1
|
Zhong RF, Liu CJ, Hao KX, Fan XD, Jiang JG. Polysaccharides from Flos Sophorae Immaturus ameliorates insulin resistance in IR-HepG2 cells by co-regulating signaling pathways of AMPK and IRS-1/PI3K/AKT. Int J Biol Macromol 2024; 280:136088. [PMID: 39366625 DOI: 10.1016/j.ijbiomac.2024.136088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Four polysaccharides, named FSIP, FSIP-I, FSIP-II and FSIP-III, were isolated from Flos Sophorae Immaturus. Structure characterization revealed that FSIP-I and FSIP-II were types of AG-II-like polysaccharides while FSIP-III featured a RG-II-like structure with high content of GalpA. In vitro experiments showed that FSIPs upregulated HK and PK activities in glycolysis while downregulated G-6-Pase activities in gluconeogenesis. This increased glucose utilization while decreased the glucose synthesis in IR-HepG2 cells, potentially reducing elevated blood sugar levels induced by excess insulin. In terms of antioxidant system, FSIPs decreased the levels of ROS and MDA, and increased the activities of SOD and CAT, enhancing antioxidant capacity to counteract damage caused by insulin resistance in IR-HepG2 cells. To further explore the mechanism, related genes expressions were analyzed. The results found that FSIPs ameliorated insulin resistance via regulating AMPK and IRS-1/PI3K/AKT signal pathways. In the case of AMPK, glucose can be channeled into oxidative (catabolic) pathway, whereas, in the case of IRS-1/PI3K/AKT, glucose can be stored as glycogen (anabolic). This co-modulation could ameliorate insulin resistance by upregulating the glycolysis and repressing the gluconeogenesis in catabolism, and upregulating the glycogen synthesis in anabolism. Additionally, FSIP-III exhibited better anti-insulin resistance activity, attributed to its high content of GalpA.
Collapse
Affiliation(s)
- Rui-Fang Zhong
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Chang-Jun Liu
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Ke-Xin Hao
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Xiao-Dan Fan
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
2
|
Wang WT, Xue YJ, Zhou JK, Zhang Z, Guo SY, Zhao CF, Bai Y, Zhu YT, Zhang LZ, Guo S, Ren GX. Exploring the antimicrobial activity of rare ginsenosides and the progress of their related pharmacological effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155904. [PMID: 39151265 DOI: 10.1016/j.phymed.2024.155904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/23/2024] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Panax ginseng C. A. Mey is a precious medicinal resource that could be used to treat a variety of diseases. Saponins are the most important bioactive components of, and rare ginsenosides (Rg3, Rh2, Rk1 and Rg5, etc.) refer to the chemical structure changes of primary ginsenosides through dehydration and desugarization reactions, to obtain triterpenoids that are easier to be absorbed by the human body and have higher activity. PURPOSE At present, the research of P. ginseng. is widely focused on anticancer related aspects, and there are few studies on the antibacterial and skin protection effects of rare ginsenosides. This review summarizes the rare ginsenosides related to bacterial inhibition and skin protection and provides a new direction for P. ginseng research. METHODS PubMed and Web of Science were searched for English-language studies on P. ginseng published between January 2002 and March 2024. Selected manuscripts were evaluated manually for additional relevant references. This review includes basic scientific articles and related studies such as prospective and retrospective cohort studies. CONCLUSION This paper summarizes the latest research progress of several rare ginsenosides, discusses the antibacterial effect of rare ginsenosides, and finds that ginsenosides can effectively protect the skin and promote wound healing during use, so as to play an efficient antibacterial effect, and further explore the other medicinal value of ginseng. It is expected that this review will provide a wider understanding and new ideas for further research and development of P. ginseng drugs.
Collapse
Affiliation(s)
- Wen-Ting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Ya-Jie Xue
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jian-Kang Zhou
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Sheng-Yuan Guo
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Chao-Fan Zhao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yu Bai
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yu-Ting Zhu
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li-Zhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Shang Guo
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Shanxi University, Taiyuan 030006, China.
| | - Gui-Xing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
3
|
El-Nashar HAS, Taleb M, El-Shazly M, Zhao C, Farag MA. Polysaccharides (pectin, mucilage, and fructan inulin) and their fermented products: A critical analysis of their biochemical, gut interactions, and biological functions as antidiabetic agents. Phytother Res 2024; 38:662-693. [PMID: 37966040 DOI: 10.1002/ptr.8067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/29/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Diabetes mellitus is a globally metabolic endocrine syndrome marked by a deficiency of insulin secretion (type-1 DM) or glucose intolerance arising from insulin response impairment (type-2 DM) leading to abnormal glucose metabolism. With an increasing interest in natural dietary components for diabetes management, the identification of novel agents witnessed major discoveries. Plant-derived mucilage, pectin, and inulin are important non-starch polysaccharides that exhibit effective antidiabetic properties often termed soluble dietary fiber (SDF). SDF affects sugar metabolism through multiple mechanisms affecting glucose absorption and diffusion, modulation of carbohydrate metabolizing enzymes (α-amylase and α-glucosidase), ameliorating β-pancreatic cell dysfunction, and improving insulin release or sensitivity. Certain SDFs inhibit dipeptidyl peptidase-4 and influence the expression levels of genes related to glucose metabolism. This review is designed to discuss holistically and critically the antidiabetic effects of major SDF and their underlying mechanisms of action. This review should aid drug discovery approaches in developing novel natural antidiabetic drugs from SDF.
