1
|
Wang D, Zhu J, Lv J, Zhu Y, Li F, Zhang C, Yu X. Structural characterization and potential anti-tumor activity of a polysaccharide from the halophyte Salicornia bigelovii Torr. Int J Biol Macromol 2024; 273:132712. [PMID: 38815939 DOI: 10.1016/j.ijbiomac.2024.132712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/15/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Plant polysaccharides are highly potent bioactive molecules. Clarifying the structural composition and bioactivities of plant polysaccharides will provide insights into their structure-activity relationships. Therefore, herein, we identified a polysaccharide produced by Salicornia bigelovii Torr. and analyzed the structure and anti-tumor activity of its component, SabPS-1. SabPS-1 was 3.24 × 104 Da, primarily composed of arabinose (24.96 %), galactose (30.39 %), and galacturonic acid (23.20 %), rhamnose (6.21 %), xylose (4.99 %), glucuronic acid (3.12 %), mannuronic acid (1.75 %), mannose (1.69 %), glucose (1.54 %), fucose (1.12 %), and guluronic acid (1.03 %). The backbone of SabPS-1 was a → 4)-β-D-GalpA-(1→, →5)-α-L-Araf-(1→, and→4)-β-D-Galp-(1 → molecule with a branched chain of α-L-Araf-(1 → connected to sugar residues of →3,6)-β-D-Galp-(1 → in the O-3 position. SabPS-1 induced apoptosis and inhibited the growth of HepG-2 cells, with viability of 47.90 ± 4.14 (400 μg/mL), indicating anti-tumor activity. Apoptosis induced by SabPS-1 may be associated with the differential regulation of caspase 3, caspase 8, Bax, and Bcl-2. To the best of our knowledge, this is the first study to investigate the principal structures and anti-tumor biological activities of SabPS-1. Our findings demonstrated the excellent anti-tumor properties of SabPS-1, which will aid in the development of anti-tumor drugs utilizing Salicornia bigelovii Torr.
Collapse
Affiliation(s)
- Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jiayi Zhu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jing Lv
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yuping Zhu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Chunyin Zhang
- Yancheng Green Garden Saline Soil Agriculture Technology Co., Ltd, Yancheng 224001, China
| | - Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
2
|
Wang W, Zhao B, Zhang Z, Kikuchi T, Li W, Jantrawut P, Feng F, Liu F, Zhang J. Natural polysaccharides and their derivatives targeting the tumor microenvironment: A review. Int J Biol Macromol 2024; 268:131789. [PMID: 38677708 DOI: 10.1016/j.ijbiomac.2024.131789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Polysaccharides have gained attention as valuable supplements and natural medicinal resources, particularly for their anti-tumor properties. Their low toxicity and potent anti-tumor effects make them promising candidates for cancer prevention and treatment. The tumor microenvironment is crucial in tumor development and offers potential avenues for novel cancer therapies. Research indicates that polysaccharides can positively influence the tumor microenvironment. However, the structural complexity of most anti-tumor polysaccharides, often heteropolysaccharides, poses challenges for structural analysis. To enhance their pharmacological activity, researchers have modified the structure and properties of natural polysaccharides based on structure-activity relationships, and they have discovered that many polysaccharides exhibit significantly enhanced anti-tumor activity after chemical modification. This article reviews recent strategies for targeting the tumor microenvironment with polysaccharides and briefly discusses the structure-activity relationships of anti-tumor polysaccharides. It also summarises the main chemical modification methods of polysaccharides and discusses the impact of chemical modifications on the anti-tumor activity of polysaccharides. The review aims to lay a theoretical foundation for the development of anti-tumor polysaccharides and their derivatives.
Collapse
Affiliation(s)
- Wenli Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Bin Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Zhongtao Zhang
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China; Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian 271000, China
| | - Takashi Kikuchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - FuLei Liu
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China; Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian 271000, China.
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
3
|
Luo L, Feng F, Zhong A, Guo N, He J, Li C. The advancement of polysaccharides in disease modulation: Multifaceted regulation of programmed cell death. Int J Biol Macromol 2024; 261:129669. [PMID: 38272424 DOI: 10.1016/j.ijbiomac.2024.129669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
Programmed cell death (PCD), also known as regulatory cell death (RCD), is a process that occurs in all organisms and is closely linked to both normal physiological processes and disease states. Various signaling pathways, such as TP53, KRAS, NOTCH, hypoxia, and metabolic reprogramming, have been found to regulate RCD. Polysaccharides, which are essential natural products, have been the subject of extensive research in the fields of food, nutrition, and medicine due to their wide range of pharmacological effects. Studies have shown that polysaccharides have biological activities and the potential to target signal transduction pathways for the treatment of diseases. This paper provides a review of the mechanisms through which polysaccharides exert their therapeutic effects at different levels and explores the relationship between different types of RCD and human diseases. The aim of this review is to provide a theoretical basis for the further clinical use and application of polysaccharide bioactivities.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Fuhai Feng
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Ai Zhong
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Nuoqing Guo
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Jiake He
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Chenying Li
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
4
|
Raj V, Chun KS, Lee S. State-of-the-art advancement in tara gum polysaccharide (Caesalpinia spinosa) modifications and their potential applications for drug delivery and the food industry. Carbohydr Polym 2024; 323:121440. [PMID: 37940305 DOI: 10.1016/j.carbpol.2023.121440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023]
Abstract
In preference to synthetic or petroleum-based materials, current research in food and pharmaceutical industries has focused on the development of biodegradable and sustainable materials due to their low toxicity, and biocompatibility. In particular, the natural water-soluble polysaccharide tara gum (Caesalpinia spinosa) has been widely used as a food-grade and drug-delivery agent due to its biodegradability, and biocompatibility. Moreover, owing to its easily modifiable hydroxy groups, tara gum, and its derivatives have been employed as food packaging films and pharmaceutical materials. In the present critical review, facile grafting methods of tara gum are reviewed, and an up-to-date comprehensive application of tara gum polysaccharides revealed their uses in pH-sensitive food packaging. In addition, modified tara gum materials exhibited improved drug delivery applications with biocompatible properties. The non-toxic nature and non-Newtonian, pseudoplastic rheological properties as well as the synergistic behavior of tara gum with other polysaccharides explore its further industrial applications in several fields. Additionally, several approaches for improving tara gum for use as a stabilizer and thickener for food items, and monitoring food spoilage, have provided notable customized characteristics. In brief, its many advantages make tara gum polysaccharide a promising material for applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42691, Republic of Korea; Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Kim JH, Lim SR, Jung DH, Kim EJ, Sung J, Kim SC, Choi CH, Kang JW, Lee SJ. Grifola frondosa Extract Containing Bioactive Components Blocks Skin Fibroblastic Inflammation and Cytotoxicity Caused by Endocrine Disrupting Chemical, Bisphenol A. Nutrients 2022; 14:nu14183812. [PMID: 36145189 PMCID: PMC9503552 DOI: 10.3390/nu14183812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Grifola frondosa (GF), a species of Basidiomycotina, is widely distributed across Asia and has been used as an immunomodulatory, anti-bacterial, and anti-cancer agent. In the present study, the pharmacological activity of the GF extract against an ecotoxicological industrial chemical, bisphenol A (BPA) in normal human dermal fibroblasts (NHDFs), was investigated. GF extract containing naringin, hesperidin, chlorogenic acid, and kaempferol showed an inhibitory effect on cell death and inflammation induced by BPA in the NHDFs. For the cell death caused by BPA, GF extract inhibited the production of reactive oxygen species responsible for the unique activation of the extracellular signal-regulated kinase. In addition, GF extract attenuated the expression of apoptosis-related proteins (Bax, Bcl-2, and cleaved caspase-3) and the pro-inflammatory cytokine IL-1β by the suppression of the redox-sensitive transcription factor, nuclear factor-kappa B (NF-κB) in BPA-treated NHDFs. For the inflammation triggered by BPA, GF extract blocked the inflammasome-mediated caspase-1 activation that leads to the secretion of IL-1β protein. These results indicate that the GF extract is a functional antioxidant that prevents skin fibroblastic pyroptosis induced by BPA.
