal studies and response surface methodology. Int J Biol Macromol 2020; 164:344-355. [DOI: 10.1016/j.ijbiomac.2020.07.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 01/04/2023]
|
7
|
Chen H, Cheng H, Wu W, Li D, Mao J, Chu C, Liu G. The blooming intersection of transcatheter hepatic artery chemoembolization and nanomedicine. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Wang CY, Hu J, Sheth RA, Oklu R. Emerging Embolic Agents in Endovascular Embolization: An Overview. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2020; 2:012003. [PMID: 34553126 PMCID: PMC8455112 DOI: 10.1088/2516-1091/ab6c7d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Courtney Y. Wang
- The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin St., Hourson, TX 77030, USA
| | - Jingjie Hu
- Division of Vascular and Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, AZ 85259, USA
| | - Rahul A. Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Rahmi Oklu
- Division of Vascular and Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, AZ 85259, USA
| |
Collapse
|
9
|
Qin XY, Liu XX, Li ZY, Guo LY, Zheng ZZ, Guan HT, Song L, Zou YH, Fan TY. MRI Detectable Polymer Microspheres Embedded With Magnetic Ferrite Nanoclusters For Embolization: In Vitro And In Vivo Evaluation. Int J Nanomedicine 2019; 14:8989-9006. [PMID: 31819414 PMCID: PMC6873973 DOI: 10.2147/ijn.s209603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE The objective of this study was to develop magnetic embolic microspheres that could be visualized by clinical magnetic resonance imaging (MRI) scanners aiming to improve the efficiency and safety of embolotherapy. METHODS AND DISCUSSION Magnetic ferrite nanoclusters (FNs) were synthesized with microwave-assisted solvothermal method, and their morphology, particle size, crystalline structure, magnetic properties as well as T2 relaxivity were characterized to confirm the feasibility of FNs as an MRI probe. Magnetic polymer microspheres (FNMs) were then produced by inverse suspension polymerization with FNs embedded inside. The physicochemical and mechanical properties (including morphology, particle size, infrared spectra, elasticity, etc.) of FNMs were investigated, and the magnetic properties and MRI detectable properties of FNMs were also assayed by vibrating sample magnetometer and MRI scanners. Favorable biocompatibility and long-term MRI detectability of FNMs were then studied in mice by subcutaneous injection. FNMs were further used to embolize rabbits' kidneys to evaluate the embolic property and detectability by MRI. CONCLUSION FNMs could serve as a promising MRI-visualized embolic material for embolotherapy in the future.
Collapse
Affiliation(s)
- Xiao-Ya Qin
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Xiao-Xin Liu
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Zi-Yuan Li
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Li-Ying Guo
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Zhuo-Zhao Zheng
- Department of Nuclear Medicine, Beijing Tsinghua Changgung Hospital, Beijing, People’s Republic of China
| | - Hai-Tao Guan
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, People’s Republic of China
| | - Li Song
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, People’s Republic of China
| | - Ying-Hua Zou
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, People’s Republic of China
| | - Tian-Yuan Fan
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| |
Collapse
|
10
|
Hu J, Albadawi H, Oklu R, Chong BW, Deipolyi AR, Sheth RA, Khademhosseini A. Advances in Biomaterials and Technologies for Vascular Embolization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901071. [PMID: 31168915 PMCID: PMC7014563 DOI: 10.1002/adma.201901071] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/24/2019] [Indexed: 05/03/2023]
Abstract
Minimally invasive transcatheter embolization is a common nonsurgical procedure in interventional radiology used for the deliberate occlusion of blood vessels for the treatment of diseased or injured vasculature. A wide variety of embolic agents including metallic coils, calibrated microspheres, and liquids are available for clinical practice. Additionally, advances in biomaterials, such as shape-memory foams, biodegradable polymers, and in situ gelling solutions have led to the development of novel preclinical embolic agents. The aim here is to provide a comprehensive overview of current and emerging technologies in endovascular embolization with respect to devices, materials, mechanisms, and design guidelines. Limitations and challenges in embolic materials are also discussed to promote advancement in the field.
