1
|
Lahaye M, Thoulouze L, Calatraba M, Gauclain T, Falourd X, Le-Quere JM, Foucat L, Bauduin R. What are the determining factors controlling the juice yield of cider apple? A multimodal and multiscale investigation. Food Chem 2023; 420:135649. [PMID: 37080111 DOI: 10.1016/j.foodchem.2023.135649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Apple cider juice yield at harvest and after 15 and 30 days of storage durations was studied by analyzing the mechanical properties of fresh and plasmolyzed flesh, water distribution, cell wall polysaccharide composition and organization of the apples; in this study, the apple varieties used were Avrolles, Douce coetligne, Douce moen, Judor, Petit jaune. Juice yield mainly depended on the apple variety and the storage duration. Cellulose organization and cell wall pectin hydration were affected by ripening and are related to fruit firmness. Flesh viscoelastic mechanical properties were not general indications of juice yields. However, these properties helped distinguish the varieties according to flesh damage caused by ice crystals upon freezing. Cell encapsulation of the juice in the flesh contributed to lower yields. The apple variety and harvesting mode are recommended as a means to better control juice yield variations.
Collapse
|
2
|
Pieczywek PM, Chibrikov V, Zdunek A. In silico studies of plant primary cell walls - structure and mechanics. Biol Rev Camb Philos Soc 2023; 98:887-899. [PMID: 36692136 DOI: 10.1111/brv.12935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/16/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
Primary plant cell wall (PCW) is a highly organized network, its performance is dependent on cellulose, hemicellulose and pectic polysaccharides, their properties, interactions and assemblies. Their mutual relationships and functions in the cell wall can be better understood by means of conceptual models of their higher-order structures. Knowledge unified in the form of a conceptual model allows predictions to be made about the properties and behaviour of the system under study. Ongoing research in this field has resulted in a number of conceptual models of the cell wall. However, due to the currently limited research methods, the community of cell wall researchers have not reached a consensus favouring one model over another. Herein we present yet another research technique - numerical modelling - which is capable of resolving this issue. Even at the current stage of development of numerical techniques, due to their complexity, the in silico reconstruction of PCW remains a challenge for computational simulations. However, some difficulties have been overcome, thereby making it possible to produce advanced approximations of PCW structure and mechanics. This review summarizes the results concerning the simulation of polysaccharide interactions in PCW with regard to network fine structure, supramolecular properties and polysaccharide binding affinity. The in silico mechanical models presented herein incorporate certain physical and biomechanical aspects of cell wall architecture for the purposes of undertaking critical testing to bring about advances in our understanding of the mechanisms controlling cells and limiting cell wall expansion.
Collapse
Affiliation(s)
- Piotr Mariusz Pieczywek
- Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, Lublin, 20-290, Poland
| | - Vadym Chibrikov
- Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, Lublin, 20-290, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, Lublin, 20-290, Poland
| |
Collapse
|
3
|
Gao Y, Guo M, Wang D, Zhao D, Wang M. Advances in extraction, purification, structural characteristics and biological activities of hemicelluloses: A review. Int J Biol Macromol 2023; 225:467-483. [PMID: 36379281 DOI: 10.1016/j.ijbiomac.2022.11.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Hemicelluloses, a major component of plant cell walls, are a non-cellulosic heteropolysaccharide composed of several distinct sugars that is second in abundance to cellulose, which are one of the most abundant and cheapest renewable resources on earth. Hemicelluloses structure is complex and its chemical structure varies greatly among the different plant species. In addition to its wide use in production of feed and other chemical materials, hemicelluloses are known for its remarkable biological activities that remain largely underutilised to date. Therefore, comprehensive investigations of hemicelluloses structural and biological properties would be helpful for achieving rational utilisation and high-value conversion of this underutilised substance into agents with enhanced health benefits for incorporation in drugs and health foods. In this review, details of diverse research initiatives that have enhanced our understanding of hemicelluloses properties are summarised, including hemicelluloses sources, extraction and purification methods, structural characteristics and biological activities. Furthermore, hemicelluloses structure-activity relationships and new directions for future hemicelluloses research studies are discussed.
