1
|
Li J, Xu H, Wang G, Gao Y, Jiang Z, Hou J. Consequence of high-pressure homogenization on the whipping characteristics of soybean oil body cream. Food Chem 2025; 468:142450. [PMID: 39675278 DOI: 10.1016/j.foodchem.2024.142450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The study explored the effect of different high-pressure homogenization (HPH) pressure (30-70 MPa) on the whipping characteristics of soybean oil body (SOB) cream. With the increase of HPH treatment, fat globules were further broken, and their adsorption on the interface was promoted, which further enhanced the stability of cream, leading to smaller particle size and higher apparent viscosity. Moreover, whipping performance of cream is the best at 30 MPa. Textural results showed that the hardness of bubble formed by cream whipping tended to increase and then decrease after homogenization. The analysis of sensory evaluation and principal component analysis (PCA) showed that the whipping cream with 30 MPa treatment had the highest total score. Therefore, low HPH pressure could likewise improve the whipping characteristics of SOB cream. It provided the theoretical support for the production and application of high whipping performance and low trans-fat cream.
Collapse
Affiliation(s)
- Jinzhe Li
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China; College of Food Science and Engineering, Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia Polycarpa of National Forestry and Grassland Administration, Guiyang University, Guiyang 550005, PR China
| | - Heyang Xu
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Guangjie Wang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yitong Gao
- Quality Safety Monitoring and Technology Center for Grain of Heilongjiang Province, Harbin, PR China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| | - Juncai Hou
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China; College of Food Science and Engineering, Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia Polycarpa of National Forestry and Grassland Administration, Guiyang University, Guiyang 550005, PR China.
| |
Collapse
|
2
|
Chen S, Dima C, Kharazmi MS, Yin L, Liu B, Jafari SM, Li Y. The colloid and interface strategies to inhibit lipid digestion for designing low-calorie food. Adv Colloid Interface Sci 2023; 321:103011. [PMID: 37826977 DOI: 10.1016/j.cis.2023.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Although fat is one of the indispensable components of food flavor, excessive fat consumption could cause obesity, metabolism syndromes and an imbalance in the intestinal flora. In the pursuit of a healthy diet, designing fat reducing foods by inhibiting lipid digestion and calorie intake is a promising strategy. Altering the gastric emptying rates of lipids as well as acting on the lipase by suppressing the enzymatic activity or limiting lipase diffusion via interfacial modulation can effectively decrease lipolysis rates. In this review, we provide a comprehensive overview of colloid-based strategies that can be employed to retard lipid hydrolysis, including pancreatic lipase inhibitors, emulsion-based interfacial modulation and fat substitutes. Plants-/microorganisms-derived lipase inhibitors bind to catalytic active sites and change the enzymatic conformation to inhibit lipase activity. Introducing oil-in-water Pickering emulsions into the food can effectively delay lipolysis via steric hindrance of interfacial particulates. Regulating stability and physical states of emulsions can also affect the rate of hydrolysis by altering the active hydrolysis surface. 3D network structure assembled by fat substitutes with high viscosity can not only slow down the peristole and obstruct the diffusion of lipase to the oil droplets but also impede the transportation of lipolysis products to epithelial cells for adsorption. Their applications in low-calorie bakery, dairy and meat products were also discussed, emphasizing fat intake reduction, structure and flavor retention and potential health benefits. However, further application of these strategies in large-scale food production still requires more optimization on cost and lipid reducing effects. This review provides a comprehensive review on colloidal approaches, design, principles and applications of fat reducing strategies to meet the growing demand for healthier diet and offer practical insights for the low-calorie food industry.
Collapse
Affiliation(s)
- Shanan Chen
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Cristian Dima
- Dunarea de Jos' University of Galati, Faculty of Food Science and Engineering, "Domnească" Str. 111, Building F, Room 107, 800201, Galati, Romania
| | | | - Lijun Yin
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Bin Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
3
|
Sirvi A, Debaje S, Guleria K, Sangamwar AT. Critical aspects involved in lipid dispersion and digestion: Emphasis on in vitro models and factors influencing lipolysis of oral lipid based formulations. Adv Colloid Interface Sci 2023; 321:103028. [PMID: 39491077 DOI: 10.1016/j.cis.2023.103028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
Understanding the mechanisms underlying the dispersion and digestion process is vital in the development of oral lipid-based formulations (LBFs). In vitro lipolysis models mimic the digestion process in the stomach and intestine to explore the fundamental mechanism of supersaturation, solubilization, and precipitation of drugs within the LBFs. The lipid digestion is controlled by the in vitro experimental conditions, and constitution of the lipid formulations. Hence, there is a continuous upgradation in the digestion models to best extrapolate the in vivo conditions. This review covers the recent developments in digestion models with media compositions and lipid formulation components. Key findings from recent studies that thoroughly examined the relation between the digestion, solubilization, and permeation of oral LBFs in the presence of bile-lipid aggregates are presented. These developments are foremost to build the in vitro-in vivo correlation of the drugs for regulatory considerations.
Collapse
Affiliation(s)
- Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Shubham Debaje
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Kajal Guleria
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India.
| |
Collapse
|
4
|
Martínez S, Espert M, Salvador A, Sanz T. The role of oil concentration on the rheological properties, microstructure, and in vitro digestion of cellulose ether emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Behera SK, Mohapatra M. Exploring the interaction of dietary fiber hydroxypropyl methylcellulose and biosurfactant sodium deoxycholate. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Effect of soybean protein isolate-pectin composite nanoparticles and hydroxypropyl methyl cellulose on the formation, stabilization and lipidolysis of food-grade emulsions. Food Chem 2022; 389:133102. [DOI: 10.1016/j.foodchem.2022.133102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
|
7
|
Tracking Bacterial Nanocellulose in Animal Tissues by Fluorescence Microscopy. NANOMATERIALS 2022; 12:nano12152605. [PMID: 35957036 PMCID: PMC9370207 DOI: 10.3390/nano12152605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
Abstract
The potential of nanomaterials in food technology is nowadays well-established. However, their commercial use requires a careful risk assessment, in particular concerning the fate of nanomaterials in the human body. Bacterial nanocellulose (BNC), a nanofibrillar polysaccharide, has been used as a food product for many years in Asia. However, given its nano-character, several toxicological studies must be performed, according to the European Food Safety Agency’s guidance. Those should especially answer the question of whether nanoparticulate cellulose is absorbed in the gastrointestinal tract. This raises the need to develop a screening technique capable of detecting isolated nanosized particles in biological tissues. Herein, the potential of a cellulose-binding module fused to a green fluorescent protein (GFP–CBM) to detect single bacterial cellulose nanocrystals (BCNC) obtained by acid hydrolysis was assessed. Adsorption studies were performed to characterize the interaction of GFP–CBM with BNC and BCNC. Correlative electron light microscopy was used to demonstrate that isolated BCNC may be detected by fluorescence microscopy. The uptake of BCNC by macrophages was also assessed. Finally, an exploratory 21-day repeated-dose study was performed, wherein Wistar rats were fed daily with BNC. The presence of BNC or BCNC throughout the GIT was observed only in the intestinal lumen, suggesting that cellulose particles were not absorbed. While a more comprehensive toxicological study is necessary, these results strengthen the idea that BNC can be considered a safe food additive.