Collapse
Affiliation(s)
- Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed Taleb
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University-Gaza, Gaza, Palestine
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Chao Zhao
- College of Marine Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Kang J, Zhao J, He LF, Li LX, Zhu ZK, Tian ML. Extraction, characterization and anti-oxidant activity of polysaccharide from red Panax ginseng and Ophiopogon japonicus waste. Front Nutr 2023; 10:1183096. [PMID: 37293670 PMCID: PMC10244596 DOI: 10.3389/fnut.2023.1183096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Red ginseng and Ophiopogon japonicus are both traditional Chinese medicines. They have also been used as food in China for thousands of years. These two herbs were frequently used in many traditional Chinese patent medicines. However, the carbohydrate compositions of these two herbs were not normally used during the production of said medicine, such as Shenmai injection, resulting in a large amount of waste composed of carbohydrates. In this study, the extraction conditions were optimized by response surface methodology. The Shenmai injection waste polysaccharide was extracted by using distilled water that was boiled under the optimized conditions. The Shenmai injection waste polysaccharide (SMP) was thereby obtained. SMP was further purified by anion exchange chromatography and gel filtration. With this method, a neutral polysaccharide fraction (SMP-NP) and an acidic polysaccharide fraction (SMP-AP) were obtained. The results of structure elucidation indicated that SMP-NP was a type of levan, and SMP-AP was a typical acidic polysaccharide. SMP-NP exhibited potential stimulation activity on the proliferation of five different Lactobacilli strains. Therefore, SMP-AP could promote the antioxidant defense of IPEC-J2 cells. These findings suggest that Shenmai injection waste could be used as a resource for prebiotics and antioxidants.
Collapse
Affiliation(s)
- Jia Kang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jue Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan-Fang He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhong-Kai Zhu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Meng-Liang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Xu Y, Chen J, Shi S, Gao W, Wu J, Gong H, Zhao Y, Chen W, Wang H, Wang S. Structure characterization of pectin from the pollen of Typha angustifolia L. and the inhibition activity of lipid accumulation in oleic acid induced L02 cells. Carbohydr Polym 2023; 303:120452. [PMID: 36657842 DOI: 10.1016/j.carbpol.2022.120452] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
The pollen of Typha angustifolia L. decoction was clinically used to treat hyperlipidemia in China. A pectin polysaccharide (PTPS-2-2) was obtained from T. angustifolia pollen through water extraction, ion-exchange chromatography, and gel chromatography. Structural characterization showed that PTPS-2-2 had a molecular weight of 54 kDa and was composed of rhamnose, arabinose, xylose, galactose, and galacturonic acid with a molar ratio of 11.5: 36.5: 4.1: 36.7: 11.2. PTPS-2-2 consisted of rhamnogalacturonan I (RG-I) and arabinogalactan II (AG-II) domains. Its backbone was predominantly composed of →4-α-D-GalpA-(1 → 2)-α-L-Rhap-(1→, with branches of 1,3-Galp, 1,6-Galp, 1,3,6-Galp, T-Araf, 1.5-Araf and T-Xylp, connected to the 4-position of 1,2-Rhap and the 3-position of 1,4-GalpA. The inhibitory effect of PTPS-2-2 on lipid accumulation was studied in vitro, using L02 cells induced by oleic acid. This experiment shows that PTPS-2-2 treatment at 100-400 μg/mL dose-dependently reduce cellular triglycerides (TG), cholesterol (TC), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and malondialdehyde (MDA) levels, while elevated superoxide dismutase (SOD) levels. This indicated that PTPS-2-2 potentially ameliorated oleic acid-induced hepatic steatosis by inhibiting lipid accumulation and oxidative stress.
Collapse
Affiliation(s)
- Yongbin Xu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
| | - Jie Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
| | - Wei Gao
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
| | - Jianjun Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Huan Gong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
| | - Yonglin Zhao
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
| | - Weihao Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China.
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China.
| |
Collapse
|
6
|
Ren T, Liu F, Wang D, Li B, Jiang P, Li J, Li H, Chen C, Wu W, Jiao L. Rhamnogalacturonan-I enriched pectin from steamed ginseng ameliorates lipid metabolism in type 2 diabetic rats via gut microbiota and AMPK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115862. [PMID: 36283638 DOI: 10.1016/j.jep.2022.115862] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C. A. Meyer (Ginseng) has traditionally been used to treat diabetes. Polysaccharide is the main active component of ginseng, and has been proved to have hypoglycaemic and hypolipidaemic effects, but its mechanism remains unclear. AIM OF THE STUDY This study aimed to evaluate the effect and the potential mechanism of rhamnogalacturonan-I enriched pectin (GPS-1) from steamed ginseng on lipid metabolism in type 2 diabetes mellitus (T2DM) rats. MATERIALS AND METHODS GPS-1 was prepared by water extraction, ion-exchange and gel chromatography. High-glucose/high-fat diet combined with streptozotocin was used to establish T2DM rat models, and lipid levels in serum and liver were tested. 16S rRNA sequencing and gas chromatography-mass spectrometry were used to detect the changes of gut microbiota and metabolites. The protein and mRNA levels of lipid synthesis-related genes were detected by Western blot and quantitative real-time polymerase chain reaction. RESULTS The polyphagia, polydipsia, weight loss, hyperglycaemia, hyperlipidaemia and hepatic lipid accumulation in T2DM rats were alleviated after GPS-1 intervention. GPS-1 modulated the gut microbiota composition of T2DM rats, increased the levels of short-chain fatty acids, and promoted the secretion of glucagon-like peptide-1 and peptide tyrosine tyrosine. Further, GPS-1 activated AMP-activated protein kinases, phosphorylated acetyl-CoA carboxylase, reduced the expression of sterol regulatory element-binding protein-1c and fatty acid synthases in T2DM rats. CONCLUSIONS The regulation effects of GPS-1 on lipid metabolism in T2DM rats are related to the regulation of gut microbiota and activation of AMP-activated protein kinase pathway.
