1
|
Rajendran DS, Venkataraman S, Jha SK, Chakrabarty D, Kumar VV. A review on bio-based polymer polylactic acid potential on sustainable food packaging. Food Sci Biotechnol 2024; 33:1759-1788. [PMID: 38752115 PMCID: PMC11091039 DOI: 10.1007/s10068-024-01543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 05/18/2024] Open
Abstract
Poly(lactic acid) (PLA) stands as a compelling alternative to conventional plastic-based packaging, signifying a notable shift toward sustainable material utilization. This comprehensive analysis illuminates the manifold applications of PLA composites within the realm of the food industry, emphasizing its pivotal role in food packaging and preservation. Noteworthy attributes of PLA composites with phenolic active compounds (phenolic acid and aldehyde, terpenes, carotenoid, and so on) include robust antimicrobial and antioxidant properties, significantly enhancing its capability to bolster adherence to stringent food safety standards. The incorporation of microbial and synthetic biopolymers, polysaccharides, oligosaccharides, oils, proteins and peptides to PLA in packaging solutions arises from its inherent non-toxicity and outstanding mechanical as well as thermal resilience. Functioning as a proficient film producer, PLA constructs an ideal preservation environment by merging optical and permeability traits. Esteemed as a pioneer in environmentally mindful packaging, PLA diminishes ecological footprints owing to its innate biodegradability. Primarily, the adoption of PLA extends the shelf life of products and encourages an eco-centric approach, marking a significant stride toward the food industry's embrace of sustainable packaging methodologies. Graphical abstract
Collapse
Affiliation(s)
- Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Satyendra Kumar Jha
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Disha Chakrabarty
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
2
|
Zou D, Li X, Wu M, Yang J, Qin W, Zhou Z, Yang J. Schiff base synergized with protonation of PEI to achieve smart antibacteria of nanocellulose packaging films. Carbohydr Polym 2023; 318:121136. [PMID: 37479427 DOI: 10.1016/j.carbpol.2023.121136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/23/2023]
Abstract
Microbial growth and reproduction can cause food spoilage. Developing the controlled release packaging films for food is an ideal solution. In this study, polyethyleneimine (PEI) was grafted to cellulose nanofibers (CNF) films by Schiff base, and when the CNF/PEI films were stimulated by pH, PEI released from the CNF/PEI films due to Schiff base hydrolysis, improving the antibacterial efficiency of PEI. Stimulated by acid with pH of 4, the PEI cumulative release rate of the CNF/PEI800 and the CNF/PEI2000 films reached to 92.90 % and 87.28 %, respectively. At the same time, the amino groups of PEI protonated by obtaining H+, the charge density increased, and PEI molecular chains extended, enhancing the antibacterial activity of films. The Zeta potential value on the surface of the CNF/PEI film increased with the decrease of pH value. Schiff base synergized with protonation of PEI to achieve smart antibacteria of CNF packaging films. The antibacterial rates of the film against L. monocytogenes and E. coli were 94.7 % and 90.6 % at pH 4, but 29.5 % and 23.6 % at pH 8, respectively. The developed films also had good barrier properties of oxygen, visible light and mechanical properties, and had an attractive application prospect in food preservation to control release of antibacterial agent.
Collapse
Affiliation(s)
- Dongcheng Zou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Xinwang Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Min Wu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China.
| | - Jian Yang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Weifang Qin
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Zhilong Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Jiacheng Yang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Avila LB, Schnorr C, Silva LFO, Morais MM, Moraes CC, da Rosa GS, Dotto GL, Lima ÉC, Naushad M. Trends in Bioactive Multilayer Films: Perspectives in the Use of Polysaccharides, Proteins, and Carbohydrates with Natural Additives for Application in Food Packaging. Foods 2023; 12:foods12081692. [PMID: 37107487 PMCID: PMC10137676 DOI: 10.3390/foods12081692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 04/29/2023] Open
Abstract
The harmful effects on the environment caused by the indiscriminate use of synthetic plastics and the inadequate management of post-consumer waste have given rise to efforts to redirect this consumption to bio-based economic models. In this sense, using biopolymers to produce materials is a reality for food packaging companies searching for technologies that allow these materials to compete with those from synthetic sources. This review paper focused on the recent trends in multilayer films with the perspective of using biopolymers and natural additives for application in food packaging. Firstly, the recent developments in the area were presented concisely. Then, the main biopolymers used (gelatin, chitosan, zein, polylactic acid) and main methods for multilayer film preparation were discussed, including the layer-by-layer, casting, compression, extrusion, and electrospinning methods. Furthermore, we highlighted the bioactive compounds and how they are inserted in the multilayer systems to form active biopolymeric food packaging. Furthermore, the advantages and drawbacks of multilayer packaging development are also discussed. Finally, the main trends and challenges in using multilayer systems are presented. Therefore, this review aims to bring updated information in an innovative approach to current research on food packaging materials, focusing on sustainable resources such as biopolymers and natural additives. In addition, it proposes viable production routes for improving the market competitiveness of biopolymer materials against synthetic materials.