Collapse
|
8
|
Zhang Y, Tang X, Li F, Zhang J, Zhang B, Yang X, Tang Y, Zhang Y, Fan J, Zhang B. Inhibitory effects of oat peptides on lipolysis: A physicochemical perspective. Food Chem 2022; 396:133621. [DOI: 10.1016/j.foodchem.2022.133621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/21/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
|
9
|
Liu W, Lad M, Foster T. In vitro digestion of designed emulsions based on milk protein and guar gum systems. Food Funct 2022; 13:6022-6035. [PMID: 35611754 DOI: 10.1039/d2fo00592a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a growing interest in designing novel food microstructures that can control nutrient digestion and provide satiety for tackling obesity. In this study, phase separated microstructures of skimmed milk powder (SMP) and guar gum (GG) were the main focus, and these can be considered as water-in-water (W/W) emulsions. Through the incorporation of oil into these systems, it was possible to form model systems of SMP-GG-OIL, showing the lipid phase within the protein phase within the polysaccharide phase. The in vitro digestibility of such phase separated model systems of SMP-GG-OIL with different microstructures was investigated using a pH stat method. Confocal laser scanning microscopy also revealed structural changes that occurred to the emulsified lipid droplets as they passed through a gastrointestinal (GI) model. The microstructures were created based on the tie-lines on a previously established phase diagram of SMP-GG, and shown to be able to control lipid digestion. For a selected tie-line, the lipolysis follows the order: protein continuous > bi-continuous > polysaccharide continuous system, at a certain level of oil addition. The mechanism involved in the lipolysis of the designed formulations/microstructures was dependent upon the protein, rather than GG, and was driven by the protein concentration. These findings provide insights for potential applications in functional food designing in the food industry.
Collapse
Affiliation(s)
- Wentao Liu
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington campus, LE12 5RD, UK.
| | - Mita Lad
- Jubilee Conference Centre, Jubilee Campus, University of Nottingham, NG8 1BB, UK
| | - Tim Foster
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington campus, LE12 5RD, UK.
| |
Collapse
|
10
|
The Influence of Cellulose Ethers on the Physico-Chemical Properties, Structure and Lipid Digestibility of Animal Fat Emulsions Stabilized by Soy Protein. Foods 2022; 11:foods11050738. [PMID: 35267370 PMCID: PMC8909280 DOI: 10.3390/foods11050738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
This study explores the influence of carboxymethylcelullose (CMC) and methylcelullose (MC), added by simultaneous (sim) and sequential (seq) emulsification methods, on the structure, rheological parameters and in vitro lipid digestibility of pork lard O/W emulsions stabilized by soy protein concentrate (SPC). Five emulsions (SPC, SPC/CMC-sim, SPC/CMC-seq SPC/MC-sim, SPC/MC-seq) were prepared in vitro. The presence of CMC and MC, and the stage of incorporation affected the emulsion microstructure. In the SPC emulsion, lipid droplets were entrapped by a protein layer that was thicker when MC was added, providing greater resistance against environmental stresses during gastrointestinal digestion. At 37 °C, CMC incorporation produced a structural reinforcement of the SPC emulsion, whereas MC addition did not affect the network rigidity, although a delaying effect on the crossover temperature was observed, which was more evident in SPC/MC–seq. The presence and stage of CMC and MC incorporation affected the rate and extent of lipolysis, with SPC/MC-seq presenting an inferior concentration of free fatty acids. The lower extent of lipolysis observed in SPC/MC-seq may be positive in the manufacture of animal fat products in which reduced fatty acid absorption is intended.
Collapse
|
11
|
Monteiro LM, Löbenberg R, Barbosa EJ, de Araujo GLB, Sato PK, Kanashiro E, de Araujo Eliodoro RH, Rocha M, de Freitas VLT, Fotaki N, Bou-Chacra NA. Oral administration of buparvaquone nanostructured lipid carrier enables in vivo activity against Leishmania infantum. Eur J Pharm Sci 2021; 169:106097. [PMID: 34910988 DOI: 10.1016/j.ejps.2021.106097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023]
Abstract
Leishmaniasis, a neglected tropical disease, is prevalent in 98 countries with the occurrence of 1.3 million new cases annually. The conventional therapy for visceral leishmaniasis requires hospitalization due to the severe adverse effects of the drugs, which are administered parenterally. Buparvaquone (BPQ) showed in vitro activity against leishmania parasites; nevertheless, it has failed in vivo tests due to its low aqueous solubility. Though, lipid nanoparticles can overcome this holdback. In this study we tested the hypothesis whether BPQ-NLC shows in vivo activity against L. infantum. Two optimized formulations were prepared (V1: 173.9 ± 1.6 nm, 0.5 mg of BPQ/mL; V2: 232.4 ± 1.6 nm, 1.3 mg of BPQ/mL), both showed increased solubility up to 73.00-fold, and dissolution up to 83.29%, while for the free drug it was only 2.89%. Cytotoxicity test showed their biocompatibility (CC50 >554.4 µM). Besides, the V1 dose of 0.3 mg/kg/day for 10 days reduced the parasite burden in 83.4% ±18.2% (p <0.05) in the liver. BPQ-NLC showed similar leishmanicidal activity compared to miltefosine. Therefore, BPQ-NLC is a promising addition to the limited therapeutic arsenal suitable for leishmaniasis oral administration treatment.