Collapse
Affiliation(s)
- Ting Ren
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Furao Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Dongxue Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Bo Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Peng Jiang
- National Demonstration Center for Experimental Biology Education, Northeast Normal University, Changchun, 130024, China.
| | - Junming Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
7
|
Ye XW, Li CS, Zhang HX, Li Q, Cheng SQ, Wen J, Wang X, Ren HM, Xia LJ, Wang XX, Xu XF, Li XR. Saponins of ginseng products: a review of their transformation in processing. Front Pharmacol 2023; 14:1177819. [PMID: 37188270 PMCID: PMC10175582 DOI: 10.3389/fphar.2023.1177819] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
The primary processed product of Panax ginseng C.A. Meyer (P. ginseng) is red ginseng. As technology advances, new products of red ginseng have arisen. Red ginseng products, e.g., traditional red ginseng, sun ginseng, black ginseng, fermented red ginseng, and puffed red ginseng, are commonly used in herbal medicine. Ginsenosides are the major secondary metabolites of P. ginseng. The constituents of P. ginseng are significantly changed during processing, and several pharmacological activities of red ginseng products are dramatically increased compared to white ginseng. In this paper, we aimed to review the ginsenosides and pharmacological activities of various red ginseng products, the transformation law of ginsenosides in processing, and some clinical trials of red ginseng products. This article will help to highlight the diverse pharmacological properties of red ginseng products and aid in the future development of red ginseng industrialization.
Collapse
Affiliation(s)
- Xian-Wen Ye
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-Shuai Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Hai-Xia Zhang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Shui-Qing Cheng
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Wen
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Xuan Wang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Hong-Min Ren
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Liang-Jing Xia
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Xing Wang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Fang Xu
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xin-Fang Xu, ; Xiang-Ri Li,
| | - Xiang-Ri Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xin-Fang Xu, ; Xiang-Ri Li,
| |
Collapse
|
8
|
Kim SW, Han BC, So SH, Han CK, In G, Park CK, Hyun SH. Biodistribution and pharmacokinetic evaluation of Korean Red Ginseng components using radioisotopes in a rat model. J Ginseng Res 2023; 47:74-80. [PMID: 36644381 PMCID: PMC9834004 DOI: 10.1016/j.jgr.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 01/18/2023] Open
Abstract
Background Although many studies have evaluated the efficacy and pharmacokinetics of Korean Red Ginseng (KRG) components (Rg1, Rb1, Rg3, Rd, etc.), few have examined the in vivo pharmacokinetics of the radiolabeled components. This study investigated the pharmacokinetics of ginsenosides and their metabolite compound K (CK), 20(s)-protopanaxadiol (PPD), and 20(s)-protopanaxatriol (PPT) using radioisotopes in rat oral administration. Methods Sprague-Dawley rats were dosed orally once with 10 mg/kg of the tritium(3H) radiolabeled samples, and then the blood was collected from the tail vein after 0.25, 0.5, 1, 1.5, 2, 4, 6, 8, 12, 24, 48, 96, and 168 h. Radioactivity in the organs, feces, urine, and carcass was determined using a liquid scintillation counter (LSC) and a bio-imaging analyzer system (BAS). Results and conclusion After oral administration, as the 3H-labeled ginsenosides were converted to metabolites, Cmax and half-life increased, and Tmax decreased. Interestingly, Rb1 and CK showed similar values, and after a single oral administration of components, the cumulative excretion ratio of urine and feces was 88.9%-92.4%. Although most KRG components were excreted within 96-168 h of administration, small amounts of components were detected in almost all tissues and mainly distributed to the liver except for the digestive tract when observed through autoradiography. This study demonstrated that KRG components were distributed to various organs in the rats. Further studies could be conducted to prove the bioavailability and transmission of KRG components to confirm the mechanism of KRG efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sun Hee Hyun
- Corresponding author. Laboratory of Efficacy Research, Korea Ginseng Corporation, 30 Gajeong-ro, Yuseong-gu, Daejeon, 34128, Republic of Korea.
| |
Collapse
|
9
|
Bai Y, Gilbert RG. Mechanistic Understanding of the Effects of Pectin on In Vivo Starch Digestion: A Review. Nutrients 2022; 14:nu14235107. [PMID: 36501138 PMCID: PMC9740804 DOI: 10.3390/nu14235107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity and type II diabetes are closely related to the rapid digestion of starch. Starch is the major food-energy source for most humans, and thus knowledge about the regulation of starch digestion can contribute to prevention and improved treatment of carbohydrate metabolic disorders such as diabetes. Pectins are plant polysaccharides with complex molecular structures and ubiquitous presence in food, and have diverse effects on starch digestion. Pectins can favorably regulate in vivo starch digestion and blood glucose level responses, and these effects are attributed to several reasons: increasing the viscosity of digesta, inhibiting amylase activity, and regulating some in vivo physiological responses. Pectins can influence starch digestion via multiple mechanisms simultaneously, in ways that are highly structure-dependent. Utilizing the multi-functionalities of pectin could provide more ways to design low glycemic-response food and while avoiding the unpalatable high viscosity in food by which is commonly caused by many other dietary fibers.