Collapse
Affiliation(s)
- Ju-Ha Kim
- Department of Public Health, Daegu Haany University, Gyeongsan 38610, Korea
| | - Seong-Ryeong Lim
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea
| | - Dae-Hwa Jung
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea
| | - Eun-Ju Kim
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea
| | - Junghee Sung
- RFBio Research & Development Center, RFBio Co., Ltd., Gunpo-si 15807, Korea
| | - Sang Chan Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea
| | - Chang-Hyung Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, Gyeongsan 38610, Korea
| | - Ji-Woong Kang
- Department of Public Health, Daegu Haany University, Gyeongsan 38610, Korea
- Correspondence: (J.-W.K.); (S.-J.L.); Tel.: +82-54-819-1806 (S.-J.L.)
| | - Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea
- Correspondence: (J.-W.K.); (S.-J.L.); Tel.: +82-54-819-1806 (S.-J.L.)
| |
Collapse
|
6
|
Current Uses of Mushrooms in Cancer Treatment and Their Anticancer Mechanisms. Int J Mol Sci 2022; 23:ijms231810502. [PMID: 36142412 PMCID: PMC9504980 DOI: 10.3390/ijms231810502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Various chemotherapeutic drugs have been extensively used for cancer treatment. However, current anticancer drugs cause severe side effects and induce resistance. Therefore, the development of novel and effective anticancer agents with minimal or no side effects is important. Notably, natural compounds have been highlighted as anticancer drugs. Among them, many researchers have focused on mushrooms that have biological activities, including antitumor activity. The aim of this review is to discuss the anticancer potential of different mushrooms and the underlying molecular mechanisms. We provide information regarding the current clinical status and possible modes of molecular actions of various mushrooms and mushroom-derived compounds. This review will help researchers and clinicians in designing evidence-based preclinical and clinical studies to test the anticancer potential of mushrooms and their active compounds in different types of cancers.
Collapse
|
7
|
Yao W, Qiu HM, Cheong KL, Zhong S. Advances in anti-cancer effects and underlying mechanisms of marine algae polysaccharides. Int J Biol Macromol 2022; 221:472-485. [PMID: 36089081 DOI: 10.1016/j.ijbiomac.2022.09.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/08/2022] [Accepted: 09/06/2022] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death in both developing and developed countries. With the increase in the average global life expectancy, it has become a major health problem and burden for most public healthcare systems worldwide. Due to the fewer side effects of natural compounds than of chemotherapeutic drugs, increasing scientific attention is being focused on the development of anti-cancer drugs derived from natural sources. Marine algae are an interesting source of functional compounds with diverse health-promoting activities. Among these compounds, polysaccharides have attracted considerable interest for many years because of their excellent anti-cancer abilities. They improve the efficacy of conventional chemotherapeutic drugs with relatively low toxicity to normal human cells. However, there are few reviews summarising the unique anti-cancer effects and underlying mechanisms of marine algae polysaccharides (MAPs). Thus, the current review focuses on updating the advances in the discovery and evaluation of MAPs with anti-cancer properties and the elucidation of their mechanisms of action, including the signalling pathways involved. This review aims to provide a deeper understanding of the anti-cancer functions of the natural compounds derived from medicinal marine algae and thereby offer a new perspective on cancer prevention and therapy with high effectiveness and safety.
Collapse
Affiliation(s)
- Wanzi Yao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Hua-Mai Qiu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China.
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, PR China.
| |
Collapse
|
8
|
Sivanesan I, Muthu M, Gopal J, Oh JW. Mushroom Polysaccharide-Assisted Anticarcinogenic Mycotherapy: Reviewing Its Clinical Trials. Molecules 2022; 27:molecules27134090. [PMID: 35807336 PMCID: PMC9267963 DOI: 10.3390/molecules27134090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Of the biologically active components, polysaccharides play a crucial role of high medical and pharmaceutical significance. Mushrooms have existed for a long time, dating back to the time of the Ancient Egypt and continue to be well explored globally and experimented with in research as well as in national and international cuisines. Mushroom polysaccharides have slowly become valuable sources of nutraceuticals which have been able to treat various diseases and disorders in humans. The application of mushroom polysaccharides for anticancer mycotherapy is what is being reviewed herein. The widespread health benefits of mushroom polysaccharides have been highlighted and the significant inputs of mushroom-based polysaccharides in anticancer clinical trials have been presented. The challenges and limitation of mushroom polysaccharides into this application and the gaps in the current application areas that could be the future direction have been discussed.
Collapse
Affiliation(s)
- Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea;
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India; (M.M.); (J.G.)
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India; (M.M.); (J.G.)