Collapse
Affiliation(s)
- Lis Marie Monteiro
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Av, 580, Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 8613 - 114St NW, T6G 2H7, Edmonton, AB, Canada
| | - Eduardo José Barbosa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Av, 580, Cidade Universitária, 05508-000 São Paulo, SP, Brazil.
| | - Gabriel Lima Barros de Araujo
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Av, 580, Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Paula Keiko Sato
- Laboratory of Medical Investigation in Immunology (LIM48), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, IMT2, térreo, 05403-000, São Paulo, SP, Brazil
| | - Edite Kanashiro
- Laboratory of Medical Investigation in Immunology (LIM48), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, IMT2, térreo, 05403-000, São Paulo, SP, Brazil; Seroepidemiology, Cellular, and Molecular Immunology Laboratory - Institute of Tropical Medicine, University of São Paulo, Dr. Enéas de Carvalho Aguiar, 470 - Jardim América, São Paulo, SP, 05403-000, Brazil
| | - Raissa H de Araujo Eliodoro
- Laboratory of Medical Investigation in Immunology (LIM48), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, IMT2, térreo, 05403-000, São Paulo, SP, Brazil
| | - Mussya Rocha
- Laboratory of Medical Investigation in Immunology (LIM48), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, IMT2, térreo, 05403-000, São Paulo, SP, Brazil
| | - Vera Lúcia Teixeira de Freitas
- Laboratory of Medical Investigation in Immunology (LIM48), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, IMT2, térreo, 05403-000, São Paulo, SP, Brazil
| | - Nikoletta Fotaki
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Nádia Araci Bou-Chacra
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Av, 580, Cidade Universitária, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Acevedo-Fani A, Singh H. Biophysical insights into modulating lipid digestion in food emulsions. Prog Lipid Res 2021; 85:101129. [PMID: 34710489 DOI: 10.1016/j.plipres.2021.101129] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
During the last decade, major scientific advances on understanding the mechanisms of lipid digestion and metabolism have been made, with a view to addressing health issues (such as obesity) associated with overconsumption of lipid-rich and sucrose-rich foods. As lipids in common foods exist in the form of emulsions, the structuring of emulsions has been one the main strategies for controlling the rate of lipid digestion and absorption, at least from a colloid science viewpoint. Modulating the kinetics of lipid digestion and absorption offers interesting possibilities for developing foods that can provide control of postprandial lipaemia and control the release of lipophilic compounds. Food emulsions can be designed to achieve considerable differences in the kinetics of lipid digestion but most research has been applied to relatively simple model systems and in in vitro digestion models. Further research to translate this knowledge into more complex food systems and to validate the results in human studies is required. One promising approach to delay/control lipid digestion is to alter the stomach emptying rate of lipids, which is largely affected by interactions of emulsion droplets with the food matrices. Food matrices with different responses to the gastric environment and with different interactions between oil droplets and the food matrix can be designed to influence lipid digestion. This review focuses on key scientific advances made during the last decade on understanding the physicochemical and structural modifications of emulsified lipids, mainly from a biophysical science perspective. The review specifically explores different approaches by which the structure and stability of emulsions may be altered to achieve specific lipid digestion kinetics.
Collapse
Affiliation(s)
- Alejandra Acevedo-Fani
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|
13
|
Murray BS, Ettelaie R, Sarkar A, Mackie AR, Dickinson E. The perfect hydrocolloid stabilizer: Imagination versus reality. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
The Effects of Food on Cannabidiol Bioaccessibility. Molecules 2021; 26:molecules26123573. [PMID: 34208082 PMCID: PMC8230802 DOI: 10.3390/molecules26123573] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
Cannabidiol (CBD) is a hydrophobic non-psychoactive compound with therapeutic characteristics. Animal and human studies have shown its poor oral bioavailability in vivo, and the impact of consuming lipid-soluble CBD with and without food on gut bioaccessibility has not been explored. The purpose of this research was to study the bioaccessibility of CBD after a three-phase upper digestion experiment with and without food, and to test lipase activity with different substrate concentrations. Our results showed that lipase enzyme activity and fatty acid absorption increased in the presence of bile salts, which may also contribute to an increase in CBD bioaccessibility. The food matrix used was a mixture of olive oil and baby food. Overall, the fed-state digestion revealed significantly higher micellarization efficiency for CBD (14.15 ± 0.6% for 10 mg and 22.67 ± 2.1% for 100 mg CBD ingested) than the fasted state digestion of CBD (0.65 ± 0.7% for 10 mg and 0.14 ± 0.1% for 100 mg CBD ingested). The increase in bioaccessibility of CBD with food could be explained by the fact that micelle formation from hydrolyzed lipids aid in bioaccessibility of hydrophobic molecules. In conclusion, the bioaccessibility of CBD depends on the food matrix and the presence of lipase and bile salts.
Collapse
|
15
|
Zornjak J, Liu J, Esker A, Lin T, Fernández-Fraguas C. Bulk and interfacial interactions between hydroxypropyl-cellulose and bile salts: Impact on the digestion of emulsified lipids. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Pabois O, Antoine-Michard A, Zhao X, Omar J, Ahmed F, Alexis F, Harvey RD, Grillo I, Gerelli Y, Grundy MML, Bajka B, Wilde PJ, Dreiss CA. Interactions of bile salts with a dietary fibre, methylcellulose, and impact on lipolysis. Carbohydr Polym 2020; 231:115741. [PMID: 31888817 DOI: 10.1016/j.carbpol.2019.115741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Methylcellulose (MC) has a demonstrated capacity to reduce fat absorption, hypothetically through bile salt (BS) activity inhibition. We investigated MC cholesterol-lowering mechanism, and compared the influence of two BS, sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC), which differ slightly by their architecture and exhibit contrasting functions during lipolysis. BS/MC bulk interactions were investigated by rheology, and BS behaviour at the MC/water interface studied with surface pressure and ellipsometry measurements. In vitro lipolysis studies were performed to evaluate the effect of BS on MC-stabilised emulsion droplets microstructure, with confocal microscopy, and free fatty acids release, with the pH-stat method. Our results demonstrate that BS structure dictates their interactions with MC, which, in turn, impact lipolysis. Compared to NaTC, NaTDC alters MC viscoelasticity more significantly, which may correlate with its weaker ability to promote lipolysis, and desorbs from the interface at lower concentrations, which may explain its higher propensity to destabilise emulsions.