Collapse
Affiliation(s)
- Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingkun Guo
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
4
|
Impact of cell wall non-cellulosic and cellulosic polymers on the mechanical properties of flax fibre bundles. Carbohydr Polym 2022; 291:119599. [DOI: 10.1016/j.carbpol.2022.119599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/02/2022]
|
5
|
Biorefinery of apple pomace: New insights into xyloglucan building blocks. Carbohydr Polym 2022; 290:119526. [PMID: 35550758 DOI: 10.1016/j.carbpol.2022.119526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022]
Abstract
Within the apple pomace biorefinery cascade processing framework aiming at adding value to an agroindustrial waste, after pectin recovery, this study focused on hemicellulose. The structure of the major apple hemicellulose, xyloglucan (XyG), was assessed as a prerequisite to potential developments in industrial applications. DMSO-LiCl and 4 M KOH soluble hemicelluloses from pectin-extracted apple pomace were purified by anion exchange chromatography. XyG structure was assessed by coupling xyloglucanase and endo-β-1,4-glucanase digestions to HPAEC and MALDI-TOF MS analyses. 71.9% of pomaces hemicellulose were recovered with starch. DMSO-LiCl and 4 M KOH soluble XyG exhibited Mw of 19 and 140 kDa, respectively. Besides the XXXG, XLXG, XXLG, XXFG, XLFG and XLLG structures, novel oligosaccharides with degree of polymerization of 6-10 were observed after xyloglucanase digestion. Cellobiose and cellotriose were revealed randomly distributed in XyG backbone and were more present in DMSO-LiCl soluble XyG. Residual pomace remains a potential source of other materials.
Collapse
|
6
|
Sushytskyi L, Synytsya A, Mirzayeva T, Kalouskova T, Bleha R, Čopíková J, Kubač D, Grivalský T, Ulbrich P, Kaštánek P. Fractionation of the water insoluble part of the heterotrophic mutant green microalga Parachlorella kessleri HY1 (Chlorellaceae) biomass: Identification and structure of polysaccharides. Int J Biol Macromol 2022; 213:27-42. [PMID: 35623455 DOI: 10.1016/j.ijbiomac.2022.05.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022]
Abstract
The water-insoluble part of Parachlorella kessleri HY1 biomass was subjected to the extraction of cell-wall polysaccharides using polar aprotic solvents (DMSO, LiCl/DMSO) and aqueous alkaline solutions (0.1, 1 and 4 mol·l-1 of NaOH). Proteins predominated in all the crude extracts and in the insoluble residues were partially removed by treatment with proteolytic enzymes (pepsin and pronase), and in some cases with the HCl/H2O2 reagent, yielding purified polysaccharide-enriched fractions. These treatments led to the solubilisation of some products in water. The composition and structure of isolated polysaccharides were characterised based on monosaccharide composition, glycosidic linkage and spectroscopic analyses. The DMSO extract contained mainly proteins, and polysaccharides were not detected. The water-soluble parts isolated from the LiCl/DMSO extract contained α-l-rhamnan, α-d-glucan and β-d-glucogalactan; the water-insoluble part contained (1 → 4)-β-d-xylan, first isolated from the biomass of green microalgae. The alkali extracts contained polysaccharides of similar structure, and also water-insoluble (1 → 4)-β-d-mannan. The insoluble part after all extractions contained α-chitin as the main polysaccharide, which was confirmed by spectroscopic methods. All these polysaccharides can play a certain role in the cell wall structure of this microalga.
Collapse
Affiliation(s)
- Leonid Sushytskyi
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Czech Republic.