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-2049-6271; Fax: +82-2-455-1044
| |
Collapse
|
9
|
Zhang J, Liu D, Wen C, Liu J, Xu X, Liu G, Kan J, Qian C, Jin C. New light on Grifola frondosa polysaccharides as biological response modifiers. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Zhao F, Guo Z, Zhang Y, Song L, Ma L, Zhao J. Anti-tumor and immunomodulatory effects of Grifola frondosa polysaccharide combined with vitamin C on Heps-bearing mice: Based on inducing apoptosis and autophagy. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
Hafez HG, Mohareb RM, Salem SM, Matloub AA, Eskander EF, Ahmed HH. Molecular Mechanisms Underlying the Anti-Breast Cancer Stem Cell Activity of Pterocladia capillacea and Corallina officinalis Polysaccharides. Anticancer Agents Med Chem 2021; 22:1213-1225. [PMID: 34315394 DOI: 10.2174/1871520621666210727122756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/26/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study aimed to appraise the activity of Pterocladia capillacea and Corallina officinalis polysaccharides against breast cancer stem cells (BCSCs). P. capillacea and C. officinalis polysaccharides were characterized to be sulfated polysaccharide-protein complexes. METHODS Cytotoxicity of the polysaccharides against MDA-MB-231 and MCF-7 cell lines along with their impact on CD44+/CD24- and aldehyde dehydrogenase 1(ALDH1) positive BCSC population were determined. Their effect on gene expression of CSC markers, Wnt/β-catenin and Notch signaling pathways was evaluated. RESULTS P. capillacea and C. officinalis polysaccharides inhibited the growth of breast cancer cells and reduced BCSC subpopulation. P. capillacea polysaccharides significantly down-regulated OCT4, SOX2, ALDH1A3 and vimentin in MDA-MB-231 as well as in MCF-7 cells except for vimentin that was up-regulated in MCF-7 cells. C. officinalis polysaccharides exhibited similar effects except for OCT4 that was up-regulated in MDA-MB-231 cells. Significant suppression of Cyclin D1 gene expression was noted in MDA-MB-231 and MCF-7 cells treated with P. capillacea or C. officinalis polysaccharides. β-catenin and c-Myc genes were significantly down-regulated in MDA-MB-231 cells treated with C. officinalis and P. capillacea polysaccharides, respectively, while being up-regulated in MCF-7 cells treated with either of them. Additionally, P. capillacea and C. officinalis polysaccharides significantly down-regulated Hes1 gene in MCF-7 cells despite increasing Notch1 gene expression level. However, significant down-regulation of Notch1 gene was observed in MDA-MB-231 cells treated with P. capillacea polysaccharides. CONCLUSION Collectively, this study provides evidence for the effectiveness of P. capillacea and C. officinalis polysaccharides in targeting BCSCs through interfering with substantial signaling pathways contributing to their functionality.
Collapse
Affiliation(s)
- Hebatallah G Hafez
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Rafat M Mohareb
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Sohair M Salem
- Molecular Genetics and Enzymology Department, National Research Centre, Dokki, Giza, Egypt
| | - Azza A Matloub
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Emad F Eskander
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
12
|
Qian Z, Chen M, Chen J, Zhang Y, Zhou C, Hong P, Yang P. Intracellular ethanol-mediated oxidation and apoptosis in HepG2/CYP2E1 cells impaired by two active peptides from seahorse ( Hippocampus kuda bleeler) protein hydrolysates via the Nrf2/HO-1 and akt pathways. Food Sci Nutr 2021; 9:1584-1602. [PMID: 33747471 PMCID: PMC7958582 DOI: 10.1002/fsn3.2133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Seahorse (Hippocampus kuda Bleeler) are representative marine species in aquaculture, with special value of medicine and food. In this study, the protective effects of two peptides from seahorse hydrolysates (SHP-1 and SHP-2) against ethanol-mediated oxidative stress in HepG2/CYP2E1 cells were investigated. Firstly, SHP-1 and SHP-2 presented no cytotoxicity. Compared with the ethanol-treated groups, SHP-1 and SHP-2 increased cell viability in a concentration-dependent manner. Secondly, SHP-1 and SHP-2 markedly reduced intracellular reactive oxygen species (ROS) generation, gamma-glutamyltranspeptidase (GGT) activity, and tumor necrosis factor-α (TNF-α) levels and remarkably enhanced superoxide dismutase (SOD) and glutathione (GSH) activities. SHP-1 and SHP-2 also down-regulated the expressions of GGT, bax, c-caspase-8/-9/-3, p-Akt, p-IκB-α, p-p65, p-ERK, and p-p38 but up-regulated SOD, GSH, NF-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and bcl-2 levels, as revealed by Western blot analysis. Moreover, SHP-1 and SHP-2 increased the mitochondrial membrane potential (MMP), reduced DNA damage, and suppressed the nuclear translocation of p65. These results suggest that two peptides from seahorse hydrolysates can be considered a potential functional biomaterial and further improve the use value of seahorse in aquaculture.
Collapse
Affiliation(s)
- Zhong‐Ji Qian
- Shenzhen Institute of Guangdong Ocean UniversityShenzhenChina
- Southern Marine Science and Engineering Guangdong LaboratoryZhanjiangChina
- School of Chemistry and EnvironmentCollege of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| | - Mei‐Fang Chen
- Shenzhen Institute of Guangdong Ocean UniversityShenzhenChina
- Southern Marine Science and Engineering Guangdong LaboratoryZhanjiangChina
- School of Chemistry and EnvironmentCollege of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| | - Jiali Chen
- Lengshuitan Bezirk Agricultural and Rural BureauYongzhou CityChina
| | - Yi Zhang
- Shenzhen Institute of Guangdong Ocean UniversityShenzhenChina
- School of Chemistry and EnvironmentCollege of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| | - Chunxia Zhou
- Shenzhen Institute of Guangdong Ocean UniversityShenzhenChina
- Southern Marine Science and Engineering Guangdong LaboratoryZhanjiangChina
- School of Chemistry and EnvironmentCollege of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| | - Pengzhi Hong
- Southern Marine Science and Engineering Guangdong LaboratoryZhanjiangChina
- School of Chemistry and EnvironmentCollege of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| | - Ping Yang
- School of Chemistry and EnvironmentCollege of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| |
Collapse
|
13
|
Liu K, Li XY, Luo JP, Zha XQ. Bioactivities. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Yu J, Liu C, Ji HY, Liu AJ. The caspases-dependent apoptosis of hepatoma cells induced by an acid-soluble polysaccharide from Grifola frondosa. Int J Biol Macromol 2020; 159:364-372. [DOI: 10.1016/j.ijbiomac.2020.05.095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/09/2023]
|
15
|
Yu J, Ji HY, Liu C, Liu AJ. The structural characteristics of an acid-soluble polysaccharide from Grifola frondosa and its antitumor effects on H22-bearing mice. Int J Biol Macromol 2020; 158:S0141-8130(20)33200-1. [PMID: 32437807 DOI: 10.1016/j.ijbiomac.2020.05.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
The edible mushroom G. frondosa has been used as a kind of functional food for the prevention and therapy of various diseases in Asian countries. In the present work, a novel acid-soluble polysaccharide (GFAP) was successfully isolated from G. frondosa under room temperature and hydrochloric acid solution treatment. Results of chemical composition analysis, UV and HPGPC spectra showed that GFAP mainly contained 94.28% of carbohydrate with the average molecular weight of about 644.9 kDa. GC, FT-IR, NMR and methylation analysis further indicated that GFAP was a neutral sugar mainly composed of (1 → 3)-β-D-Glcp and (1 → 3)-α-D-Manp. The in vivo antitumor experiments demonstrated that GFAP could effectively protect thymuses and spleens of tumor-bearing mice and inhibit the growth of H22 solid tumors with the inhibitory rate of 36.72%. Besides, GFAP could significantly improve the activities of NK cells, macrophages, CD19+ B cells and CD4+ T cells, leading to the apoptosis of H22 cells via G0/G1 phase arrested. Our data demonstrated that GFAP holds great application prospect to be a safe and effective antitumor adjuvant in the future.