Collapse
Affiliation(s)
- Olivia Pabois
- Institut Laue-Langevin, Grenoble, 38000, France; Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom.
| | | | - Xi Zhao
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom.
| | - Jasmin Omar
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom.
| | - Faizah Ahmed
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom.
| | | | - Richard D Harvey
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), 06099, Germany.
| | | | - Yuri Gerelli
- Institut Laue-Langevin, Grenoble, 38000, France.
| | - Myriam M-L Grundy
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, United Kingdom.
| | - Balazs Bajka
- Department of Nutritional Sciences, King's College London, London, SE1 9NH, United Kingdom.
| | - Peter J Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, United Kingdom.
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom.
| |
Collapse
|
17
|
Zarmpi P, Flanagan T, Meehan E, Mann J, Fotaki N. Biopharmaceutical Understanding of Excipient Variability on Drug Apparent Solubility Based on Drug Physicochemical Properties: Case Study-Hypromellose (HPMC). AAPS JOURNAL 2020; 22:49. [PMID: 32072317 PMCID: PMC7028811 DOI: 10.1208/s12248-019-0411-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/21/2019] [Indexed: 02/07/2023]
Abstract
Identification of the biopharmaceutical risks of excipients and excipient variability on oral drug performance can be beneficial for the development of robust oral drug formulations. The current study investigated the impact of Hypromellose (HPMC) presence and varying viscosity type, when used as a binder in immediate release formulations, on the apparent solubility of drugs with wide range of physicochemical properties (drug ionization, drug lipophilicity, drug aqueous solubility). The role of physiological conditions on the impact of excipients on drug apparent solubility was assessed with the use of pharmacopoeia (compendial) and biorelevant media. Presence of HPMC affected drug solubility according to the physicochemical properties of studied compounds. The possible combined effects of polymer adsorption (drug shielding effect) or the formation of a polymeric viscous layer around drug particles may have retarded drug dissolution leading to reduced apparent solubility of highly soluble and/or highly ionized compounds and were pronounced mainly at early time points. Increase in the apparent solubility of poorly soluble low ionized drugs containing a neutral amine group was observed which may relate to enhanced drug solubilization or reduced drug precipitation. The use of multivariate data analysis confirmed the importance of drug physicochemical properties on the impact of excipients on drug apparent solubility and revealed that changes in HPMC material properties or amount may not be critical for oral drug performance when HPMC is used as a binder. The construction of a roadmap combining drug, excipient, and medium characteristics allowed the identification of the cases where HPMC presence may present risks in oral drug performance and bioavailability.
Collapse
Affiliation(s)
- P Zarmpi
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - T Flanagan
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK.,UCB Pharma, Chemin du Foriest, 1420, Braine-l'Alleud, Belgium
| | - E Meehan
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - J Mann
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - N Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
18
|
Bellesi FA, Pizones Ruiz-Henestrosa VM, Pilosof A. Lipolysis of soy protein and HPMC mixed emulsion as modulated by interfacial competence of emulsifiers. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Artiga-Artigas M, Reichert C, Salvia-Trujillo L, Zeeb B, Martín-Belloso O, Weiss J. Protein/Polysaccharide Complexes to Stabilize Decane-in-Water Nanoemulsions. FOOD BIOPHYS 2020. [DOI: 10.1007/s11483-019-09622-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Jain S, Winuprasith T, Suphantharika M. Digestion behavior and gastrointestinal fate of oil-in-water emulsions stabilized by different modified rice starches. Food Funct 2020; 11:1087-1097. [DOI: 10.1039/c9fo01628g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study highlights how starch modification and the concentration of resistant starch may alter the lipid digestion behavior in oil-in-water emulsions.
Collapse
Affiliation(s)
- Surangna Jain
- Department of Biotechnology
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | | | - Manop Suphantharika
- Department of Biotechnology
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| |
Collapse
|
21
|
Macierzanka A, Torcello-Gómez A, Jungnickel C, Maldonado-Valderrama J. Bile salts in digestion and transport of lipids. Adv Colloid Interface Sci 2019; 274:102045. [PMID: 31689682 DOI: 10.1016/j.cis.2019.102045] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/05/2019] [Indexed: 12/11/2022]
Abstract
Because of their unusual chemical structure, bile salts (BS) play a fundamental role in intestinal lipid digestion and transport. BS have a planar arrangement of hydrophobic and hydrophilic moieties, which enables the BS molecules to form peculiar self-assembled structures in aqueous solutions. This molecular arrangement also has an influence on specific interactions of BS with lipid molecules and other compounds of ingested food and digestive media. Those comprise the complex scenario in which lipolysis occurs. In this review, we discuss the BS synthesis, composition, bulk interactions and mode of action during lipid digestion and transport. We look specifically into surfactant-related functions of BS that affect lipolysis, such as interactions with dietary fibre and emulsifiers, the interfacial activity in facilitating lipase and colipase anchoring to the lipid substrate interface, and finally the role of BS in the intestinal transport of lipids. Unravelling the roles of BS in the processing of lipids in the gastrointestinal tract requires a detailed analysis of their interactions with different compounds. We provide an update on the most recent findings concerning two areas of BS involvement: lipolysis and intestinal transport. We first explore the interactions of BS with various dietary fibres and food emulsifiers in bulk and at interfaces, as these appear to be key aspects for understanding interactions with digestive media. Next, we explore the interactions of BS with components of the intestinal digestion environment, and the role of BS in displacing material from the oil-water interface and facilitating adsorption of lipase. We look into the process of desorption, solubilisation of lipolysis, products and formation of mixed micelles. Finally, the BS-driven interactions of colloidal particles with the small intestinal mucus layer are considered, providing new findings for the overall assessment of the role of BS in lipid digestion and intestinal transport. This review offers a unique compilation of well-established and most recent studies dealing with the interactions of BS with food emulsifiers, nanoparticles and dietary fibre, as well as with the luminal compounds of the gut, such as lipase-colipase, triglycerides and intestinal mucus. The combined analysis of these complex interactions may provide crucial information on the pattern and extent of lipid digestion. Such knowledge is important for controlling the uptake of dietary lipids or lipophilic pharmaceuticals in the gastrointestinal tract through the engineering of novel food structures or colloidal drug-delivery systems.