Collapse
Affiliation(s)
- Yeming Bai
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert G. Gilbert
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
- Correspondence: ; Tel.: +61-4-1221-5144
| |
Collapse
|
10
|
By-Product of the Red Ginseng Manufacturing Process as Potential Material for Use as Cosmetics: Chemical Profiling and In Vitro Antioxidant and Whitening Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238202. [PMID: 36500294 PMCID: PMC9736987 DOI: 10.3390/molecules27238202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Red ginseng (RG), which is obtained from heated Panax ginseng and is produced by steaming followed by drying, is a valuable herb in Asian countries. Steamed ginseng dew (SGD) is a by-product produced in processing red ginseng. In the present study, phytochemical profiling of extracts of red ginseng and steamed ginseng dew was carried out using gas chromatography-mass spectrometry (GC-MS) and rapid resolution liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (RRLC-Q-TOF-MS) analysis. Additionally, antioxidant activities (DPPH, ·OH, and ABTS scavenging ability) and whitening activities (tyrosinase and elastase inhibitory activity) were analyzed. Phytochemical profiling revealed the presence of 66 and 28 compounds that were non-saponin components in chloroform extracts of red ginseng and steamed ginseng dew (RG-CE and SGD-CE), respectively. Meanwhile, there were 20 ginsenosides identified in n-butanol extracts of red ginseng and steamed ginseng dew (RG-NBE and SGD-NBE). By comparing the different polar extracts of red ginseng and steamed ginseng dew, it was found that the ethyl acetate extract of red ginseng (RG-EAE) had the best antioxidant capacity and whitening effect, the water extract of steamed ginseng dew (SGD-WE) had stronger antioxidant capacity, and the SGD-NBE and SGD-CE had a better whitening effect. This study shows that RG and SGD have tremendous potential to be used in the cosmetic industries.
Collapse
|
11
|
Li PW, Ma J, Wei XF, Zhang ZY, Wang RM, Xiao J, Wang JQ. Modification and application of highly active alkaline pectin lyase. AMB Express 2022; 12:130. [PMID: 36210372 PMCID: PMC9548460 DOI: 10.1186/s13568-022-01472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Alkaline pectate lyase has developmental prospects in the textile, pulp, paper, and food industries. In this study, we selected BacPelA, the pectin lyase with the highest expression activity from Bacillus clausii, modified and expressed in Escherichia coli BL21(DE3). Through fragment replacement, the catalytic activity of the enzyme was significantly improved. The optimum pH and temperature of the modified pectin lyase (PGLA-rep4) were 11.0 and 70 °C, respectively. It also exhibited a superior ability to cleave methylated pectin. The enzyme activity of PGLA-rep4, measured at 235 nm with 0.2% apple pectin as the substrate, was 554.0 U/mL, and the specific enzyme activity after purification using a nickel column was 822.9 U/mg. After approximately 20 ns of molecular dynamics simulation, the structure of the pectin lyase PGLA-rep4 tended to be stable. The root mean square fluctuation (RMSF) values at the key catalytically active site, LYS168, were higher than those of the wildtype PGLA. In addition, PGLA-rep4 was relatively stable in the presence of metal ions. PGLA-rep4 has good enzymatic properties and activities and maintains a high pH and temperature. This study provides a successful strategy for enhancing the catalytic activity of PGLA-rep4, making it the ultimate candidate for degumming and various uses in the pulp, paper, and textile industries.
Collapse
|
12
|
The impact of the methyl esters of homogalacturonan on cellular uptake dependent hypoglycemic activity in IR-HepG2 cells. Carbohydr Polym 2022; 293:119741. [DOI: 10.1016/j.carbpol.2022.119741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
|
13
|
Liang T, Hu J, Song H, Xiong L, Li Y, Zhou Y, Mao L, Tian J, Yan H, Gong E, Fei J, Sun Y, Zhang H, Wang X. Comparative study on physicochemical characteristics, α-glucosidase inhibitory effect, and hypoglycemic activity of pectins from normal and Huanglongbing-infected navel orange peels. J Food Biochem 2022; 46:e14280. [PMID: 35746862 DOI: 10.1111/jfbc.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
This study aimed at comparing the physicochemical characteristics, α-glucosidase inhibitory effect, and hypoglycemic activity of pectins (N-NOP and H-NOP) from peels of normal and Huanglongbing (HLB)-infected Navel oranges. Results indicated the pectins were high methoxy pectins mainly composed of homogalacturonan and rhamnogalacturonan-I. The pectins exhibited similar functional groups, surface morphology, and particle size, and had no triple-helical conformation in solution. They exerted fat and glucose absorption capacities and were mixed-type noncompetitive α-glucosidase inhibitors with IC50 values of 1.182 and 2.524 mg/ml, respectively. Both N-NOP and H-NOP showed hypoglycemic activity in alloxan-induced diabetic mice. Administration of them could promote the synthesis of hepatic glycogen and/or serum insulin to lower blood glucose levels and enhance antioxidant status to alleviate oxidative stress injury in diabetic mice. Moreover, N-NOP had higher yield, molecular weight, ζ-potential, oil holding capacity, α-glucosidase inhibitory effect and in vivo hypoglycemic activity, whereas H-NOP possessed higher uronic acid, degree of esterification, thermal stability, water holding capacity, swelling capacity, and fat absorption capacity. It could be concluded that some similarities and differences existed between N-NOP and H-NOP in physicochemical characteristics, functional properties, α-glucosidase inhibitory effects, and hypoglycemic activity. This study provides references for the basic research and application of pectins from peels of normal and HLB-infected Navel oranges. PRACTICAL APPLICATIONS: Pectin has been widely used in the food and pharmaceutical industries for several decades due to its health benefit, gelling, thickening, and emulsification performances. Diabetes mellitus is a worldwide concern in recent years. Pectins (N-NOP and H-NOP) from peels of normal and Huanglongbing (HLB)-infected Navel oranges possessed in vitro and in vivo hypoglycemic activities, indicating they were potential anti-antidiabetic substitutes of chemical drugs. Moreover, comparative understanding on the physicochemical characteristic, α-glucosidase inhibitory effect and hypoglycemic activity of pectins from peels of normal and Huanglongbing-infected Navel oranges was conducive to the recycling and utilization of Navel orange peels. Recently, the biological activity of pectin from peels of normal Navel oranges has been rarely reported, and the information on pectin from peels of Huanglongbing-infected Navel orange is rare. This study provides references for the basic research and application of pectins from peels of normal and HLB-infected Navel oranges.
