1
|
Lee W, Yang EJ. Structural Analysis of Hyaluronic Acid Fillers Using Nuclear Magnetic Resonance: Implications for Quality Control and Clinical Performance. Polymers (Basel) 2024; 16:2878. [PMID: 39458706 PMCID: PMC11511353 DOI: 10.3390/polym16202878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Potential disruptions in the biocompatibility of hyaluronic acid (HA) fillers can arise with mono-linked 1,4-butanediol diglycidyl ether (BDDE) or unreacted (pendant) 1,4-butanediol di-(propan-2,3-diolyl) ether. Assessing the filler's degree of modification involves evaluating improperly cross-linked BDDE. This study analyzed commercially available HA fillers using nuclear magnetic resonance (NMR), focusing on key parameters, such as the degree of modification (MoD), the cross-linker ratio (CrR), and the degree of cross-linking. We assessed thirteen commercially available HA fillers using NMR. The samples were placed in an NMR instrument, and each sample was analyzed for 26 h, including MoD and CrR assessments. MoD 1H ranged from 17.065% to 2.239%, MoD 13C ranged from 12.567% to 1.947%, and CrR 13C ranged from 0.394 to 0.014. Significant distinctions were observed in the CrR 13C values when the MoD values of the products were similar. This study underscores the importance of considering the MoD and the CrR together to ensure optimal cross-linking and minimize the risks associated with residual BDDE impurities. Utilizing NMR for HA gel characterization provides valuable insights regarding product quality control, safety assessments, and clinical performance evaluations for esthetic interventions, contributing to filler product improvements. Further studies correlating NMR findings with real-world outcomes are essential for ensuring safety and efficacy.
Collapse
Affiliation(s)
- Won Lee
- Yonsei E1 Plastic Surgery Clinic, Anyang 14072, Republic of Korea;
| | - Eun-Jung Yang
- Department of Plastic and Reconstructive Surgery, Institute of Human Tissue Regeneration, Yonsei University College of Medicine, Seoul 03721, Republic of Korea
| |
Collapse
|
2
|
Sisnando AL, Nayak VV, Câmara-Sousa MB, Morphy ON, Furtado GRD, Witek L, Carbone AC, Rizzatti-Barbosa CM, De la Torre Canales G. Does cannula's size alter rheological properties of hyaluronic acid filler? Int J Biol Macromol 2024; 281:135915. [PMID: 39343266 DOI: 10.1016/j.ijbiomac.2024.135915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
This study evaluated the rheological properties of various hyaluronic acid (HA) gels after passing through different-sized cannulas (22-G and 25-G). Five commercial brands of highly crosslinked HA fillers were analyzed: (A) Rennova® Ultra Deep, (B) Restylane® Lyft, (C) Hialurox® - Ultra Lift, (D) Belotero® Volume, and (E) E.P.T.Q S500. Rheological characterization was conducted using an automated controlled stress rheometer. The rheological properties of the fillers were assessed both before and after passing through the cannulas. Each filler brand and cannula size was tested three times by a researcher who was blinded to the commercial brands. For data analysis, frequencies of 0.1, 0.5, and 2 Hz were employed. The rheological properties (storage modulus [G'] and loss modulus [G"]) of the high-crosslink HA fillers did not change after being passed through cannulas of different sizes (22-G and 25-G) (p > 0.109) compared to baseline measurements (no cannula). Furthermore, all fillers displayed desirable solid-like, volumizing behavior at low frequencies and strain amplitudes (<10 %). Under physiologically relevant conditions for skin and facial applications, the cannula size did not alter the rheological properties of high crosslink HA fillers.
Collapse
Affiliation(s)
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA; Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | | | | | - Giancarlo De la Torre Canales
- Ingá University Center, Uningá, Paraná, Brazil; Egas Moniz Center for Interdisciplinary Research (CiiEM); Egas Moniz School of Health & Science, Caparica, Almada, Portugal; Division of Oral Rehabilitation, Department of Dental Medicine, Karolinska Institutet, SE-14104 Huddinge, Sweden.
| |
Collapse
|
3
|
Yi J, Kim G, Lee S, Ryu C, Lee JY. Enzymatically stable, non-cell adhesive, implantable polypyrrole/thiolated hyaluronic acid bioelectrodes for in vivo signal recording. Int J Biol Macromol 2024; 276:133770. [PMID: 38992547 DOI: 10.1016/j.ijbiomac.2024.133770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/03/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Implantable bioelectrodes have attracted significant attention for precise in vivo signal transduction with living systems. Conductive polymers, including polypyrrole (PPy), have been widely used as bioelectrodes due to their large surface areas, high charge injections, and versatilities for modification. Especially, several natural biopolymers, such as hyaluronic acid (HA), can be incorporated into conductive polymers to produce biomimetic electrodes with better biocompatibility. However, HA-incorporated PPy electrodes (PPy/HA) frequently lose their original performances after implantation in the body because of the deterioration of material properties, such as degradation of natural biopolymers in the electrode. Here, thiolated HA (HA-SH) was synthesized and introduced into PPy electrodes (PPy/HA-SH) to enhance the enzymatic stabilities of PPy electrodes against hyaluronidase (HAase) and endow these electrodes with robust resistances to non-specific cell adhesion, thereby enabling prolonged signal transmission. Unlike PPy/HA, PPy/HA-SH resisted cell adhesion even in the presence of HAase. Subcutaneous implantation studies revealed that PPy/HA-SH formed less fibrotic scar tissue and permitted more sensitive and stable signal recording for up to 15 days after implantation as compared to PPy/HA. These findings hold significance for the design and advancement of biocompatible implantable bioelectrodes for a wide range of applications, such as neural electrodes, cardiac pacemakers, and biosensors.
Collapse
Affiliation(s)
- Jongdarm Yi
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Gaeun Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sanghun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chiseon Ryu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
4
|
Mashaqbeh H, Al-Ghzawi B, BaniAmer F. Exploring the Formulation and Approaches of Injectable Hydrogels Utilizing Hyaluronic Acid in Biomedical Uses. Adv Pharmacol Pharm Sci 2024; 2024:3869387. [PMID: 38831895 PMCID: PMC11147673 DOI: 10.1155/2024/3869387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 05/11/2024] [Indexed: 06/05/2024] Open
Abstract
The characteristics of injectable hydrogels make them a prime contender for various biomedical applications. Hyaluronic acid is an essential component of the matrix surrounding the cells; moreover, hyaluronic acid's structural and biochemical characteristics entice researchers to develop injectable hydrogels for various applications. However, due to its poor mechanical properties, several strategies are used to produce injectable hyaluronic acid hydrogel. This review summarizes published studies on the production of injectable hydrogels based on hyaluronic acid polysaccharide polymers and the biomedical field's applications for these hydrogel systems. Hyaluronic acid-based hydrogels are divided into two categories based on their injectability mechanisms: in situ-forming injectable hydrogels and shear-thinning injectable hydrogels. Many crosslinking methods are used to create injectable hydrogels; chemical crosslinking techniques are the most frequently investigated technique. Hybrid injectable hydrogel systems are widely investigated by blending hyaluronic acid with other polymers or nanoparticulate systems. Injectable hyaluronic acid hydrogels were thoroughly investigated and proven to demonstrate potential in various medical fields, including delivering drugs and cells, tissue repair, and wound dressings.
Collapse
Affiliation(s)
- Hadeia Mashaqbeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Batool Al-Ghzawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Fatima BaniAmer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
5
|
Perera GGG, Argenta DF, Caon T. The rheology of injectable hyaluronic acid hydrogels used as facial fillers: A review. Int J Biol Macromol 2024; 268:131880. [PMID: 38677707 DOI: 10.1016/j.ijbiomac.2024.131880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Injectable hyaluronic acid (HA) hydrogels have been popularized in facial aesthetics as they provide a long-lasting effect, low risk of complications, allergenicity tests are not required before application and can be easily removed by the action of hyaluronidases. On the other hand, the development of these systems requires in-depth studies of chemical mechanisms involved in hydrogel formation. Ideal dermal fillers should temporarily fluidize during extrusion through the needle and quickly recover their original shape after application. Hydrogels with more elastic properties, for example, are difficult to inject while viscous materials are too liquid. A balance between both properties should be achieved. Each region of the face requires products with distinct rheological properties. High G' dermal fillers are preferable for deeper wrinkles whereas the counterpart with lower values of G' is more indicated in superficial wrinkles or lip augmentation. Factors such as molecular weight and concentration of HA, pH, type and concentration of the crosslinking agent, particle size, crosslinking reaction time and crosslinking agent/polysaccharide ratio should be modulated to achieve specific rheological properties. In this review, the effect of each variable is discussed in detail to guide the rational development of new dermal fillers.
Collapse
Affiliation(s)
- Giordana Gabriela Guilande Perera
- Laboratory of Cosmetic & Pharmaceutical Technology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Debora Fretes Argenta
- Laboratory of Cosmetic & Pharmaceutical Technology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Thiago Caon
- Laboratory of Cosmetic & Pharmaceutical Technology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil.
| |
Collapse
|
6
|
Wei Z, Ye H, Li Y, Li X, Liu Y, Chen Y, Yu J, Wang J, Ye X. Mechanically tough, adhesive, self-healing hydrogel promotes annulus fibrosus repair via autologous cell recruitment and microenvironment regulation. Acta Biomater 2024; 178:50-67. [PMID: 38382832 DOI: 10.1016/j.actbio.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Annulus fibrosus (AF) defect is an important cause of disc re-herniation after discectomy. The self-regeneration ability of the AF is limited, and AF repair is always hindered by the inflammatory microenvironment after injury. Hydrogels represent one of the most promising materials for AF tissue engineering strategies. However, currently available commercial hydrogels cannot withstand the harsh mechanical load within intervertebral disc. In the present study, an innovative triple cross-linked oxidized hyaluronic acid (OHA)-dopamine (DA)- polyacrylamide (PAM) composite hydrogel, modified with collagen mimetic peptide (CMP) and supplied with transforming growth factor beta 1 (TGF-β1) (OHA-DA-PAM/CMP/TGF-β1 hydrogel) was developed for AF regeneration. The hydrogel exhibited robust mechanical strength, strong bioadhesion, and significant self-healing capabilities. Modified with collagen mimetic peptide, the hydrogel exhibited extracellular-matrix-mimicking properties and sustained the AF cell phenotype. The sustained release of TGF-β1 from the hydrogel was pivotal in recruiting AF cells and promoting extracellular matrix production. Furthermore, the composite hydrogel attenuated LPS-induced inflammatory response and promote ECM synthesis in AF cells via suppressing NFκB/NLRP3 pathway. In vivo, the composite hydrogel successfully sealed AF defects and alleviated intervertebral disk degeneration in a rat tail AF defect model. Histological evaluation showed that the hydrogel integrated well with host tissue and facilitated AF repair. The strategy of recruiting endogenous cells and providing an extracellular-matrix-mimicking and anti-inflammatory microenvironment using the mechanically tough composite OHA-DA-PAM/CMP/TGF-β1 hydrogel may be applicable for AF defect repair in the clinic. STATEMENT OF SIGNIFICANCE: Annulus fibrosus (AF) repair is challenging due to its limited self-regenerative capacity and post-injury inflammation. In this study, a mechanically tough and highly bioadhesive triple cross-linked composite hydrogel, modified with collagen mimetic peptide (CMP) and supplemented with transforming growth factor beta 1 (TGF-β1), was developed to facilitate AF regeneration. The sustained release of TGF-β1 enhanced AF cell recruitment, while both TGF-β1 and CMP could modulate the microenvironment to promote AF cell proliferation and ECM synthesis. In vivo, this composite hydrogel effectively promoted the AF repair and mitigated the intervertebral disc degeneration. This research indicates the clinical potential of the OHA-DA-PAM/CMP/TGF-β1 composite hydrogel for repairing AF defects.