Collapse
Affiliation(s)
- Juan Yu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hai-Yu Ji
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., Beijing 100176, China
| | - Chao Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., Beijing 100176, China
| | - An-Jun Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
16
|
Qin X, Li R, Zhu S, Hu J, Zeng X, Zhang X, Xu H, Kong W, Liang J, Zhang H, Zhang J, Wang J. A comparative study of sulfated tara gum: RSM optimization and structural characterization. Int J Biol Macromol 2020; 150:189-199. [PMID: 32050084 DOI: 10.1016/j.ijbiomac.2020.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 02/01/2023]
Abstract
Interest in galactomannans and its derivatives as a functional health supplement is growing based on physicochemical properties. In this work, the optimized conditions of sulfated tara gum (STG) with a maximum DS of 0.66 by box-behnken design (BBD) were obtained as following: ratio of chlorosulfonic acid/pyridine 3:1, reaction time 4 h and reaction temperature 40 °C. The structure features of STG such as the degree of substitution (DS), substitution position, weight average molar mass (MW), monosaccharide components and chain conformation were investigated. Decreasing of MW, the increasing of Z-average radius of gyration (〈S2〉Z1/2) and specific volume for gyration (SVg) were obtained by SEC-MALLS. In addition, the structural properties of four sulfated galactomannans were comparatively investigated and analyzed based on our earlier reports of sulfated fenugreek gum, guar gum and locust bean gum. A conclusion was drown that higher galactose branch could enhance steric hindrance, which was inferred as one of the significant factors for the derivatization efficiency, thus affecting the DS, MW and conformational transition of sulfated galactomannans. This study will provide valuable information for further research on the comparison of bioactivities and medical application of galactomannans family.
Collapse
Affiliation(s)
- Xiaojie Qin
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Rui Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Shengyong Zhu
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Jiahuan Hu
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xiaorong Zeng
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xiaoyue Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Hairong Xu
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Weibao Kong
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Bioactive Products Engineering Research Center For Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Junyu Liang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Bioactive Products Engineering Research Center For Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Hui Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Bioactive Products Engineering Research Center For Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Bioactive Products Engineering Research Center For Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Junlong Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Bioactive Products Engineering Research Center For Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, People's Republic of China.
| |
Collapse
|
17
|
Bie N, Han L, Wang Y, Wang X, Wang C. A polysaccharide from Grifola frondosa fruit body induces HT-29 cells apoptosis by PI3K/AKT-MAPKs and NF-κB-pathway. Int J Biol Macromol 2020; 147:79-88. [DOI: 10.1016/j.ijbiomac.2020.01.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/21/2019] [Accepted: 01/06/2020] [Indexed: 11/16/2022]
|
18
|
Li X, Zeng F, Huang Y, Liu B. The Positive Effects of Grifola frondosa Heteropolysaccharide on NAFLD and Regulation of the Gut Microbiota. Int J Mol Sci 2019; 20:ijms20215302. [PMID: 31653116 PMCID: PMC6861908 DOI: 10.3390/ijms20215302] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major public health problem in many countries. In this study, the ability of Grifola frondosa heteropolysaccharide (GFP) to ameliorate NAFLD was investigated in rats fed a high-fat diet (HFD). The molecular mechanisms modulating the expression of specific gene members related to lipid synthesis and conversion, cholesterol metabolism, and inflammation pathways were determined. The components of the intestinal microflora in rats were analyzed by high-throughput next-generation 16S rRNA gene sequencing. Supplementation with GFP significantly increased the proportions of Allobaculum, Bacteroides, and Bifidobacterium and decreased the proportions of Acetatifactor, Alistipes, Flavonifractor, Paraprevotella, and Oscillibacter. In addition, Alistipes, Flavonifractor, and Oscillibacter were shown to be significant cecal microbiota according to the Spearman’s correlation test between the gut microbiota and biomedical assays (|r| > 0.7). Histological analysis and biomedical assays showed that GFP treatments could significantly protect against NAFLD. In addition, Alistipes, Flavonifractor, and Oscillibacter may play vital roles in the prevention of NAFLD. These results suggest that GFP could be used as a functional material to regulate the gut microbiota of NAFLD individuals.
