1
|
Wang L, Li Y, Ye L, Zhi C, Zhang T, Miao M. Development of starch-cellulose composite films with antimicrobial potential. Int J Biol Macromol 2024; 276:133836. [PMID: 39004254 DOI: 10.1016/j.ijbiomac.2024.133836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
This study explored the structure and performance of starch-based antibacterial films reinforced with black tea cellulose nanocrystals (BT-CNCs). The optimal addition amount of BT-CNCs is 5 % (w/w Starch). This nanocrystal-infused film, incorporating chitosan (CS), ε-polylysine (ε-PL), and zinc oxide nanoparticles (ZnONP) as antibacterial agents, exhibited a smooth, continuous surface. The addition of BT-CNCs and antibacterial agents did not change the group characteristic peaks of the film, but changed the crystallinity slightly. The films, namely St, St/CNCs, St/CNCs/CS, and St/CNCs/ε-P, maintained high light transmittance (above 80 %), except for the St/CNCs/ZnONP film, which effectively shielded UV radiation. The combined use of antibacterial agents and BT-CNCs enhanced the water and oxygen barrier properties of the film. Notably, the St/CNCs/CS film exhibited the lowest solubility (17.74 % ± 0.36) and the highest tensile strength (14.23 ± 0.16 MPa). The antibacterial efficacy of the films decreased in the order of St/CNCs/ZnONP, St/CNCs/ε-PL, and St/CNCs/CS, with a more pronounced inhibitory effect on E. coli compared to S. aureus. This study marries natural waste recycling with cutting-edge food packaging technology, setting a new benchmark for the development of sustainable packaging materials.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yukun Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Lei Ye
- Jiangsu Longjun Environmental Protection Industrial Development Co., Ltd., Changzhou, Jiangsu 213000, China
| | - Chaohui Zhi
- Jiangsu Longjun Environmental Protection Industrial Development Co., Ltd., Changzhou, Jiangsu 213000, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
2
|
Estrada-Girón Y, Fernández-Escamilla VVA, Martín-del-Campo A, González-Nuñez R, Canché-Escamilla G, Uribe-Calderón J, Tepale N, Aguilar J, Moscoso-Sánchez FJ. Characterization of Polylactic Acid Biocomposites Filled with Native Starch Granules from Dioscorea remotiflora Tubers. Polymers (Basel) 2024; 16:899. [PMID: 38611157 PMCID: PMC11013063 DOI: 10.3390/polym16070899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Biocomposites were fabricated utilizing polylactic acid (PLA) combined with native starch sourced from mountain's yam (Dioscorea remotiflora Knuth), an underexplored tuber variety. Different starch compositions (7.5, 15.0, 22.5, and 30.0 wt.%) were blended with PLA in a batch mixer at 160 °C to produce PLA/starch biocomposites. The biocomposites were characterized by analyzing their morphology, particle size distribution, thermal, X-ray diffraction (XDR), mechanical, and dynamic mechanical (DMA) properties, water absorption behavior, and color. The results showed that the amylose content of Dioscorea remotiflora starch was 48.43 ± 1.4%, which corresponds to a high-amylose starch (>30% of amylose). Particle size analysis showed large z-average particle diameters (Dz0) of the starch granules (30.59 ± 3.44 μm). Scanning electron microscopy (SEM) images showed oval-shaped granules evenly distributed throughout the structure of the biocomposite, without observable agglomeration or damage to its structure. XDR and DMA analyses revealed an increase in the crystallinity of the biocomposites as the proportion of the starch increased. The tensile modulus (E) underwent a reduction, whereas the flexural modulus (Eflex) increased with the amount of starch incorporated. The biocomposites with the highest Eflex were those with a starch content of 22.5 wt.%, which increased by 8.7% compared to the neat PLA. The water absorption of the biocomposites demonstrated a higher uptake capacity as the starch content increased. The rate of water absorption in the biocomposites followed the principles of Fick's Law. The novelty of this work lies in its offering an alternative for the use of high-amylose mountain's yam starch to produce low-cost bioplastics for different applications.
Collapse
Affiliation(s)
- Yokiushirdhilgilmara Estrada-Girón
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Víctor Vladimir Amílcar Fernández-Escamilla
- Departamento de Ciencias Tecnológicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico
| | - Angelina Martín-del-Campo
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Rubén González-Nuñez
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Gonzalo Canché-Escamilla
- Unidad Académica de Materiales, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico
| | - Jorge Uribe-Calderón
- Unidad Académica de Materiales, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico
| | - Nancy Tepale
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur S/N, Col. San Manuel, Puebla 72570, Puebla, Mexico
| | - Jacobo Aguilar
- Departamento de Ciencias Tecnológicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico
| | - Francisco Javier Moscoso-Sánchez
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico
| |
Collapse
|
3
|
Zeng YF, Chen YY, Deng YY, Zheng C, Hong CZ, Li QM, Yang XF, Pan LH, Luo JP, Li XY, Zha XQ. Preparation and characterization of lotus root starch based bioactive edible film containing quercetin-encapsulated nanoparticle and its effect on grape preservation. Carbohydr Polym 2024; 323:121389. [PMID: 37940283 DOI: 10.1016/j.carbpol.2023.121389] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 11/10/2023]
Abstract
The present work aimed to develop a novel bioactive edible film prepared by adding quercetin-encapsulated carboxymethyl lotus root starch nanoparticles (QNPs),gellan gum and lotus root starch. The physicochemical characteristics, preservation effect and mechanism on grapes of the prepared film were investigated. SEM results showed that QNPs (5 %) were dispersed uniformly within lotus root starch matrix, indicating the formation of a stable composite nanoparticle film. In addition, the incorporation of QNPs (5 %) effectively improved the mechanical strength, thermal stability, barrier property and antioxidant activity of QNPs/starch film. Moreover, compared with the control, the QNPs/starch (5 %) film showed effective preservation effect on grapes during 21 days of storage at room temperature, based on the characterization by grape appearance, weight loss, firmness, and titratable acidity. Further studies found that QNPs/starch (5 %) film could exhibit enhanced antioxidant activity and potent anti-fungal ability against Botrytis cinerea, thus extending grape shelf life. In conclusion, the obtained QNPs/starch (5 %) film presented a promising application as an edible packing material for fruit preservation by antioxidant and preventing Botrytis cinerea contamination.