Collapse
Affiliation(s)
- Tian Liang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jiawei Hu
- Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - He Song
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Lili Xiong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yanping Li
- Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Yang Zhou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Lifang Mao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jiamin Tian
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Huan Yan
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Ersheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jiawen Fei
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yuan Sun
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Hanyue Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiaoyin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| |
Collapse
|
14
|
Pectic polysaccharides: Targeting gut microbiota in obesity and intestinal health. Carbohydr Polym 2022; 287:119363. [DOI: 10.1016/j.carbpol.2022.119363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022]
|
15
|
Hyun SH, Bhilare KD, In G, Park CK, Kim JH. Effects of Panax ginseng and ginsenosides on oxidative stress and cardiovascular diseases: pharmacological and therapeutic roles. J Ginseng Res 2022; 46:33-38. [PMID: 35058725 PMCID: PMC8753520 DOI: 10.1016/j.jgr.2021.07.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/21/2021] [Indexed: 01/04/2023] Open
Abstract
Traditionally, Asian ginseng or Korean ginseng, Panax ginseng has long been used in Korea and China to treat various diseases. The main active components of Panax ginseng is ginsenoside, which is known to have various pharmacological treatment effects such as antioxidant, vascular easing, anti-allergic, anti-inflammatory, anti-diabetes, and anticancer. Most reactive oxygen species (ROS) cause chronic diseases such as myocardial symptoms and cause fatal oxidative damage to cell membrane lipids and proteins. Therefore, many studies that inhibit the production of oxidative stress have been conducted in various fields of physiology, pathophysiology, medicine and health, and disease. Recently, ginseng or ginsenosides have been known to act as antioxidants in vitro and in vivo results, which have a beneficial effect on preventing cardiovascular disease. The current review aims to provide mechanisms and inform precious information on the effects of ginseng and ginsenosides on the prevention of oxidative stress and cardiovascular disease in animals and clinical trials.
Collapse
Affiliation(s)
- Sun Hee Hyun
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Kiran D. Bhilare
- College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University, Jeollabuk-do, Republic of Korea
| | - Gyo In
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Chae-Kyu Park
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
- Corresponding author. College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeollabuk-do, Republic of Korea.
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University, Jeollabuk-do, Republic of Korea
- Corresponding author. Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, 34128, Republic of Korea.
| |
Collapse
|
16
|
Jia H, Zhao B, Zhang F, Santhanam RK, Wang X, Lu J. Extraction, Structural Characterization, and Anti-Hepatocellular Carcinoma Activity of Polysaccharides From Panax ginseng Meyer. Front Oncol 2021; 11:785455. [PMID: 34912721 PMCID: PMC8666597 DOI: 10.3389/fonc.2021.785455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/02/2021] [Indexed: 12/25/2022] Open
Abstract
Polysaccharides are the main active ingredients of ginseng. To extract the most effective polysaccharides against hepatocellular carcinoma (HCC), we isolated and characterized the polysaccharides from the mountain cultivated ginseng (MCG) and compared their composition and cytotoxic effect with cultivated ginseng (CG) polysaccharide against HepG2 cell lines for the first time. MCG polysaccharides and CG polysaccharides were fractionated into two fractions such as MTPS-1, MTPS-2 and CTPS-1, CTPS-2 by salting out, respectively. Compared to CG, MCG possessed appreciable cytotoxic effect against HepG2 cells among that MTPS-1 possess fortified effect. Then, MTPS-1 was selected for further isolation process and seven acidic polysaccharides (MCGP-1–MCGP-7) were obtained using ethanol precipitation, ion-exchange, and gel permeation chromatography techniques. Structural characteristics of the polysaccharides (MCGP-1–MCGP-7) were done by adapting methylation/GC-MS and NMR analysis. Overall, MCGP-3 polysaccharide was found to possess significant cytotoxic effect against HepG2 cells with the IC50 value.