Collapse
|
22
|
Vallianou N, Stratigou T, Christodoulatos GS, Dalamaga M. Understanding the Role of the Gut Microbiome and Microbial Metabolites in Obesity and Obesity-Associated Metabolic Disorders: Current Evidence and Perspectives. Curr Obes Rep 2019; 8:317-332. [PMID: 31175629 DOI: 10.1007/s13679-019-00352-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE In this review, we summarize current evidence on the gut microbiome and microbial metabolites in relation to obesity and obesity-associated metabolic disorders. Special emphasis is given on mechanisms interconnecting gut microbiome and microbial metabolites with metabolic disorders as well as on potential preventive and therapeutic perspectives with a "bench to bedside" approach. RECENT FINDINGS Recent data have highlighted the role of gut dysbiosis in the etiology and pathogenesis of metabolic disorders, including obesity, metabolic syndrome, type 2 diabetes mellitus, and non-alcoholic fatty liver disease. Overall, most studies have demonstrated a reduction in gut microbiome diversity and richness in obese subjects, but there is still much debate on the exact microbial signature of a healthy or an obese gut microbiome. Despite the controversial role of an altered gut microbiome as a cause or consequence of obesity in human studies, numerous animal studies and certain human studies suggest beneficial metabolic effects of certain microbial intestinal metabolites, such as butyrate, that could be used in the prevention and treatment of obesity and its comorbidities. More randomized controlled trials and larger prospective studies including well-defined cohorts as well as a multi-omics approach are warranted to better identify the associations between the gut microbiome, microbial metabolites, and obesity and its metabolic complications.
Collapse
Affiliation(s)
- Natalia Vallianou
- Department of Endocrinology, Evangelismos General Hospital of Athens, 45-47 Ypsilantou street, 10676, Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology, Evangelismos General Hospital of Athens, 45-47 Ypsilantou street, 10676, Athens, Greece
| | - Gerasimos Socrates Christodoulatos
- Laboratory of Microbiology, KAT Hospital, 2 Nikis, Kifisia, 14561, Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias #27, 75 Mikras Asias, Goudi, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias #27, 75 Mikras Asias, Goudi, 11527, Athens, Greece.
| |
Collapse
|
23
|
Li X, Jiao W, Zhang W, Xu Y, Cao J, Jiang W. Characterizing the Interactions of Dietary Condensed Tannins with Bile Salts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9543-9550. [PMID: 31379164 DOI: 10.1021/acs.jafc.9b03985] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aimed to reveal the mechanisms underlying the interaction between condensed tannins (CTs) and bile salts. The interaction mechanism was analyzed by transmission electron microscopy, exposure to various physicochemical conditions, electrophoresis, fluorescence spectroscopy, isothermal titration calorimetry, and molecular modeling. A new complex was formed from CTs and bile salts. The complex showed a negative enthalpy change and a positive entropy change, demonstrating that the main thermodynamic driving force was both entropy and enthalpy and indicating that binding occurred through hydrogen bonds and hydrophobic interactions. The analysis of the effects of CTs on the stability and digestion properties of bile salt emulsions indicated that CTs were able to inhibit lipid digestion to an extent. Our findings may provide evidence that foods rich in CTs offer health benefits by aggregating with bile salts and reducing the absorption of fat.
Collapse
Affiliation(s)
- Xiangxin Li
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| | - Wenxiao Jiao
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| | - Wanli Zhang
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| | - Yan Xu
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| |
Collapse
|
24
|
Polysaccharides at fluid interfaces of food systems. Adv Colloid Interface Sci 2019; 270:28-37. [PMID: 31158575 DOI: 10.1016/j.cis.2019.05.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
Fabrication of next generation polysaccharides with interfacial properties is driven by the need to create high performance surfactants that operate at extreme environments, as for example in complex food formulations or in the gastrointestinal tract. The present review examines the behaviour of polysaccharides at fluid food interfaces focusing on their performance in the absence of any other intentionally added interfacially active components. Relevant theoretical principles of colloidal stabilisation using concepts that have been developed for synthetic polymers at interfaces are firstly introduced. The role of protein that in most cases is present in polysaccharide preparations either as contaminant or as integral part of the structure is also discussed. Critical assessment of the literature reveals that although protein may contribute to emulsion formation mostly as an anchor for polysaccharides to attach, it is not the determinant factor for the long-term emulsion stability, irrespectively of polysaccharide structure. Interfacial performance of key polysaccharides is also assessed revealing shared characteristics in their modes of adsorption. Conformation of polysaccharides, as affected by the composition of the aqueous solvent needs to be closely controlled, as it seems to be the underlying fundamental cause of stabilisation events and appears to be more important than the constituent polysaccharide sugar-monomers. Finally, polysaccharide adsorption is better understood by regarding them as copolymers, as this approach may assist to better control their properties with the aim to create the next generation biosurfactants.