Collapse
Affiliation(s)
- Jingjie Hu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Hassan Albadawi
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Brian W Chong
- Departments of Radiology and Neurological Surgery, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Amy R. Deipolyi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical Center, 1275 York Avenue, New York, New York 10065, USA
| | - Rahul A. Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Radiological Sciences, Department of Chemical and Biomolecular Engineering, Center for Minimally Invasive Therapeutics, California Nanosystems Institute, University of California, 410 Westwood Plaza, Los Angeles, California 90095, USA
| |
Collapse
|
11
|
Kurdtabar M, Rezanejade Bardajee G. Drug release and swelling behavior of magnetic iron oxide nanocomposite hydrogels based on poly(acrylic acid) grafted onto sodium alginate. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02894-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Synthesis and assessment of drug-eluting microspheres for transcatheter arterial chemoembolization. Acta Biomater 2019; 88:370-382. [PMID: 30822552 DOI: 10.1016/j.actbio.2019.02.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 12/28/2022]
Abstract
Transcatheter arterial chemoembolization (TACE) is well known as an effective treatment for inoperable hepatocellular carcinoma (HCC). In this study, a novel embolic agent of ion-exchange poly(hydroxyethyl methacrylate-acrylic acid) microspheres (HAMs) was successfully synthesized by the inverse suspension polymerization method. Then, HAMs were assessed for their activity as an embolic agent by investigating morphology, particle size, water retention capability, elasticity and viscoelasticity, microcatheter/catheter deliverability, cytotoxicity, renal arterial embolization to rabbits and histopathological examinations. The ability of drug loading and drug eluting of HAMs was also investigated by using doxorubicin (Dox) as the model drug. HAMs showed to be feasible and effective for vascular embolization and to be as a drug vehicle for loading positively charged molecules and potential use in the clinical interventional chemoembolization therapy. STATEMENT OF SIGNIFICANCE: A novel embolic agent of ion-exchange poly(hydroxyethyl methacrylate-acrylic acid) microspheres (HAMs) was successfully synthesized by the inverse suspension polymerization method and was used as a drug vehicle to load positively charged molecules by ion absorption. Then, a series of assessments including physicochemical properties, mechanical properties, drug-loading capability, and embolic efficacy were performed. Surface and cross-section morphology and pore size of fully hydrated HAMs were first investigated by Phenom ProX SEM, which intuitively disclosed the "honeycomb" network morphology. HAMs also showed to be feasible and effective for vascular occlusion and have potential use in clinical interventional embolization therapy.
Collapse
|
13
|
Kim SY, Bang IH, Min SC. Effects of packaging parameters on the inactivation of Salmonella contaminating mixed vegetables in plastic packages using atmospheric dielectric barrier discharge cold plasma treatment. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Lewis AL, Willis SL, Dreher MR, Tang Y, Ashrafi K, Wood BJ, Levy EB, Sharma KV, Negussie AH, Mikhail AS. Bench-to-clinic development of imageable drug-eluting embolization beads: finding the balance. Future Oncol 2018; 14:2741-2760. [PMID: 29944007 DOI: 10.2217/fon-2018-0196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review describes the historical development of an imageable spherical embolic agent and focuses on work performed in collaboration between Biocompatibles UK Ltd (a BTG International group company) and the NIH to demonstrate radiopaque bead utility and bring a commercial offering to market that meets a clinical need. Various chemistries have been investigated and multiple prototypes evaluated in search of an optimized product with the right balance of handling and imaging properties. Herein, we describe the steps taken in the development of DC Bead LUMI™, the first commercially available radiopaque drug-eluting bead, ultimately leading to the first human experience of this novel embolic agent in the treatment of liver tumors.