Collapse
Affiliation(s)
- Zhenyuan Wei
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Han Ye
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Yucai Li
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Xiaoxiao Li
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yi Liu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yujie Chen
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jiangming Yu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Jielin Wang
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Xiaojian Ye
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
7
|
Lee W, Shah-Desai S, Rho NK, Cho J. Etiology of Delayed Inflammatory Reaction Induced by Hyaluronic Acid Filler. Arch Plast Surg 2024; 51:20-26. [PMID: 38425859 PMCID: PMC10901605 DOI: 10.1055/a-2184-6554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/26/2023] [Indexed: 03/02/2024] Open
Abstract
The etiology and pathophysiology of delayed inflammatory reactions caused by hyaluronic acid fillers have not yet been elucidated. Previous studies have suggested that the etiology can be attributed to the hyaluronic acid filler itself, patient's immunological status, infection, and injection technique. Hyaluronic acid fillers are composed of high-molecular weight hyaluronic acids that are chemically cross-linked using substances such as 1,4-butanediol diglycidyl ether (BDDE). The mechanism by which BDDE cross-links the two hyaluronic acid disaccharides is still unclear and it may exist as a fully reacted cross-linker, pendant cross-linker, deactivated cross-linker, and residual cross-linker. The hyaluronic acid filler also contains impurities such as silicone oil and aluminum during the manufacturing process. Impurities can induce a foreign body reaction when the hyaluronic acid filler is injected into the body. Aseptic hyaluronic acid filler injections should be performed while considering the possibility of biofilm formation or delayed inflammatory reaction. Delayed inflammatory reactions tend to occur when patients experience flu-like illnesses; thus, the patient's immunological status plays an important role in delayed inflammatory reactions. Large-bolus hyaluronic acid filler injections can induce foreign body reactions and carry a relatively high risk of granuloma formation.
Collapse
Affiliation(s)
- Won Lee
- Yonsei E1 Plastic Surgery Clinic, Scientific Faculty of the Minimal Invasive Plastic Surgery Association, Dongan-ro, Dongan-gu, Anyang, Republic of Korea
| | | | - Nark-Kyoung Rho
- Department of Dermatology, Sungkyunkwan University School of Medicine, Gyeonggi-do, Republic of Korea. Leaders Aesthetic Laser & Cosmetic Surgery Center, Seoul, Republic of Korea
| | - Jeongmok Cho
- Etonne Plastic Surgery Clinic, Scientific Faculty of the Milimal Invasive Plastic Surgery Association, Seoul, Republic of Korea
| |
Collapse
|
8
|
Wang X, Xi H, Wei C. Connections between cohesion and properties that related to safety and effectiveness of the hyaluronic acid dermal fillers: A comparative study of the cohesive and non-cohesive gels. Skin Res Technol 2023; 29:e13395. [PMID: 37753686 PMCID: PMC10450830 DOI: 10.1111/srt.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/06/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Although the importance of the cohesion of a hyaluronic acid (HA) filler has been recognized, the relationship between the cohesion and the other performance that related to safety and effectiveness, as well as the underlying mechanism is barely studied. Much efforts need to be made on this subject to provide guidance for clinical practice. MATERIALS AND METHODS Two types of the HA fillers (cohesive and particulate gels) were selected for the comparison of the cohesion and the other key physicochemical properties. RESULTS Hyalumatrix, with significantly higher cohesion, was homogeneously smooth and showed a linearly oriented morphology, whereas Matrifill and Restylane were particulate and showed obvious boundaries between particles. The high cohesion of Hyalumatrix is beneficial to the properties that related to safety and effectiveness, including recovery under shear stress, injectability, tissue integration and in vitro resistance to enzymolysis. The underlying reason was that the strong internal interactions of the cohesive gel protect the network structure from collapse and keep the gel as an intact whole when the gel was subjected to the stress. The homogeneously smooth morphology further improved the tissue compliance and injectability. The G' of Hyalumatrix is in the middle level of the commercially available HA fillers. CONCLUSION Hyalumatrix is a rare HA filler product to possess good cohesion and intermediate G' simultaneously. More clinical practice is needed to verify the connection between the cohesion of Hyalumatrix and the clinical performance.
Collapse
Affiliation(s)
- Xiaotong Wang
- Shanghai Qisheng Biological Preparation Co., LtdShanghaiP. R. China
| | - Hongwei Xi
- Shanghai Qisheng Biological Preparation Co., LtdShanghaiP. R. China
| | - Changzheng Wei
- Shanghai Qisheng Biological Preparation Co., LtdShanghaiP. R. China
| |
Collapse
|
9
|
Shukla P, Srivastava P, Mishra A. Downstream process intensification for biotechnologically generated hyaluronic acid: Purification and characterization. J Biosci Bioeng 2023; 136:232-238. [PMID: 37393187 DOI: 10.1016/j.jbiosc.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
Hyaluronic acid (HA), an anionic, non-sulfated glycosaminoglycan, has several clinical applications. This study examines several downstream methods for purifying HA with maximum recovery and purity. Following the fermentation of Streptococcus zooepidemicus MTCC 3523 to produce HA, the broth was thoroughly purified to separate cell debris and insoluble impurities using a filtration procedure and a variety of adsorbents for soluble impurities. Nucleic acids, proteins with high molecular weight, were successfully removed from the broth using activated carbons and XAD-7 resins. In contrast, insoluble and low molecular weight impurities were removed using diafiltration, with HA recovery of 79.16% and purity close to 90%. Different analytical and characterization procedures such as Fourier transform-infrared spectroscopy, X-ray diffraction, nuclear magnetic resonance, and scanning electron microscopy validated the presence, purity, and structure of HA. Microbial HA showed activity in tests for 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical-scavenging (4.87 ± 0.45 kmol TE/g), total antioxidant capacity (13.32 ± 0.52%), hydroxyl radical-scavenging (32.03 ± 0.12%), and reducing power (24.85 ± 0.45%). The outcomes showed that the precipitation, adsorption, and diafiltration processes are suitable for extracting HA from a fermented broth under the chosen operating conditions. The HA produced was of pharmaceutical grade for non-injectable applications.
Collapse
Affiliation(s)
- Priya Shukla
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), 221005 Varanasi, India.
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), 221005 Varanasi, India.
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), 221005 Varanasi, India.
| |
Collapse
|
10
|
Zhang T, Zhao S, Chen Y, Wang J, Zhang W, Liu J, Kan Y, Li JP, Guo X, Li H. In-depth characterization of 1,4-butanediol diglycidyl ether substituted hyaluronic acid hydrogels. Carbohydr Polym 2023; 307:120611. [PMID: 36781273 DOI: 10.1016/j.carbpol.2023.120611] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/31/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
BDDE substituted HA hydrogels remain the most commonly used HA product in the biomedical field. The physical and biochemical properties of the hydrogels are dependent on the degree of modification and substitution patterns/positions, thus, characterizing their fine structure is of great importance for quality assurance. In this study, we developed novel LC-MS methods for accurate determination of MoD as well as in-depth characterization of the linkage network. Fragments resulted from enzymatic depolymerization were resolved by a porous graphitic carbon column followed by online tandem-MS for determining the modification site/residue. With high-resolution separation, two types of previously unknown structures were detected in the cross-linked fragments of 2-B-2 and 4-B-2. Based on the feature of resistance to NaBH4 reduction, these structures contain a GlcNAc residue modified at OH1. This special sugar unit likely derived from reducing end of the native polysaccharide could be a signature to discriminate subtle batch to batch variations.
Collapse
Affiliation(s)
- Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Siran Zhao
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Yujuan Chen
- Bloomage Biotechnology Corporation Limited, Jinan, China
| | - Jiandong Wang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Wei Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Jianjian Liu
- Bloomage Biotechnology Corporation Limited, Jinan, China
| | - Ying Kan
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Jin-Ping Li
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China; Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden.
| | - Xueping Guo
- Bloomage Biotechnology Corporation Limited, Jinan, China.
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China.
| |
Collapse
|
11
|
Peng Y, Lu M, Zhou Z, Wang C, Liu E, Zhang Y, Liu T, Zuo J. Natural biopolymer scaffold for meniscus tissue engineering. Front Bioeng Biotechnol 2022; 10:1003484. [PMID: 36246362 PMCID: PMC9561892 DOI: 10.3389/fbioe.2022.1003484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
Meniscal injuries caused by trauma, degeneration, osteoarthritis, or other diseases always result in severe joint pain and motor dysfunction. Due to the unique anatomy of the human meniscus, the damaged meniscus lacks the ability to repair itself. Moreover, current clinical treatments for meniscal injuries, including meniscal suturing or resection, have significant limitations and drawbacks. With developments in tissue engineering, biopolymer scaffolds have shown promise in meniscal injury repair. They act as templates for tissue repair and regeneration, interacting with surrounding cells and providing structural support for newly formed meniscal tissue. Biomaterials offer tremendous advantages in terms of biocompatibility, bioactivity, and modifiable mechanical and degradation kinetics. In this study, the preparation and composition of meniscal biopolymer scaffolds, as well as their properties, are summarized. The current status of research and future research prospects for meniscal biopolymer scaffolds are reviewed in terms of collagen, silk, hyaluronic acid, chitosan, and extracellular matrix (ECM) materials. Overall, such a comprehensive summary provides constructive suggestions for the development of meniscal biopolymer scaffolds in tissue engineering.