Collapse
|
25
|
Isa Ziembowicz F, de Freitas DV, Bender CR, dos Santos Salbego PR, Piccinin Frizzo C, Pinto Martins MA, Reichert JM, Santos Garcia IT, Kloster CL, Villetti MA. Effect of mono- and dicationic ionic liquids on the viscosity and thermogelation of methylcellulose in the semi-diluted regime. Carbohydr Polym 2019; 214:174-185. [DOI: 10.1016/j.carbpol.2019.02.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 11/24/2022]
|
26
|
How do Different Types of Emulsifiers/Stabilizers Affect the In Vitro Intestinal Digestion of O/W Emulsions? FOOD BIOPHYS 2019. [DOI: 10.1007/s11483-019-09582-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Pigliacelli C, Belton P, Wilde P, Qi S. Probing the molecular interactions between pharmaceutical polymeric carriers and bile salts in simulated gastrointestinal fluids using NMR spectroscopy. J Colloid Interface Sci 2019; 551:147-154. [PMID: 31075629 DOI: 10.1016/j.jcis.2019.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 02/04/2023]
Abstract
The number of poorly soluble new drugs is increasing and one of the effective ways to deliver such pharmaceutically active molecules is using hydrophilic polymers to form a solid dispersion. Bile salts play an important role in the solubilisation of poorly soluble compounds in the gastrointestinal tract (gut) prior to absorption. When a poorly water-soluble drug is delivered using a hydrophilic polymer based solid dispersion oral formulation, it is still unclear whether there are any polymer-bile salt interactions, which may influence the drug dissolution and solubilisation. This study, using two widely used hydrophilic model polymers, Hydroxypropyl methylcellulose (HPMC) and polyvynilpirrolidone (PVP), and sodium taurocholate (NaTC) as the model bile salt, aims to investigate the interactions between the polymers and bile salts in simulated fed state (FeSSIF) and fasted state (FaSSIF) gut fluids. The nature of the interactions was characterised using a range of NMR techniques. The results revealed that the aggregation behaviour of NaTC in FaSSIF and FeSSIF is much more complex than in water. The addition of hydrophilic polymers led to the occurrences of NaTC-HPMC and NaTC-PVP aggregation. For both systems, pH and ionic strength strongly influenced the aggregation behavior, while the ion type played a less significant role. The outcome of this study enriched the understanding of the aggregation behaviour of bile salts and typical hydrophilic pharmaceutical polymers in bio-relevant media. Due to the high surface-activity of the bile salts and their ability to interact with polymers, such aggregation behaviour is expected to play a role in drug solubilisation in the gut when the drug is delivered by hydrophilic polymer based dispersions.
Collapse
Affiliation(s)
| | - Peter Belton
- School of Chemistry, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | - Peter Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UA, UK
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK.
| |
Collapse
|
28
|
Mackie A, Gourcy S, Rigby N, Moffat J, Capron I, Bajka B. The fate of cellulose nanocrystal stabilised emulsions after simulated gastrointestinal digestion and exposure to intestinal mucosa. NANOSCALE 2019; 11:2991-2998. [PMID: 30698181 PMCID: PMC6371889 DOI: 10.1039/c8nr05860a] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
It is well recognised that the average UK diet does not contain sufficient fibre. However, the introduction of fibre is often at the detriment of the organoleptic properties of a food. In this study on the gastrointestinal fate of nanoparticles, we have used cellulose nano-crystals (CNCs) as Pickering stabilising agents in oil in water emulsions. These emulsions were found to be highly stable against coalescence. The CNC and control emulsions were then exposed to simulated upper gastrointestinal tract digestion and the results compared to those obtained from a conventional protein stabilised emulsion. Finally the digested emulsions were exposed to murine intestinal mucosa and lipid and bile absorption was monitored. Importantly, the results show that the CNCs were entrapped in the intestinal mucus layer and failed to reach the underlying epithelium. This entrapment may also have led to the reduced absorption of saturated lipids from the CNC stabilised emulsion versus the control emulsion. The results show the potential of CNCs as a safe and effective emulsifier.
Collapse
Affiliation(s)
- Alan Mackie
- School of Food Science and Nutrition
, University of Leeds
,
Leeds
, LS2 9JT
, UK
.
| | - Simon Gourcy
- Univ Angers
, Inst Univ Technol
,
F-49016 Angers
, France
| | - Neil Rigby
- School of Food Science and Nutrition
, University of Leeds
,
Leeds
, LS2 9JT
, UK
.
- Institute of Food Research
, Norwich Research Park
,
Norwich
, NR47UA
, UK
| | - Jonathan Moffat
- Asylum Research
, an Oxford Instruments Company
,
High Wycombe
, HP12 3SE
, UK
| | - Isabel Capron
- INRA
, Biopolymeres Interact Assemblages UR1268
,
F-44316 Nantes
, France
| | - Balazs Bajka
- Institute of Food Research
, Norwich Research Park
,
Norwich
, NR47UA
, UK
- Department of Nutritional Sciences
, King's College London
,
London
, SE1 9NH
, UK
| |
Collapse
|
29
|
Naso JN, Bellesi FA, Pizones Ruiz-Henestrosa VM, Pilosof AMR. Studies on the interactions between bile salts and food emulsifiers under in vitro duodenal digestion conditions to evaluate their bile salt binding potential. Colloids Surf B Biointerfaces 2018; 174:493-500. [PMID: 30497011 DOI: 10.1016/j.colsurfb.2018.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/25/2018] [Accepted: 11/09/2018] [Indexed: 11/16/2022]
Abstract
During the last decade a special interest has been focused on studying the relationship between the composition and structure of emulsions and the extent of lipolysis, driven by the necessity of modulate lipid digestion to decrease or delay fats absorption or increase healthy fat nutrients bioavailability. Because bile salts (BS) play a crucial role in lipids metabolism, understanding how typical food emulsifiers affect the structures of BS under duodenal conditions, can aid to further understand how to control lipids digestion. In the present work the BS-binding capacity of three emulsifiers (Lecithin, Tween 80 and β-lactoglobulin) was studied under duodenal conditions. The combination of several techniques (DLS, TEM, ζ-potential and conductivity) allowed the characterization of molecular assemblies resulting from the interactions, as modulated by the relative amounts of BS and emulsifiers in solution.
Collapse
Affiliation(s)
- Julieta N Naso
- ITAPROQ-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina; Fellowship Agencia Nacional de Promoción Científica y Tecnológica, Argentina
| | - Fernando A Bellesi
- ITAPROQ-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Víctor M Pizones Ruiz-Henestrosa
- ITAPROQ-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Ana M R Pilosof
- ITAPROQ-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
30
|
Zhang T, Yang Y, Liang Y, Jiao X, Zhao C. Beneficial Effect of Intestinal Fermentation of Natural Polysaccharides. Nutrients 2018; 10:E1055. [PMID: 30096921 PMCID: PMC6116026 DOI: 10.3390/nu10081055] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/27/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
With the rapid development of modern society, many chronic diseases are increasing including diabetes, obesity, cardiovascular diseases, etc., which further cause an increased death rate worldwide. A high caloric diet with reduced natural polysaccharides, typically indigestible polysaccharides, is considered a health risk factor. With solid evidence accumulating that indigestible polysaccharides can effectively prevent and/or ameliorate symptoms of many chronic diseases, we give a narrative review of many natural polysaccharides extracted from various food resources which mainly contribute their health beneficial functions via intestinal fermentation.