Collapse
Affiliation(s)
- Hui Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Bin Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Fangfang Zhang
- Department of Stomatology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ramesh Kumar Santhanam
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Xinying Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Traditional Chinese Medicine (TCM) Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
17
|
Liu Y, Zhang H, Dai X, Zhu R, Chen B, Xia B, Ye Z, Zhao D, Gao S, Orekhov AN, Zhang D, Wang L, Guo S. A comprehensive review on the phytochemistry, pharmacokinetics, and antidiabetic effect of Ginseng. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153717. [PMID: 34583224 DOI: 10.1016/j.phymed.2021.153717] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/08/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Radix Ginseng, one of the well-known medicinal herbs, has been used in the management of diabetes and its complications for more than 1000 years. PURPOSE The aim of this review is devoted to summarize the phytochemistry and pharmacokinetics of Ginseng, and provide evidence for the antidiabetic effects of Ginseng and its ingredients as well as the underlying mechanisms involved. METHODS For the purpose of this review, the following databases were consulted: the PubMed Database (https://pubmed.ncbi.nlm.nih.gov), Chinese National Knowledge Infrastructure (http://www.cnki.net), National Science and Technology Library (http://www.nstl.gov.cn/), Wanfang Data (http://www.wanfangdata.com.cn/) and the Web of Science Database (http://apps.webofknowledge.com/). RESULTS Ginseng exhibits glucose-lowering effects in different diabetic animal models. In addition, Ginseng may prevent the development of diabetic complications, including liver, pancreas, adipose tissue, skeletal muscle, nephropathy, cardiomyopathy, retinopathy, atherosclerosis and others. The main ingredients of Ginseng include ginsenosides and polysaccharides. The underlying mechanisms whereby this herb exerts antidiabetic activities may be attributed to the regulation of multiple signaling pathways, including IRS1/PI3K/AKT, LKB1/AMPK/FoxO1, AGEs/RAGE, MAPK/ERK, NF-κB, PPARδ/STAT3, cAMP/PKA/CERB and HIF-1α/VEGF, etc. The pharmacokinetic profiles of ginsenosides provide valuable information on therapeutic efficacy of Ginseng in diabetes. Although Ginseng is well-tolerated, dietary consumption of this herb should follow the doctors' advice. CONCLUSION Ginseng may offer an alternative strategy in protection against diabetes and its complications through the regulations of the multi-targets via various signaling pathways. Efforts to understand the underlying mechanisms with strictly-controlled animal models, combined with well-designed clinical trials and pharmacokinetic evaluation, will be important subjects of the further investigations and weigh in translational value of this herb in diabetes management.
Collapse
Affiliation(s)
- Yage Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hao Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xuan Dai
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruyuan Zhu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Beibei Chen
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bingke Xia
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zimengwei Ye
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dandan Zhao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sihua Gao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia
| | - Dongwei Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Lili Wang
- Department of TCM Pharmacology, School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Shuzhen Guo
- Department of Scientific Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
18
|
Qi H, Zhang Z, Liu J, Chen Z, Huang Q, Li J, Chen J, Wang M, Zhao D, Wang Z, Li X. Comparisons of Isolation Methods, Structural Features, and Bioactivities of the Polysaccharides from Three Common Panax Species: A Review of Recent Progress. Molecules 2021; 26:4997. [PMID: 34443587 PMCID: PMC8400370 DOI: 10.3390/molecules26164997] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/27/2022] Open
Abstract
Panax spp. (Araliaceae family) are widely used medicinal plants and they mainly include Panax ginseng C.A. Meyer, Panax quinquefolium L. (American ginseng), and Panax notoginseng (notoginseng). Polysaccharides are the main active ingredients in these plants and have demonstrated diverse pharmacological functions, but comparisons of isolation methods, structural features, and bioactivities of these polysaccharides have not yet been reported. This review summarizes recent advances associated with 112 polysaccharides from ginseng, 25 polysaccharides from American ginseng, and 36 polysaccharides from notoginseng and it compares the differences in extraction, purification, structural features, and bioactivities. Most studies focus on ginseng polysaccharides and comparisons are typically made with the polysaccharides from American ginseng and notoginseng. For the extraction, purification, and structural analysis, the processes are similar for the polysaccharides from the three Panax species. Previous studies determined that 55 polysaccharides from ginseng, 18 polysaccharides from American ginseng, and 9 polysaccharides from notoginseng exhibited anti-tumor activity, immunoregulatory effects, anti-oxidant activity, and other pharmacological functions, which are mediated by multiple signaling pathways, including mitogen-activated protein kinase, nuclear factor kappa B, or redox balance pathways. This review can provide new insights into the similarities and differences among the polysaccharides from the three Panax species, which can facilitate and guide further studies to explore the medicinal properties of the Araliaceae family used in traditional Chinese medicine.
Collapse
Affiliation(s)
- Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Mingxing Wang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| |
Collapse
|
19
|
Jiao L, Li J, Liu F, Wang J, Jiang P, Li B, Li H, Chen C, Wu W. Characterisation, Chain Conformation and Antifatigue Effect of Steamed Ginseng Polysaccharides With Different Molecular Weight. Front Pharmacol 2021; 12:712836. [PMID: 34385923 PMCID: PMC8353105 DOI: 10.3389/fphar.2021.712836] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/13/2021] [Indexed: 12/02/2022] Open
Abstract
Two polysaccharides were obtained from steamed ginseng via ultrafiltration, and their physical–chemical properties, solution properties and antifatigue activities were studied. WSGP-S3 and WSGP-G3 were acid heteropolysaccharides with the molecular weights of 2.03 × 104 and 4.86 × 104, respectively. They were composed of different molar ratios of the monosaccharides Rha, GlcA, GalA, Glc, Gal, and Ara. The results of size-exclusion chromatography–multiangle laser light scattering analysis, Conge red staining and Circular dichroism spectroscopy revealed that WSGP-S3 exhibited a random conformation of branched clusters in solution. By contrast, WSGP-G3 exhibited an ordered conformation, including helix-like conformations in aqueous solution. Antifatigue activity tests proved that WSGP-S3 markedly prolonged the exhaustive swimming time of fatigued mice; increased liver and muscle glycogen levels and superoxide dismutase, catalase, glutathione peroxidase activities and decreased blood lactic acid, nitrogen and malondialdehyde levels compared with the control treatment. Moreover, it enhanced spleen cell proliferation in fatigued mice. By contrast, WSGP-G3 had no significant effect on fatigued mice. The results showed that WSGP-S3 might have a major contribution to the antifatigue effects of steamed ginseng polysaccharides and could be a potential anti-fatigue polysaccharide.