Collapse
Affiliation(s)
- Ya-Fan Zeng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Yuan-Yuan Deng
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, People's Republic of China
| | - Chao Zheng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Cheng-Zhi Hong
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Fei Yang
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
4
|
Luo K, Zhu X, Kim YR. Short-chain glucan self-assembly for green synthesis of functional biomaterials: Mechanism, synthesis, and microstructural control. Carbohydr Polym 2023; 318:121140. [PMID: 37479447 DOI: 10.1016/j.carbpol.2023.121140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Short-chain glucan (SCG) is a linear homopolymer containing 10 to 50 glucose units linked with α(1,4) glycosidic bonds. With its abundant, low-cost, nontoxic, biodegradable/biocompatible nature, self-assembled SCG particles (SSC) have emerged as functional biomaterials, which have recently attracted tremendous attentions in various fields. SCG self-assembly occurs through the spontaneous association of molecules under equilibrium conditions into stable and structurally well-defined nanoscale or micrometer-scale aggregates, which is governed by various intermolecular non-covalent interactions, including hydrogen-bonding, electrostatic, hydrophobic, and van der Waals. With precise and effective control of the self-assembly process of SSC, its structural modulation and function integration can be expected. Thus, we convinced that SCG self-assembly could provide an effective means of developing starch-based functional biomaterials with beneficial health properties and wide application in food industries. In this review, we provide an overview of recent advances in the green approach for the self-assembly of SSC, as well as the influence of thermodynamic and kinetic factors on its morphology and physicochemical properties. We highlight recent contributions to developing strategies for the construction of SSC with increasing complexity and functionality that are suitable for a variety of food applications. Finally, we briefly outline our perspectives and discuss the challenges in the field.
Collapse
Affiliation(s)
- Ke Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| | - Xiaoning Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Young-Rok Kim
- Institute of Life Science and Resources & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, South Korea.
| |
Collapse
|
5
|
Liu Q, Gao L, Qin Y, Ji N, Dai L, Xiong L, Sun Q. Incorporation of oxidized debranched starch/chitosan nanoparticles for enhanced hydrophobicity of corn starch films. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Wiszumirska K, Czarnecka-Komorowska D, Kozak W, Biegańska M, Wojciechowska P, Jarzębski M, Pawlak-Lemańska K. Characterization of Biodegradable Food Contact Materials under Gamma-Radiation Treatment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:859. [PMID: 36676596 PMCID: PMC9861635 DOI: 10.3390/ma16020859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Radiation is an example of one of the techniques used for pasteurization and sterilization in various packaging systems. There is a high demand for the evaluation of the possible degradation of new composites, especially based on natural raw materials. The results of experimental research that evaluated the impact of radiation technology on biodegradable and compostable packaging materials up to 40 kGy have been presented. Two commercially available flexible composite films based on aliphatic-aromatic copolyesters (AA) were selected for the study, including one film with chitosan and starch (AA-CH-S) and the other with thermoplastic starch (AA-S). The materials were subjected to the influence of ionizing radiation from 10 to 40 kGy and then tests were carried out to check their usability as packaging material for the food industry. The results showed that the mechanical properties of AA-S films improved due to the radiation-induced cross-linking processes, while in the case of AA-CH-S films, a considerable decrease in the elongation at break was observed. The results also showed a decrease in the WVTR in the case of AA-S and no changes in barrier properties in the case of AA-CH-S. Both materials revealed no changes in the odor analyzed by sensory analysis. In the case of the AA-S films, the higher the radiation dose, the faster the biodegradation rate. In the case of the AA-CH-S film, the radiation did not affect biodegradation. The performed research enables the evaluation of the materials intended for direct contact with food. AA-CH-S was associated with unsatisfactory parameters (exceeding the overall migration limit and revealing color change during storage) while AA-S showed compliance at the level of tests carried out. The study showed that the AA-CH-S composite did not show a synergistic effect due to the presence of chitosan.
Collapse
Affiliation(s)
- Karolina Wiszumirska
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznan University of Economics and Business, Al. Niepodległosci 10, 61-875 Poznan, Poland
| | - Dorota Czarnecka-Komorowska
- Polymer Processing Division, Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland
| | - Wojciech Kozak
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznan University of Economics and Business, Al. Niepodległosci 10, 61-875 Poznan, Poland
| | - Marta Biegańska
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznan University of Economics and Business, Al. Niepodległosci 10, 61-875 Poznan, Poland
| | - Patrycja Wojciechowska
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznan University of Economics and Business, Al. Niepodległosci 10, 61-875 Poznan, Poland
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznan, Poland
| | - Katarzyna Pawlak-Lemańska
- Department of Technology and Instrumental Analysis, Institute of Quality Science, Poznan University of Economics and Business, Al. Niepodległości 10, 61-875 Poznan, Poland
| |
Collapse
|
7
|
Ali A, Basit A, Hussain A, Sammi S, Wali A, Goksen G, Muhammad A, Faiz F, Trif M, Rusu A, Manzoor MF. Starch-based environment friendly, edible and antimicrobial films reinforced with medicinal plants. Front Nutr 2023; 9:1066337. [PMID: 36704784 PMCID: PMC9871902 DOI: 10.3389/fnut.2022.1066337] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/28/2022] [Indexed: 01/12/2023] Open
Abstract
In the current study, cornstarch-based antimicrobial and edible films were designed using solution-casting methods. The medicinal plants (Acontium heterophyllum, Artemisia annua, and Thymus serpyllum) reinforced the gelatinized solution in different concentrations as fillers. The effect of plant extracts on antimicrobial and antioxidant potential, microstructure, barrier, thermal and mechanical properties of cornstarch-based films (SBFs) was investigated using antimicrobial activity, DPPH free radical scavenging values, scanning electron microscopy, X-ray diffraction, water vapor transmission rate, differential scanning calorimetry, and tensile strength. Likewise, it was depicted that the geometric and crystalline structures of medicinal plants' reinforced films remained the same even after processing. The mechanical tests indicated that the plant extracts effects are associated with reduced elongation, increasing tensile strength, and Young's modulus. Morphological analysis revealed the generation of uniform and the compact surfaces. However, films with 10% concentration of plant extracts have the lowest water vapor permeability values, and emerged better barrier properties. Moreover, these films showed the significant antioxidant potential and antimicrobial activity.
Collapse
Affiliation(s)
- Amjad Ali
- Department of Agriculture and Food Technology, Karakoram International University, Gilgit, Pakistan
| | - Abdul Basit
- Department of Science and Technology, The University of Agriculture, Peshawar, Pakistan
| | - Azhar Hussain
- Department of Agriculture and Food Technology, Karakoram International University, Gilgit, Pakistan
| | - Shehla Sammi
- Department of Food Science and Technology, The University of Haripur, Harīpur, Pakistan
| | - Asif Wali
- Department of Agriculture and Food Technology, Karakoram International University, Gilgit, Pakistan
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Ali Muhammad
- Department of Science and Technology, The University of Agriculture, Peshawar, Pakistan
| | - Furukh Faiz
- Department of Agriculture and Food Technology, Karakoram International University, Gilgit, Pakistan
| | - Monica Trif
- CENCIRA Agrofood Research and Innovation Centre, Cluj-Napoca, Romania,Monica Trif,
| | | | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China,School of Food Science and Engineering, South China University of Technology, Guangzhou, China,*Correspondence: Muhammad Faisal Manzoor,
| |
Collapse
|
8
|
Impact of O/W emulsion stabilized by different soybean phospholipid/sodium caseinate ratios on the physicochemical, rheological and gel properties of surimi sausage. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Kumari S, Yadav BS, Yadav R. Morphological and thermo-mechanical characterization of sweet potato starch based nanocomposites reinforced with barley starch nanoparticles. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4924-4934. [PMID: 36276545 PMCID: PMC9579233 DOI: 10.1007/s13197-022-05581-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The aim of present study was to develop and characterize the biodegradable sweet potato starch-based nanocomposite films reinforced with barley starch nanoparticles (SNP). Sweet potato starch-based films with varying concentrations of barley SNP (5-25% w/w) were manufactured by adopting solution casting method using glycerol as a plasticizer. The morphology, thickness, transparency, water solubility, water vapor transmission rate (WVTR), tensile strength, elongation at break and thermal stability properties of nanocomposite films were evaluated. The results showed that the incorporation of barley SNP led to a significant increase in tensile strength from 2.63 (control film) to 8.98 MPa (nanocomposite with 15% (w/w) SNP). Compared with the native starch film, the surface of the nanocomposite films became more rough and uneven with the increasing concentration of nanofillers. High concentration of SNP (upto 25%, w/w) significantly decreased the transparency and WVTR, and water solubility (upto 20%, w/w) of nanocomposite films. The WVTR decreased from 3294.53 to 349.06 g/m2/24 h. In addition, the thermal stability of nanocomposites got improved after incorporation of SNP into starch-film matrix.