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Czech Republic
| | - Tamilla Mirzayeva
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Czech Republic
| | - Tereza Kalouskova
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Czech Republic
| | - Roman Bleha
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Czech Republic
| | - Jana Čopíková
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Czech Republic
| | - David Kubač
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237 - Opatovický mlýn, 379 81 Třebon, Czech Republic
| | - Tomáš Grivalský
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237 - Opatovický mlýn, 379 81 Třebon, Czech Republic
| | - Pavel Ulbrich
- Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6 Dejvice, Czech Republic
| | - Petr Kaštánek
- Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6 Dejvice, Czech Republic; EcoFuel Laboratories s.r.o, Ocelářská 9, Prague 9 Libeň 190 00, Czech Republic
| |
Collapse
|
7
|
Natural deep eutectic solvents pretreatment as an aid for pectin extraction from apple pomace. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106601] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Chemically sulfated arabinoxylans from Plantago ovata seed husk: Synthesis, characterization and antiviral activity. Carbohydr Polym 2021; 256:117555. [DOI: 10.1016/j.carbpol.2020.117555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
|
9
|
Zavyalov AV, Rykov SV, Lunina NA, Sushkova VI, Yarotsky SV, Berezina OV. Plant Polysaccharide Xyloglucan and Enzymes That Hydrolyze It (Review). RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019070148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Lahaye M, Falourd X, Laillet B, Le Gall S. Cellulose, pectin and water in cell walls determine apple flesh viscoelastic mechanical properties. Carbohydr Polym 2019; 232:115768. [PMID: 31952582 DOI: 10.1016/j.carbpol.2019.115768] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
Abstract
The viscoelastic mechanical properties are important quality traits for fleshy fruit uses. The contribution of cell wall polysaccharides chemistry and organization on their variability was studied in six varieties of apple. Correlation between damping and storage modulus of plasmolyzed tissue distinguished better apple varieties on their viscoelasticity than fresh samples. Galactose, arabinose and uronic acids correlated positively with the storage modulus of fresh apple samples (E'f). These corresponded to 4-linked galactan but no specific arabinose linkage. Galacturonic acid branched on O-3 and terminal rhamnose correlated negatively with E'f. These correlations formed two groups of fruit except for branched methyl-esterified galacturonic. Solid-state 13C NMR spectroscopy analyses showed that E'f correlated negatively with cellulose C4 T1ρH relaxation and positively with pectin methyl esters THH proton diffusion. The results point to the key roles of pectin structure and hydration and cellulose microfibrils distribution on apple mechanical properties.
Collapse
|
11
|
Jaafar Z, Mazeau K, Boissière A, Le Gall S, Villares A, Vigouroux J, Beury N, Moreau C, Lahaye M, Cathala B. Meaning of xylan acetylation on xylan-cellulose interactions: A quartz crystal microbalance with dissipation (QCM-D) and molecular dynamic study. Carbohydr Polym 2019; 226:115315. [DOI: 10.1016/j.carbpol.2019.115315] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/27/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022]
|
12
|
Verhertbruggen Y, Falourd X, Sterner M, Guillon F, Girousse C, Foucat L, Le Gall S, Chateigner-Boutin AL, Saulnier L. Challenging the putative structure of mannan in wheat (Triticum aestivum) endosperm. Carbohydr Polym 2019; 224:115063. [DOI: 10.1016/j.carbpol.2019.115063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/31/2022]
|
13
|
Ray S, Vigouroux J, Bouder A, Francin Allami M, Geairon A, Fanuel M, Ropartz D, Helbert W, Lahaye M, Bonnin E. Functional exploration of Pseudoalteromonas atlantica as a source of hemicellulose-active enzymes: Evidence for a GH8 xylanase with unusual mode of action. Enzyme Microb Technol 2019; 127:6-16. [PMID: 31088618 DOI: 10.1016/j.enzmictec.2019.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/26/2019] [Accepted: 04/07/2019] [Indexed: 11/18/2022]
Abstract
To address the need for efficient enzymes exhibiting novel activities towards cell wall polysaccharides, the bacterium Pseudoalteromonas atlantica was selected based on the presence of potential hemicellulases in its annotated genome. It was grown in the presence or not of hemicelluloses and the culture filtrates were screened towards 42 polysaccharides. P. atlantica showed appreciable diversity of enzymes active towards hemicelluloses from Monocot and Dicot origin, in agreement with its genome annotation. After growth on beechwood glucuronoxylan and fractionation of the secretome, a β-xylosidase, a α-arabinofuranosidase and an acetylesterase activities were evidenced. A GH8 enzyme obtained in the same growth conditions was further cloned and heterologously overexpressed. It was shown to be a xylanase active on heteroxylans from various sources. The detailed study of its mode of action demonstrated that the oligosaccharides produced carried a long tail of un-substituted xylose residues on the reducing end.