Collapse
Affiliation(s)
- Luisa Bataglin Avila
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Carlos Schnorr
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 # 55-66, Barranquilla 080002, Atlantico, Colombia
| | - Luis F O Silva
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 # 55-66, Barranquilla 080002, Atlantico, Colombia
| | - Marcilio Machado Morais
- Chemical Engineering, Federal University of Pampa, 1650 Maria Anunciação Gomes Godoy Avenue, Bage 96413-172, Rio Grande do Sul, Brazil
| | - Caroline Costa Moraes
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bage 96413-172, Rio Grande do Sul, Brazil
| | - Gabriela Silveira da Rosa
- Chemical Engineering, Federal University of Pampa, 1650 Maria Anunciação Gomes Godoy Avenue, Bage 96413-172, Rio Grande do Sul, Brazil
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bage 96413-172, Rio Grande do Sul, Brazil
| | - Guilherme L Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Éder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Rio Grande do Sul, Brazil
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| |
Collapse
|
4
|
Cruz RMS, Krauter V, Krauter S, Agriopoulou S, Weinrich R, Herbes C, Scholten PBV, Uysal-Unalan I, Sogut E, Kopacic S, Lahti J, Rutkaite R, Varzakas T. Bioplastics for Food Packaging: Environmental Impact, Trends and Regulatory Aspects. Foods 2022; 11:3087. [PMID: 36230164 PMCID: PMC9563026 DOI: 10.3390/foods11193087] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
The demand to develop and produce eco-friendly alternatives for food packaging is increasing. The huge negative impact that the disposal of so-called "single-use plastics" has on the environment is propelling the market to search for new solutions, and requires initiatives to drive faster responses from the scientific community, the industry, and governmental bodies for the adoption and implementation of new materials. Bioplastics are an alternative group of materials that are partly or entirely produced from renewable sources. Some bioplastics are biodegradable or even compostable under the right conditions. This review presents the different properties of these materials, mechanisms of biodegradation, and their environmental impact, but also presents a holistic overview of the most important bioplastics available in the market and their potential application for food packaging, consumer perception of the bioplastics, regulatory aspects, and future challenges.
Collapse
Affiliation(s)
- Rui M S Cruz
- Department of Food Engineering, Institute of Engineering, Campus da Penha, Universidade do Algarve, 8005-139 Faro, Portugal
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculty of Sciences and Technology, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Victoria Krauter
- Packaging and Resource Management, Department Applied Life Sciences, FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria
| | - Simon Krauter
- Packaging and Resource Management, Department Applied Life Sciences, FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of Peloponnese, 24100 Kalamata, Greece
| | - Ramona Weinrich
- Department of Consumer Behaviour in the Bioeconomy, University of Hohenheim, Wollgrasweg 49, 70599 Stuttgart, Germany
| | - Carsten Herbes
- Institute for International Research on Sustainable Management and Renewable Energy, Nuertingen Geislingen University, Neckarsteige 6-10, 72622 Nuertingen, Germany
| | - Philip B V Scholten
- Bloom Biorenewables, Route de l'Ancienne Papeterie 106, 1723 Marly, Switzerland
| | - Ilke Uysal-Unalan
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
- CiFOOD-Center for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
| | - Ece Sogut
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
- Department of Food Engineering, Suleyman Demirel University, 32200 Isparta, Turkey
| | - Samir Kopacic
- Institute for Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Johanna Lahti
- Sustainable Products and Materials, VTT Technical Research Centre of Finland, Visiokatu 4, 33720 Tampere, Finland
| | - Ramune Rutkaite
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd 19, 50254 Kaunas, Lithuania
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of Peloponnese, 24100 Kalamata, Greece
| |
Collapse
|
5
|
Layer-by-layer stacking, low-temperature welding strategy to effectively recycle biaxially-oriented polypropylene film waste. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Alias A, Wan MK, Sarbon N. Emerging materials and technologies of multi-layer film for food packaging application: A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108875] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Gnanasampanthan T, Karthäuser JF, Spöllmann S, Wanka R, Becker HW, Rosenhahn A. Amphiphilic Alginate-Based Layer-by-Layer Coatings Exhibiting Resistance against Nonspecific Protein Adsorption and Marine Biofouling. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16062-16073. [PMID: 35377590 DOI: 10.1021/acsami.2c01809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amphiphilic coatings are promising materials for fouling-release applications, especially when their building blocks are inexpensive, biodegradable, and readily accessible polysaccharides. Here, amphiphilic polysaccharides were fabricated by coupling hydrophobic pentafluoropropylamine (PFPA) to carboxylate groups of hydrophilic alginic acid, a natural biopolymer with high water-binding capacity. Layer-by-layer (LbL) coatings comprising unmodified or amphiphilic alginic acid (AA*) and polyethylenimine (PEI) were assembled to explore how different PFPA contents affect their physicochemical properties, resistance against nonspecific adsorption (NSA) of proteins, and antifouling activity against marine bacteria (Cobetia marina) and diatoms (Navicula perminuta). The amphiphilic multilayers, characterized through spectroscopic ellipsometry, water contact angle goniometry, elemental analysis, AFM, XPS, and SPR spectroscopy, showed similar or even higher swelling in water and exhibited higher resistance toward NSA of proteins and microfouling marine organisms than multilayers without fluoroalkyl groups.