Collapse
Affiliation(s)
- Yachen Peng
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Lu
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhongsheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chenyu Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Enbo Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yanbo Zhang, ; Tong Liu, ; Jianlin Zuo,
| | - Tong Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yanbo Zhang, ; Tong Liu, ; Jianlin Zuo,
| | - Jianlin Zuo
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yanbo Zhang, ; Tong Liu, ; Jianlin Zuo,
| |
Collapse
|
12
|
The Rheology and Physicochemical Characteristics of Hyaluronic Acid Fillers: Their Clinical Implications. Int J Mol Sci 2022; 23:ijms231810518. [PMID: 36142430 PMCID: PMC9503994 DOI: 10.3390/ijms231810518] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Hyaluronic acid (HA) fillers have become the most popular material for facial volume augmentation and wrinkle correction. Several filler brands are currently on the market all around the world and their features are extremely variable; for this reason, most users are unaware of their differences. The study of filler rheology has become a wellspring of knowledge, differentiating HA fillers, although these properties are not described thoroughly by the manufacturers. The authors of this review describe the more useful rheological properties that can help clinicians understand filler characteristics and the likely correlation of these features with clinical outcomes.
Collapse
|
13
|
Application of Injectable, Crosslinked, Fibrin-Containing Hyaluronic Acid Scaffolds for In Vivo Remodeling. J Funct Biomater 2022; 13:jfb13030119. [PMID: 35997457 PMCID: PMC9396986 DOI: 10.3390/jfb13030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The present research aimed to characterize soft tissue implants that were prepared with the use of crosslinked hyaluronic acid (HA) using two different crosslinkers and multiple reagent concentrations, alone or in combination with fibrin. The effect of the implants was evaluated in an in vivo mouse model, after 4 weeks in one group and after 12 weeks in the other. The explants were compared using analytical methods, evaluating microscopic images, and a histology analysis. The kinetics of the degradation and remodeling of explants were found to be greatly dependent on the concentration and type of crosslinker; generally, divinyl sulfone (DVS) resists degradation more effectively compared to butanediol diglycidyl ether (BDDE). The presence of fibrin enhances the formation of blood vessels, and the infiltration of cells and extracellular matrix. In summary, if the aim is to create a soft tissue implant with easier degradation of the HA content, then the use of 2-5% BDDE is found to be optimal. For a longer degradation time, 5% DVS is the more suitable crosslinker. The use of fibrin was found to support the biological process of remodeling, while keeping the advances of HA in void filling, enabling the parallel degradation and remodeling processes.
Collapse
|
14
|
Synthesis of Novel Hyaluronic Acid Sulfonated Hydrogels Using Safe Reactants: A Chemical and Biological Characterization. Gels 2022; 8:gels8080480. [PMID: 36005081 PMCID: PMC9407319 DOI: 10.3390/gels8080480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
Here, we present a one-pot procedure for the preparation of hyaluronic acid (HA) sulfonated hydrogels in aqueous alkaline medium. The HA hydrogels were crosslinked using 1,4-butanedioldiglycidyl ether (BDDE) alone, or together with N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (Bes), as a safe sulfonating agent. Conditions for the simultaneous reaction of HA with BDDE and Bes were optimized and the resulting hydrogels were characterized under different reaction times (24, 72, and 96 h). The incorporation of sulfonic groups into the HA network was proven by elemental analysis and FTIR spectroscopy and its effect on water uptake was evaluated. Compared with the non-sulfonated sample, sulfonated gels showed improved mechanical properties, with their compressive modulus increased from 15 to 70 kPa, higher stability towards hyaluronidase, and better biocompatibility to 10T1/2 fibroblasts, especially after the absorption of collagen. As main advantages, the procedure described represents an easy and reproducible methodology for the fabrication of sulfonated hydrogels, which does not require toxic chemicals and/or solvents.
Collapse
|
15
|
Svarca A, Grava A, Dubnika A, Ramata-Stunda A, Narnickis R, Aunina K, Rieksta E, Boroduskis M, Jurgelane I, Locs J, Loca D. Calcium Phosphate/Hyaluronic Acid Composite Hydrogels for Local Antiosteoporotic Drug Delivery. Front Bioeng Biotechnol 2022; 10:917765. [PMID: 35866026 PMCID: PMC9294454 DOI: 10.3389/fbioe.2022.917765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the bone ability of self-regeneration, large bone defects require surgical intervention. Likewise, when it comes to osteoporotic bone fractures, new approaches should be considered a supportive mechanism for the surgery. In recent years, more and more attention has been attracted to advanced drug delivery systems for local osteoporosis treatment, combining appropriate biomaterials with antiosteoporotic drugs, allowing simultaneously to regenerate the bone and locally treat the osteoporosis. Within the current research, hyaluronic acid/strontium ranelate (HA/SrRan), HA/calcium phosphate nanoparticles (HA/CaP NPs), and HA/CaP NPs/SrRan hydrogels were prepared. The effect of CaP and SrRan presence in the composites on the swelling behavior, gel fraction, molecular structure, microstructure, and SrRan and Sr2+ release, as well as in vitro cell viability was evaluated. Obtained results revealed that the route of CaP nanoparticle incorporation into the HA matrix had a significant effect on the hydrogel gel fraction, rheological properties, swelling behavior, and microstructure. Nevertheless, it had a negligible effect on the release kinetics of SrRan and Sr2+. The highest cell (3T3) viability (>80%) was observed for HA hydrogels, with and without SrRan. Moreover, the positive effect of SrRan on 3T3 cells was also demonstrated, showing a significant increase (up to 50%) in cell viability if the used concentrations of SrRan were in the range of 0.05-0.2 μg/ml.
Collapse
Affiliation(s)
- Alise Svarca
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Andra Grava
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Arita Dubnika
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Anna Ramata-Stunda
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Raimonds Narnickis
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Kristine Aunina
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Eleonora Rieksta
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Martins Boroduskis
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Inga Jurgelane
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Dagnija Loca
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
16
|
La Gatta A, Bedini E, Aschettino M, Finamore R, Schiraldi C. Hyaluronan Hydrogels: Rheology and Stability in Relation to the Type/Level of Biopolymer Chemical Modification. Polymers (Basel) 2022; 14:polym14122402. [PMID: 35745978 PMCID: PMC9228881 DOI: 10.3390/polym14122402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
BDDE (1,4-butanediol-diglycidylether)-crosslinked hyaluronan (HA) hydrogels are widely used for dermo-aesthetic purposes. The rheology and stability of the gels under physiological conditions greatly affect their clinical indications and outcomes. To date, no studies investigating how these features are related to the chemistry of the polymeric network have been reported. Here, four available HA-BDDE hydrogels were studied to determine how and to what extent their rheology and stability with respect to enzymatic hydrolysis relate to the type and degree of HA structural modification. 1H-/13C-NMR analyses were associated for the quantification of the “true” HA chemical derivatization level, discriminating between HA that was effectively crosslinked by BDDE, and branched HA with BDDE that was anchored on one side. The rheology was measured conventionally and during hydration in a physiological medium. Sensitivity to bovine testicular hyaluronidase was quantified. The correlation between NMR data and gel rheology/stability was evaluated. The study indicated that (1) the gels greatly differed in the amounts of branched, crosslinked, and overall modified HA, with most of the HA being branched; (2) unexpectedly, the conventionally measured rheological properties did not correlate with the chemical data; (3) the gels’ ranking in terms of rheology was greatly affected by hydration; (4) the rheology of the hydrated gels was quantitatively correlated with the amount of crosslinked HA, whereas the correlations with the total HA modification level and with the degree of branched HA were less significant; (5) increasing HA derivatization/crosslinking over 9/3 mol% did not enhance the stability with respect to hyaluronidases. These results broaden our knowledge of these gels and provide valuable information for improving their design and characterization.
Collapse
Affiliation(s)
- Annalisa La Gatta
- Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (M.A.); (R.F.); (C.S.)
- Correspondence:
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy;
| | - Maria Aschettino
- Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (M.A.); (R.F.); (C.S.)
| | - Rosario Finamore
- Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (M.A.); (R.F.); (C.S.)
| | - Chiara Schiraldi
- Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (M.A.); (R.F.); (C.S.)
| |
Collapse
|
17
|
Rofeal M, Abdelmalek F, Steinbüchel A. Naturally-Sourced Antibacterial Polymeric Nanomaterials with Special Reference to Modified Polymer Variants. Int J Mol Sci 2022; 23:4101. [PMID: 35456918 PMCID: PMC9030380 DOI: 10.3390/ijms23084101] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advancements in treating bacterial infections, antibiotic resistance (AR) is still an emerging issue. However, polymeric nanocarriers have offered unconventional solutions owing to their capability of exposing more functional groups, high encapsulation efficiency (EE) and having sustained delivery. Natural polymeric nanomaterials (NMs) are contemplated one of the most powerful strategies in drug delivery (DD) in terms of their safety, biodegradability with almost no side effects. Every nanostructure is tailored to enhance the system functionality. For example, cost-effective copper NPs could be generated in situ in cellulose sheets, demonstrating powerful antibacterial prospects for food safety sector. Dendrimers also have the capacity for peptide encapsulation, protecting them from proteolytic digestion for prolonged half life span. On the other hand, the demerits of naturally sourced polymers still stand against their capacities in DD. Hence, Post-synthetic modification of natural polymers could play a provital role in yielding new hybrids while retaining their biodegradability, which could be suitable for building novel super structures for DD platforms. This is the first review presenting the contribution of natural polymers in the fabrication of eight polymeric NMs including particulate nanodelivery and nanofabrics with antibacterial and antibiofilm prospects, referring to modified polymer derivatives to explore their full potential for obtaining sustainable DD products.
Collapse
Affiliation(s)
- Marian Rofeal
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90–924 Lodz, Poland;
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21521, Egypt
| | - Fady Abdelmalek
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90–924 Lodz, Poland;
| | - Alexander Steinbüchel
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90–924 Lodz, Poland;
| |
Collapse
|
18
|
Yamada K, Iwasaki N, Sudo H. Biomaterials and Cell-Based Regenerative Therapies for Intervertebral Disc Degeneration with a Focus on Biological and Biomechanical Functional Repair: Targeting Treatments for Disc Herniation. Cells 2022; 11:602. [PMID: 35203253 PMCID: PMC8870062 DOI: 10.3390/cells11040602] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a common cause of low back pain and most spinal disorders. As IVD degeneration is a major obstacle to the healthy life of so many individuals, it is a major issue that needs to be overcome. Currently, there is no clinical treatment for the regeneration of degenerated IVDs. However, recent advances in regenerative medicine and tissue engineering suggest the potential of cell-based and/or biomaterial-based IVD regeneration therapies. These treatments may be indicated for patients with IVDs in the intermediate degenerative stage, a point where the number of viable cells decreases, and the structural integrity of the disc begins to collapse. However, there are many biological, biomechanical, and clinical challenges that must be overcome before the clinical application of these IVD regeneration therapies can be realized. This review summarizes the basic research and clinical trials literature on cell-based and biomaterial-based IVD regenerative therapies and outlines the important role of these strategies in regenerative treatment for IVD degenerative diseases, especially disc herniation.