Collapse
Affiliation(s)
- Andrew L Lewis
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, GU15 3YL, UK
| | - Sean L Willis
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, GU15 3YL, UK
| | - Matthew R Dreher
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, GU15 3YL, UK
| | - Yiqing Tang
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, GU15 3YL, UK
| | - Koorosh Ashrafi
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, GU15 3YL, UK
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology & Imaging Sciences, NIH Clinical Center, National Institute of Biomedical Imaging & Bioengineering, & National Cancer Institute Center for Cancer Research, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | - Elliot B Levy
- Center for Interventional Oncology, Radiology & Imaging Sciences, NIH Clinical Center, National Institute of Biomedical Imaging & Bioengineering, & National Cancer Institute Center for Cancer Research, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | - Karun V Sharma
- Department of Radiology & Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC 20010, USA
| | - Ayele H Negussie
- Center for Interventional Oncology, Radiology & Imaging Sciences, NIH Clinical Center, National Institute of Biomedical Imaging & Bioengineering, & National Cancer Institute Center for Cancer Research, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | - Andrew S Mikhail
- Center for Interventional Oncology, Radiology & Imaging Sciences, NIH Clinical Center, National Institute of Biomedical Imaging & Bioengineering, & National Cancer Institute Center for Cancer Research, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Kurdtabar M, Nezam H, Rezanejade Bardajee G, Dezfulian M, Salimi H. Biocompatible Magnetic Hydrogel Nanocomposite Based on Carboxymethylcellulose: Synthesis, Cell Culture Property and Drug Delivery. POLYMER SCIENCE SERIES B 2018. [DOI: 10.1134/s1560090418020021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Liu Q, Qian Y, Li P, Zhang S, Liu J, Sun X, Fulham M, Feng D, Huang G, Lu W, Song S. 131I-Labeled Copper Sulfide-Loaded Microspheres to Treat Hepatic Tumors via Hepatic Artery Embolization. Theranostics 2018; 8:785-799. [PMID: 29344306 PMCID: PMC5771093 DOI: 10.7150/thno.21491] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022] Open
Abstract
Purpose: Transcatheter hepatic artery embolization therapy is a minimally invasive alternative for treating inoperable liver cancer but recurrence is frequent. Multifunctional agents, however, offer an opportunity for tumor eradication. In this study, we were aim to synthesized poly (lactic-co-glycolic acid) (PLGA) microspheres encapsulating hollow CuS nanoparticles (HCuSNPs) and paclitaxel (PTX) that were then labeled with radioiodine-131 (131I) to produce 131I-HCuSNPs-MS-PTX. This compound combines the multi-theranostic properties of chemotherapy, radiotherapy and photothermal therapy. In addition, it can also be imaged with single photon emission computed tomography (SPECT) imaging and photoacoustic imaging. Methods: We investigated the value of therapeutic and imaging of 131I-HCuSNPs-MS-PTX in rats bearing Walker-256 tumor transplanted in the liver. After the intra-arterial (IA) injection of 131I-HCuSNPs-MS-PTX, 18F-Fluorodeoxyglucose (18F-FDG) micro-positron emission tomography/computed tomography (micro-PET/CT) imaging was used to monitor the therapeutic effect. PET/CT findings were verified by immunohistochemical analysis. SPECT/CT and photoacoustic imaging were performed to demonstrate the distribution of 131I-HCuSNPs-MS-PTX in vivo. Results: We found that embolization therapy in combination with chemotherapy, radiotherapy and photothermal therapy offered by 131I-HCuSNPs-MS-PTX completely ablated the transplanted hepatic tumors at a relatively low dose. In comparison, embolization monotherapy or combination with one or two other therapies had less effective anti-tumor efficacy. The combination of SPECT/CT and photoacoustic imaging effectively confirmed microsphere delivery to the targeted tumors in vivo and guided the near-infrared laser irradiation. Conclusion: Our study suggests that there is a clinical theranostic potential for imaging-guided arterial embolization with 131I-HCuSNPs-MS-PTX for the treatment of liver tumors.