Collapse
Affiliation(s)
- Suman Kumari
- Department of Food Technology, Maharshi Dayanand University, Rohtak, Haryana India
| | - Baljeet S. Yadav
- Department of Food Technology, Maharshi Dayanand University, Rohtak, Haryana India
| | - Ritika Yadav
- Department of Food Technology, Maharshi Dayanand University, Rohtak, Haryana India
| |
Collapse
|
10
|
Dutta D, Sit N. Comparison of Properties of Films Prepared from Potato Starch Modified by Annealing and Heat‐Moisture Treatment. STARCH-STARKE 2022. [DOI: 10.1002/star.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ditimoni Dutta
- Department of Food Engineering and Technology Tezpur University Tezpur Assam 784028 India
| | - Nandan Sit
- Department of Food Engineering and Technology Tezpur University Tezpur Assam 784028 India
| |
Collapse
|
11
|
Chavan P, Sinhmar A, Sharma S, Dufresne A, Thory R, Kaur M, Sandhu KS, Nehra M, Nain V. Nanocomposite Starch Films: A New Approach for Biodegradable Packaging Materials. STARCH-STARKE 2022. [DOI: 10.1002/star.202100302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Prafull Chavan
- School of Bioengineering and Food Technology Shoolini University of Biotechnology and, Management Sciences Solan India
| | - Archana Sinhmar
- School of Bioengineering and Food Technology Shoolini University of Biotechnology and, Management Sciences Solan India
| | - Somesh Sharma
- School of Bioengineering and Food Technology Shoolini University of Biotechnology and, Management Sciences Solan India
| | - Alain Dufresne
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LGP2 Grenoble F‐38000 France
| | - Rahul Thory
- Department of Food Science and Technology Guru Nanak Dev University Amritsar India
| | - Maninder Kaur
- Department of Food Science and Technology Guru Nanak Dev University Amritsar India
| | - Kawaljit Singh Sandhu
- Department of Food Science and Technology Maharaja Ranjit Singh Punjab Technical University Bathinda India
| | - Manju Nehra
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa India
| | - Vikash Nain
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa India
| |
Collapse
|
12
|
Tan SX, Ong HC, Andriyana A, Lim S, Pang YL, Kusumo F, Ngoh GC. Characterization and Parametric Study on Mechanical Properties Enhancement in Biodegradable Chitosan-Reinforced Starch-Based Bioplastic Film. Polymers (Basel) 2022; 14:polym14020278. [PMID: 35054685 PMCID: PMC8778006 DOI: 10.3390/polym14020278] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/01/2023] Open
Abstract
Bioplastic has been perceived as a promising candidate to replace petroleum-based plastics due to its environment-friendly and biodegradable characteristics. This study presents the chitosan reinforced starch-based bioplastic film prepared by the solution casting and evaporation method. The effects of processing parameters, i.e., starch concentration, glycerol loading, process temperature and chitosan loading on mechanical properties were examined. Optimum tensile strength of 5.19 MPa and elongation at break of 44.6% were obtained under the combined reaction conditions of 5 wt.% starch concentration, 40 wt.% glycerol loading, 20 wt.% chitosan loading and at a process temperature of 70 °C. From the artificial neural network (ANN) modeling, the coefficient of determination (R2) for tensile strength and elongation at break were found to be 0.9955 and 0.9859, respectively, which proved the model had good fit with the experimental data. Interaction and miscibility between starch and chitosan were proven through the peaks shifting to a lower wavenumber in FTIR and a reduction of crystallinity in XRD. TGA results suggested the chitosan-reinforced starch-based bioplastic possessed reasonable thermal stability under 290 °C. Enhancement in water resistance of chitosan-incorporated starch-based bioplastic film was evidenced with a water uptake of 251% as compared to a 302% registered by the pure starch-based bioplastic film. In addition, the fact that the chitosan-reinforced starch-based bioplastic film degraded to 52.1% of its initial weight after 28 days suggests it is a more sustainable alternative than the petroleum-based plastics.
Collapse
Affiliation(s)
- Shiou Xuan Tan
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (S.X.T.); (A.A.)
| | - Hwai Chyuan Ong
- Future Technology Research Center, National Yunlin University of Science and Technology, Douliou 64002, Taiwan
- Correspondence: (H.C.O.); (S.L.); (G.C.N.)
| | - Andri Andriyana
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (S.X.T.); (A.A.)
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia;
- Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Correspondence: (H.C.O.); (S.L.); (G.C.N.)
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia;
- Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Fitranto Kusumo
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology, Sydney, NSW 2007, Australia;
| | - Gek Cheng Ngoh
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (H.C.O.); (S.L.); (G.C.N.)
| |
Collapse
|
13
|
Rammak T, Boonsuk P, Kaewtatip K. Mechanical and barrier properties of starch blend films enhanced with kaolin for application in food packaging. Int J Biol Macromol 2021; 192:1013-1020. [PMID: 34666130 DOI: 10.1016/j.ijbiomac.2021.10.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Starch blend films of native cassava starch and medium distarch phosphate cassava starch (crosslinked cassava starch) were prepared by solution casting. The effects of kaolin content on the water resistance and mechanical properties of the starch blend films were investigated. The addition of 10 wt% kaolin to the starch blend film lowered water vapor permeability to 3.51 × 10-5 g m day-1 m-2 Pa-1, water solubility to 31.60% and raised tensile strength to 2.99 MPa. At this loading of kaolin, the structural integrity of the starch blend film was maintained during immersion in water and thermal stability was enhanced. Scanning electron microscopy revealed kaolin to be well dispersed and embedded within the starch matrix. In summary, the starch blend film composite with 10 wt% kaolin had interesting properties as a material to replace non-biodegradable synthetic plastics for packaging, particularly sachets for food products.