Collapse
Affiliation(s)
- Katsuhisa Yamada
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.Y.); (N.I.)
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.Y.); (N.I.)
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
19
|
Rizzatti-Barbosa C, De Albergaria-Barbosa J, Sattler S. Sattler medbeauty seven protocol for compensatory soft-tissue filling in orthodontic class ii patients: Case series. ADVANCES IN HUMAN BIOLOGY 2022. [DOI: 10.4103/aihb.aihb_63_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Jang KM, Park YG, Choi WK, Chung YY, Kim KK, Lee JW, Lee SJ, Eom Y, Yang JH. Safety of a single intra-articular injection of LBSA0103 hyaluronic acid in patients with osteoarthritis of the knee: a multicenter, single-arm, prospective, cohort study. Curr Med Res Opin 2021; 37:1573-1580. [PMID: 34192989 DOI: 10.1080/03007995.2021.1950132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE LBSA0103 is a recently developed high-molecular-weight, cross-linked, non-animal hyaluronic acid (HA). The safety of LBSA0103 has been investigated only in a limited number of patients, therefore this prospective study was designed. This study sought to assess the safety including injection-site reactions and adverse drug reactions after a single intra-articular injection of LBSA0103 in patients with osteoarthritis (OA) of the knee joint. METHODS This study was a multicenter, single-arm, prospective cohort study. After screening, eligible patients with OA of the knee joint (Kellgren-Lawrence grades I-III) were enrolled, received a single intra-articular HA (LBSA0103) injection, and were followed up for two weeks. Any adverse events including injection-site reactions and adverse drug reactions were evaluated by the investigators. RESULTS A total of 1949 subjects (2976 knee joints) was enrolled, all of whom received a single intra-articular injection of LBSA0103. Injection-site reactions occurred in 5.59% of enrolled subjects (109/1949), and the most frequently reported injection-site reaction was pain (4.87%), followed by swelling (1.03%). Most of the injection-site reactions were transient and resolved within 14 days without additional treatment. The incidence of adverse drug reactions other than injection-site reactions was 0.67% (13/1949). Most adverse events were of mild severity. No serious adverse events related to the study drug were reported. CONCLUSIONS A single intra-articular injection of LBSA0103 in patients with OA of the knee joint was safe, and no significant safety concerns were observed. As such, LBSA0103 could be safely applied as an intra-articular injection for the management of knee OA. TRIAL REGISTRATION The study was registered at ClinicalTrials.gov (identifier: NCT04369261).
Collapse
Affiliation(s)
- Ki-Mo Jang
- Department of Orthopedic Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong-Geun Park
- Department of Orthopedic Surgery, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Won Kee Choi
- Department of Orthopedic Surgery, Daegu Catholic University Hospital, Daegu, Republic of Korea
| | - Young Yool Chung
- Department of Orthopedic Surgery, Kwangju Christian Hospital, Gwangju, Republic of Korea
| | - Kwang Kyoun Kim
- Department of Orthopedic Surgery, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Jang Woo Lee
- Department of Physical Medicine and Rehabilitation, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Soong Joon Lee
- Department of Orthopedic Surgery, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Yunae Eom
- Life Sciences R&D, LG Chem, Ltd, Seoul, Republic of Korea
| | - Jae-Hyuk Yang
- Department of Orthopedic Surgery, Hanyang University Guri Hospital, Guri, Republic of Korea
| |
Collapse
|
21
|
Pérez LA, Hernández R, Alonso JM, Pérez-González R, Sáez-Martínez V. Hyaluronic Acid Hydrogels Crosslinked in Physiological Conditions: Synthesis and Biomedical Applications. Biomedicines 2021; 9:1113. [PMID: 34572298 PMCID: PMC8466770 DOI: 10.3390/biomedicines9091113] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022] Open
Abstract
Hyaluronic acid (HA) hydrogels display a wide variety of biomedical applications ranging from tissue engineering to drug vehiculization and controlled release. To date, most of the commercially available hyaluronic acid hydrogel formulations are produced under conditions that are not compatible with physiological ones. This review compiles the currently used approaches for the development of hyaluronic acid hydrogels under physiological/mild conditions. These methods include dynamic covalent processes such as boronic ester and Schiff-base formation and click chemistry mediated reactions such as thiol chemistry processes, azide-alkyne, or Diels Alder cycloaddition. Thermoreversible gelation of HA hydrogels at physiological temperature is also discussed. Finally, the most outstanding biomedical applications are indicated for each of the HA hydrogel generation approaches.
Collapse
Affiliation(s)
- Luis Andrés Pérez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain;
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain; (J.M.A.); (R.P.-G.)
| | - Rebeca Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain;
| | - José María Alonso
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain; (J.M.A.); (R.P.-G.)
| | - Raúl Pérez-González
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain; (J.M.A.); (R.P.-G.)
| | - Virginia Sáez-Martínez
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain; (J.M.A.); (R.P.-G.)
| |
Collapse
|
22
|
Harrer D, Sanchez Armengol E, Friedl JD, Jalil A, Jelkmann M, Leichner C, Laffleur F. Is hyaluronic acid the perfect excipient for the pharmaceutical need? Int J Pharm 2021; 601:120589. [PMID: 33845151 DOI: 10.1016/j.ijpharm.2021.120589] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 02/08/2023]
Abstract
Hyaluronic acid has become an interesting and important polymer as an excipient for pharmaceutical products due to its beneficial properties, like solubility, biocompatibility and biodegradation. To improve the properties of hyaluronic acid, different possibilities for chemical modifications are presented, and the opportunities as novel systems for drug delivery are discussed. This review gives an overview over the production of hyaluronic acid, the possibilities of its chemical modification and the current state of in vitro and in vivo research. Furthermore, market approved and commercially available products are reviewed and derivatives undergoing clinical trials and applying for market approval are shown. In particular, hyaluronic acid has been studied for different administrations in rheumatology, ophthalmology, local anesthetics, cancer treatment and bioengineering of tissues. The present work concludes with perspectives for future administration of pharmaceuticals based on hyaluronic acid.
Collapse
Affiliation(s)
- Daniela Harrer
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Eva Sanchez Armengol
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Julian D Friedl
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Aamir Jalil
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Max Jelkmann
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christina Leichner
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
23
|
Kim MH, Park JH, Nguyen DT, Kim S, Jeong DI, Cho HJ, Kim DD. Hyaluronidase Inhibitor-Incorporated Cross-Linked Hyaluronic Acid Hydrogels for Subcutaneous Injection. Pharmaceutics 2021; 13:170. [PMID: 33513991 PMCID: PMC7910999 DOI: 10.3390/pharmaceutics13020170] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022] Open
Abstract
Hyaluronidase (HAase) inhibitor-incorporated hyaluronic acid (HA) hydrogel cross-linked with 1,4-butanediol diglycidyl ether (BDDE) was designed to reduce the toxicity risk induced by BDDE and its biodegradation rate in subcutaneous tissue. The formulation composition of hydrogel and its preparation method were optimized to have a high swelling ratio and drug content. Quercetin (QCT) and quetiapine (QTP), as an HAase inhibitor and model drug, respectively, were incorporated into the cross-linked hydrogel using the antisolvent precipitation method for extending their release after subcutaneous injection. The cross-linked HA (cHA)-based hydrogels displayed appropriate viscoelasticity and injectability for subcutaneous injection. The incorporation of QCT (as an HAase inhibitor) in the cHA hydrogel formulation resulted in slower in vitro and in vivo degradation profiles compared to the hydrogel without QCT. Single dosing of optimized hydrogel injected via a subcutaneous route in rats did not induce any acute toxicities in the blood chemistry and histological staining studies. In the pharmacokinetic study of rats following subcutaneous injection, the cHA hydrogel with QCT exhibited a lower maximum QTP concentration and longer half-life and mean residence time values compared to the hydrogel without QCT. All of these results support the designed HAase inhibitor-incorporated cHA hydrogel being a biocompatible subcutaneous injection formulation for sustained drug delivery.
Collapse
Affiliation(s)
- Min-Hwan Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.-H.K.); (J.-H.P.); (D.-T.N.)
| | - Ju-Hwan Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.-H.K.); (J.-H.P.); (D.-T.N.)
| | - Duy-Thuc Nguyen
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.-H.K.); (J.-H.P.); (D.-T.N.)
| | - Sungyun Kim
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (S.K.); (D.I.J.)
| | - Da In Jeong
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (S.K.); (D.I.J.)
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (S.K.); (D.I.J.)
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.-H.K.); (J.-H.P.); (D.-T.N.)
| |
Collapse
|
24
|
Ruhr D, John M, Reiche A. Determination of the effective degree of cross-linking of porous cellulose membranes cross-linked with bifunctional epoxides. Carbohydr Polym 2021; 251:117043. [DOI: 10.1016/j.carbpol.2020.117043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 11/16/2022]
|
25
|
Analysis of hyaluronan and its derivatives using chromatographic and mass spectrometric techniques. Carbohydr Polym 2020; 250:117014. [DOI: 10.1016/j.carbpol.2020.117014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 01/15/2023]
|
26
|
Relaxation and diffusion of water protons in BDDE cross-linked hyaluronic acid hydrogels investigated by NMR spectroscopy—Comparison with physicochemical properties. Carbohydr Polym 2020; 248:116768. [DOI: 10.1016/j.carbpol.2020.116768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/23/2020] [Accepted: 07/12/2020] [Indexed: 12/21/2022]
|
27
|
Hinsenkamp A, Ézsiás B, Pál É, Hricisák L, Fülöp Á, Besztercei B, Somkuti J, Smeller L, Pinke B, Kardos D, Simon M, Lacza Z, Hornyák I. Crosslinked Hyaluronic Acid Gels with Blood-Derived Protein Components for Soft Tissue Regeneration. Tissue Eng Part A 2020; 27:806-820. [PMID: 32854588 DOI: 10.1089/ten.tea.2020.0197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hyaluronic acid (HA) is an ideal initial material for preparing hydrogels, which may be used as scaffolds in soft tissue engineering based on their advantageous physical and biological properties. In this study, two crosslinking agents, divinyl sulfone (DVS) and butanediol diglycidyl ether, were used to investigate their effect on the properties of HA hydrogels. As HA hydrogels alone do not promote cell adhesion on the scaffold, fibrin and serum from platelet-rich fibrin (SPRF) were combined with the scaffold; the aim was to create a material intended to be used as soft tissue implant that facilitates new tissue formation, and degrades over time. The chemical changes were characterized and cell attachment capacity of the protein-containing gels was examined using human mesenchymal stem cells, and viability was assessed using live-dead staining. Fourier-transform infrared measurements revealed that linking fibrin into the gel was more effective than linking SPRF. The scaffolds were found to be able to support cell adherence onto the hydrogels, and the best result was achieved when HA was crosslinked with DVS and contained fibrin. The most promising derivative, 5% DVS-crosslinked fibrin-containing hydrogel, was injected subcutaneously into C57BL/6 mice for 12 weeks. The scaffold was proven to be biocompatible, remodeling, and vascularization occurred, while shape and integrity were maintained. Impact statement Fibrin was combined with crosslinked hyaluronic acid (HA) for regenerative application, the structure of the combination of crosslinked HA with blood-derived protein was analyzed and effective coating was proven. It was observed that the fibrin content led to better mesenchymal stem cell attachment in vitro. The compositions showed biocompatibility, connective tissue and vascularization took place when implanted in vivo. Thus, a biocompatible, injectable gel was produced, which is a potential candidate for soft tissue implantation.