Collapse
|
17
|
Poly(acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization and MRI detectability: In vitro and in vivo evaluation. Int J Pharm 2017; 527:31-41. [DOI: 10.1016/j.ijpharm.2017.04.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/17/2017] [Accepted: 04/28/2017] [Indexed: 02/07/2023]
|
18
|
Wang Q, Liu S, Yang F, Gan L, Yang X, Yang Y. Magnetic alginate microspheres detected by MRI fabricated using microfluidic technique and release behavior of encapsulated dual drugs. Int J Nanomedicine 2017; 12:4335-4347. [PMID: 28652736 PMCID: PMC5473605 DOI: 10.2147/ijn.s131249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alginate microspheres loaded with superparamagnetic iron oxide nanoparticles (SPIO NPs) have been fabricated by a T-junction microfluidic device combined with an external ionic crosslinking. The obtained microspheres possess excellent visuality under magnetic resonance due to the presence of only 0.6 mg/mL SPIO NPs. The microspheres also show uniform size with narrow distribution and regular spherical shape characterized by optic microscope and environmental scanning electron microscope. Furthermore, dual drugs (5-fluorouracil and doxorubicin hydrochloride) have been loaded within the microspheres. The release behavior of dual drugs from the microspheres show typical sustained release profiles. As a novel embolic agent, such microspheres in blood vessels can be tracked by magnetic resonance scanner. Thus, the integration of embolotherapy, chemotherapy, and postoperative diagnosis can be realized.
Collapse
Affiliation(s)
- Qin Wang
- National Engineering Research Center for Nanomedicine, School of Chemistry and Chemical Engineering
| | - Shanshan Liu
- National Engineering Research Center for Nanomedicine, School of Chemistry and Chemical Engineering
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yajiang Yang
- National Engineering Research Center for Nanomedicine, School of Chemistry and Chemical Engineering
| |
Collapse
|
19
|
Hong SC, Yoo SY, Kim H, Lee J. Chitosan-Based Multifunctional Platforms for Local Delivery of Therapeutics. Mar Drugs 2017; 15:md15030060. [PMID: 28257059 PMCID: PMC5367017 DOI: 10.3390/md15030060] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 12/24/2022] Open
Abstract
Chitosan has been widely used as a key biomaterial for the development of drug delivery systems intended to be administered via oral and parenteral routes. In particular, chitosan-based microparticles are the most frequently employed delivery system, along with specialized systems such as hydrogels, nanoparticles and thin films. Based on the progress made in chitosan-based drug delivery systems, the usefulness of chitosan has further expanded to anti-cancer chemoembolization, tissue engineering, and stem cell research. For instance, chitosan has been used to develop embolic materials designed to efficiently occlude the blood vessels by which the oxygen and nutrients are supplied. Indeed, it has been reported to be a promising embolic material. For better anti-cancer effect, embolic materials that can locally release anti-cancer drugs were proposed. In addition, a complex of radioactive materials and chitosan to be locally injected into the liver has been investigated as an efficient therapeutic tool for hepatocellular carcinoma. In line with this, a number of attempts have been explored to use chitosan-based carriers for the delivery of various agents, especially to the site of interest. Thus, in this work, studies where chitosan-based drug delivery systems have successfully been used for local delivery will be presented along with future perspectives.
Collapse
Affiliation(s)
- Seong-Chul Hong
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea.
| | - Seung-Yup Yoo
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea.
| | - Hyeongmin Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea.