Collapse
Affiliation(s)
- Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Junming Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Furao Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Wang
- The Affiliated Hospital Changchun University of Chinese Medicine, Changchun, China
| | - Peng Jiang
- National Demonstration Center for Experimental Biology Education, Northeast Normal University, Changchun, China
| | - Bo Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
20
|
Kumar M, Tomar M, Saurabh V, Sasi M, Punia S, Potkule J, Maheshwari C, Changan S, Radha, Bhushan B, Singh S, Anitha T, Alajil O, Satankar V, Dhumal S, Amarowicz R, Kaur C, Sharifi-Rad J, Kennedy JF. Delineating the inherent functional descriptors and biofunctionalities of pectic polysaccharides. Carbohydr Polym 2021; 269:118319. [PMID: 34294331 DOI: 10.1016/j.carbpol.2021.118319] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022]
Abstract
Pectin is a plant-based heteropolysaccharide macromolecule predominantly found in the cell wall of plants. Pectin is commercially extracted from apple pomace, citrus peels and sugar beet pulp and is widely used in the food industry as a stabilizer, emulsifier, encapsulant, and gelling agent. This review highlights various parameters considered important for describing the inherent properties and biofunctionalities of pectins in food systems. These inherent descriptors include monosaccharide composition, galacturonic acid content, degree of esterification, molecular weight, structural morphology, functional group analysis, and functional properties, such as water and oil holding capacity, emulsification, foaming capacity, foam stability, and viscosity. In this study, we also delineate their potential as a nutraceutical, prebiotic, and carrier for bioactive compounds. The biofunctionalities of pectin as an anticancer, antioxidant, lipid-lowering, and antidiabetic agent are also conceptually elaborated in the current review. The multidimensional characteristics of pectin make it a potential candidate for use in food and biomedical science.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central institute for Research on Cotton Technology, Mumbai 400019, India.
| | - Maharishi Tomar
- Seed Technology Division, ICAR - Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Vivek Saurabh
- Division of Food Science and Postharvest Technology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Minnu Sasi
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 10012, India
| | - Sneh Punia
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jayashree Potkule
- Chemical and Biochemical Processing Division, ICAR-Central institute for Research on Cotton Technology, Mumbai 400019, India
| | - Chirag Maheshwari
- Department of Agriculture Energy and Power, ICAR - Central Institute of Agricultural Engineering, Bhopal, India
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Institute, Shimla 171001, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Bharat Bhushan
- ICAR - Indian Institute of Maize Research, PAU Campus, Ludhiana, Punjab 141 004, India
| | - Surinder Singh
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - T Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam 625604, Tamil Nadu, India
| | - Omar Alajil
- Division of Food Science and Postharvest Technology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Varsha Satankar
- Ginning Training Centre, ICAR-Central Institute for Research on Cotton Technology, Nagpur 440023, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, Maharashtra, India.
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Charanjit Kaur
- Division of Food Science and Postharvest Technology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - J F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, Kyrewood House, Tenbury Wells, Worcs WR15 8FF, UK
| |
Collapse
|
21
|
Guo M, Shao S, Wang D, Zhao D, Wang M. Recent progress in polysaccharides from Panax ginseng C. A. Meyer. Food Funct 2020; 12:494-518. [PMID: 33331377 DOI: 10.1039/d0fo01896a] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Panax ginseng C. A. Meyer (P. ginseng) has a long history of medicinal use and can treat a variety of diseases. P. ginseng contains a variety of active ingredients, such as saponins, polypeptides, volatile oils, and polysaccharides. Among them, saponins have always been considered as the main components responsible for its pharmacological activities. However, more and more studies have shown that polysaccharides play an indispensable role in the medicinal value of ginseng. Modern biological and medical studies have found that ginseng polysaccharides have complex structural characteristics and diverse biological activities, such as immune regulation, anti-tumor, antioxidant, hypoglycemic, and anti-radiation functions, among others. Additionally, the structural characteristics of ginseng polysaccharides are closely related to their activity. In this review, the research background, extraction, purification, structural characteristics, and biological activities of ginseng polysaccharides from different parts of P. ginseng (roots, flowers stems and leaves, and berries) under different growth conditions (artificially cultivated ginseng, mountain ginseng, and wild ginseng) are summarized. The structural characteristics of purified polysaccharides were reviewed. Meanwhile, their biological activities were introduced, and some possible mechanisms were listed. Furthermore, the structure-activity relationship of polysaccharides was discussed. Some research perspectives for the study of ginseng polysaccharides were also provided.