Collapse
Affiliation(s)
| | - Jana F Karthäuser
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| | - Stephan Spöllmann
- RUBION, Central Unit for Ion Beams and Radionuclides, University of Bochum, Bochum 44780, Germany
| | - Robin Wanka
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| | - Hans-Werner Becker
- RUBION, Central Unit for Ion Beams and Radionuclides, University of Bochum, Bochum 44780, Germany
| | - Axel Rosenhahn
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| |
Collapse
|
8
|
Layer-by-layer assembly of lysozyme with iota-carrageenan and gum Arabic for surface modification of food packaging materials with improved barrier properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Thulasisingh A, Kumar K, Yamunadevi B, Poojitha N, SuhailMadharHanif S, Kannaiyan S. Biodegradable packaging materials. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03767-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Wu F, Misra M, Mohanty AK. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101395] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Gnanasampanthan T, Beyer CD, Yu W, Karthäuser JF, Wanka R, Spöllmann S, Becker HW, Aldred N, Clare AS, Rosenhahn A. Effect of Multilayer Termination on Nonspecific Protein Adsorption and Antifouling Activity of Alginate-Based Layer-by-Layer Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5950-5963. [PMID: 33969986 DOI: 10.1021/acs.langmuir.1c00491] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Layer-by-layer (LbL) assembly is a versatile platform for applying coatings and studying the properties of promising compounds for antifouling applications. Here, alginate-based LbL coatings were fabricated by alternating the deposition of alginic acid and chitosan or polyethylenimine to form multilayer coatings. Films were prepared with either odd or even bilayer numbers to investigate if the termination of the LbL coatings affects the physicochemical properties, resistance against the nonspecific adsorption (NSA) of proteins, and antifouling efficacy. The hydrophilic films, which were characterized using spectroscopic ellipsometry, water contact angle goniometry, ATR-FTIR spectroscopy, AFM, XPS, and SPR spectroscopy, revealed high swelling in water and strongly reduced the NSA of proteins compared to the hydrophobic reference. While the choice of the polycation was important for the protein resistance of the LbL coatings, the termination mattered less. The attachment of diatoms and settling of barnacle cypris larvae revealed good antifouling properties that were controlled by the termination and the charge density of the LbL films.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nick Aldred
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | | |
Collapse
|
12
|
López de Dicastillo C, Garrido L, Velásquez E, Rojas A, Gavara R. Designing Biodegradable and Active Multilayer System by Assembling an Electrospun Polycaprolactone Mat Containing Quercetin and Nanocellulose between Polylactic Acid Films. Polymers (Basel) 2021; 13:polym13081288. [PMID: 33920864 PMCID: PMC8071261 DOI: 10.3390/polym13081288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/04/2021] [Accepted: 04/13/2021] [Indexed: 01/23/2023] Open
Abstract
The design of multilayer systems is an innovative strategy to improve physical properties of biodegradable polymers and introduce functionality to the materials through the incorporation of an active compound into some of these layers. In this work, a trilayer film based on a sandwich of electrospun polycaprolactone (PCL) fibers (PCLé) containing quercetin (Q) and cellulose nanocrystals (CNC) between extruded polylactic acid (PLA) films was designed with the purpose of improving thermal and barrier properties and affording antioxidant activity to packaged foods. PCLé was successfully electrospun onto 70 µm-thick extruded PLA film followed by the assembling of a third 25 µm-thick commercial PLA film through hot pressing. Optical, morphological, thermal, and barrier properties were evaluated in order to study the effect of PCL layer and the addition of Q and CNC. Bilayer systems obtained after the electrospinning process of PCL onto PLA film were also evaluated. The release of quercetin from bi- and trilayer films to food simulants was also analyzed. Results evidenced that thermal treatment during thermo-compression melted PCL polymer and resulted in trilayer systems with barrier properties similar to single PLA film. Quercetin release from bi- and trilayer films followed a similar profile, but achieved highest value through the addition of CNC.