| | - Jaehwi Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
20
|
Preparation and evaluation of MRI detectable poly (acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization. Int J Pharm 2016; 511:831-9. [DOI: 10.1016/j.ijpharm.2016.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/06/2016] [Accepted: 07/14/2016] [Indexed: 01/10/2023]
|
21
|
Jahanbakhshi M, Habibi B. A novel and facile synthesis of carbon quantum dots via salep hydrothermal treatment as the silver nanoparticles support: Application to electroanalytical determination of H2O2 in fetal bovine serum. Biosens Bioelectron 2016; 81:143-150. [DOI: 10.1016/j.bios.2016.02.064] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/26/2023]
|
22
|
Affiliation(s)
- Dawn Bannerman
- Graduate Program in Biomedical Engineering, University of Western Ontario, London, Ontario, Canada
| | - Wankei Wan
- Graduate Program in Biomedical Engineering, University of Western Ontario, London, Ontario, Canada
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
23
|
Li W, Jan Zaloga, Ding Y, Liu Y, Janko C, Pischetsrieder M, Alexiou C, Boccaccini AR. Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications. Sci Rep 2016; 6:23140. [PMID: 27005428 PMCID: PMC4804305 DOI: 10.1038/srep23140] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/25/2016] [Indexed: 01/07/2023] Open
Abstract
The promising potential of magnetic polymer microspheres in various biomedical applications has been frequently reported. However, the surface hydrophilicity of superparamagnetic iron oxide nanoparticles (SPIONs) usually leads to poor or even failed encapsulation of SPIONs in hydrophobic polymer microspheres using the emulsion method. In this study, the stability of SPIONs in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) solution was significantly increased after surface modification with lauric acid. As a result, magnetic PHBV microspheres with high encapsulation efficiencies (71.0-87.4%) were prepared using emulsion-solvent extraction/evaporation method. Magnetic resonance imaging (MRI) showed significant contrast for the magnetic PHBV microspheres. The toxicity of these magnetic PHBV microspheres towards human T-lymphoma suspension cells and adherent colon carcinoma HT-29 cells was investigated using flow cytometry, and they were shown to be non-toxic in a broad concentration range. A model drug, tetracycline hydrochloride, was used to demonstrate the drug delivery capability and to investigate the drug release behavior of the magnetic PHBV microspheres. The drug was successfully loaded into the microspheres using lauric acid-coated SPIONs as drug carrier, and was released from the microspheres in a diffusion controlled manner. The developed magnetic PHBV microspheres are promising candidates for biomedical applications such as targeted drug delivery and MRI.
Collapse
Affiliation(s)
- Wei Li
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | - Jan Zaloga
- Department of Otorhinolaryngology, Head and Neck Surgery, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Glückstrasse 10a, 91054 Erlangen, Germany
| | - Yaping Ding
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Yufang Liu
- Henriette Schmidt-Burkhardt Chair of Food Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Schuhstrasse19, 91052 Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Glückstrasse 10a, 91054 Erlangen, Germany
| | - Monika Pischetsrieder
- Henriette Schmidt-Burkhardt Chair of Food Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Schuhstrasse19, 91052 Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Glückstrasse 10a, 91054 Erlangen, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany,
| |
Collapse
|
24
|
Yang L, Zhang J, He J, Zhang J, Gan Z. Fabrication, hydrolysis and cell cultivation of microspheres from cellulose-graft-poly(l-lactide) copolymers. RSC Adv 2016. [DOI: 10.1039/c5ra25993b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cellulose-g-PLLA microspheres were fabricated for cell cultivation by a facile solvent evaporation method.
Collapse
Affiliation(s)
- Lili Yang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Jinming Zhang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Jiasong He
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Jun Zhang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Zhihua Gan
- State Key Laboratory of Organic–Inorganic Composites
- Beijing Laboratory of Biomaterials
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| |
Collapse
|
25
|
Alginate microgels loaded with temperature sensitive liposomes for magnetic resonance imageable drug release and microgel visualization. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Abstract
Nanoparticles are frequently suggested as diagnostic agents. However, except for iron oxide nanoparticles, diagnostic nanoparticles have been barely incorporated into clinical use so far. This is predominantly due to difficulties in achieving acceptable pharmacokinetic properties and reproducible particle uniformity as well as to concerns about toxicity, biodegradation, and elimination. Reasonable indications for the clinical utilization of nanoparticles should consider their biologic behavior. For example, many nanoparticles are taken up by macrophages and accumulate in macrophage-rich tissues. Thus, they can be used to provide contrast in liver, spleen, lymph nodes, and inflammatory lesions (eg, atherosclerotic plaques). Furthermore, cells can be efficiently labeled with nanoparticles, enabling the localization of implanted (stem) cells and tissue-engineered grafts as well as in vivo migration studies of cells. The potential of using nanoparticles for molecular imaging is compromised because their pharmacokinetic properties are difficult to control. Ideal targets for nanoparticles are localized on the endothelial luminal surface, whereas targeted nanoparticle delivery to extravascular structures is often limited and difficult to separate from an underlying enhanced permeability and retention (EPR) effect. The majority of clinically used nanoparticle-based drug delivery systems are based on the EPR effect, and, for their more personalized use, imaging markers can be incorporated to monitor biodistribution, target site accumulation, drug release, and treatment efficacy. In conclusion, although nanoparticles are not always the right choice for molecular imaging (because smaller or larger molecules might provide more specific information), there are other diagnostic and theranostic applications for which nanoparticles hold substantial clinical potential.