Collapse
Affiliation(s)
- Adél Hinsenkamp
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Bence Ézsiás
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Éva Pál
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - László Hricisák
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ágnes Fülöp
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Balázs Besztercei
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Judit Somkuti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Balázs Pinke
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| | - Dorottya Kardos
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Melinda Simon
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zsombor Lacza
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.,Orthosera GmbH, Krems an der Donau, Austria.,Institute of Sport and Health Sciences, University of Physical Education, Budapest, Hungary
| | - István Hornyák
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.,Orthosera GmbH, Krems an der Donau, Austria
| |
Collapse
|
28
|
Evaluation of the Rheologic and Physicochemical Properties of a Novel Hyaluronic Acid Filler Range with eXcellent Three-Dimensional Reticulation (XTR™) Technology. Polymers (Basel) 2020; 12:polym12081644. [PMID: 32722003 PMCID: PMC7463506 DOI: 10.3390/polym12081644] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
Soft-tissue fillers made of hyaluronic acid and combined with lidocaine have recently become a popular tool in aesthetic medicine. Several manufacturers have developed their own proprietary formulae with varying manufacturing tools, concentrations, crosslinked three-dimensional network structures, pore size distributions of the fibrous networks, as well as cohesivity levels and rheological properties, lending fillers and filler ranges their unique properties and degradability profiles. One such range of hyaluronic acid fillers manufactured using the novel eXcellent three-dimensional reticulation (XTR™) technology was evaluated in comparison with other HA fillers and filler ranges by an independent research laboratory. Fillers manufactured with the XTR™ technology were shown to have characteristic rheological, crosslinking and biophysical factors that support the suitability of this filler range for certain patient profiles.
Collapse
|
29
|
Iqbal DN, Shafiq S, Khan SM, Ibrahim SM, Abubshait SA, Nazir A, Abbas M, Iqbal M. Novel chitosan/guar gum/PVA hydrogel: Preparation, characterization and antimicrobial activity evaluation. Int J Biol Macromol 2020; 164:499-509. [PMID: 32682967 DOI: 10.1016/j.ijbiomac.2020.07.139] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
A series of chitosan/poly(vinyl alcohol)/guar gum (CS/PVA/GG) blends were prepared. The synthesis was carried out using different combinations of CS and GG, while keeping PVA constant by casting solution method. The effect of formaldehyde as a crosslinking agent was also evaluated. The blends were characterized by scanning electron microscopy (SEM), Fourier Transform Infra-red (FTIR) and X-ray powder diffraction (XRD). Additionally, the swelling ratio along with antimicrobial activity was also studied. SEM exhibited the phenomenon that surface morphology was mostly affected by blend ratios and cross-linker. The XRD shows the crystalline structure of blends. The FTIR confirmed the strong intermolecular bonding between polymers. Swelling exhibits that cross-linking affects the hydrophilicity of blends and swelling was excellent for S4 blend. The prepared blends showed promising antimicrobial activity against P. multocida, S. aureus, E. coli, and B. subtilis bacterial agents. The data concludes that GG, CS and PVA ternary blends could possibly be used for the biomedical applications.
Collapse
Affiliation(s)
- Dure N Iqbal
- Department of Chemistry, The University of Lahore, Lahore 53700, Pakistan
| | - Sadia Shafiq
- Department of Chemistry, The University of Lahore, Lahore 53700, Pakistan
| | - Shahzad M Khan
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, Pakistan
| | - Sobhy M Ibrahim
- Department of Biochemistry, College of Science, King Saud University, P.O. Box: 2455, Riyadh 11451, Saudi Arabia; Department of Analytical Chemistry and Control, Hot Laboratories and Waste Management Center, Atomic Energy Authority, Cairo 13759, Egypt
| | - Samar A Abubshait
- Department of Chemistry, College of Science, Imam Abdulrahaman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia; Basic & Applied Scientific Research Center, Imam Abdulrahaman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore 53700, Pakistan
| | - Mazhar Abbas
- Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.
| | - Munawar Iqbal
- Department of Chemistry, The University of Lahore, Lahore 53700, Pakistan.
| |
Collapse
|
30
|
Tang G, Zhou B, Li F, Wang W, Liu Y, Wang X, Liu C, Ye X. Advances of Naturally Derived and Synthetic Hydrogels for Intervertebral Disk Regeneration. Front Bioeng Biotechnol 2020; 8:745. [PMID: 32714917 PMCID: PMC7344321 DOI: 10.3389/fbioe.2020.00745] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
Intervertebral disk (IVD) degeneration is associated with most cases of cervical and lumbar spine pathologies, amongst which chronic low back pain has become the primary cause for loss of quality-adjusted life years. Biomaterials science and tissue engineering have made significant progress in the replacement, repair and regeneration of IVD tissue, wherein hydrogel has been recognized as an ideal biomaterial to promote IVD regeneration in recent years. Aspects such as ease of use, mechanical properties, regenerative capacity, and their applicability as carriers for regenerative and anti-degenerative factors determine their suitability for IVD regeneration. This current review provides an overview of naturally derived and synthetic hydrogels that are related to their clinical applications for IVD regeneration. Although each type has its own unique advantages, it rarely becomes a standard product in truly clinical practice, and a more rational design is proposed for future use of biomaterials for IVD regeneration. This review aims to provide a starting point and inspiration for future research work on development of novel biomaterials and biotechnology.
Collapse
Affiliation(s)
- Guoke Tang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Bingyan Zhou
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Feng Li
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Weiheng Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yi Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Xiaojian Ye
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
31
|
Chen F, Le P, Lai K, Fernandes-Cunha GM, Myung D. Simultaneous Interpenetrating Polymer Network of Collagen and Hyaluronic Acid as an In Situ-Forming Corneal Defect Filler. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:5208-5216. [PMID: 33603277 PMCID: PMC7888987 DOI: 10.1021/acs.chemmater.0c01307] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Timely treatment of corneal injuries injury can help to prevent corneal scarring, blindness, and the need for corneal transplantation. This work describes a novel hydrogel that can fill corneal defects and assist in corneal regeneration. This hydrogel is a simultaneous interpenetrating polymer network (IPN) composed of collagen cross-linked via strain-promoted azide-alkyne cycloaddition reaction and hyaluronic acid cross-linked via thiol-ene Michael click reaction. The formation of the IPN gel was confirmed via FTIR spectra, UV-vis spectra, and morphological changes. We compared the gelation time, mechanical properties, transmittance, and refractive index of the IPN gel to the collagen gel, hyaluronic acid gel, and semi-IPN gel. The IPN combined the advantages of collagen and hyaluronic acid gels and supported corneal epithelial cell growth on its surface. When applied to corneal stromal defects in vivo, the IPN avoided epithelial hyperplasia, decreased stromal myofibroblast formation, and increased tight junction formation in the regenerated epithelium.
Collapse
Affiliation(s)
- Fang Chen
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States; VA Palo Alto, Palo Alto, California 94304, United States
| | - Peter Le
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States; VA Palo Alto, Palo Alto, California 94304, United States
| | - Krystal Lai
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Gabriella M Fernandes-Cunha
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - David Myung
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States; Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States; VA Palo Alto, Palo Alto, California 94304, United States
| |
Collapse
|
32
|
Roles of Silk Fibroin on Characteristics of Hyaluronic Acid/Silk Fibroin Hydrogels for Tissue Engineering of Nucleus Pulposus. MATERIALS 2020; 13:ma13122750. [PMID: 32560556 PMCID: PMC7345670 DOI: 10.3390/ma13122750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Silk fibroin (SF) and hyaluronic acid (HA) were crosslinked by horseradish peroxidase (HRP)/H2O2, and 1,4-Butanediol di-glycidyl ether (BDDE), respectively, to produce HA/SF-IPN (interpenetration network) (HS-IPN) hydrogels. HS-IPN hydrogels consisted of a SF strain with a high content of tyrosine (e.g., strain A) increased viscoelastic modules compared with those with low contents (e.g., strain B and C). Increasing the quantities of SF in HS-IPN hydrogels (e.g., HS7-IPN hydrogels with weight ratio of HA/SF, 5:7) increased viscoelastic modules of the hydrogels. In addition, the mean pores size of scaffolds of the model hydrogels were around 38.96 ± 5.05 μm which was between those of scaffolds H and S hydrogels. Since the viscoelastic modulus of the HS7-IPN hydrogel were similar to those of human nucleus pulposus (NP), it was chosen as the model hydrogel for examining the differentiation of human bone marrow-derived mesenchymal stem cell (hBMSC) to NP. The differentiation of hBMSC induced by transforming growth factor β3 (TGF-β3) in the model hydrogels to NP cells for 7 d significantly enhanced the expressions of glycosaminoglycan (GAG) and collagen type II, and gene expressions of aggrecan and collagen type II while decreased collagen type I compared with those in cultural wells. In summary, the model hydrogels consisted of SF of strain A, and high concentrations of SF showed the highest viscoelastic modulus than those of others produced in this study, and the model hydrogels promoted the differentiation of hBMSC to NP cells.