Collapse
Affiliation(s)
- Xin Li
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yifan Huang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Bin Liu
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
19
|
Huang L, Shen M, Morris GA, Xie J. Sulfated polysaccharides: Immunomodulation and signaling mechanisms. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Cantharellus cibarius branched mannans inhibits colon cancer cells growth by interfering with signals transduction in NF-ĸB pathway. Int J Biol Macromol 2019; 134:770-780. [DOI: 10.1016/j.ijbiomac.2019.05.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 11/21/2022]
|
21
|
Xiao X, Bai J, Zhang J, Wu J, Dong Y. Inhibitory effect of fermented selected barley extracts with Lactobacillus plantarum dy-1 on the proliferation of human HT-29 Cells. J Food Biochem 2019; 43:e12989. [PMID: 31364183 DOI: 10.1111/jfbc.12989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/02/2019] [Accepted: 07/05/2019] [Indexed: 01/01/2023]
Abstract
The objective of this study was to understand the changes of nutrition constituents in extracts of four varieties of barley fermented with Lactobacillus plantarum dy-1 (LFBEs) and to uncover the potential apoptosis-related mechanism induced by LFBE to inhibit the proliferation of HT-29 cells. The contents of total polysaccharide, polyphenol, and protein in the four LFBEs significantly changed as the fermentation time went by and exerted different inhibitory effects on the proliferation of HT-29 cells. Results indicated that LFBE (YangSi No.3) inhibited proliferation of HT-29 cells in a time- and dose-dependent manners. The scanning electron micrograph illustrated that LFBE caused representative apoptotic trait and flow cytometric analysis suggested that LFBE brought about apoptosis by ceasing cell cycle at S phase. Western-blotting results indicated that LFBE promoted apoptosis was relevant to the regulation of apoptosis-related proteins, such as B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and the release of Cytochrome-C from mitochondria. PRACTICAL APPLICATIONS: Abundant studies have reported that extracts of fermented barley held the activities of anti-obesity, antitumor, and so on. However, little information about the comparison in the chemical profile and antiproliferation property among different barley varieties (namely, YangSi barley No.1, YangSi barley No.3, DaZhong 88-91, XiYin No.2) was observed. Results indicated that LFBE (YangSi No.3 barley) exhibited the best inhibitory property by inducing the apoptosis of HT-29 cells. These findings may be beneficial to select a higher nutritional value barley and optimize the fermentation conditions to maximize the bioactive concentration expected in foods for the human.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jing Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
22
|
Yang D, Zhou Z, Zhang L. An overview of fungal glycan-based therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:135-163. [PMID: 31030746 DOI: 10.1016/bs.pmbts.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Edible medicinal mushrooms have been traditionally used for health promotion and longevity in China and other East Asian countries for centuries. Structural and pharmacological studies revealed that fungal glycans show multiple physiological and healthy promoting effects including immunomodulation, anti-tumor, anti-aging, anti-oxidation, hypoglycemic, hypolipidemic, anti-radiation, and other effects. Fungal glycans isolated from different kinds of medicinal mushrooms are partially purified and clinically tested. Without serious safety concerns of mostly glycans from edible mushrooms and/or the cultured mycelium, eight of them are approved by Chinese Food and Drug Administration (SFDA) and used clinically in China since 1980s. In this chapter, 185 independent studies involving in biochemical, pharmacological and clinical studies of fungal glycans during the past four decades (1977-2019) from PubMed, CNKI (China National Knowledge Infrastructure) and Wanfang databases are summarized. In future, understanding the fungal glycan-based drugs at molecular biological level would be needed to comprehend the clinical efficacy of glycan-based drugs.
Collapse
Affiliation(s)
- Dandan Yang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Zijing Zhou
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
23
|
Chen YY, Xue YT. Optimization of microwave assisted extraction, chemical characterization and antitumor activities of polysaccharides from porphyra haitanensis. Carbohydr Polym 2019; 206:179-186. [DOI: 10.1016/j.carbpol.2018.10.093] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/27/2018] [Accepted: 10/27/2018] [Indexed: 12/17/2022]
|
24
|
Effects of Heat Treatment on the Structural Characteristics and Antitumor Activity of Polysaccharides from Grifola frondosa. Appl Biochem Biotechnol 2018; 188:481-490. [DOI: 10.1007/s12010-018-02936-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022]
|
25
|
Wang J, Bao A, Meng X, Guo H, Zhang Y, Zhao Y, Kong W, Liang J, Yao J, Zhang J. An efficient approach to prepare sulfated polysaccharide and evaluation of anti-tumor activities in vitro. Carbohydr Polym 2018; 184:366-375. [DOI: 10.1016/j.carbpol.2017.12.065] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/11/2017] [Accepted: 12/22/2017] [Indexed: 01/04/2023]
|
26
|
Joseph TP, Chanda W, Padhiar AA, Batool S, LiQun S, Zhong M, Huang M. A Preclinical Evaluation of the Antitumor Activities of Edible and Medicinal Mushrooms: A Molecular Insight. Integr Cancer Ther 2017; 17:200-209. [PMID: 29094602 PMCID: PMC6041903 DOI: 10.1177/1534735417736861] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is the leading cause of morbidity and mortality around the globe. For certain types of cancer, chemotherapy drugs have been extensively used for treatment. However, severe side effects and the development of resistance are the drawbacks of these agents. Therefore, development of new agents with no or minimal side effects is of utmost importance. In this regard, natural compounds are well recognized as drugs in several human ailments, including cancer. One class of fungi, “mushrooms,” contains numerous compounds that exhibit interesting biological activities, including antitumor activity. Many researchers, including our own group, are focusing on the anticancer potential of different mushrooms and the underlying molecular mechanism behind their action. The aim of this review is to discuss PI3K/AKT, Wnt-CTNNB1, and NF-κB signaling pathways, the occurrence of genetic alterations in them, the association of these aberrations with different human cancers and how different nodes of these pathways are targeted by various substances of mushroom origin. We have given evidence to propose the therapeutic attributes and possible mode of molecular actions of various mushroom-originated compounds. However, anticancer effects were typically demonstrated in in vitro and in vivo models and very limited number of studies have been conducted in the human population. It is our belief that this review will help the research community in designing concrete preclinical and clinical studies to test the anticancer potential of mushroom-originated compounds on different cancers harboring particular genetic alteration(s).
Collapse
Affiliation(s)
| | - Warren Chanda
- 1 Dalian Medical University, Dalian, Liaoning, China
| | | | - Samana Batool
- 1 Dalian Medical University, Dalian, Liaoning, China
| | - Shao LiQun
- 1 Dalian Medical University, Dalian, Liaoning, China
| | - MinTao Zhong
- 1 Dalian Medical University, Dalian, Liaoning, China
| | - Min Huang
- 1 Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
27
|
The induction of apoptosis and autophagy in human hepatoma SMMC-7721 cells by combined treatment with vitamin C and polysaccharides extracted from Grifola frondosa. Apoptosis 2017; 22:1461-1472. [DOI: 10.1007/s10495-017-1421-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
He X, Wang X, Fang J, Chang Y, Ning N, Guo H, Huang L, Huang X, Zhao Z. Polysaccharides in Grifola frondosa mushroom and their health promoting properties: A review. Int J Biol Macromol 2017; 101:910-921. [DOI: 10.1016/j.ijbiomac.2017.03.177] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/15/2017] [Accepted: 03/29/2017] [Indexed: 01/24/2023]
|
29
|
Galactomannan from Schizolobium amazonicum seed and its sulfated derivatives impair metabolism in HepG2 cells. Int J Biol Macromol 2017; 101:464-473. [DOI: 10.1016/j.ijbiomac.2017.03.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 11/21/2022]
|
30
|
Zhang Y, Sun D, Meng Q, Guo W, Chen Q, Zhang Y. Grifola frondosa polysaccharides induce breast cancer cell apoptosis via the mitochondrial-dependent apoptotic pathway. Int J Mol Med 2017; 40:1089-1095. [PMID: 28765878 PMCID: PMC5593468 DOI: 10.3892/ijmm.2017.3081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/04/2017] [Indexed: 12/27/2022] Open
Abstract
Grifola frondosa, a type of food and medical fungus, has been shown to exhibit various pharmacological activities, including anticancer effects. As the most typical cancer diagnosed among female patients, breast cancer remains a huge concern threatening human health globally. In the present study, the anti-breast cancer effects of Grifola frondosa polysaccharides (GFPs) and the underlying mechanisms were investigated in MCF-7 and MDA-MB-231 cells, as well as in nude mice bearing MCF-7 tumor xenografts. GFPs exerted cytotoxic effects on the cells, as indicated by a decrease in cell viability, and an increase in the apoptototic rate, lactate dehydrogenase release and reactive oxygen species accumulation, inducing mitochondrial dysfunction. The increased expression of Bax, cleaved caspase-3 and caspase-8, and the reduced levels of B-cell lymphoma 2 (Bcl-2) and Bcl-extra large (Bcl-xL) were observed in the cells incubated with GFPs and in the tumor tissues of the mice treated with GFPs. Moreover, the GFPs significantly suppressed the phosphorylation of AKT/glycogen synthase kinase-3β and extracellular signal-regulated kinases in a time-dependent manner. Finally, the inhibition of MCF-7 tumor xenograft growth further confirmed the anti-breast cancer effects of GFPs. All these findings revealed that GFPs induced human breast cancer cell apoptosis via the mitochondrial-dependent apoptotic pathway, and provide experimental evidence to support the use of Grifola frondosa as a potential treatment for breast cancer.