Collapse
Affiliation(s)
- Sayani Ray
- INRA, UR 1268 Biopolymères - Interactions - Assemblages, 44 316 Nantes, France; Department of Chemistry, The University of Burdwan, Burdwan, 713104 West Bengal, India
| | | | - Axelle Bouder
- INRA, UR 1268 Biopolymères - Interactions - Assemblages, 44 316 Nantes, France
| | | | - Audrey Geairon
- INRA, UR 1268 Biopolymères - Interactions - Assemblages, 44 316 Nantes, France
| | - Mathieu Fanuel
- INRA, UR 1268 Biopolymères - Interactions - Assemblages, 44 316 Nantes, France
| | - David Ropartz
- INRA, UR 1268 Biopolymères - Interactions - Assemblages, 44 316 Nantes, France
| | - William Helbert
- CERMAV-CNRS, 601 rue de la Chimie, BP53, 38041 Grenoble, France
| | - Marc Lahaye
- INRA, UR 1268 Biopolymères - Interactions - Assemblages, 44 316 Nantes, France
| | - Estelle Bonnin
- INRA, UR 1268 Biopolymères - Interactions - Assemblages, 44 316 Nantes, France.
| |
Collapse
|
14
|
van der Zaal P, Klostermann C, Schols H, Bitter J, Buwalda P. Enzymatic fingerprinting of isomalto/malto-polysaccharides. Carbohydr Polym 2019; 205:279-286. [DOI: 10.1016/j.carbpol.2018.09.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 02/03/2023]
|
15
|
Broxterman SE, van Erven G, Schols HA. The solubility of primary plant cell wall polysaccharides in LiCl-DMSO. Carbohydr Polym 2018; 200:332-340. [DOI: 10.1016/j.carbpol.2018.07.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/16/2018] [Accepted: 07/27/2018] [Indexed: 11/26/2022]
|
16
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
17
|
Fractionation of DMSO-Extracted and NaOH-Extracted Hemicelluloses by Gradient Ethanol Precipitation from Neosinocalamus affinis. INT J POLYM SCI 2018. [DOI: 10.1155/2018/9587042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neosinocalamus affinis hemicelluloses were extracted with pure DMSO and 3% NaOH in sequence. The DMSO- and NaOH-extracted hemicelluloses were then successively fractionated by gradient ethanol precipitation. NaOH-extracted hemicellulosic fractions with different branch degree could be separated by gradient ethanol precipitation, while DMSO-extracted hemicellulosic fractions could not. FT-IR spectra showed that DMSO-extracted fractions have more complete structure, while NaOH-extracted fractions have no acetyl at all. The FT-IR and NMR revealed that the DMSO-extracted Neosinocalamus affinis hemicelluloses were 4-O-methyl-glucuronoarabinoxylans consisting of a linear (1→4)-β-D-xylopyranosyl backbone with branches at O-2,3 of acetyl, O-2 of 4-O-methyl-a-D glucuronic acid, and O-3 of arabinose.