Collapse
|
33
|
Petta D, D'Amora U, Ambrosio L, Grijpma DW, Eglin D, D'Este M. Hyaluronic acid as a bioink for extrusion-based 3D printing. Biofabrication 2020; 12:032001. [PMID: 32259809 DOI: 10.1088/1758-5090/ab8752] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biofabrication is enriching the tissue engineering field with new ways of producing structurally organized complex tissues. Among the numerous bioinks under investigation, hyaluronic acid (HA) and its derivatives stand out for their biological relevance, cytocompatibility, shear-thinning properties, and potential to fine-tune the desired properties with chemical modification. In this paper, we review the recent advances on bioinks containing HA. The available literature is presented based on subjects including the rheological properties in connection with printability, the chemical strategies for endowing HA with the desired properties, the clinical application, the most advanced preclinical studies, the advantages and limitations in comparison with similar biopolymer-based bioinks, and future perspectives.
Collapse
Affiliation(s)
- D Petta
- AO Research Institute Davos, Davos Platz, Switzerland. Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Suflet DM, Popescu I, Prisacaru AI, Pelin IM. Synthesis and characterization of curdlan – phosphorylated curdlan based hydrogels for drug release. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1765360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Dana Mihaela Suflet
- Laboratory of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Irina Popescu
- Laboratory of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | | | - Irina Mihaela Pelin
- Laboratory of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| |
Collapse
|
35
|
Tziveleka LA, Sapalidis A, Kikionis S, Aggelidou E, Demiri E, Kritis A, Ioannou E, Roussis V. Hybrid Sponge-Like Scaffolds Based on Ulvan and Gelatin: Design, Characterization and Evaluation of Their Potential Use in Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1763. [PMID: 32283814 PMCID: PMC7178717 DOI: 10.3390/ma13071763] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023]
Abstract
Ulvan, a bioactive natural sulfated polysaccharide, and gelatin, a collagen-derived biopolymer, have attracted interest for the preparation of biomaterials for different biomedical applications, due to their demonstrated compatibility for cell attachment and proliferation. Both ulvan and gelatin have exhibited osteoinductive potential, either alone or in combination with other materials. In the current work, a series of novel hybrid scaffolds based on crosslinked ulvan and gelatin was designed, prepared and characterized. Their mechanical performance, thermal stability, porosity, water-uptake and in vitro degradation ability were assessed, while their morphology was analyzed through scanning electron microscopy. The prepared hybrid ulvan/gelatin scaffolds were characterized by a highly porous and interconnected structure. Human adipose-derived mesenchymal stem cells (hADMSCs) were seeded in selected ulvan/gelatin hybrid scaffolds and their adhesion, survival, proliferation, and osteogenic differentiation efficiency was evaluated. Overall, it was found that the prepared hybrid sponge-like scaffolds could efficiently support mesenchymal stem cells' adhesion and proliferation, suggesting that such scaffolds could have potential uses in bone tissue engineering.
Collapse
Affiliation(s)
- Leto-Aikaterini Tziveleka
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Andreas Sapalidis
- Institute of Nanosciences and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 15310 Attiki, Greece;
| | - Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Eleni Aggelidou
- cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.A.); (A.K.)
| | - Efterpi Demiri
- Department of Plastic Surgery, School of Medicine, Faculty of Health Sciences, Papageorgiou Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Aristeidis Kritis
- cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.A.); (A.K.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| |
Collapse
|
36
|
He Q, Kusumi R, Kimura S, Kim UJ, Deguchi K, Ohki S, Goto A, Shimizu T, Wada M. Highly swellable hydrogel of regioselectively aminated (1→3)-α-d-glucan crosslinked with ethylene glycol diglycidyl ether. Carbohydr Polym 2020; 237:116189. [PMID: 32241412 DOI: 10.1016/j.carbpol.2020.116189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023]
Abstract
(1→3)-α-d-glucan synthesized by glucosyltransferase J (GtfJ) cloned from Streptococcus salivarius was regioselectively aminated as 6-amino-6-deoxy-(1→3)-α-d-glucan (aminoglucan) through three steps: bromination, azidation, and reduction. The degree of substitution of the amino group was determined by elemental analysis to be 0.97 and the molecular weight was 3.74×104 as measured by size exclusion chromatography. The regioselective amination at the C6 position of every pyranose ring was confirmed by 1H/13C NMR and solid state 15N cross polarization/magic angle spinning NMR spectroscopy. Aminoglucan was characterized by FT-IR, X-ray diffraction and thermogravimetric analysis. Solubility of aminoglucan in various solvents was investigated and confirmed in aqueous solution at pH ≤ 11. Therefore, aminoglucan was crosslinked with ethylene glycol diglycidyl ether (EGDE) by an epoxy-ring opening reaction under alkaline conditions. The obtained EGDE-crosslinked aminoglucan hydrogels were highly swellable in water owing to a strong water-holding ability and no water was released on compression and breaking of the gels.
Collapse
Affiliation(s)
- Qinfeng He
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Ryosuke Kusumi
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Satoshi Kimura
- Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan; Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea.
| | - Ung-Jin Kim
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea.
| | - Kenzo Deguchi
- High Field NMR Group, National Institute for Materials Science, Sakura, Tsukuba, 305-0003, Japan.
| | - Shinobu Ohki
- High Field NMR Group, National Institute for Materials Science, Sakura, Tsukuba, 305-0003, Japan.
| | - Atsushi Goto
- High Field NMR Group, National Institute for Materials Science, Sakura, Tsukuba, 305-0003, Japan.
| | - Tadashi Shimizu
- High Field NMR Group, National Institute for Materials Science, Sakura, Tsukuba, 305-0003, Japan.
| | - Masahisa Wada
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan; Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea.
| |
Collapse
|
37
|
Vurat MT, Ergun C, Elçin AE, Elçin YM. 3D Bioprinting of Tissue Models with Customized Bioinks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:67-84. [PMID: 32602091 DOI: 10.1007/978-981-15-3258-0_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ordered assembly of multicellular structures mimicking native tissues has lately come into prominence for various applications of biomedicine. In this respect, three-dimensional bioprinting (3DP) of cells and other biologics through additive manufacturing techniques has brought the possibility to develop functional in vitro tissue models and perhaps creating de novo transplantable tissues or organs in time. Bioinks, which can be defined as the printable analogues of the extracellular matrix, represent the foremost component of 3DP. In this chapter, we attempt to elaborate the major classes of bioinks which are prevalently being evaluated for the 3DP of a wide range of tissue models.
Collapse
Affiliation(s)
- Murat Taner Vurat
- Biovalda Health Technologies, Inc., Ankara, Turkey
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Ankara, Turkey
| | - Can Ergun
- Biovalda Health Technologies, Inc., Ankara, Turkey
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Yaşar Murat Elçin
- Biovalda Health Technologies, Inc., Ankara, Turkey.
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Ankara, Turkey.
| |
Collapse
|
38
|
Iqbal DN, Tariq M, Khan SM, Gull N, Sagar Iqbal S, Aziz A, Nazir A, Iqbal M. Synthesis and characterization of chitosan and guar gum based ternary blends with polyvinyl alcohol. Int J Biol Macromol 2020; 143:546-554. [DOI: 10.1016/j.ijbiomac.2019.12.043] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
|
39
|
Clinical Applications of Hyaluronidase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:255-277. [PMID: 31482503 DOI: 10.1007/978-981-13-7709-9_12] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hyaluronidases are enzymes that degrade hyaluronic acid, which constitutes an essential part of the extracellular matrix. Initially discovered in bacteria, hyaluronidases are known to be widely distributed in nature and have been found in many classes including insects, snakes, fish and mammals. In the human, six different hyaluronidases, HYAL1-4, HYAL-P1 and PH-20, have been identified. PH-20 exerts the strongest biologic activity, is found in high concentrations in the testicles and can be localized on the head and the acrosome of human spermatozoa. Today, animal-derived bovine or ovine testicular hyaluronidases as well as synthetic hyaluronidases are clinically applied as adjuncts to increase the bioavailability of drugs, for the therapy of extravasations, or for the management of complications associated with the aesthetic injection of hyaluronic acid-based fillers. Further applications in the fields of surgery, aesthetic medicine, immunology, oncology, and many others can be expected for years to come. Here, we give an overview over the molecular and cellular mode of action of hyaluronidase and the hyaluronic acid metabolism, as well as over current and potential future clinical applications of hyaluronidase.
Collapse
|
40
|
Pandit AH, Mazumdar N, Ahmad S. Periodate oxidized hyaluronic acid-based hydrogel scaffolds for tissue engineering applications. Int J Biol Macromol 2019; 137:853-869. [DOI: 10.1016/j.ijbiomac.2019.07.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
|
41
|
Xiao SP, Tang LS, Chen JY, Li ZT, Cheng GH, Chen QQ, Liu SH, Liu WG. Effect of Cross-Linked Hyaluronate Scaffold on Cartilage Repair: An In Vivo Study. Orthop Surg 2019; 11:679-689. [PMID: 31385411 PMCID: PMC6712381 DOI: 10.1111/os.12508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 01/16/2023] Open
Abstract
Objective To determine the safety and effectiveness of a cross‐linked sodium hyaluronate (CHA) scaffold in cartilage repair. Methods Physicochemical properties of the scaffold were determined. The safety and effectiveness of the scaffold for cartilage repair were evaluated in a minipig model of a full‐thickness cartilage defect with microfracture surgery. Postoperative observation and hematological examination were used to evaluate the safety of the CHA scaffold implantation. Pathological examination as well as biomechanical testing, including Young's modulus, stress relaxation time, and creep time, were conducted at 6 and 12 months postsurgery to assess the effectiveness of the scaffold for cartilage repair. Furthermore, type II collagen and glycosaminoglycan content were determined to confirm the influence of the scaffold in the damaged cartilage tissue. Results The results showed that the routine hematological indexes of the experimental animals were within the normal physiological ranges, which confirmed the safety of CHA scaffold implantation. Based on macroscopic observation, it was evident that repair of the defective cartilage in the animal knee joint began during the 6 months postoperation and was gradually enhanced from the central to the surrounding region. The repair smoothness and color of the 12‐month cartilage samples from the operation area were better than those of the 6‐month samples, and the results for the CHA scaffold implantation group were better than the control group. Greater cell degeneration and degeneration of the adjacent cartilage was found in the implantation group compared with the control group at both 6 and 12 months postoperation, evaluated by O'Driscoll Articular Cartilage Histology Scoring. Implantation with the CHA scaffold matrix promoted cartilage repair and improved its compression capacity. The type II collagen level in the CHA scaffold implantation group tended to be higher than that in the control group at 6 months (2.33 ± 1.50 vs 1.68 ± 0.56) and 12 months postsurgery (3.37 ± 1.70 vs 2.06 ± 0.63). The GAG content in the cartilage of the control group was significantly lower than that of the experimental group (2.17 ± 0.43 vs 3.64 ± 1.17, P = 0.002 at 6 months and 2.27 ± 0.38 vs 4.12 ± 1.02, P = 0.002 at 12 months). Type II collagen and glycosaminoglycan content also demonstrated that CHA was beneficial for the accumulation of both these vital substances in the cartilage tissue. Conclusions The CHA scaffold displayed the ability to promote cartilage repair when applied in microfracture surgery, which makes it a promising material for application in the area of cartilage tissue engineering.