Collapse
Affiliation(s)
- Yizhi Zhang
- Department of Neurology, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Dejun Sun
- Department of Biomedicine, Institute for Regeneration Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Qingjin Meng
- Department of Neurology, Brain Hospital of Jilin Province, Siping, Jilin 136000, P.R. China
| | - Wanxu Guo
- Department of Neurology, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Qiuhui Chen
- Department of Neurology, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Ying Zhang
- Department of Neurology, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
31
|
Feng H, Fan J, Yang S, Zhao X, Yi X. Antiviral activity of phosphorylated Radix Cyathulae officinalis polysaccharide against Canine Parvovirus in vitro. Int J Biol Macromol 2017; 99:511-518. [DOI: 10.1016/j.ijbiomac.2017.02.085] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/18/2017] [Accepted: 02/22/2017] [Indexed: 12/15/2022]
|
32
|
Duan L, Wu XL, Zhao F, Zeng R, Yang KH. Induction Effect to Apoptosis by Maitake Polysaccharide: Synergistic Effect of Its Combination With Vitamin C in Neuroglioma Cell. J Evid Based Complementary Altern Med 2017; 22:667-674. [PMID: 28528571 PMCID: PMC5871285 DOI: 10.1177/2156587217708524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Polysaccharide extracted from the Maitake mushroom (MP) is considered as a potential anticancer agent. The present study was performed to investigate the cytotoxic effects of MP and vitamin C (VC) alone and in combination on the viability of human neuroglioma M059 K cells in vitro. A combination of MP (1.0 mg/mL) and VC (0.4 mmol/L) led to a 53.10% reduction in cell viability and this treatment induced cell cycle arrest at the G2/M phase, and apoptosis occurred in 38.54% of the cells. Results of Hoechst 33258 staining and Western blot showed apoptotic cells appeared and changes in the expression of apoptosis-related proteins (upregulation of Bax and caspase-3, downregulation of Bcl-2, and activation of poly-(ADP-ribose)-polymerase). Moreover, the activities of caspase-3, caspase-8, and caspase-9 were enhanced in M059 K cells. The inhibiting effect of combined treatment with MP and VC on M059 K cells indicates the mechanism of anticancer activity involved induction of cell apoptosis.
Collapse
Affiliation(s)
- Lei Duan
- 1 School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,2 Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.,3 Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiao-Lu Wu
- 3 Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Fei Zhao
- 1 School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,2 Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.,4 School of Medicine, Northwest Minzu University, Lanzhou, China
| | - Rong Zeng
- 1 School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,2 Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.,3 Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Ke-Hu Yang
- 1 School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,2 Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| |
Collapse
|
33
|
Meng M, Cheng D, Han L, Chen Y, Wang C. Isolation, purification, structural analysis and immunostimulatory activity of water-soluble polysaccharides from Grifola Frondosa fruiting body. Carbohydr Polym 2016; 157:1134-1143. [PMID: 27987815 DOI: 10.1016/j.carbpol.2016.10.082] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/09/2016] [Accepted: 10/16/2016] [Indexed: 10/20/2022]
Abstract
A new polysaccharide had been successfully isolated from maitake mushroom (Grifola Frondosa)-GFP. HPLC and Monosaccharide analysis showed that the average molecular weight of GFP was 155kDa and it was mainly composed of rhamnose, xylose, mannose, glucose, molar ratio of 1.00: 1.04: 1.11: 6.21. FTIR, methylation analysis and NMR were used to analyze the structural characterization of GFP. Structural analysis results revealed that its backbone consisted of (1→4)-linked methylation, Glcp residues were major structural polysaccharide GFP units, accounting of the polysaccharide backbone speculate GFP every→3)-Glcp-(1→and one→3,4)-Glcp-(1→connected interval with a small amount of 1→, 1→4, 1→6 glycosidic linkage. MTT assay showed that GFP could significantly improve the proliferation activity of RAW264.7 cells in a certain range of concentrations and time. Scanningelectro microscopy (SEM) results indicated that GFP could induce RAW264.7 cells activation. GFP could obviously increase the proliferation index and enhance the immunostimulatory activity such as the cytokine and chemokine production.
Collapse
Affiliation(s)
- Meng Meng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People's Republic of China
| | - Dai Cheng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People's Republic of China
| | - Lirong Han
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People's Republic of China
| | - Yuanyuan Chen
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People's Republic of China
| | - Chunling Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People's Republic of China.
| |
Collapse
|
34
|
Cheng D, Zhang X, Meng M, Han L, Li C, Hou L, Qi W, Wang C. Inhibitory effect on HT-29 colon cancer cells of a water-soluble polysaccharide obtained from highland barley. Int J Biol Macromol 2016; 92:88-95. [PMID: 27377460 DOI: 10.1016/j.ijbiomac.2016.06.099] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 01/22/2023]
Abstract
A water-soluble polysaccharide (BP-1) was obtained from highland barley (Hordeum vulgare L.) by hot water extraction and purification of sepharose column chromatography. BP-1 had an average molecular weight of about 6.7×104Da and was composed of glucose (Glc), xylose (Xyl), arabinose (Ara) and rhamnose (Rha) with a relative molar ratio of 8.82:1.92:1.50:1.00. It was found that BP-1 inhibited proliferation of human colon cancer cells (HT-29) in a time- and dose-dependent manner with half maximal inhibitory concentration at 48h of 48.18μg/mL. Western blotting results showed that BP-1 enhanced the phosphorylation of c-Jun N-terminal kinase (JNK), processes associated with the reactive oxygen species (ROS) formation and inhibited nuclear factor-κB (NF-κB) translocation from cytoplasm into nucleus. Meanwhile, the BP-1-induced apoptosis was related to the regulation of apoptosis-associated proteins, such as B-cell lymphoma-2 (Bcl-2), release of cytochrome C from mitochondria to cytoplasm and activation of caspase-8 and caspase-9. These results suggest that BP-1-induced HT-29 apoptosis through ROS-JNK and NF-κB-mediated caspase pathways.