Collapse
|
18
|
Advanced analysis of polysaccharides, novel functional components in food and medicine dual purposes Chinese herbs. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Ngolong Ngea GL, Guillon F, Essia Ngang JJ, Bonnin E, Bouchet B, Saulnier L. Modification of cell wall polysaccharides during retting of cassava roots. Food Chem 2016; 213:402-409. [DOI: 10.1016/j.foodchem.2016.06.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
|
20
|
Homogeneous esterification mechanism of bagasse modified with phthalic anhydride in ionic liquid. Part 2: Reactive behavior of hemicelluloses. Carbohydr Polym 2016; 157:1365-1373. [PMID: 27987844 DOI: 10.1016/j.carbpol.2016.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 11/23/2022]
Abstract
The phthalation of bagasse was comparatively investigated with the isolated three main components in 1-allyl-3-methylidazium chloride (AmimCl) to reveal the reaction behavior of bagasse. In the present study, the reaction behavior of hemicelluloses during the homogeneous phthalation was extensively explored. The phthalation degree of hemicellulosic samples ranged from 16.37% to 52.14%. The reaction priority on the main and side chains of hemicelluloses were revealed by the changes of monosaccharide contents upon phthalation. The results indicated that side-chains of hemicelluloses were more easily phthalated than main-chains, and the phthalation of secondary hydroxyl groups on uronic acids was more difficult than that on neutral sugars. 13C NMR and HSQC analyses suggested the similar reactivity of the secondary hydroxyls at C-2 and C-3 positions in anhydroxylose units. These results provide more detailed understanding of the homogenous modification of lignocellulose.
Collapse
|
21
|
Dheilly E, Gall SL, Guillou MC, Renou JP, Bonnin E, Orsel M, Lahaye M. Cell wall dynamics during apple development and storage involves hemicellulose modifications and related expressed genes. BMC PLANT BIOLOGY 2016; 16:201. [PMID: 27630120 PMCID: PMC5024441 DOI: 10.1186/s12870-016-0887-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/01/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Fruit quality depends on a series of biochemical events that modify appearance, flavour and texture throughout fruit development and ripening. Cell wall polysaccharide remodelling largely contributes to the elaboration of fleshy fruit texture. Although several genes and enzymes involved in cell wall polysaccharide biosynthesis and modifications are known, their coordinated activity in these processes is yet to be discovered. RESULTS Combined transcriptomic and biochemical analyses allowed the identification of putative enzymes and related annotated members of gene families involved in cell wall polysaccharide composition and structural changes during apple fruit growth and ripening. The early development genes were mainly related to cell wall biosynthesis and degradation with a particular target on hemicelluloses. Fine structural evolutions of galactoglucomannan were strongly correlated with mannan synthase, glucanase (GH9) and β-galactosidase gene expression. In contrast, fewer genes related to pectin metabolism and cell expansion (expansin genes) were observed in ripening fruit combined with expected changes in cell wall polysaccharide composition. CONCLUSIONS Hemicelluloses undergo major structural changes particularly during early fruit development. The high number of early expressed β-galactosidase genes questions their function on galactosylated structures during fruit development and storage. Their activity and cell wall substrate remains to be identified. Moreover, new insights into the potential role of peroxidases and transporters, along with cell wall metabolism open the way to further studies on concomitant mechanisms involved in cell wall assembly/disassembly during fruit development and storage.