Collapse
Affiliation(s)
- Carol López de Dicastillo
- Packaging Innovation Center (LABEN-Chile), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile; (L.G.); (E.V.); (A.R.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile
- Correspondence: ; Tel.: +56-951377492
| | - Luan Garrido
- Packaging Innovation Center (LABEN-Chile), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile; (L.G.); (E.V.); (A.R.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile
| | - Eliezer Velásquez
- Packaging Innovation Center (LABEN-Chile), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile; (L.G.); (E.V.); (A.R.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile
| | - Adrián Rojas
- Packaging Innovation Center (LABEN-Chile), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile; (L.G.); (E.V.); (A.R.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile
| | - Rafael Gavara
- Packaging Laboratory, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain;
| |
Collapse
|
13
|
Enabling polyketone membrane with underwater superoleophobicity via a hydrogel-based modification for high-efficiency oil-in-water emulsion separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118705] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Barra A, Santos JDC, Silva MRF, Nunes C, Ruiz-Hitzky E, Gonçalves I, Yildirim S, Ferreira P, Marques PAAP. Graphene Derivatives in Biopolymer-Based Composites for Food Packaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2077. [PMID: 33096705 PMCID: PMC7589102 DOI: 10.3390/nano10102077] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
This review aims to showcase the current use of graphene derivatives, graphene-based nanomaterials in particular, in biopolymer-based composites for food packaging applications. A brief introduction regarding the valuable attributes of available and emergent bioplastic materials is made so that their contributions to the packaging field can be understood. Furthermore, their drawbacks are also disclosed to highlight the benefits that graphene derivatives can bring to bio-based formulations, from physicochemical to mechanical, barrier, and functional properties as antioxidant activity or electrical conductivity. The reported improvements in biopolymer-based composites carried out by graphene derivatives in the last three years are discussed, pointing to their potential for innovative food packaging applications such as electrically conductive food packaging.
Collapse
Affiliation(s)
- Ana Barra
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Jéssica D. C. Santos
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Mariana R. F. Silva
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
| | - Cláudia Nunes
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
| | - Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Idalina Gonçalves
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
| | - Selçuk Yildirim
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Paula Ferreira
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
| | - Paula A. A. P. Marques
- Department of Mechanical Engineering, TEMA—Centre for Mechanical Technology and Automation, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
Guzmán E, Rubio RG, Ortega F. A closer physico-chemical look to the Layer-by-Layer electrostatic self-assembly of polyelectrolyte multilayers. Adv Colloid Interface Sci 2020; 282:102197. [PMID: 32579951 DOI: 10.1016/j.cis.2020.102197] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023]
Abstract
The fabrication of polyelectrolyte multilayer films (PEMs) using the Layer-by-Layer (LbL) method is one of the most versatile approaches for manufacturing functional surfaces. This is the result of the possibility to control the assembly process of the LbL films almost at will, by changing the nature of the assembled materials (building blocks), the assembly conditions (pH, ionic strength, temperature, etc.) or even by changing some other operational parameters which may impact in the structure and physico-chemical properties of the obtained multi-layered films. Therefore, the understanding of the impact of the above mentioned parameters on the assembly process of LbL materials plays a critical role in the potential use of the LbL method for the fabrication of new functional materials with technological interest. This review tries to provide a broad physico-chemical perspective to the study of the fabrication process of PEMs by the LbL method, which allows one to take advantage of the many possibilities offered for this approach on the fabrication of new functional nanomaterials.