Collapse
Affiliation(s)
- Fabian Kiessling
- From the Department of Experimental Molecular Imaging, RWTH-Aachen University, Aachen, Germany (F.K., M.E.M., T.L.); and Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY (J.G.)
| | | | | | | |
Collapse
|
27
|
Yang RM, Fu CP, Li NN, Wang L, Xu XD, Yang DY, Fang JZ, Jiang XQ, Zhang LM. Glycosaminoglycan-targeted iron oxide nanoparticles for magnetic resonance imaging of liver carcinoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:556-63. [PMID: 25491864 DOI: 10.1016/j.msec.2014.09.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 08/14/2014] [Accepted: 09/28/2014] [Indexed: 12/27/2022]
Abstract
To develop an efficient probe for targeted magnetic resonance (MR) imaging of liver carcinoma, the surface modification of superparamagnetic iron oxide nanoparticles (SPIONs) was carried out by conjugating a naturally-occurring glycosaminoglycan with specific biological recognition to human hepatocellular liver carcinoma (HepG2) cells. These modified SPIOs have good water dispersibility, superparamagnetic property, cytocompatibility and high magnetic relaxivity for MR imaging. When incubated with HepG2 cells, they demonstrated significant cellular uptake and specific accumulation, as confirmed by Prussian blue staining and confocal microscopy. The in vitro MR imaging of HepG2 cells and in vivo MR imaging of HepG2 tumors confirmed their effectiveness for targeted MR imaging of liver carcinoma.
Collapse
Affiliation(s)
- Rui-Meng Yang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Chao-Ping Fu
- DSAPM Lab and PCFM Lab, Institute of Polymer Science, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Nan-Nan Li
- DSAPM Lab and PCFM Lab, Institute of Polymer Science, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Li Wang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Xiang-Dong Xu
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Ding-Yan Yang
- DSAPM Lab and PCFM Lab, Institute of Polymer Science, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin-Zhi Fang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Xin-Qing Jiang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China.
| | - Li-Ming Zhang
- DSAPM Lab and PCFM Lab, Institute of Polymer Science, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
28
|
Reddy DHK, Lee SM. Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interface Sci 2013; 201-202:68-93. [PMID: 24182685 DOI: 10.1016/j.cis.2013.10.002] [Citation(s) in RCA: 316] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 10/03/2013] [Accepted: 10/03/2013] [Indexed: 02/04/2023]
Abstract
Magnetic chitosan composites (MCCs) are a novel material that exhibits good sorption behavior toward various toxic pollutants in aqueous solution. These magnetic composites have a fast adsorption rate and high adsorption efficiency, efficient to remove various pollutants and they are easy to recover and reuse. These features highlight the suitability of MCCs for the treatment of water polluted with metal and organic materials. This review outlines the preparation of MCCs as well as methods to characterize these materials using FTIR, XRD, TGA and other microscopy-based techniques. Additionally, an overview of recent developments and applications of MCCs for metal and organic pollutant removal is discussed in detail. Based on current research and existing materials, some new and futuristic approaches in this fascinating area are also discussed. The main objective of this review is to provide up-to-date information about the most important features of MCCs and to show their advantages as adsorbents in the treatment of polluted aqueous solutions.