Collapse
Affiliation(s)
- Thitirat Rammak
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Phetdaphat Boonsuk
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Kaewta Kaewtatip
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
14
|
Zhang L, Zhao J, Zhang Y, Li F, Jiao X, Li Q. The effects of cellulose nanocrystal and cellulose nanofiber on the properties of pumpkin starch-based composite films. Int J Biol Macromol 2021; 192:444-451. [PMID: 34606791 DOI: 10.1016/j.ijbiomac.2021.09.187] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 02/05/2023]
Abstract
Pumpkin starch (PS) was extracted from Cucurbita maxima and utilized to prepare films in combination with cellulose nanocrystal (CNC) and cellulose nanofiber (CNF), using a solvent casting strategy. The PS was characterized to contain 26.6% of amylose, exhibiting a "B"-type crystalline structure and high stability against thermal degradation. PS/CNF films showed better thermal stability than PS/CNC films, whereas the CNC was more effective than CNF for enhancing the tensile strength (TS) of the films. The nanocomposite films containing 1% CNC showed the highest TS of 30.32 MPa. Fourier transform infrared spectra revealed stronger hydrogen bonding in the PS/CNC films, likely contributing to the observed high mechanical strength. CNC and CNF both decreased the transparency of PS films, by 5.2% and 13.1%, respectively. Overall, the properties of PS composite films can be effectively modified by incorporating CNC and CNF, as PS/CNC films with high mechanical strength and PS/CNF films with good thermal stability. Our results indicate that PS is a suitable material for CNC/CNF composite film fabrication. These films are expected to be especially useful in food packaging applications.
Collapse
Affiliation(s)
- Luyao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Yu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Fei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Xu Jiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China.
| |
Collapse
|
15
|
Functionality and Applicability of Starch-Based Films: An Eco-Friendly Approach. Foods 2021; 10:foods10092181. [PMID: 34574290 PMCID: PMC8467936 DOI: 10.3390/foods10092181] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
The accumulation of high amounts of petro-based plastics is a growing environmental devastation issue, leading to the urgent need to innovate eco-safe packaging materials at an equivalent cost to save the environment. Among different substitutes, starch-based types and their blends with biopolymers are considered an innovative and smart material alternative for petrol-based polymers because of their abundance, low cost, biodegradability, high biocompatibility, and better-quality film-forming and improved mechanical characteristics. Furthermore, starch is a valuable, sustainable food packaging material. The rising and growing importance of designing starch-based films from various sources for sustainable food packaging purposes is ongoing research. Research on "starch food packaging" is still at the beginning, based on the few studies published in the last decade in Web of Science. Additionally, the functionality of starch-based biodegradable substances is technically a challenge. It can be improved by starch modification, blending starch with other biopolymers or additives, and using novel preparation techniques. Starch-based films have been applied to packaging various foods, such as fruits and vegetables, bakery goods, and meat, indicating good prospects for commercial utilization. The current review will give a critical snapshot of starch-based films' properties and potential applicability in the sustainable smart (active and intelligent) new packaging concepts and discuss new challenges and opportunities for starch bio composites.
Collapse
|
16
|
Lipatova I, Yusova A, Makarova L. Fabrication and characterization of starch films containing chitosan nanoparticles using in situ precipitation and mechanoactivation techniques. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Tagliapietra BL, de Melo BG, Sanches EA, Plata‐Oviedo M, Campelo PH, Clerici MTPS. From Micro to Nanoscale: A Critical Review on the Concept, Production, Characterization, and Application of Starch Nanostructure. STARCH-STARKE 2021. [DOI: 10.1002/star.202100079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bruna Lago Tagliapietra
- Department of Food Science and Nutrition, School of Food Engineering University of Campinas Monteiro Lobato Street 80th, 13083–862 Campinas Brazil
| | - Bruna Guedes de Melo
- Department of Food Science and Nutrition, School of Food Engineering University of Campinas Monteiro Lobato Street 80th, 13083–862 Campinas Brazil
| | - Edgar A. Sanches
- Laboratory of Nanostructured Polymers (NANOPOL) Federal University of Amazonas 69080–900 Manaus Amazonas Brazil
| | - Manuel Plata‐Oviedo
- Graduate Program of Food Technology Federal University of Technology – Paraná (UTFPR) 1233, 87301–899 Campo Mourão Paraná Brazil
| | - Pedro H. Campelo
- School of Agrarian Science Federal University of Amazonas 69080–900 Manaus Amazonas Brazil
| | - Maria Teresa Pedrosa Silva Clerici
- Department of Food Science and Nutrition, School of Food Engineering University of Campinas Monteiro Lobato Street 80th, 13083–862 Campinas Brazil
| |
Collapse
|
18
|
Cheng J, Wang H, Xiao F, Xia L, Li L, Jiang S. Functional effectiveness of double essential oils@yam starch/microcrystalline cellulose as active antibacterial packaging. Int J Biol Macromol 2021; 186:873-885. [PMID: 34293359 DOI: 10.1016/j.ijbiomac.2021.07.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022]
Abstract
In this work, two combinations of double EOs, i.e., α-terpineol: eugenol (α-T:Eu) and carvacrol:eugenol (CA:Eu), are used to develop the active antibacterial films of double EOs@yam starch/microcrystalline cellulose (EOs@SC). The hydrogen-bonded networks in SC matrix are conducive to thermostability enhancement and the film of SC25 is determined for EO incorporation. The interactions between EOs and SC matrix are also hydrogen bonds and the double EOs@SC are smooth at ratio of ≤2:2 for α-T:Eu or CA:Eu. The ultimate film properties are dependent on the incorporated EOs. The release of EOs is well controlled by two mechanisms of diffusion (predominant) and swelling (secondary). Synergetic antibacterial activity occurs on double EOs@SC. The shelf life of pork can be extended by 1 day at 25 °C by the two typical films of α-T2:Eu2@SC and CA2:Eu2@SC. Moreover, EOs@SC can be well degraded in humus soil. Thereby, the target films will have great potential in active packaging to extend the shelf life of food.
Collapse
Affiliation(s)
- Junfeng Cheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, PR China.