Collapse
|
16
|
Yuan W, Weng GM, Lipton J, Li CM, Van Tassel PR, Taylor AD. Weak polyelectrolyte-based multilayers via layer-by-layer assembly: Approaches, properties, and applications. Adv Colloid Interface Sci 2020; 282:102200. [PMID: 32585489 DOI: 10.1016/j.cis.2020.102200] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
Layer-by-layer (LbL) assembly is a nanoscale technique with great versatility, simplicity and molecular-level processing of various nanoscopic materials. Weak polyelectrolytes have been used as major building blocks for LbL assembly providing a fundamental and versatile tool to study the underlying mechanisms and practical applications of LbL assembly due to its pH-responsive charge density and molecular conformation. Because of high-density uncompensated charges and high-chain mobility, weak polyelectrolyte exponential multilayer growth is considered one of the fastest developing areas for organized molecular films. In this article, we systematically review the current status and developments of weak polyelectrolyte-based multilayers including all-weak-polyelectrolyte multilayers, weak polyelectrolytes/other components (e.g. strong polyelectrolytes, neutral polymers, and nanoparticles) multilayers, and exponentially grown weak polyelectrolyte multilayers. Several key aspects of weak polyelectrolytes are highlighted including the pH-controllable properties, the responsiveness to environmental pH, and synergetic functions obtained from weak polyelectrolyte/other component multilayers. Throughout this review, useful applications of weak polyelectrolyte-based multilayers in drug delivery, tunable biointerfaces, nanoreactors for synthesis of nanostructures, solid state electrolytes, membrane separation, and sensors are highlighted, and promising future directions in the area of weak polyelectrolyte-based multilayer assembly such as fabrication of multi-responsive materials, adoption of unique building blocks, investigation of internal molecular-level structure and mechanism of exponentially grown multilayers, and exploration of novel biomedical and energy applications are proposed.
Collapse
|
17
|
Strategies for Producing Improved Oxygen Barrier Materials Appropriate for the Food Packaging Sector. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09235-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Tekinalp Ö, Alsoy Altinkaya S. Development of high flux nanofiltration membranes through single bilayer polyethyleneimine/alginate deposition. J Colloid Interface Sci 2018; 537:215-227. [PMID: 30445350 DOI: 10.1016/j.jcis.2018.10.089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/25/2018] [Accepted: 10/27/2018] [Indexed: 10/28/2022]
Abstract
The aim of this study is to prepare high flux, stable, antifouling nanofiltration membranes through single bilayer polyelectrolyte deposition. To this end, a tight ultrafiltration support membrane was prepared from a polysulfone/sulfonated polyethersulfone blend. Deposition of a polyethyleneimine and alginate pair on this support has reduced the molecular weight cut off from 6 kDa to below 1 kDa. The pure water permeability and polyethylene glycol 1000 rejection of the coated membrane were found to be 15.5 ± 0.3 L/m2·h·bar and 90 ± 0.6%, respectively, by setting the deposition pH for each layer to 8 and the ionic strengths to 0.5 M and 0 M. This membrane has exhibited significantly higher permeability than commercial membranes with the same molecular weight cut off, retaining 98% of the initial flux during 15 h filtration of bovine serum albumine. In addition, the membrane has been able to completely remove anionic dyes from aqueous solution by showing 99.9% retentions to Reactive red 141, Brilliant blue G and Congo red with a 2 bar transmembrane pressure. High flux and membrane stability in acidic and salty environments have been achieved when deposition conditions favor high adsorption levels for the first layer and strong ionic cross-linking between the carboxyl group on the alginate and the amine groups on the polyethyleneimine.
Collapse
Affiliation(s)
- Önder Tekinalp
- Department of Chemical Engineering, Izmir Institute of Technology, Gulbahce Campus, 35430 Urla, Izmir, Turkey
| | - Sacide Alsoy Altinkaya
- Department of Chemical Engineering, Izmir Institute of Technology, Gulbahce Campus, 35430 Urla, Izmir, Turkey.