Collapse
Affiliation(s)
- Emmanuelle Dheilly
- INRA UR 1268 Biopolymères, Interactions, Assemblages, F-44316 Nantes, France
- IRHS, INRA, AGROCAMPUS-Ouest, Université d’Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071 Beaucouzé cedex, France
| | - Sophie Le Gall
- INRA UR 1268 Biopolymères, Interactions, Assemblages, F-44316 Nantes, France
| | - Marie-Charlotte Guillou
- IRHS, INRA, AGROCAMPUS-Ouest, Université d’Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071 Beaucouzé cedex, France
| | - Jean-Pierre Renou
- IRHS, INRA, AGROCAMPUS-Ouest, Université d’Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071 Beaucouzé cedex, France
| | - Estelle Bonnin
- INRA UR 1268 Biopolymères, Interactions, Assemblages, F-44316 Nantes, France
| | - Mathilde Orsel
- IRHS, INRA, AGROCAMPUS-Ouest, Université d’Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071 Beaucouzé cedex, France
| | - Marc Lahaye
- INRA UR 1268 Biopolymères, Interactions, Assemblages, F-44316 Nantes, France
| |
Collapse
|
22
|
Morrill J, Kulcinskaja E, Sulewska AM, Lahtinen S, Stålbrand H, Svensson B, Abou Hachem M. The GH5 1,4-β-mannanase from Bifidobacterium animalis subsp. lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes. BMC BIOCHEMISTRY 2015; 16:26. [PMID: 26558435 PMCID: PMC4642672 DOI: 10.1186/s12858-015-0055-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/29/2015] [Indexed: 12/18/2022]
Abstract
Background β-Mannans are abundant and diverse plant structural and storage polysaccharides. Certain human gut microbiota members including health-promoting Bifidobacterium spp. catabolize dietary mannans. Little insight is available on the enzymology of mannan deconstruction in the gut ecological niche. Here, we report the biochemical properties of the first family 5 subfamily 8 glycoside hydrolase (GH5_8) mannanase from the probiotic bacterium Bifidobacterium animalis subsp. lactis Bl-04 (BlMan5_8). Results BlMan5_8 possesses a novel low affinity carbohydrate binding module (CBM) specific for soluble mannan and displays the highest catalytic efficiency reported to date for a GH5 mannanase owing to a very high kcat (1828 ± 87 s-1) and a low Km (1.58 ± 0.23 g · L-1) using locust bean galactomannan as substrate. The novel CBM of BlMan5_8 mediates increased binding to soluble mannan based on affinity electrophoresis. Surface plasmon resonance analysis confirmed the binding of the CBM10 to manno-oligosaccharides, albeit with slightly lower affinity than the catalytic module of the enzyme. This is the first example of a low-affinity mannan-specific CBM, which forms a subfamily of CBM10 together with close homologs present only in mannanases. Members of this new subfamily lack an aromatic residue mediating binding to insoluble cellulose in canonical CBM10 members consistent with the observed low mannan affinity. Conclusion BlMan5_8 is evolved for efficient deconstruction of soluble mannans, which is reflected by an exceptionally low Km and the presence of an atypical low affinity CBM, which increases binding to specifically to soluble mannan while causing minimal decrease in catalytic efficiency as opposed to enzymes with canonical mannan binding modules. These features highlight fine tuning of catalytic and binding properties to support specialization towards a preferred substrate, which is likely to confer an advantage in the adaptation to competitive ecological niches. Electronic supplementary material The online version of this article (doi:10.1186/s12858-015-0055-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johan Morrill
- Department of Biochemistry and Structural Biology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, S-221 00, Lund, Sweden
| | - Evelina Kulcinskaja
- Department of Biochemistry and Structural Biology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, S-221 00, Lund, Sweden
| | - Anna Maria Sulewska
- Enzyme and Protein Chemistry (EPC), Department of Systems Biology, Technical University of Denmark (DTU), Søltofts Plads, building 224, DK-2800, Kgs Lyngby, Denmark.,Current address: Biochemistry and Bioprocessing, Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958, Fredriksberg C, Denmark
| | - Sampo Lahtinen
- Active Nutrition, DuPont Nutrition & Health, Sokeritehtaantie 20, 02460, Kantvik, Finland
| | - Henrik Stålbrand
- Department of Biochemistry and Structural Biology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, S-221 00, Lund, Sweden
| | - Birte Svensson
- Enzyme and Protein Chemistry (EPC), Department of Systems Biology, Technical University of Denmark (DTU), Søltofts Plads, building 224, DK-2800, Kgs Lyngby, Denmark
| | - Maher Abou Hachem
- Enzyme and Protein Chemistry (EPC), Department of Systems Biology, Technical University of Denmark (DTU), Søltofts Plads, building 224, DK-2800, Kgs Lyngby, Denmark.