Collapse
Affiliation(s)
- Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Yang Yang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Xu Jiao
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
31
|
Borreani J, Hernando I, Salvador A, Quiles A. New hydrocolloid-based emulsions for replacing fat in panna cottas: a structural and sensory study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4961-4968. [PMID: 28403529 DOI: 10.1002/jsfa.8373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/30/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Dairy desserts are popular traditional products, but because of their high calorie or fat content, they can be unsuitable for people who have certain dietary requirements. The aim of this study was to design panna cottas with similar organoleptic and textural properties to the traditional ones but with a lower fat content, by replacing part of the cream with new emulsions prepared with hydrocolloids (cellulose ethers), namely methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC). RESULTS Incorporating the MC and HPMC emulsions modified the textural properties (firmness and stiffness) of the panna cottas. Regarding the sensory results, the panna cottas prepared with the MC and HPMC emulsions were considered lumpy and soft respectively. CONCLUSION Considering the results as a whole, the cellulose type and the amount of cream are factors to take into account. Although the texture and taste of the control panna cotta are better than those of the panna cottas prepared with the MC and HPMC emulsions, it is possible to replace 75% of the cream in traditional panna cottas with HPMC emulsion and obtain good consumer acceptance and purchase intention. The panna cottas with 75% substitution by HPMC emulsion were described as creamy, with smooth appearance and moist mouth feel. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jennifer Borreani
- Food Microstructure and Chemistry Research Group, Department of Food Technology, Universitat Politècnica de València, Valencia, Spain
| | - Isabel Hernando
- Food Microstructure and Chemistry Research Group, Department of Food Technology, Universitat Politècnica de València, Valencia, Spain
| | - Ana Salvador
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Valencia, Spain
| | - Amparo Quiles
- Food Microstructure and Chemistry Research Group, Department of Food Technology, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
32
|
Modulating fat digestion through food structure design. Prog Lipid Res 2017; 68:109-118. [DOI: 10.1016/j.plipres.2017.10.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 01/21/2023]
|
33
|
Pilosof AM. Potential impact of interfacial composition of proteins and polysaccharides stabilized emulsions on the modulation of lipolysis. The role of bile salts. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.08.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Borreani J, Espert M, Salvador A, Sanz T, Quiles A, Hernando I. Oil-in-water emulsions stabilised by cellulose ethers: stability, structure and in vitro digestion. Food Funct 2017; 8:1547-1557. [DOI: 10.1039/c7fo00159b] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cellulose ether emulsions have good physical and oxidative stability and can delay in vitro lipid digestion. HMC emulsions inhibit lipolysis more than others and could enhance gastric fullness and satiety.
Collapse
Affiliation(s)
- Jennifer Borreani
- Food Microstructure and Chemistry Research Group
- Department of Food Technology
- Universitat Politècnica de València
- Valencia
- Spain
| | - María Espert
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC)
- Valencia
- Spain
| | - Ana Salvador
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC)
- Valencia
- Spain
| | - Teresa Sanz
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC)
- Valencia
- Spain
| | - Amparo Quiles
- Food Microstructure and Chemistry Research Group
- Department of Food Technology
- Universitat Politècnica de València
- Valencia
- Spain
| | - Isabel Hernando
- Food Microstructure and Chemistry Research Group
- Department of Food Technology
- Universitat Politècnica de València
- Valencia
- Spain
| |
Collapse
|
35
|
Pizones Ruiz-Henestrosa VM, Bellesi FA, Camino NA, Pilosof AM. The impact of HPMC structure in the modulation of in vitro lipolysis: The role of bile salts. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Torcello-Gómez A, Foster TJ. Instant polysaccharide-based emulsions: impact of microstructure on lipolysis. Food Funct 2017; 8:2231-2242. [DOI: 10.1039/c7fo00536a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The microstructure of instant emulsions is modulated upon mild shearing through specific rheological manipulation of the continuous phase. Finer emulsions display faster lipolysis kinetics underin vitroconditions.
Collapse
Affiliation(s)
- Amelia Torcello-Gómez
- School of Food Science and Nutrition
- University of Leeds
- Leeds
- UK
- Division of Food Sciences
| | - Timothy J. Foster
- Division of Food Sciences
- School of Biosciences
- University of Nottingham
- Loughborough
- UK
| |
Collapse
|
37
|
O'Sullivan CM, Barbut S, Marangoni AG. Edible oleogels for the oral delivery of lipid soluble molecules: Composition and structural design considerations. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.08.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Influence of methylcellulose on attributes of β-carotene fortified starch-based filled hydrogels: Optical, rheological, structural, digestibility, and bioaccessibility properties. Food Res Int 2016; 87:18-24. [DOI: 10.1016/j.foodres.2016.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 11/23/2022]
|
39
|
Qin D, Yang X, Gao S, Yao J, McClements DJ. Influence of Hydrocolloids (Dietary Fibers) on Lipid Digestion of Protein-Stabilized Emulsions: Comparison of Neutral, Anionic, and Cationic Polysaccharides. J Food Sci 2016; 81:C1636-45. [DOI: 10.1111/1750-3841.13361] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/28/2016] [Accepted: 05/13/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Dingkui Qin
- Dept. of Animal Science and Technology; Northwest A&F Univ; Yangling Shaanxi 712100 China
- Biopolymer and Colloids Research Laboratory, Dept. of Food Science; Univ. of Massachusetts; Amherst Mass. 01003 U.S.A
| | - Xiaojun Yang
- Dept. of Animal Science and Technology; Northwest A&F Univ; Yangling Shaanxi 712100 China
| | - Songran Gao
- Biopolymer and Colloids Research Laboratory, Dept. of Food Science; Univ. of Massachusetts; Amherst Mass. 01003 U.S.A
| | - Junhu Yao
- Dept. of Animal Science and Technology; Northwest A&F Univ; Yangling Shaanxi 712100 China
| | - David Julian McClements
- Biopolymer and Colloids Research Laboratory, Dept. of Food Science; Univ. of Massachusetts; Amherst Mass. 01003 U.S.A
- Dept. of Biochemistry, Faculty of Science; King Abdulaziz Univ; P.O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
40
|
Torcello-Gómez A, Foster TJ. Influence of interfacial and bulk properties of cellulose ethers on lipolysis of oil-in-water emulsions. Carbohydr Polym 2016; 144:495-503. [DOI: 10.1016/j.carbpol.2016.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
|
41
|
Torcello-Gómez A, Fernández Fraguas C, Ridout MJ, Woodward NC, Wilde PJ, Foster TJ. Effect of substituent pattern and molecular weight of cellulose ethers on interactions with different bile salts. Food Funct 2016; 6:730-9. [PMID: 25679293 DOI: 10.1039/c5fo00099h] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Some known mechanisms proposed for the reduction of blood cholesterol by dietary fibre are: binding with bile salts in the duodenum and prevention of lipid absorption, which can be partially related with the bile salt binding. In order to gain new insights into the mechanisms of the binding of dietary fibre to bile salts, the goal of this work is to study the main interactions between cellulose derivatives and two types of bile salts. Commercial cellulose ethers: methyl (MC), hydroxypropyl (HPC) and hydroxypropylmethyl cellulose (HPMC), have been chosen as dietary fibre due to their highly functional properties important in manufactured food products. Two types of bile salts: sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC), have been chosen to understand the effect of the bile salt type. Interactions in the bulk have been investigated by means of differential scanning calorimetry (DSC) and linear mechanical spectroscopy. Results show that both bile salts have inhibitory effects on the thermal structuring of cellulose ethers and this depends on the number and type of substitution in the derivatised celluloses, and is not dependent upon molecular weight. Concerning the bile salt type, the more hydrophobic bile salt (NaTDC) has greater effect on these interactions, suggesting more efficient adsorption onto cellulose ethers. These findings may have implications in the digestion of cellulose-stabilised food matrices, providing a springboard to develop new healthy cellulose-based food products with improved functional properties.