| |
Collapse
|
19
|
Chang CW, Guan ZY, Kan MY, Lee LW, Chen HY, Kang DY. Vapor-phase synthesis of poly( p -xylylene) membranes for gas separations. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Badia J, Gil-Castell O, Ribes-Greus A. Long-term properties and end-of-life of polymers from renewable resources. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.01.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Liu G, Jiang Z, Cheng X, Chen C, Yang H, Wu H, Pan F, Zhang P, Cao X. Elevating the selectivity of layer-by-layer membranes by in situ bioinspired mineralization. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.07.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Jimenez M, Guin T, Bellayer S, Dupretz R, Bourbigot S, Grunlan JC. Microintumescent mechanism of flame-retardant water-based chitosan-ammonium polyphosphate multilayer nanocoating on cotton fabric. J Appl Polym Sci 2016. [DOI: 10.1002/app.43783] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Maude Jimenez
- Unité Matériaux Et Transformations Team Reaction and Resistance to Fire (UMET-ISP-R2FIRE), Lille University; ENSCL, CS90108 Villeneuve D'Ascq F-59652 France
| | - Tyler Guin
- Department of Mechanical Engineering; Texas A&M University; College Station Texas 77843-3123
| | - Severine Bellayer
- Unité Matériaux Et Transformations Team Reaction and Resistance to Fire (UMET-ISP-R2FIRE), Lille University; ENSCL, CS90108 Villeneuve D'Ascq F-59652 France
| | - Renaud Dupretz
- Unité Matériaux Et Transformations Team Reaction and Resistance to Fire (UMET-ISP-R2FIRE), Lille University; ENSCL, CS90108 Villeneuve D'Ascq F-59652 France
| | - Serge Bourbigot
- Unité Matériaux Et Transformations Team Reaction and Resistance to Fire (UMET-ISP-R2FIRE), Lille University; ENSCL, CS90108 Villeneuve D'Ascq F-59652 France
| | - Jaime C. Grunlan
- Department of Mechanical Engineering; Texas A&M University; College Station Texas 77843-3123
| |
Collapse
|
23
|
Motedayen AA, Guillaume C, Gastaldi E, Félix O, Gontard N. A novel hybrid self-assembly process for synthesising stratified polyethylene–organoclay films. RSC Adv 2016. [DOI: 10.1039/c6ra13056a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study reports the first effort to synthesize a new type of polyethylene–organoclay multilayer film with subsequent repeating depositions.
Collapse
Affiliation(s)
| | - Carole Guillaume
- UMR IATE
- University of Montpellier
- 34090 Montpellier Cedex 1
- France
| | | | - Olivier Félix
- Institut Charles Sadron (CNRS-ULP)
- 67034 Strasbourg Cedex 2
- France
| | | |
Collapse
|
24
|
Alginate based polyurethanes: A review of recent advances and perspective. Int J Biol Macromol 2015; 79:377-87. [DOI: 10.1016/j.ijbiomac.2015.04.076] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/25/2015] [Accepted: 04/28/2015] [Indexed: 11/19/2022]
|
25
|
Cai Y, Lu Q, Guo X, Wang S, Qiao J, Jiang L. Salt-Tolerant Superoleophobicity on Alginate Gel Surfaces Inspired by Seaweed (Saccharina japonica). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:4162-4168. [PMID: 26094862 DOI: 10.1002/adma.201404479] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 04/29/2015] [Indexed: 06/04/2023]
Affiliation(s)
- Yue Cai
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qihang Lu
- Institute of Materials Sciences and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Xinglin Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Shutao Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jinliang Qiao
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing, 100013, PR China
| | - Lei Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Chemistry and Environment, Beihang University, Beijing, 100191, PR China
| |
Collapse
|
26
|
Cheng HY, Yang YJ, Li SC, Hong JY, Jang GW. Modification and extrusion coating of polylactic acid films. J Appl Polym Sci 2015. [DOI: 10.1002/app.42472] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hsiu-Yu Cheng
- Chemical Engineering Division; Material and Chemical Laboratories, Industrial Technology Research Institute; 321 Kuang Fu Road sec. 2 Hsinchu 30011 Taiwan Republic of China
| | - Yin-Ju Yang
- Chemical Engineering Division; Material and Chemical Laboratories, Industrial Technology Research Institute; 321 Kuang Fu Road sec. 2 Hsinchu 30011 Taiwan Republic of China
| | - Shu-Chen Li
- Chemical Engineering Division; Material and Chemical Laboratories, Industrial Technology Research Institute; 321 Kuang Fu Road sec. 2 Hsinchu 30011 Taiwan Republic of China
| | - Jian-Yi Hong
- Chemical Engineering Division; Material and Chemical Laboratories, Industrial Technology Research Institute; 321 Kuang Fu Road sec. 2 Hsinchu 30011 Taiwan Republic of China
| | - Guang-Way Jang
- Chemical Engineering Division; Material and Chemical Laboratories, Industrial Technology Research Institute; 321 Kuang Fu Road sec. 2 Hsinchu 30011 Taiwan Republic of China
| |
Collapse
|
27
|
He X, Wu LL, Wang JJ, Zhang T, Sun H, Shuai N. Layer-by-layer assembly deposition of graphene oxide on poly(lactic acid) films to improve the barrier properties. HIGH PERFORM POLYM 2015. [DOI: 10.1177/0954008314545978] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Layer-by-layer (LBL) assembly is an innovative method for fabrication of barrier layer structures on flexible polymers. In this work, two kinds of graphene oxide (GO) multilayer membranes with high barrier properties were prepared by applying LBL on poly(lactic acid) (PLA) films. Nanometer-scale GO multilayer membranes were coated on PLA films and their barrier properties were studied via water vapor and oxygen permeabilities. It turns out that a multilayer (polyethyleneimine (PEI)/GO) n PLA film has excellent oxygen barrier properties, and the oxygen permeability of a four-layer PEI/GO deposition is only 0.98% of the pure PLA film, with unsatisfied water vapor barrier properties. Using PEI/hexadecyltrimethylammonium bromide (CTAB)-modified GO assembling layers on the PLA substrate increased the water contact angle of the multilayer PLA film, and water vapor permeability decreased to 59.25% of the pure PLA film. GO nanosheets with better hydrophobicity can be obtained after being modified by CTAB at the same time, at the expense of partial oxygen barrier properties and transparency. This approach provides a new way to develop multilayer membranes with enhanced barrier performance of PLA films and shows significant interest in packaging applications.