| |
Collapse
|
23
|
Quéméner B, Vigouroux J, Rathahao E, Tabet JC, Dimitrijevic A, Lahaye M. Negative electrospray ionization mass spectrometry: a method for sequencing and determining linkage position in oligosaccharides from branched hemicelluloses. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:247-64. [PMID: 25601700 DOI: 10.1002/jms.3528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 05/04/2023]
Abstract
Xyloglucans of apple, tomato, bilberry and tamarind were hydrolyzed by commercial endo β-1-4-D-endoglucanase. The xylo-gluco-oligosaccharides (XylGos) released were separated on CarboPac PA 200 column in less than 15 min, and, after purification, they were structurally characterized by negative electrospray ionization mass spectrometry using a quadrupole time-of-flight (ESI-Q-TOF), a hybrid linear ion trap (LTQ)/Orbitrap and a hybrid quadrupole Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. In order to corroborate the fragmentation routes observed on XylGos, some commercial galacto-manno-oligosaccharides (GalMOs) and glucurono-xylo-oligosaccharides were also studied. The fragmentation pathways of the ionized GalMos were similar to those of XylGos ones. The product ion spectra were mainly characterized by prominent double cleavage (D) ions corresponding to the entire inner side chains. The directed fragmentation from the reducing end to the other end was observed for the main glycosylated backbone but also for the side-chains, allowing their complete sequencing. Relevant cross-ring cleavage ions from (0,2)X(j)-type revealed to be diagnostic of the 1-2-linked- glycosyl units from XylGos together with the 1-2-linked glucuronic acid unit from glucuronoxylans. Resonant activation in the LTQ Orbitrap allowed not only determining the type of all linkages but also the O-acetyl group location on fucosylated side-chains. Moreover, the fragmentation of the different side chains using the MS(n) capabilities of the LTQ/Orbitrap analyzer also allowed differentiating terminal arabinosyl and xylosyl substituents inside S and U side-chains of XylGos, respectively. The CID spectra obtained were very informative for distinction of isomeric structures differing only in their substitution pattern. These features together makes the fragmentation in negative ionization mode a relevant and powerful technique useful to highlight the subtle structural changes generally observed during the development of plant organs such as during fruit ripening and for the screening of cell wall mutants with altered hemicellulose structure.
Collapse
Affiliation(s)
- Bernard Quéméner
- INRA, Biopolymères, Interactions, Assemblage, Rue de la Géraudière BP 71627, F-44316, Nantes, France
| | | | | | | | | | | |
Collapse
|
24
|
Structural Diversity and Function of Xyloglucan Sidechain Substituents. PLANTS 2014; 3:526-42. [PMID: 27135518 PMCID: PMC4844278 DOI: 10.3390/plants3040526] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/02/2022]
Abstract
Xyloglucan (XyG) is a hemicellulose found in the cell walls of all land plants including early-divergent groups such as liverworts, hornworts and mosses. The basic structure of XyG, a xylosylated glucan, is similar in all of these plants but additional substituents can vary depending on plant family, tissue, and developmental stage. A comprehensive list of known XyG sidechain substituents is assembled including their occurrence within plant families, thereby providing insight into the evolutionary origin of the various sidechains. Recent advances in DNA sequencing have enabled comparative genomics approaches for the identification of XyG biosynthetic enzymes in Arabidopsis thaliana as well as in non-model plant species. Characterization of these biosynthetic genes not only allows the determination of their substrate specificity but also provides insights into the function of the various substituents in plant growth and development.
Collapse
|
25
|
Rabetafika HN, Bchir B, Blecker C, Richel A. Fractionation of apple by-products as source of new ingredients: Current situation and perspectives. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2014.08.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|