Collapse
Affiliation(s)
- Dai Cheng
- Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Xinyu Zhang
- Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Meng Meng
- Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Lirong Han
- Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Caijiao Li
- Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Lihua Hou
- Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Wentao Qi
- Academy of State Administration of Grain, No.11 Baiwanzhuang Avenue, Xicheng District, Beijing, 100037, People's Republic of China
| | - Chunling Wang
- Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China.
| |
Collapse
|
35
|
Si X, Zhou Z, Bu D, Li J, Strappe P, Blanchard C. Effect of sulfation on the antioxidant properties and in vitro cell proliferation characteristics of polysaccharides isolated from corn bran. CYTA - JOURNAL OF FOOD 2016. [DOI: 10.1080/19476337.2016.1176074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xu Si
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
- ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University, Wagga Wagga, Australia
| | - Dandan Bu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Jing Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Padraig Strappe
- ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University, Wagga Wagga, Australia
| | - Chris Blanchard
- ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University, Wagga Wagga, Australia
| |
Collapse
|
36
|
Huang WH, Liao WR, Sun RX. Astragalus polysaccharide induces the apoptosis of human hepatocellular carcinoma cells by decreasing the expression of Notch1. Int J Mol Med 2016; 38:551-7. [PMID: 27279598 DOI: 10.3892/ijmm.2016.2632] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/11/2016] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most frequent cause of cancer death worldwide. Astragalus polysaccharide (APS), the primary active component extracted from a traditional Chinese medicinal herb Astragalus membranaceus, has been proved to exert a marked inhibitory effect on a number of types of human solid tumors. In the present study, we aimed to examine the effects of APS on the survival of the HCC cell line H22 and to elucidate the underlying regulatory mechanisms responsible for these effects. Our results revealed that the mRNA and protein expression of Notch1 was significantly upregulated in the HCC tissues compared with that in the normal tissues. APS decreased cell viability and induced the apoptosis of HCC cells in a concentration-dependent manner, which were evaluated using a cell counting kit-8 (CCK-8) assay and flow cytometric analysis, respectively. Furthermore, APS regulated the expression of apoptosis-related genes (Bcl-2 and BAX) and proteases (caspase-3 and -8). Mechanically, Notch1 expression was found to be suppressed in HCC cells, and further analysis indicated that Notch1 knockdown by siRNA significantly reduced cell viability, suppressed the metastatic capacity and enhanced the apoptosis of HCC cells. Taken together, these findings suggest that Notch1 may be a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Wen-Hai Huang
- Department of General Surgery, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, P.R. China
| | - Wei-Rong Liao
- Department of General Surgery, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, P.R. China
| | - Rong-Xun Sun
- Department of General Surgery, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
37
|
Zhao C, Gao L, Wang C, Liu B, Jin Y, Xing Z. Structural characterization and antiviral activity of a novel heteropolysaccharide isolated from Grifola frondosa against enterovirus 71. Carbohydr Polym 2016; 144:382-9. [DOI: 10.1016/j.carbpol.2015.12.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/18/2015] [Accepted: 12/03/2015] [Indexed: 01/01/2023]
|
38
|
Zhao F, Wang YF, Song L, Jin JX, Zhang YQ, Gan HY, Yang KH. Synergistic Apoptotic Effect of D-Fraction From Grifola frondosa and Vitamin C on Hepatocellular Carcinoma SMMC-7721 Cells. Integr Cancer Ther 2016; 16:205-214. [PMID: 27151580 PMCID: PMC5739120 DOI: 10.1177/1534735416644674] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to investigate the anticancer effect of a combination of D-fraction polysaccharide from Grifola frondosa (DFP) and vitamin C (VC) on hepatocellular carcinoma in vitro. DFP is a bioactive extract from the maitake mushroom. Anticancer activity was demonstrated using various concentrations of DFP alone or in combination with VC against the human hepatocarcinoma SMMC-7721 cell line. To investigate the anticancer mechanism, studies designed to detect cell apoptosis were conducted. Results from the MTT assay indicated that a combination of DFP (0.2 mg/mL) and VC (0.3 mmol/L) led to a 70% reduction in cell viability. Flow cytometry results indicated that DFP/VC treatment induced apoptosis in approximately 65% SMMC-7721 cells. Cell cycle analysis identified cell cycle arrest at the G2/M phase following DFP/VC treatment for 48 hours. In addition, cellular morphological changes were observed using transmission electron microscopy. Western blot analysis revealed that the upregulation of BAX, downregulation of Bcl-2, activation of poly-(ADP-ribose)-polymerase (PARP), and the release of cytochrome c were observed in cells treated with the combination of DFP/VC, which showed that the mechanism of anticancer activity in the SMMC-7721 hepatocarcinoma cells involved induction of apoptosis.
Collapse
Affiliation(s)
- Fei Zhao
- 1 Evidence-Based Medicine Center, Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, People's Republic of China.,2 School of Medicine, Northwest University of Nationalities, Lanzhou, People's Republic of China.,3 Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou University, Lanzhou, People's Republic of China
| | - Yong-Feng Wang
- 4 School of Basic Medical Sciences, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Lei Song
- 2 School of Medicine, Northwest University of Nationalities, Lanzhou, People's Republic of China
| | - Jia-Xin Jin
- 5 Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, People's Republic of China
| | - Ya-Qing Zhang
- 2 School of Medicine, Northwest University of Nationalities, Lanzhou, People's Republic of China
| | - Hong-Yun Gan
- 2 School of Medicine, Northwest University of Nationalities, Lanzhou, People's Republic of China
| | - Ke-Hu Yang
- 1 Evidence-Based Medicine Center, Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, People's Republic of China.,3 Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
39
|
Ma X, Meng M, Han L, Cheng D, Cao X, Wang C. Structural characterization and immunomodulatory activity of Grifola frondosa polysaccharide via toll-like receptor 4–mitogen-activated protein kinases–nuclear factor κB pathways. Food Funct 2016; 7:2763-72. [DOI: 10.1039/c6fo00279j] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We isolated a neutral polysaccharide from the fruiting body of a mushroom Grifola frondosa (GFP-A).