Collapse
Affiliation(s)
- Xia He
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Zhejiang Sci-Tech University, Ministry of Education, Hangzhou, People’s Republic of China
- National & Local United Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, People’s Republic of China
| | - Ling-ling Wu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Zhejiang Sci-Tech University, Ministry of Education, Hangzhou, People’s Republic of China
| | - Jia-jun Wang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Zhejiang Sci-Tech University, Ministry of Education, Hangzhou, People’s Republic of China
- National & Local United Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, People’s Republic of China
| | - Tao Zhang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Zhejiang Sci-Tech University, Ministry of Education, Hangzhou, People’s Republic of China
- National & Local United Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, People’s Republic of China
| | - Hui Sun
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Zhejiang Sci-Tech University, Ministry of Education, Hangzhou, People’s Republic of China
- National & Local United Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, People’s Republic of China
| | - Ning Shuai
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Zhejiang Sci-Tech University, Ministry of Education, Hangzhou, People’s Republic of China
| |
Collapse
|
28
|
Priolo MA, Holder KM, Guin T, Grunlan JC. Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets. Macromol Rapid Commun 2015; 36:866-79. [DOI: 10.1002/marc.201500055] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Morgan A. Priolo
- 3M Corporate Research Materials Laboratory; 3M Center, Building 201-4N-01, St. Paul Minnesota 55144 USA
| | - Kevin M. Holder
- Department of Mechanical Engineering; Texas A&M University; College Station Texas 77843 USA
| | - Tyler Guin
- Department of Chemical Engineering; Texas A&M University; College Station Texas 77843 USA
| | - Jaime C. Grunlan
- Department of Mechanical Engineering; Texas A&M University; College Station Texas 77843 USA
| |
Collapse
|
29
|
Loued W, Wéry J, Dorlando A, Alimi K. A combined study based on experimental analyses and theoretical calculations on properties of poly (lactic acid) under annealing treatment. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Ferreira AR, Torres CA, Freitas F, Reis MA, Alves VD, Coelhoso IM. Biodegradable films produced from the bacterial polysaccharide FucoPol. Int J Biol Macromol 2014; 71:111-6. [DOI: 10.1016/j.ijbiomac.2014.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/02/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
|
31
|
Wang Y, Qin Y, Zhang Y, Yuan M, Li H, Yuan M. Effects of N-octyl lactate as plasticizer on the thermal and functional properties of extruded PLA-based films. Int J Biol Macromol 2014; 67:58-63. [DOI: 10.1016/j.ijbiomac.2014.02.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 02/22/2014] [Accepted: 02/24/2014] [Indexed: 11/30/2022]
|
32
|
Xiang F, Tzeng P, Sawyer JS, Regev O, Grunlan JC. Improving the gas barrier property of clay-polymer multilayer thin films using shorter deposition times. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6040-6048. [PMID: 24281553 DOI: 10.1021/am403445z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Relatively fast exposure times (5 s) to aqueous solutions were found to improve the gas barrier of clay-polymer thin films prepared using layer-by-layer (LbL) assembly. Contrary to the common belief about deposition time (i.e., the longer the better), oxygen transmission rates (OTRs) of these nano-brick-wall assemblies are improved by reducing exposure time (from 1 min to 5 s). Regardless of composition, LbL films fabricated using shorter deposition time are always thicker in the first few layers, which correspond to greater clay spacing and lower OTR. A quadlayer (QL) assembly consisting of three repeat units of branched polyethylenimine (PEI), poly(acrylic acid) (PAA), PEI and montmorillonite (MMT) clay is only 24 nm thick when deposited with 1 min exposure to each ingredient. Reducing the exposure time of polyelectrolytes to 5 s not only increases this film thickness to 55 nm but also reduces the oxygen transmission rate (OTR) to 0.05 cm3/(m2 day atm), which is 2 orders of magnitude lower than the same film made using 1 min exposures. A conceptual model is proposed to explain the differences in growth and barrier, which are linked to polyelectrolyte relaxation, desorption, and interdiffusion. The universality of these findings is further exemplified by depositing clays with varying aspect ratios. This ability to quickly deposit high-barrier nanocomposite thin films opens up a tremendous opportunity in terms of commercial-scale processing of LbL assemblies.