| | - Feng Xiao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| | - Li Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| | - Linlin Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| | - Shaotong Jiang
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, PR China
| |
Collapse
|
19
|
Hasanin MS. Simple, Economic, Ecofriendly Method to Extract Starch Nanoparticles from Potato Peel Waste for Biological Applications. STARCH-STARKE 2021. [DOI: 10.1002/star.202100055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohamed S. Hasanin
- Cellulose and Paper Department National Research Centre El‐Buhouth St. Dokki 12622 Egypt
| |
Collapse
|
20
|
Alves MJDS, Chacon WDC, Gagliardi TR, Agudelo Henao AC, Monteiro AR, Ayala Valencia G. Food Applications of Starch Nanomaterials: A Review. STARCH-STARKE 2021. [DOI: 10.1002/star.202100046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Maria Jaízia dos Santos Alves
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis Santa Catarina 88040‐900 Brazil
| | - Wilson Daniel Caicedo Chacon
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis Santa Catarina 88040‐900 Brazil
| | - Talita Ribeiro Gagliardi
- Department of Cell Biology, Embryology and Genetics Federal University of Santa Catarina Florianópolis Santa Catarina 88040‐900 Brazil
| | - Ana C. Agudelo Henao
- Facultad de Ingeniería y Administración Universidad Nacional de Colombia sede Palmira Palmira AA 237 Colombia
| | - Alcilene Rodrigues Monteiro
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis Santa Catarina 88040‐900 Brazil
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis Santa Catarina 88040‐900 Brazil
| |
Collapse
|
21
|
Yao Désiré A, Charlemagne N, Degbeu Claver K, Fabrice Achille T, Marianne S. Starch-based edible films of improved cassava varieties Yavo and TMS reinforced with microcrystalline cellulose. Heliyon 2021; 7:e06804. [PMID: 33948518 PMCID: PMC8080044 DOI: 10.1016/j.heliyon.2021.e06804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/26/2020] [Accepted: 04/10/2021] [Indexed: 01/11/2023] Open
Abstract
The results of a recent study on starch-based films of improved cassava varieties show that these films have poor barrier properties and lower mechanical strength. Thus, for some applications, improving their resistance to breaking forces is a key factor in making their use possible and sustainable. In this study, to the starch of two improved varieties of cassava (Yavo and TMS), combined with peanut oil, soybean lecithin, glycerol was added microcrystalline cellulose (MCC) at 0, 7, 15 and 30 %. The addition of microcrystalline cellulose has resulted in an increase in the opacity (223.91 nm.UA to 425.33 nm.UA for Yavo and 251.42 nm.UA to 434.51 nm.UA for TMS), tensile strength (7.15 MPa–10.99 MPa for Yavo and 7.77 MPa–13.18 MPa for TMS), and Young's modulus (331.29 MPa–1351.08 for Yavo and 343.79 MPa–1476.08 MPa for TMS) of films. However, MCC induced a decrease in moisture content (15.99 %–11.43 % for Yavo and 14.24 %–10.66 % for TMS), water solubility (24.84 %–20.61 % for Yavo and 24.15 %–19.36 % for TMS), elongation at break (22.75 %–1.31 % for Yavo and 21.25 %–1.19 % for TMS) and water vapour permeability (WVP) (1.98 × 10−11 to 1.39 × 10−11 g Pa−1. s−1.m1 for Yavo and 1.93 × 10−11 to 1.29 × 10−11 g Pa−1. s−1.m1). The MCC has also produced yellowish-coloured films. MCC has been shown to be effective in improving starch-based films of improved cassava varieties Yavo and TMS. These two varieties can be used in combination with MCC to produce food packaging.
Collapse
Affiliation(s)
- Adjouman Yao Désiré
- Université Nangui Abrogoua, UFR des Sciences et Technologies des Aliments, 02 BP 801 Abidjan 02, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, CSRS-CI, 01 BP 1303 Abidjan 01, Côte d'Ivoire
| | - Nindjin Charlemagne
- Université Nangui Abrogoua, UFR des Sciences et Technologies des Aliments, 02 BP 801 Abidjan 02, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, CSRS-CI, 01 BP 1303 Abidjan 01, Côte d'Ivoire
| | - Kouadio Degbeu Claver
- Université Nangui Abrogoua, UFR des Sciences et Technologies des Aliments, 02 BP 801 Abidjan 02, Côte d'Ivoire
| | - Tetchi Fabrice Achille
- Université Nangui Abrogoua, UFR des Sciences et Technologies des Aliments, 02 BP 801 Abidjan 02, Côte d'Ivoire
| | - Sindic Marianne
- Université de Liège, Gembloux Agro-Bio Tech, Laboratoire Qualité et Sécurité des Produits Agroalimentaires, Passage des Déportés, 2, 5030 Gembloux, Belgium
| |
Collapse
|
22
|
Zhao N, Mou H, Zhou Y, Ju X, Yang S, Liu S, Dong R. Upgrading Solid Digestate from Anaerobic Digestion of Agricultural Waste as Performance Enhancer for Starch-Based Mulching Biofilm. Molecules 2021; 26:molecules26040832. [PMID: 33562704 PMCID: PMC7915701 DOI: 10.3390/molecules26040832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Developing a green and sustainable method to upgrade biogas wastes into high value-added products is attracting more and more public attention. The application of solid residues as a performance enhancer in the manufacture of biofilms is a prospective way to replace conventional plastic based on fossil fuel. In this work, solid digestates from the anaerobic digestion of agricultural wastes, such as straw, cattle and chicken manures, were pretreated by an ultrasonic thermo-alkaline treatment to remove the nonfunctional compositions and then incorporated in plasticized starch paste to prepare mulching biofilms by the solution casting method. The results indicated that solid digestate particles dispersed homogenously in the starch matrix and gradually aggregated under the action of a hydrogen bond, leading to a transformation of the composites to a high crystalline structure. Consequently, the composite biofilm showed a higher tensile strength, elastic modulus, glass transition temperature and degradation temperature compared to the pure starch-based film. The light, water and GHG (greenhouse gas) barrier properties of the biofilm were also reinforced by the addition of solid digestates, performing well in sustaining the soil quality and minimizing N2O or CH4 emissions. As such, recycling solid digestates into a biodegradable plastic substitute not only creates a new business opportunity by producing high-performance biofilms but also reduces the environmental risk caused by biogas waste and plastics pollution.
Collapse
Affiliation(s)
- Nan Zhao
- Bioenergy and Environment Science & Technology Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China; (N.Z.); (H.M.); (R.D.)
- Key Laboratory of Clean Production and Utilization of Renewable Energy, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- National Center for International Research of BioEnergy Science and Technology, Ministry of Science and Technology, Beijing 100083, China
| | - Huawei Mou
- Bioenergy and Environment Science & Technology Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China; (N.Z.); (H.M.); (R.D.)
- Key Laboratory of Clean Production and Utilization of Renewable Energy, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- National Center for International Research of BioEnergy Science and Technology, Ministry of Science and Technology, Beijing 100083, China
| | - Yuguang Zhou
- Prataculture Machinery and Equipment Research Center, College of Engineering, China Agricultural University, Beijing 100083, China;
- State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, National Energy Administration, Beijing 100083, China
- National Energy R&D Center for Biomass, China Agricultural University, Beijing 100193, China
| | - Xinxin Ju
- Shandong Sino-March Environmental Technology Co., Ltd., Yantai 264006, China;
| | - Shoujun Yang
- Yantai Institute, China Agricultural University, Yantai 264670, China;
| | - Shan Liu
- Bioenergy and Environment Science & Technology Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China; (N.Z.); (H.M.); (R.D.)
- National Center for International Research of BioEnergy Science and Technology, Ministry of Science and Technology, Beijing 100083, China
- Prataculture Machinery and Equipment Research Center, College of Engineering, China Agricultural University, Beijing 100083, China;
- Correspondence: ; Tel.: +86-(10)-62737858; Fax: +86-(10)-62737885
| | - Renjie Dong
- Bioenergy and Environment Science & Technology Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China; (N.Z.); (H.M.); (R.D.)