Collapse
|
29
|
Bardajee GR, Hooshyar Z. One-pot synthesis of biocompatible superparamagnetic iron oxide nanoparticles/hydrogel based on salep: characterization and drug delivery. Carbohydr Polym 2013; 101:741-51. [PMID: 24299834 DOI: 10.1016/j.carbpol.2013.10.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/29/2013] [Accepted: 10/09/2013] [Indexed: 11/30/2022]
Abstract
This work describes synthesis of biocompatible magnetic iron oxide nanoparticles/hydrogel based on salep (MION-salep hydrogel) by a facile one-pot strategy. The prepared sample was characterized by techniques like scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDAX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM). The obtained MION had an 8 nm diameter with a narrow size distribution and was superparamagnetic with large saturation magnetization at room temperature. The most attractive feature of the obtained sample was its swelling properties under external magnetic field (EMF), different temperatures, and pHs. Moreover, MION-salep hydrogel showed ability to deferasirox release at pH=7 with non-Fickian diffusion mechanism. An in vitro cytotoxicity study implied that the as-synthesized sample is nontoxic.
Collapse
|
30
|
Saraswathy A, Nazeer SS, Nimi N, Arumugam S, Shenoy SJ, Jayasree RS. Synthesis and characterization of dextran stabilized superparamagnetic iron oxide nanoparticles for in vivo MR imaging of liver fibrosis. Carbohydr Polym 2013; 101:760-8. [PMID: 24299836 DOI: 10.1016/j.carbpol.2013.10.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/04/2013] [Accepted: 10/04/2013] [Indexed: 12/18/2022]
Abstract
The field of medical imaging has recently seen rapid advances in the development of novel agents for enhancing image contrast. In particular, superparamagnetic iron oxide nanoparticles (SPIONs) with a variety of surface properties have been tried as effective contrast agents for magnetic resonance imaging, but with major side effects. In this study, the surface chemistry of SPIONs of size 12 nm was modified with high molecular weight dextran to yield particles of size 50 nm, without compromising the magnetic properties. A systematic characterization of the material for its size, coating efficiency, magnetic properties and biocompatibility has been carried out. The magnetic relaxivity as evaluated on a 1.5 T clinical magnet showed r2/r1 ratio of 56.28 which is higher than that reported for any other dextran stabilized ironoxide nanoparticles. Liver uptake and magnetic resonance imaging potential of dextran stabilized SPIONs (D-SPIONs) has been evaluated on liver fibrosis induced animal model, which is further supported by histopathology results.
Collapse
Affiliation(s)
- Ariya Saraswathy
- Biophotonics and Imaging Lab, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Thiruvananthapuram 695 012, Kerala, India
| | | | | | | | | | | |
Collapse
|
31
|
Tudorachi N, Chiriac A. Obtaining of new magnetic nanocomposites based on modified polysaccharide. Carbohydr Polym 2013; 98:451-9. [DOI: 10.1016/j.carbpol.2013.05.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/29/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
|
32
|
Kim H, Lee GH, Ro J, Kuh HJ, Kwak BK, Lee J. Recoverability of freeze-dried doxorubicin-releasing chitosan embolic microspheres. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 24:2081-95. [DOI: 10.1080/09205063.2013.824221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hyeongmin Kim
- Pharmaceutical Formulation Design Laboratory, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Ga-Hyeon Lee
- Pharmaceutical Formulation Design Laboratory, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Jieun Ro
- Pharmaceutical Formulation Design Laboratory, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Hyo-Jeong Kuh
- Department of Biomedical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Byung-Kook Kwak
- Department of Radiology, Chung-Ang University Hospital, Seoul, South Korea
| | - Jaehwi Lee
- Pharmaceutical Formulation Design Laboratory, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| |
Collapse
|