Collapse
Affiliation(s)
- Xiaolei Ma
- Key Laboratory of Food Nutrition and Safety Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science & Technology
- Tianjin
- P.R. China
| | - Meng Meng
- Key Laboratory of Food Nutrition and Safety Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science & Technology
- Tianjin
- P.R. China
| | - Lirong Han
- Key Laboratory of Food Nutrition and Safety Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science & Technology
- Tianjin
- P.R. China
| | - Dai Cheng
- Key Laboratory of Food Nutrition and Safety Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science & Technology
- Tianjin
- P.R. China
| | - Xiaohong Cao
- Key Laboratory of Food Nutrition and Safety Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science & Technology
- Tianjin
- P.R. China
| | - Chunling Wang
- Key Laboratory of Food Nutrition and Safety Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science & Technology
- Tianjin
- P.R. China
| |
Collapse
|
40
|
Si Y, Guo S, Fang Y, Qin S, Li F, Zhang Y, Jiao P, Zhang C, Gao L. Celery Seed Extract Blocks Peroxide Injury in Macrophages via Notch1/NF-κB Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:443-55. [DOI: 10.1142/s0192415x15500287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxidized low-density lipoprotein (ox-LDL)-induced macrophage foam cell formation and injury is one of the major atherogenic factors. This study is aimed to investigate the protective effect of celery seed extract (CSE) on ox-LDL-induced injury of macrophages and the underlying signaling pathway. RAW264.7 macrophages were pre-incubated with CSE for 24 h, followed by stimulation with ox-LDL. Oil red O staining and enzymatic colorimetry indicated CSE significantly lessened lipid droplets and total cholesterol (TC) content in ox-LDL-injured macrophages. ELISA revealed that CSE decreased the secretion of inflammatory cytokine TNF-α and IL-6 by 12–27% and 5–15% respectively. MTT assay showed CSE promoted cell viability by 16–40%. Cell apoptosis was also analyzed by flow cytometry and laser scanning confocal microscope and the data indicated CSE inhibited ox-LDL-induced apoptosis of macrophages. Meanwhile, western blot analysis showed CSE suppressed NF-κBp65 and notch1 protein expressions stimulated by ox-LDL in macrophages. These results suggest that CSE inhibits ox-LDL-induced macrophages injury via notch1/NF-κB pathway.
Collapse
Affiliation(s)
- Yanhong Si
- College of Basic Medical Sciences, Taishan Medical University, Shandong, China
| | - Shoudong Guo
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Shandong, China
| | - Yongqi Fang
- College of Basic Medical Sciences, Taishan Medical University, Shandong, China
| | - Shucun Qin
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Shandong, China
| | - Furong Li
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Shandong, China
| | - Ying Zhang
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Shandong, China
| | - Peng Jiao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Shandong, China
| | - Chunduo Zhang
- College of Basic Medical Sciences, Taishan Medical University, Shandong, China
| | - Linlin Gao
- College of Basic Medical Sciences, Taishan Medical University, Shandong, China
| |
Collapse
|
41
|
Niacin inhibits vascular inflammation via downregulating nuclear transcription factor-κB signaling pathway. Mediators Inflamm 2014; 2014:263786. [PMID: 24991087 PMCID: PMC4058495 DOI: 10.1155/2014/263786] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/01/2014] [Accepted: 04/16/2014] [Indexed: 01/13/2023] Open
Abstract
The study aimed to investigate the effect of niacin on vascular inflammatory lesions in vivo and in vitro as well as its lipid-regulating mechanism. In vivo study revealed that niacin downregulated the levels of inflammatory factors (IL-6 and TNF-α) in plasma, suppressed protein expression of CD68 and NF-κB p65 in arterial wall, and attenuated oxidative stress in guinea pigs that have been fed high fat diet. In vitro study further confirmed that niacin decreased the secretion of IL-6 and TNF-α and inhibited NF-κB p65 and notch1 protein expression in oxLDL-stimulated HUVECs and THP-1 macrophages. Moreover, niacin attenuated oxLDL-induced apoptosis of HUVECs as well. In addition, niacin significantly lessened lipid deposition in arterial wall, increased HDL-C and apoA levels and decreased TG and non-HDL-C levels in plasma, and upregulated the mRNA amount of cholesterol 7α-hydroxylase A1 in liver of guinea pigs. These data suggest for the first time that niacin inhibits vascular inflammation in vivo and in vitro via downregulating NF-κB signaling pathway. Furthermore, niacin also modulates plasma lipid by upregulating the expression of factors involved in the process of reverse cholesterol transport.
Collapse
|
42
|
Zhang M, Tang X, Wang F, Zhang Q, Zhang Z. Characterization of Lycium barbarum polysaccharide and its effect on human hepatoma cells. Int J Biol Macromol 2013; 61:270-5. [PMID: 23817098 DOI: 10.1016/j.ijbiomac.2013.06.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/22/2013] [Accepted: 06/22/2013] [Indexed: 11/27/2022]
Abstract
To investigate structure-bioactivity relationship of LBP, Lycium barbarum polysaccharide (LBP) was extracted and separated into five fractions using ultrafiltration membrane method. Then the effects of these polysaccharide fractions on human liver cancer cells (SMMC-7721) were observed by MTT assay, LSCM and FCM. And the components, molecular weight and conformation of LBP fractions were analyzed by GC, HPLC and AFM. The results showed that LBP-a8, LBP-a3, LBP-a1 and LBP-a4 could inhibit the proliferation of SMMC-7721 cells in a concentration and time dependent manner. But LBP-p8 could promote the growth of SMMC-7721 cells. LBP-a4 (10.2 kDa), which consists of uronic acid (11.5%), protein (0.34%) and neutral sugar (39.02%), could arrest SMMC-7721 cells at G0/G1 phase and enhance the intracellular Ca(2+) concentration significantly. Nevertheless, LBP-p8 (6.50×10(3) kDa), which consists of uronic acid (13.4%), protein (4.77%) and neutral sugar (26.26%), did not change the cell cycle and Ca(2+) concentration in cytoplasm significantly. The molecular conformation of LBP-a4 and LBP-p8 was spherical and flocculent molecular shape, respectively, suggesting that spherical molecular shape was benefit to LBP's apoptosis inducing activity while flocculent molecular shape did not have that function.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, China.
| | | | | | | | | |
Collapse
|