- National Center for International Research of BioEnergy Science and Technology, Ministry of Science and Technology, Beijing 100083, China
- Prataculture Machinery and Equipment Research Center, College of Engineering, China Agricultural University, Beijing 100083, China;
| |
Collapse
|
23
|
Primožič M, Knez Ž, Leitgeb M. (Bio)nanotechnology in Food Science-Food Packaging. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:292. [PMID: 33499415 PMCID: PMC7911006 DOI: 10.3390/nano11020292] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 01/10/2023]
Abstract
Background: Bionanotechnology, as a tool for incorporation of biological molecules into nanoartifacts, is gaining more and more importance in the field of food packaging. It offers an advanced expectation of food packaging that can ensure longer shelf life of products and safer packaging with improved food quality and traceability. Scope and approach: This review recent focuses on advances in food nanopackaging, including bio-based, improved, active, and smart packaging. Special emphasis is placed on bio-based packaging, including biodegradable packaging and biocompatible packaging, which presents an alternative to most commonly used non-degradable polymer materials. Safety and environmental concerns of (bio)nanotechnology implementation in food packaging were also discussed including new EU directives. Conclusions: The use of nanoparticles and nanocomposites in food packaging increases the mechanical strength and properties of the water and oxygen barrier of packaging and may provide other benefits such as antimicrobial activity and light-blocking properties. Concerns about the migration of nanoparticles from packaging to food have been expressed, but migration tests and risk assessment are unclear. Presumed toxicity, lack of additional data from clinical trials and risk assessment studies limit the use of nanomaterials in the food packaging sector. Therefore, an assessment of benefits and risks must be defined.
Collapse
Affiliation(s)
- Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
24
|
Alinaqi Z, Khezri A, Rezaeinia H. Sustained release modeling of clove essential oil from the structure of starch-based bio-nanocomposite film reinforced by electrosprayed zein nanoparticles. Int J Biol Macromol 2021; 173:193-202. [PMID: 33482206 DOI: 10.1016/j.ijbiomac.2021.01.118] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
Electrosprayed zein nanoparticles containing 10% (w/w) of clove essential oil (CEO) were prepared and then with different levels (5, 10, and 15% w/w) in the starch matrix were used. The incorporation of zein nanoparticles in the structure of starch-based bio-nanocomposites films was confirmed by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Increasing the level of application of zein bio-nanofillers in the starch film matrix increased thickness and contact angle. However, the use of electrosprayed zein nanoparticles loaded by CEO (EZN-CEO) up to 10% significantly (p < 0.05) reduced the water vapor permeability (WVP), but using 15% of the nanoparticles increased the WVP of the films significantly (p < 0.05). Increasing the EZN-CEO up to 10% significantly (p < 0.05) increased the tensile strength and Young's modulus and reduced the elongation at break of the films. Sustained release of CEO from the bio-nanocomposites showed that the most release of the CEO occurs in 10% ethanol medium. The Fickian diffusion was the predominant mechanism in the release of the CEO, and the Peleg model was selected as the best one to explain the release behavior. The structures designed in this study can be used as an edible coating and bio-preservative in perishable food products.
Collapse
Affiliation(s)
- Zhila Alinaqi
- Department of Food Science and Technology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Akram Khezri
- Department of Food Science and Technology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hassan Rezaeinia
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), km 12 Mashhad-Quchan Highway, P.O. Box: 91895-157-356, Mashhad, Iran.
| |
Collapse
|
25
|
Properties and behavior under environmental factors of isosorbide-plasticized starch reinforced with microcrystalline cellulose biocomposites. Int J Biol Macromol 2020; 164:2028-2037. [DOI: 10.1016/j.ijbiomac.2020.08.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 11/20/2022]
|
26
|
Xiao H, Yang F, Lin Q, Zhang Q, Zhang L, Sun S, Han W, Liu GQ. Preparation and characterization of broken-rice starch nanoparticles with different sizes. Int J Biol Macromol 2020; 160:437-445. [DOI: 10.1016/j.ijbiomac.2020.05.182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
|
27
|
Coelho CCDS, Silva RBS, Carvalho CWP, Rossi AL, Teixeira JA, Freitas-Silva O, Cabral LMC. Cellulose nanocrystals from grape pomace and their use for the development of starch-based nanocomposite films. Int J Biol Macromol 2020; 159:1048-1061. [DOI: 10.1016/j.ijbiomac.2020.05.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/25/2020] [Accepted: 05/06/2020] [Indexed: 11/25/2022]
|
28
|
Lin Q, Ji N, Li M, Dai L, Xu X, Xiong L, Sun Q. Fabrication of debranched starch nanoparticles via reverse emulsification for improvement of functional properties of corn starch films. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105760] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Fu Z, Wu H, Wu M, Huang Z, Zhang M. Effect of Wheat Bran Fiber on the Behaviors of Maize Starch Based Films. STARCH-STARKE 2020. [DOI: 10.1002/star.201900319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zong‐Qiang Fu
- School of Materials Science and Mechanical Engineering Beijing Technology and Business University Beijing 100048 China
| | - Hong‐Jian Wu
- School of Materials Science and Mechanical Engineering Beijing Technology and Business University Beijing 100048 China
| | - Min Wu
- College of Engineering China Agricultural University Beijing 100083 China
| | - Zhi‐Gang Huang
- School of Materials Science and Mechanical Engineering Beijing Technology and Business University Beijing 100048 China
| | - Miao Zhang
- School of Materials Science and Mechanical Engineering Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
30
|
Kumari S, Yadav BS, Yadav RB. Synthesis and modification approaches for starch nanoparticles for their emerging food industrial applications: A review. Food Res Int 2020; 128:108765. [DOI: 10.1016/j.foodres.2019.108765] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/02/2019] [Accepted: 10/19/2019] [Indexed: 02/07/2023]
|
31
|
Development and characterization of nano starch-based composite films from mung bean (Vigna radiata). Int J Biol Macromol 2020; 144:242-251. [DOI: 10.1016/j.ijbiomac.2019.12.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/28/2019] [Accepted: 12/14/2019] [Indexed: 02/06/2023]
|
32
|
|
33
|
Han L, Wang W, Zhang R, Dong H, Liu J, Kong L, Hou H. Effects of Preparation Method on the Physicochemical Properties of Cationic Nanocellulose and Starch Nanocomposites. NANOMATERIALS 2019; 9:nano9121702. [PMID: 31795244 PMCID: PMC6956194 DOI: 10.3390/nano9121702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 11/16/2022]
Abstract
Nanocellulose (NC) has attracted attention in recent years for the advantages offered by its unique characteristics. In this study, the effects of the preparation method on the properties of starch films were investigated by preparing NC from cationic-modified microcrystalline cellulose (MD-MCC) using three methods: Acid hydrolysis (AH), high-pressure homogenization (HH), and high-intensity ultrasonication (US). When MD-MCC was used as the starting material, the yield of NC dramatically increased compared to the NC yield obtained from unmodified MCC and the increased zeta potential improved its suspension stability in water. The NC prepared by the different methods had a range of particle sizes and exhibited needle-like structures with high aspect ratios. Fourier transform infrared (FTIR) spectra indicated that trimethyl quaternary ammonium salt groups were introduced to the cellulose backbone during etherification. AH-NC had a much lower maximum decomposition temperature (Tmax) than HH-NC or US-NC. The starch/HH-NC film exhibited the best water vapor barrier properties because the HH-NC particles were well-dispersed in the starch matrix, as demonstrated by the surface morphology of the film. Our results suggest that cationic NC is a promising reinforcing agent for the development of starch-based biodegradable food-packaging materials.