Collapse
Affiliation(s)
- Fangming Xiang
- Department of Mechanical Engineering and ‡Department of Chemical Engineering, Texas A&M University , College Station, Texas 77843, United States
| | | | | | | | | |
Collapse
|
33
|
Xia Y, Yao J, Shao CH, Shen XY, Xie LZ, Chen G, Peng SS, Zhang FM, Gu N. Biodegradable poly(butylene-carbonate) porous membranes for guided bone regeneration: In vitro and in vivo studies. J BIOACT COMPAT POL 2013. [DOI: 10.1177/0883911513509471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poly(butylene-carbonate) is a potential alternative to poly(ε-caprolactone) for biomedical application. Although mechanical properties of porous poly(butylene-carbonate) membranes were inferior to poly(ε-caprolactone), its contact angles (47.41° ± 1.17°) were lower than poly(ε-caprolactone) (77.24° ± 0.54°) (p < 0.001). It degraded faster than poly(ε-caprolactone) during a 10-week in vitro experiment (p < 0.01). Moreover, it had excellent bioactivity during simulated body fluid immersion. Cell spreading on poly(butylene-carbonate) was better than that on poly(ε-caprolactone). Cell behavior tests including cytotoxicity, proliferation, and differentiation were performed. The poly(butylene-carbonate) is more compatible with cells and promotes cell differentiation. In vivo, the defects covered by poly(butylene-carbonate) and poly(ε-caprolactone) membranes had a similar degree of regeneration at 4 weeks. It was concluded that poly(butylene-carbonate) could potentially be used to guide bone regeneration, and it is a potential new biodegradable polymer.
Collapse
Affiliation(s)
- Yang Xia
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jing Yao
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Stomatology Department, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Cheng-hua Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
| | - Xin-yuan Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
| | - Li-Zhe Xie
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Gang Chen
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Sha-sha Peng
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Fei-min Zhang
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ning Gu
- Suzhou Institute, Southeast University, Suzhou, China
| |
Collapse
|
34
|
Aulin C, Karabulut E, Tran A, Wågberg L, Lindström T. Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties. ACS APPLIED MATERIALS & INTERFACES 2013; 5:7352-9. [PMID: 23834391 DOI: 10.1021/am401700n] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The layer-by-layer (LbL) deposition method was used for the build-up of alternating layers of nanofibrillated cellulose (NFC) or carboxymethyl cellulose (CMC) with a branched, cationic polyelectrolyte, polyethyleneimine (PEI) on flexible poly (lactic acid) (PLA) substrates. With this procedure, optically transparent nanocellulosic films with tunable gas barrier properties were formed. 50 layer pairs of PEI/NFC and PEI/CMC deposited on PLA have oxygen permeabilities of 0.34 and 0.71 cm(3)·μm/m(2)·day·kPa at 23 °C and 50% relative humidity, respectively, which is in the same range as polyvinyl alcohol and ethylene vinyl alcohol. The oxygen permeability of these multilayer nanocomposites outperforms those of pure NFC films prepared by solvent-casting. The nanocellulosic LbL assemblies on PLA substrates was in detailed characterized using a quartz crystal microbalance with dissipation (QCM-D). Atomic force microscopy (AFM) reveals large structural differences between the PEI/NFC and the PEI/CMC assemblies, with the PEI/NFC assembly showing a highly entangled network of nanofibrils, whereas the PEI/CMC surfaces lacked structural features. Scanning electron microscopy images showed a nearly perfect uniformity of the nanocellulosic coatings on PLA, and light transmittance results revealed remarkable transparency of the LbL-coated PLA films. The present work demonstrates the first ever LbL films based on high aspect ratio, water-dispersible nanofibrillated cellulose, and water-soluble carboxymethyl cellulose polymers that can be used as multifunctional films and coatings with tailorable properties, such as gas barriers and transparency. Owing to its flexibility, transparency and high-performance gas barrier properties, these thin film assemblies are promising candidates for several large-scale applications, including flexible electronics and renewable packaging.
Collapse
|