Collapse
Affiliation(s)
- Amelia Torcello-Gómez
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | | | | | | | | | | |
Collapse
|
42
|
Scheuble N, Geue T, Kuster S, Adamcik J, Mezzenga R, Windhab EJ, Fischer P. Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1396-404. [PMID: 26779953 DOI: 10.1021/acs.langmuir.5b04231] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations.
Collapse
Affiliation(s)
- N Scheuble
- Institute of Food Nutrition and Health, ETH Zurich , 8092 Zurich, Switzerland
| | - T Geue
- Laboratory of Neutron Scattering and Imaging, Paul Scherrer Institut , 5232 Villigen PSI, Switzerland
| | - S Kuster
- Institute of Food Nutrition and Health, ETH Zurich , 8092 Zurich, Switzerland
| | - J Adamcik
- Institute of Food Nutrition and Health, ETH Zurich , 8092 Zurich, Switzerland
| | - R Mezzenga
- Institute of Food Nutrition and Health, ETH Zurich , 8092 Zurich, Switzerland
| | - E J Windhab
- Institute of Food Nutrition and Health, ETH Zurich , 8092 Zurich, Switzerland
| | - P Fischer
- Institute of Food Nutrition and Health, ETH Zurich , 8092 Zurich, Switzerland
| |
Collapse
|
43
|
Bellesi FA, Martinez MJ, Pizones Ruiz-Henestrosa VM, Pilosof AM. Comparative behavior of protein or polysaccharide stabilized emulsion under in vitro gastrointestinal conditions. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.06.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Tangsrianugul N, Suphantharika M, McClements DJ. Simulated gastrointestinal fate of lipids encapsulated in starch hydrogels: Impact of normal and high amylose corn starch. Food Res Int 2015; 78:79-87. [PMID: 28433320 DOI: 10.1016/j.foodres.2015.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 11/29/2022]
Abstract
The influence of starch type (resistant starch (RS) versus native (NS) starch) and concentration (10 and 35wt.%) on the potential gastrointestinal fate of digestible lipid (corn oil) droplets encapsulated within starch hydrogels was studied using a simulated gastrointestinal tract (GIT). The NS used was a normal corn starch, whereas the RS used was a high amylose corn starch. Changes in morphology, organization, size, and charge of the particles in the delivery systems were measured as they passed through each stage of the GIT model: mouth, stomach, and small intestine. The GIT fates of three types of delivery system were compared: free lipid droplets; lipid droplets in RS-hydrogels; and, lipid droplets in NS-hydrogels. Encapsulation of the lipid droplets in the hydrogels had a pronounced influence on their GIT behavior, with the effect depending strongly on starch type. The starch granules in the RS-hydrogels remained intact throughout the simulated GIT because their compact structure makes them resistant to enzyme digestion. The initial rate of lipid digestion in the small intestine phase also depended on delivery system type: emulsion>RS-hydrogels>NS-hydrogels. However, the lipid phase appeared to be fully digested at the end of the digestion period for all samples. These results provide useful information for designing functional foods for improved health. For example, food matrices could be developed that slowdown the rate of lipid digestion, and therefore prevent a spike in serum triacylglycerols in the blood, which may be advantageous for developing functional foods to tackle diabetes.
Collapse
Affiliation(s)
- Nuttinee Tangsrianugul
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Manop Suphantharika
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
45
|
Chater PI, Wilcox MD, Pearson JP, Brownlee IA. The impact of dietary fibres on the physiological processes governing small intestinal digestive processes. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.bcdf.2015.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Moghimipour E, Ameri A, Handali S. Absorption-Enhancing Effects of Bile Salts. Molecules 2015; 20:14451-73. [PMID: 26266402 PMCID: PMC6332414 DOI: 10.3390/molecules200814451] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 12/16/2022] Open
Abstract
Bile salts are ionic amphiphilic compounds with a steroid skeleton. Among the most important physiological properties of bile salts are lipid transport by solubilization and transport of some drugs through hydrophobic barriers. Bile salts have been extensively studied to enhance transepithelial permeability for different marker molecules and drugs. They readily agglomerate at concentrations above their critical micelle concentration (CMC). The mechanism of absorption enhancement by bile salts appears to be complex. The aim of the present article was to review bile salt structure and their application as absorption enhancers and the probable mechanism for increasing permeation based on previous studies.
Collapse
Affiliation(s)
- Eskandar Moghimipour
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-33184, Iran.
| | - Abdulghani Ameri
- Department of Drug and Food Control, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-33184, Iran.
| | - Somayeh Handali
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-33184, Iran.
| |
Collapse
|