Collapse
Affiliation(s)
- Lina Han
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (L.H.); (W.W.); (R.Z.); (H.D.); (J.L.)
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (L.H.); (W.W.); (R.Z.); (H.D.); (J.L.)
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250000, China
| | - Rui Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (L.H.); (W.W.); (R.Z.); (H.D.); (J.L.)
| | - Haizhou Dong
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (L.H.); (W.W.); (R.Z.); (H.D.); (J.L.)
| | - Jingyuan Liu
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (L.H.); (W.W.); (R.Z.); (H.D.); (J.L.)
| | - Lingrang Kong
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (L.K.); (H.H.)
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (L.H.); (W.W.); (R.Z.); (H.D.); (J.L.)
- Correspondence: (L.K.); (H.H.)
| |
Collapse
|
34
|
A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Characterization of Aloe vera-banana starch composite films reinforced with curcumin-loaded starch nanoparticles. FOOD STRUCTURE-NETHERLANDS 2019. [DOI: 10.1016/j.foostr.2019.100131] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
ZnO and ZnO/CaO nanoparticles in alginate films. Synthesis, mechanical characterization, barrier properties and release kinetics. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.115] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Dularia C, Sinhmar A, Thory R, Pathera AK, Nain V. Development of starch nanoparticles based composite films from non-conventional source - Water chestnut (Trapa bispinosa). Int J Biol Macromol 2019; 136:1161-1168. [PMID: 31247231 DOI: 10.1016/j.ijbiomac.2019.06.169] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 01/03/2023]
Abstract
In the present study, starch was isolated from a non-conventional source (water chestnut) and various physicochemical properties were investigated. Nano starch was prepared by adopting the acid hydrolysis method having a yield of 27.5%. Particle size distribution of native and nano starch was 5559 nm and 396 nm. The unique feature of water chestnut starch was the shape of starch granule that looked oval, ellipsoidal, mixed with spherical granules without cracks and smooth surface. While the water chestnut nano starch appeared as an agglomerated form with irregular and rough surface. Water chestnut starch nanocomposites films with varying concentrations of starch nanoparticles (SNPs) were synthesized by a solution casting method. The thickness, moisture content, water vapour transmission rate, water solubility, burst strength of native starch and nano starch composite films were evaluated. The results showed that native starch film had thickness (0.041 ± 0.07 mm) moisture content (4.17 ± 0.32%), water vapour transmission rate (4.678 × 10-3 ± 0.42 g-2 s-1), water solubility (35.71 ± 0.17%) and burst strength (976.4 ± 12.47 g), respectively. The incorporation of SNPs results in an increase in thickness and burst strength while moisture content, water vapour transmission rate and solubility of films were decreased with the increase in the concentration of SNPs which is essential features of a good package.
Collapse
Affiliation(s)
- Chandni Dularia
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan-173229 (HP), India
| | - Archana Sinhmar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan-173229 (HP), India
| | - Rahul Thory
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan-173229 (HP), India.
| | - Ashok Kumar Pathera
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan-173229 (HP), India
| | - Vikash Nain
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana, India
| |
Collapse
|
38
|
Nogueira GF, Fakhouri FM, Velasco JI, de Oliveira RA. Active Edible Films Based on Arrowroot Starch with Microparticles of Blackberry Pulp Obtained by Freeze-Drying for Food Packaging. Polymers (Basel) 2019; 11:E1382. [PMID: 31443596 PMCID: PMC6780789 DOI: 10.3390/polym11091382] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 01/16/2023] Open
Abstract
This research work evaluated the influence of the type of incorporation and variation in the concentration of blackberry pulp (BL) and microencapsulated blackberry pulp (ML) powders by freeze-drying on the chemical and physical properties of arrowroot starch films. Blackberry powders were added to the film-forming suspension in different concentrations, 0%, 20%, 30% and 40% (mass/mass of dry starch) and through two different techniques, directly (D) and by sprinkling (S). Scanning electron microscopy (SEM) images revealed that the incorporation of blackberry powder has rendered the surface of the film rough and irregular. Films incorporated with BL and ML powders showed an increase in thickness and water solubility and a decrease in tensile strength in comparison with the film containing 0% powder. The incorporation of blackberry BL and ML powders into films transferred colour, anthocyanins and antioxidant capacity to the resulting films. Films added with blackberry powder by sprinkling were more soluble in water and presented higher antioxidant capacity than films incorporated directly, suggesting great potential as a vehicle for releasing bioactive compounds into food.
Collapse
Affiliation(s)
| | - Farayde Matta Fakhouri
- Centre Català del Plàstic, Dpt. of Materials Science and Metallurgy, Universitat Politècnica de Catalunya, Carrer Colom 114, Terrassa E-08022, Spain.
- Faculty of Engineering, Federal University of Grande Dourados, Dourados MS 79804-970, Brazil.
| | - José Ignacio Velasco
- Centre Català del Plàstic, Dpt. of Materials Science and Metallurgy, Universitat Politècnica de Catalunya, Carrer Colom 114, Terrassa E-08022, Spain
| | | |
Collapse
|
39
|
Production of novel chia-mucilage nanocomposite films with starch nanocrystals; An inclusive biological and physicochemical perspective. Int J Biol Macromol 2019; 133:663-673. [DOI: 10.1016/j.ijbiomac.2019.04.146] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/14/2019] [Accepted: 04/22/2019] [Indexed: 11/15/2022]
|
40
|
Incorporation of spray dried and freeze dried blackberry particles in edible films: Morphology, stability to pH, sterilization and biodegradation. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100313] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Ali A, Ali S, Yu L, Liu H, Khalid S, Hussain A, Qayum MMN, Ying C. Preparation and characterization of starch‐based composite films reinforced by apricot and walnut shells. J Appl Polym Sci 2019. [DOI: 10.1002/app.47978] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Amjad Ali
- School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 China
- Department of Food and AgricultureKarakoram International University Gilgit 15100 Pakistan
| | - Sartaj Ali
- Department of Food and AgricultureKarakoram International University Gilgit 15100 Pakistan
| | - Long Yu
- School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 China
- Sino‐Singapore International Joint Research InstituteGuangzhou Knowledge City Guangzhou 510663 China
| | - Hongsheng Liu
- School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 China
- Sino‐Singapore International Joint Research InstituteGuangzhou Knowledge City Guangzhou 510663 China
| | - Saud Khalid
- School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Azhar Hussain
- Department of Food and AgricultureKarakoram International University Gilgit 15100 Pakistan
| | | | - Chen Ying
- School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 China
| |
Collapse
|
42
|
Ocloo FC, Ray SS, Emmambux NM. Effects of stearic acid and irradiation alone and in combination on properties of amylose-lipid nanomaterial from high amylose maize starch. Carbohydr Polym 2019; 212:352-360. [DOI: 10.1016/j.carbpol.2019.02.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 11/27/2022]
|
43
|
Lu H, Ji N, Li M, Wang Y, Xiong L, Zhou L, Qiu L, Bian X, Sun C, Sun Q. Preparation of Borax Cross-Linked Starch Nanoparticles for Improvement of Mechanical Properties of Maize Starch Films. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2916-2925. [PMID: 30789721 DOI: 10.1021/acs.jafc.8b06479] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, starch nanoparticles have attracted widespread attention from various fields. In this study, a new strategy for preparing covalent-cross-linked starch nanoparticles was developed using boron ester bonds formed between debranched starch (DBS) and borax. The nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA). The obtained nanoparticles were spherical with a size of 100-200 nm. The formation of boron ester bonds was confirmed by FTIR. The as-prepared starch nanoparticle exhibited a low relative crystallinity of 13.6%-23.5%. Compared with pure starch film, the tensile strength of starch film with 10% starch nanoparticles increased about 45%, and the elongation at break percentage of starch film with 5% starch nanoparticles increased about 20%. The new strategy of forming starch nanoparticles by using boron ester bonds will advance the research of carbohydrate nanoparticles.