Collapse
Affiliation(s)
- Shi-Peng Xiao
- Department of Joint Surgery and Sports Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Lian-Sheng Tang
- Key Laboratory of Biopharmaceuticals of Shandong Province, Shandong Academy of Pharmaceutical Sciences, Jinan, China.,Key Laboratory of Mucosal and Transdermal Drug Delivery Technology in Shandong Province, Shandong Freda Pharmaceutical Group, Jinan, China
| | - Jian-Ying Chen
- Key Laboratory of Biopharmaceuticals of Shandong Province, Shandong Academy of Pharmaceutical Sciences, Jinan, China.,Key Laboratory of Mucosal and Transdermal Drug Delivery Technology in Shandong Province, Shandong Freda Pharmaceutical Group, Jinan, China
| | - Zhong-Tao Li
- Sehandong Provincial Key Laboratory of Network Based Intelligent Computing, School of Information Science and Engineering, University of Jinan, Jinan, China
| | - Guang-Hui Cheng
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Qian-Qian Chen
- Key Laboratory of Biopharmaceuticals of Shandong Province, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Sheng-Hou Liu
- Department of Joint Surgery and Sports Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Wen-Guang Liu
- Department of Joint Surgery and Sports Medicine, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
42
|
Lu R, Groer C, Kleindl PA, Moulder KR, Huang A, Hunt JR, Cai S, Aires DJ, Berkland C, Forrest ML. Formulation and preclinical evaluation of a toll-like receptor 7/8 agonist as an anti-tumoral immunomodulator. J Control Release 2019; 306:165-176. [PMID: 31173789 DOI: 10.1016/j.jconrel.2019.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/21/2019] [Accepted: 06/02/2019] [Indexed: 12/22/2022]
Abstract
The toll-like receptor 7 and 8 (TLR7/8) agonist Resiquimod (R848) has been recognized as a promising immunostimulator for the treatment of cutaneous cancers in multiple clinical trials. However, systemic administration of R848 often results in strong immune-related toxicities while having limited therapeutic effects to the tumor. In the present study, a prodrug-based nanocarrier delivery system was developed that exhibited high therapeutic efficiency. R848 was conjugated to α-tocopherol to constitute an R848-Toco prodrug, followed by formulating with a tocopherol-modified hyaluronic acid (HA-Toco) as a polymeric nano-suspension. In vitro evaluation showed that the delivery system prolonged the release kinetics while maintaining TLR agonist activities. When administered subcutaneously, the nano-suspension formed a depot at the injection site, inducing localized immune responses without systemic expansion. This formulation also suppressed tumor growth and recruited immune cells to the tumor in a murine model of head and neck cancer. In a preclinical canine study of spontaneous mast cell tumors, the treatment led to a 67% response rate (three partial remissions and one complete remission).
Collapse
Affiliation(s)
- Ruolin Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Chad Groer
- HylaPharm LLC, Lawrence, Kansas, United States of America
| | - Peter A Kleindl
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - K Ryan Moulder
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Aric Huang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Jordan R Hunt
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Shuang Cai
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, United States of America; HylaPharm LLC, Lawrence, Kansas, United States of America
| | - Daniel J Aires
- HylaPharm LLC, Lawrence, Kansas, United States of America; Division of Dermatology, School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, United States of America; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, United States of America
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, United States of America; HylaPharm LLC, Lawrence, Kansas, United States of America.
| |
Collapse
|
43
|
An JH, Lee HJ, Yoon MS, Kim DH. Anti-Wrinkle Efficacy of Cross-Linked Hyaluronic Acid-Based Microneedle Patch with Acetyl Hexapeptide-8 and Epidermal Growth Factor on Korean Skin. Ann Dermatol 2019; 31:263-271. [PMID: 33911590 PMCID: PMC7992733 DOI: 10.5021/ad.2019.31.3.263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/18/2018] [Accepted: 11/02/2018] [Indexed: 02/02/2023] Open
Abstract
Background Hyaluronic acid (HA)-based microneedle patch has recently been studied for wrinkle improvement. Cross-linked HA (CLHA) is widely used in dermal fillers. Acetyl hexapeptide-8 (AHP-8) and epidermal growth factor (EGF) are used for cosmetic ingredients. Objective This study aimed to verify the efficacy of the CLHA/HA-based patch with microstructure (microneedle patch) containing AHP-8 or EGF. Methods A total of 52 Korean females were enrolled in a double-blind, randomized, controlled, split-face trial. The subjects were divided into 3 groups: (1) microneedle patch alone, (2) microneedle patch/AHP-8, and (3) microneedle patch/EGF. The treatment was applied on the periorbital and nasolabial fold area for 4 hours to completely dissolve the microstructures once per week for 29 days. Evaluations, including photodamage scoring, image analysis with Antera 3D® (Miravex, Ireland), skin hydration measurement, and adverse effect assessments, were performed at each visit. Results Fifty subjects (96.2%) completed this clinical study. On day 29 after application, statistically significant improvements in wrinkle and skin hydration were observed in all groups (p<0.01). Treatment with microneedle patch/AHP-8 and microneedle patch/EGF showed statistically significant improvements in wrinkle compared with microneedle patch alone (p<0.05). No serious adverse effects were noted. Conclusion Combination of CLHA-based microneedle patch and functional cosmetic ingredients can improve wrinkle with minimal discomfort.
Collapse
Affiliation(s)
- Ji Hae An
- Department of Dermatology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Hee Jung Lee
- Department of Dermatology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Moon Soo Yoon
- Department of Dermatology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Dong Hyun Kim
- Department of Dermatology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
44
|
Nguyen NTP, Nguyen LVH, Tran NMP, Nguyen DT, Nguyen TNT, Tran HA, Dang NNT, Vo TV, Nguyen TH. The effect of oxidation degree and volume ratio of components on properties and applications of in situ cross-linking hydrogels based on chitosan and hyaluronic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109670. [PMID: 31349450 DOI: 10.1016/j.msec.2019.04.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/30/2019] [Accepted: 04/14/2019] [Indexed: 11/19/2022]
Abstract
The purpose of this research is to investigate the effect of different oxidation degrees and volume ratios of components on the physical properties and biocompatibility of an in situ cross-linking chitosan-hyaluronic acid-based hydrogel for skin wound healing applications. Carboxymethyl groups (-CH2COOH) were introduced to the polymer chain of chitosan, producing N,O - Carboxymethyl Chitosan (NOCC). Hyaluronic acid was oxidized to obtain aldehyde hyaluronic acid (AHA) with three oxidation degrees (AHA40, AHA50 and AHA60). The gelation was induced by forming Schiff base linkage between aldehyde groups of AHA and amino groups of NOCC. Then, the polysaccharide derivatives were combined at three NOCC:AHA volume ratios (3:7, 5:5 and 7:3) to form composite hydrogels without using any additional cross-linker. FT-IR analysis, surface morphology observation and wettability test, in vitro degradation test and rheological analysis were carried out to characterize the hydrogels. Additionally, in vitro cytotoxicity and in vivo wound healing evaluations were also conducted to study the biocompatibility of the composite. Our findings showed that when increasing the volume of NOCC, the homogeneity and hydrophobicity of the resulting hydrogels were also improved and their pore walls became thicker, leading to slower degradation rate. On the other hand, when raising the oxidation degree of AHA, the hydrophilicity of the gels decreased and less time was required to form the gel matrix. Besides, the obtained in vitro and in vivo results indicated that lower oxidation degree of AHA supports cell proliferation, cell attachment and wound healing process better. It is also concluded that NOCC-AHA40 5:5 hydrogel is most suitable for skin wound healing applications since it possesses superior morphology with high uniformity, favorable pore size and suitable density along with appropriate wettability. The NOCC-AHA gel matrix is expected to be used as a delivery system for other factors and employed as an effective bio-glue in further tissue engineering applications.
Collapse
Affiliation(s)
- Nghi Thi-Phuong Nguyen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University-Ho Chi Minh City (VNU-HCM), 700000, Viet Nam
| | - Long Vuong-Hoang Nguyen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University-Ho Chi Minh City (VNU-HCM), 700000, Viet Nam
| | - Nam Minh-Phuong Tran
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University-Ho Chi Minh City (VNU-HCM), 700000, Viet Nam
| | - Dat Tan Nguyen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University-Ho Chi Minh City (VNU-HCM), 700000, Viet Nam
| | - Tien Ngoc-Thuy Nguyen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University-Ho Chi Minh City (VNU-HCM), 700000, Viet Nam
| | - Hien Anh Tran
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University-Ho Chi Minh City (VNU-HCM), 700000, Viet Nam
| | - Nhi Ngoc-Thao Dang
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University-Ho Chi Minh City (VNU-HCM), 700000, Viet Nam
| | - Toi Van Vo
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University-Ho Chi Minh City (VNU-HCM), 700000, Viet Nam
| | - Thi-Hiep Nguyen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University-Ho Chi Minh City (VNU-HCM), 700000, Viet Nam.
| |
Collapse
|
45
|
Maiz-Fernández S, Pérez-Álvarez L, Ruiz-Rubio L, Pérez González R, Sáez-Martínez V, Ruiz Pérez J, Vilas-Vilela JL. Synthesis and Characterization of Covalently Crosslinked pH-Responsive Hyaluronic Acid Nanogels: Effect of Synthesis Parameters. Polymers (Basel) 2019; 11:E742. [PMID: 31022975 PMCID: PMC6523595 DOI: 10.3390/polym11040742] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 11/29/2022] Open
Abstract
Stable hyaluronic acid nanogels were obtained following the water-in-oil microemulsion method by covalent crosslinking with three biocompatible crosslinking agents: Divinyl sulfone, 1,4-butanediol diglycidyl ether (BDDE), and poly(ethylene glycol) bis(amine). All nanoparticles showed a pH-sensitive swelling behavior, according to the pKa value of hyaluronic acid, as a consequence of the ionization of the carboxylic moieties, as it was corroborated by zeta potential measurements. QELS studies were carried out to study the influence of the chemical structure of the crosslinking agents on the particle size of the obtained nanogels. In addition, the effect of the molecular weight of the biopolymer and the degree of crosslinking on the nanogels dimensions was also evaluated for BDDE crosslinked nanoparticles, which showed the highest pH-responsive response.