Collapse
Affiliation(s)
- Hao Lu
- College of Food Science and Engineering , Qingdao Agricultural University , Qingdao , Shandong Province 266109 , China
| | - Na Ji
- College of Food Science and Engineering , Qingdao Agricultural University , Qingdao , Shandong Province 266109 , China
| | - Man Li
- College of Food Science and Engineering , Qingdao Agricultural University , Qingdao , Shandong Province 266109 , China
| | - Yanfei Wang
- College of Food Science and Engineering , Qingdao Agricultural University , Qingdao , Shandong Province 266109 , China
| | - Liu Xiong
- College of Food Science and Engineering , Qingdao Agricultural University , Qingdao , Shandong Province 266109 , China
| | - Liyang Zhou
- College of Food Science and Engineering , Qingdao Agricultural University , Qingdao , Shandong Province 266109 , China
| | - Lizhong Qiu
- Zhucheng Xingmao Corn Developing Co., Ltd , Weifang , Shandong Province 262200 , China
| | - Xiliang Bian
- Zhucheng Xingmao Corn Developing Co., Ltd , Weifang , Shandong Province 262200 , China
| | - Chunrui Sun
- Zhucheng Xingmao Corn Developing Co., Ltd , Weifang , Shandong Province 262200 , China
| | - Qingjie Sun
- College of Food Science and Engineering , Qingdao Agricultural University , Qingdao , Shandong Province 266109 , China
| |
Collapse
|
44
|
Liu X, Zhang T, Xue Y, Xue C. Changes of structural and physical properties of semi-gel from Alaska pollock surimi during 4 °C storage. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
|
46
|
Farrag Y, Ide W, Montero B, Rico M, Rodríguez-Llamazares S, Barral L, Bouza R. Starch films loaded with donut-shaped starch-quercetin microparticles: Characterization and release kinetics. Int J Biol Macromol 2018; 118:2201-2207. [PMID: 30012488 DOI: 10.1016/j.ijbiomac.2018.07.087] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/28/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
Abstract
Starch films loaded with donut-shaped starch-quercetin microparticles were prepared from two different botanical origins. The quercetin release kinetics through the films were studied. The donut-shaped starch-quercetin microparticles were prepared by thermal aqueous-alcoholic treatment. The quercetin loading percentage and therefore the antioxidant activity were higher for the microparticles from legume than those of cereal origins. The starch-quercetin microparticles also showed higher thermal stability than the starch granules. The starch films were produced using the solution casting method. The films with more microparticles content showed higher thermal stability. In-vitro release studies of the quercetin through the films were performed in aqueous-ethanolic medium. The quercetin released reached the equilibrium in 1 to 4 days for the films of cereal starch and in more than a week for the films of legume origin. The release data were fitted to Peppas-Sahlin model that suggests the release kinetics were controlled mainly by fickian diffusion. The produced biofilms can be utilized mainly for active food packaging applications.
Collapse
Affiliation(s)
- Yousof Farrag
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de febrero s/n, 15471 Ferrol, Spain
| | - Walther Ide
- Centro de Investigación de Polímeros Avanzados, CIPA, Avenida Collao 1202, Edificio de Laboratorios, Concepción, Chile
| | - Belén Montero
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de febrero s/n, 15471 Ferrol, Spain
| | - Maite Rico
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de febrero s/n, 15471 Ferrol, Spain
| | - Saddys Rodríguez-Llamazares
- Centro de Investigación de Polímeros Avanzados, CIPA, Avenida Collao 1202, Edificio de Laboratorios, Concepción, Chile
| | - Luis Barral
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de febrero s/n, 15471 Ferrol, Spain
| | - Rebeca Bouza
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de febrero s/n, 15471 Ferrol, Spain.
| |
Collapse
|
47
|
Effects of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) microparticles on morphological, mechanical, thermal, and barrier properties in thermoplastic potato starch films. Carbohydr Polym 2018; 194:357-364. [DOI: 10.1016/j.carbpol.2018.04.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 11/24/2022]
|
48
|
Oliveira AV, da Silva APM, Barros MO, de sá M. Souza Filho M, Rosa MF, Azeredo HMC. Nanocomposite Films from Mango Kernel or Corn Starch with Starch Nanocrystals. STARCH-STARKE 2018. [DOI: 10.1002/star.201800028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Matheus O. Barros
- Embrapa Agroindústria Tropical; R. Dra. Sara Mesquita, 2270,Fortaleza 60511-110 CE Brazil
| | | | - Morsyleide F. Rosa
- Embrapa Agroindústria Tropical; R. Dra. Sara Mesquita, 2270,Fortaleza 60511-110 CE Brazil
| | - Henriette M. C. Azeredo
- Embrapa Agroindústria Tropical; R. Dra. Sara Mesquita, 2270,Fortaleza 60511-110 CE Brazil
- Embrapa Instrumentação; R. 15 de Novembro, 1452, Caixa Postal 741,São Carlos CEP 13560-970 SP Brazil
| |
Collapse
|
49
|
Research on the rheological properties of cross-linked polymer microspheres with different microstructures. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.03.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique. Int J Biol Macromol 2018; 114:426-433. [PMID: 29580996 DOI: 10.1016/j.ijbiomac.2018.03.134] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 02/07/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022]
Abstract
Nanoparticles of starches from different botanical origin were prepared by nanoprecipitation using 0.1M hydrochloric acid as non-solvent. The morphology and the particle size were analyzed using field emission scanning electron microscopy and dynamic light scattering. The nanoparticles were spherical and their sizes vary depending on the origin and the concentration of the starch solution. Starch nanoparticles loaded with quercetin were prepared. In-vitro release studies of the quercetin from the starch nanoparticles were performed in 35% ethanol as a release medium. The starch origin affects the quercetin loading percentage, the release kinetics and the antioxidant activity of the produced nanoparticles. The starch-quercetin nanoparticles from cereal origin showed the lowest loading percentage and the lowest fraction released of quercetin in comparison with nanoparticles from tuber and legume origin. The release kinetics seem to be controlled mainly by Fickian diffusion which have been revealed fitting the release data to the Peppas-Sahlin model.
Collapse
|