Collapse
Affiliation(s)
- Sheila Maiz-Fernández
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena, s/n 48940 Leioa, Spain.
| | - Leyre Pérez-Álvarez
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena, s/n 48940 Leioa, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| | - Leire Ruiz-Rubio
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena, s/n 48940 Leioa, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| | - Raúl Pérez González
- i+Med S. Coop. Parque Tecnológico de Alava. Albert Einstein 15, nave 15. 01510 Miñano, Álava, Spain.
| | - Virginia Sáez-Martínez
- i+Med S. Coop. Parque Tecnológico de Alava. Albert Einstein 15, nave 15. 01510 Miñano, Álava, Spain.
| | - Jesica Ruiz Pérez
- i+Med S. Coop. Parque Tecnológico de Alava. Albert Einstein 15, nave 15. 01510 Miñano, Álava, Spain.
| | - José Luis Vilas-Vilela
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena, s/n 48940 Leioa, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| |
Collapse
|
46
|
Monticelli D, Martina V, Mocchi R, Rauso R, Zerbinati U, Cipolla G, Zerbinati N. Chemical Characterization of Hydrogels Crosslinked with Polyethylene Glycol for Soft Tissue Augmentation. Open Access Maced J Med Sci 2019; 7:1077-1081. [PMID: 31049084 PMCID: PMC6490493 DOI: 10.3889/oamjms.2019.279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Hyaluronic acid (HA) based hydrogels for esthetic applications found widespread use. HA should be crosslinked for this application to achieve the correct viscoelastic properties and avoid fast degradation by the hyaluronidase enzyme naturally present in the skin: these properties are controlled by the amount of crosslinker and the fraction that is effectively crosslinked (i.e. that binds two HA chains). AIM Crosslinking by polyethylene glycol diglycidyl ether (PEGDE) has been more recently introduced and showed attractive features in terms of viscoelastic properties and reduced biodegradation. Aim of this paper is to define a method for the determination of the crosslinking properties of these recently introduced fillers, method that is lacking at the moment. MATERIAL AND METHOD The percentage of crosslinker and the fraction that is effectively crosslinked were determined by proton Nuclear Magnetic Resonance (1H NMR) and by 13C NMR, respectively. The filler were preliminarily washed with acetonitrile to remove residual PEG and then digested by hyaluronidase to obtain a sample that can be analysed by NMR. RESULTS The crosslinking parameters were determined in four samples of NEAUVIA PEG-crosslinked dermal fillers (produced by MatexLab S.p.A., Italy). The percentage of crosslinker was between 2.8% and 6.2% of HA, whereas the effective crosslinker ratios were between 0.07 and 0.16 (ratio between the moles of effectively crosslinked PEG and total moles of PEG). Moreover, a digestion procedure alternative to enzymatic digestion, based on acidic hydrolysis, was successfully tested for the determination of crosslinker percentage. CONCLUSIONS The proposed method successfully determined the two crosslinking parameters in PEG-crosslinked dermal fillers. The estimated percentage of crosslinker is similar to previously reported data for other crosslinkers, whereas the effective crosslinker ratio is lower for PEG crosslinked hydrogels.
Collapse
Affiliation(s)
- Damiano Monticelli
- University of Insubria, Department of Science and High Technology, Como, Italy
| | - Virginia Martina
- MatexLab S.p.a., Department of Research and Development, Brindisi, Italy
| | - Roberto Mocchi
- UB-CARE S.r.l. Spin-off University of Pavia, Pavia, Italy
| | - Raffaele Rauso
- University of Foggia, Department of Plastic Reconstructive Surgery, Foggia, Italy
| | - Umberto Zerbinati
- Centro Medico Polispecialistico, Dermatology Department, Pavia, Italy
| | - Giovanna Cipolla
- Centro Medico Polispecialistico, Dermatology Department, Pavia, Italy
| | - Nicola Zerbinati
- University of Insubria, Department of Medicine and Surgery, School of Medicine, Varese, Italy
| |
Collapse
|
47
|
Fagien S, Bertucci V, von Grote E, Mashburn JH. Rheologic and Physicochemical Properties Used to Differentiate Injectable Hyaluronic Acid Filler Products. Plast Reconstr Surg 2019; 143:707e-720e. [PMID: 30921116 PMCID: PMC7597953 DOI: 10.1097/prs.0000000000005429] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 10/18/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Injectable hyaluronic acid fillers are routinely used for correction of soft-tissue volume loss and facial rejuvenation. Product differentiation has primarily been based on the rheologic parameter known as elastic modulus (G'), although other physicochemical properties are being explored to characterize potential product performance. As clinical data regarding product performance are lacking, the practical experience of injectors provides a valuable bridge in the knowledge gap between product rheologic data and product use. METHODS Rheologic and physicochemical measurements (swelling factor and cohesion) were collected for 18 products. To observe the impact of G' and hyaluronic acid concentration on swelling factor and cohesion, proportional relationships were evaluated. Contributing authors were queried regarding their G'-based selection of products when considering skin quality, degree of correction, injection depth, and anatomical location. RESULTS Relationships were observable between G' and swelling factor and G' and cohesion only when limited to products manufactured by the same crosslinking technology and the same concentration. No relationship between isolated hyaluronic acid concentration and swelling factor or cohesion was apparent. Although rheological parameters and the assumptions of ex vivo data translating to in vivo performance are oftentimes not completely aligned, in the clinical experience of the authors, in general, higher G' products are better suited for thicker skin and deeper injection planes, whereas lower G' products are better for more superficial planes, although exceptions to these trends are also made based on technical experience. CONCLUSIONS While rheologic and physicochemical characteristics can vary widely between products and the methods and measurements of these parameters are often difficult to correlate, G' represents a useful and consistent parameter for product differentiation. Understanding how to select products based on G' is valuable knowledge for customizing injection plans and contributes to an optimal aesthetic outcome.
Collapse
Affiliation(s)
- Steven Fagien
- From private practice; the Division of Dermatology, University of
Toronto and private practice; and Galderma Laboratories, L.P
| | - Vince Bertucci
- From private practice; the Division of Dermatology, University of
Toronto and private practice; and Galderma Laboratories, L.P
| | - Erika von Grote
- From private practice; the Division of Dermatology, University of
Toronto and private practice; and Galderma Laboratories, L.P
| | - Jay H. Mashburn
- From private practice; the Division of Dermatology, University of
Toronto and private practice; and Galderma Laboratories, L.P
| |
Collapse
|
48
|
Wende FJ, Gohil S, Nord LI, Karlsson A, Kenne AH, Sandström C. Insights on the reactivity of chondroitin and hyaluronan toward 1,4-butanediol diglycidyl ether. Int J Biol Macromol 2019; 131:812-820. [PMID: 30880057 DOI: 10.1016/j.ijbiomac.2019.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/21/2019] [Accepted: 03/02/2019] [Indexed: 02/01/2023]
Abstract
Hyaluronic acid (HA) cross-linked with 1,4-butanediol diglycidyl ether (BDDE) are hydrogels with many biomedical applications. Degree of substitution, cross-linking and substitution position of the cross-linker might influence the properties of the hydrogels. We showed earlier that the most common substitution position of the cross-linker on the hyaluronan chain was the 4-hydroxyl of N-acetylglucosamine. This result has led us to investigate unsulfated chondroitin (CN) which only differ from HA in the primary structure by the configuration at C4 of the aminoglycan. In the present study, we have investigated (i) the substitution positions of the cross-linker in CN using NMR and LC-MS and compared the results to the data obtained for HA (ii) the effect of alkali on the 13C and 1H chemical shifts in CN and HA (iii) the temperature coefficients and chemical shifts of hydroxyl protons in CN and HA. In CN, the 2-hydroxyl of glucuronic acid and 6-hydroxyl of N-acetylgalactosamine were found to be the major sites of substitution by BDDE. Moreover, while chondroitinase was not able to cleave HA tetrasaccharide substituted at the 4-hydroxyl GlcNAc reducing end by BDDE, it is able to degrade CN-BDDE down to disaccharide units.
Collapse
Affiliation(s)
- Frida J Wende
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Suresh Gohil
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Lars I Nord
- Research A&C Galderma, Seminariegatan 21, SE-752 28 Uppsala, Sweden
| | - Anders Karlsson
- Research A&C Galderma, Seminariegatan 21, SE-752 28 Uppsala, Sweden
| | | | - Corine Sandström
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
49
|
Lee HY, Kim HE, Jeong SH. One-pot synthesis of silane-modified hyaluronic acid hydrogels for effective antibacterial drug delivery via sol–gel stabilization. Colloids Surf B Biointerfaces 2019; 174:308-315. [DOI: 10.1016/j.colsurfb.2018.11.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/22/2018] [Accepted: 11/16/2018] [Indexed: 01/09/2023]
|
50
|
Wang HL, Huang CP, Su CH, Tsai DH. A facile quantification of hyaluronic acid and its crosslinking using gas-phase electrophoresis. Anal Bioanal Chem 2019; 411:1443-1451. [PMID: 30659324 DOI: 10.1007/s00216-019-01584-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/26/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022]
Abstract
We report a facile, high-resolution approach to quantitatively characterize hyaluronic acid (HA) and study its crosslinking reaction using electrospray-differential mobility analysis (ES-DMA). Mobility size distributions, number concentrations, molecular mass distributions, and polydispersity index of HAs were obtained successfully via a rapid analysis by ES-DMA (< 30 min). The limit of detection, the limit of quantification, and the precision of the mobility size measurement achieve 2.5 nm, 4.0 nm, and 0.3 nm, respectively. Size exclusion chromatography (SEC) was employed as an orthogonal approach, showing that the averaged molecular mass and polydispersity index of HA measured by ES-DMA were close to the results of SEC on a semi-quantitative basis. The 1,4-butanediol diglycidyl ether (BDDE)-induced crosslinking of HA was also able to be successfully characterized through a time-dependent study using ES-DMA, which has shown the promise of direct analysis of solution-based reactions. Both the extent and the rate of HA crosslinking (induced by BDDE) were proportional to reaction temperature and concentration ratio of HA to BDDE. The activation energy of the reaction-limited BDDE-induced crosslinking of HA was found to be ≈ 21 kJ/mol. The prototype study demonstrates ES-DMA as a new method for a rapid quantitative characterization of HA and its derivative product and providing a capability of real-time monitoring of the HA crosslinking during formulation process. Graphical abstract.
Collapse
Affiliation(s)
- Hung-Li Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China
| | - Chin-Ping Huang
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, 31040, Taiwan, Republic of China
| | - Chiu-Hun Su
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, 31040, Taiwan, Republic of China
| | - De-Hao Tsai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China.
| |
Collapse
|