Collapse
Affiliation(s)
- Mingkun Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | | | | | | | | |
Collapse
|
22
|
Zaitseva O, Khudyakov A, Sergushkina M, Solomina O, Polezhaeva T. Pectins as a universal medicine. Fitoterapia 2020; 146:104676. [DOI: 10.1016/j.fitote.2020.104676] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/19/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
|
23
|
Hyun SH, Ahn HY, Kim HJ, Kim SW, So SH, In G, Park CK, Han CK. Immuno-enhancement effects of Korean Red Ginseng in healthy adults: a randomized, double-blind, placebo-controlled trial. J Ginseng Res 2020; 45:191-198. [PMID: 33437171 PMCID: PMC7790881 DOI: 10.1016/j.jgr.2020.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 01/02/2023] Open
Abstract
Background Most clinical studies of immune responses activated by Korean Red Ginseng (KRG) have been conducted exclusively in patients. However, there is still a lack of clinical research on immune-boosting benefits of KRG for healthy persons. This study aims to confirm how KRG boosts the immune system of healthy subjects. Methods A total of 100 healthy adult subjects were randomly divided into two groups that took either a 2 g KRG tablet or a placebo per day for 8 weeks. The primary efficacy evaluation variables included changes in T cells, B cells, and white blood cells (WBCs) before and after eight weeks of KRG ingestion. Cytokines (TNF-α, INF-γ, IL-2 and IL-4), WBC differential count, and incidence of colds were measured in the secondary efficacy evaluation variables. Safety evaluation variables were used to identify changes in laboratory test results that incorporated adverse reactions, vital signs, hematological tests, blood chemistry tests, and urinalysis. Results Compared to the placebo group, the KRG intake group showed a significant increase in the number of T cells (CD3) and its subtypes (CD4 and CD8), B cells, and the WBC count before and after eight weeks of the intake. There were no clinically significant adverse reactions or other notable results in the safety evaluation factors observed. Conclusion This study has proven through its eight-week intake test and subsequent analysis that KRG boosts the immune system through an increase in T cells, B cells, and WBCs, and that it is safe according to the study's safety evaluation.
Collapse
Affiliation(s)
- Sun Hee Hyun
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Ha-Young Ahn
- Department of Obstetrics and Gynecology, Oriental Medical Hospital, Se-Myung University, Chungcheongbuk-do, Republic of Korea
| | - Hyeong-Jun Kim
- Department of Obstetrics and Gynecology, Oriental Medical Hospital, Se-Myung University, Chungcheongbuk-do, Republic of Korea
| | - Sung Won Kim
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Seung-Ho So
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Gyo In
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Chae-Kyu Park
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
24
|
Jiao L, Li H, Li J, Bo L, Zhang X, Wu W, Chen C. Study on structure characterization of pectin from the steamed ginseng and the inhibition activity of lipid accumulation in oleic acid-induced HepG2 cells. Int J Biol Macromol 2020; 159:57-65. [PMID: 32339574 DOI: 10.1016/j.ijbiomac.2020.04.167] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
Two acid polysaccharides were obtained from steamed ginseng (GPS-1 and GPS-2) through water extraction, ion-exchange chromatography and gel chromatography. The structural features and ability of the polysaccharides to inhibit lipid accumulation in oleic acid-induced HepG2 cells were studied. GPS-1 consisted of type I arabinogalactans (AG-I), arabinogalactans-II (AG-II) and rhamnogalacturonan I (RG-I) domains. GPS-2 was a pectin-like polysaccharide consisting mainly of the homogalacturonan (HG) domain and a small amount of AG domain. Both GPS-1 and GPS-2 had branches attaching on O-3 of (1 → 6)-GalA or O-4 of (1 → 2)-Rha and terminated by either Ara or Gal. An in vitro experiment revealed that GPS-1 treatment at 50-400 μg/ml could dose-dependently decrease intracellular lipid accumulation and cholesterol (TC) and triglycerides (TG) levels. GPS-1 exerted a more serious hypolipidemic effect than GPS-2 did. Moreover, GPS-1 considerably increased the phosphorylation of AMP-activated protein kinase (AMPK) and affected the expression of AMPK downstream targets, including the inhibition of the protein expression of sterol regulatory element-binding protein 1c (SREBP-1c) and activation of Acetyl-CoA carboxylase (ACC). Results suggest that GPS-1 could inhibit lipid accumulation via the AMPK the signalling pathway.
Collapse
|
25
|
Ye M, Yu J, Shi X, Zhu J, Gao X, Liu W. Polysaccharides catabolism by the human gut bacterium - Bacteroides thetaiotaomicron: advances and perspectives. Crit Rev Food Sci Nutr 2020; 61:3569-3588. [PMID: 32779480 DOI: 10.1080/10408398.2020.1803198] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, the degradation processes of polysaccharides by human gut microbiota are receiving considerable attention due to the discoveries of the powerful function of gut microbiota. Gut microbiota has developed a sensitive, accurate, and complex system for sensing, capturing, and degrading different polysaccharides. Among the gut microbiota, Bacteroides thetaiotaomicron, a representative species of Bacteroides, is considered as the best degrader of polysaccharides and a potential probiotic in pharmaceutical and food industries. Here, we summarize the degradation system of B. thetaiotaomicron and the degradation pathways of different polysaccharides by B. thetaiotaomicron. We also describe a technical route for investigating a specific polysaccharide degradation pathway by human gut bacteria. In addition, we also provide the future perspectives in the development of novel polysaccharides or oligosaccharides drugs, precision microbiology medicine, and personalized nutrition.
Collapse
Affiliation(s)
- Meng Ye
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Juping Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Xuexia Shi
- Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, PR China
| | - Jingyi Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.,Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, PR China
| |
Collapse
|
26
|
Hyun SH, Kim SW, Seo HW, Youn SH, Kyung JS, Lee YY, In G, Park CK, Han CK. Physiological and pharmacological features of the non-saponin components in Korean Red Ginseng. J Ginseng Res 2020; 44:527-537. [PMID: 32617032 PMCID: PMC7322739 DOI: 10.1016/j.jgr.2020.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
Panax ginseng, a medicinal plant, has been used as a blood-nourishing tonic for thousands of years in Asia, including Korea and China. P. ginseng exhibits adaptogen activity that maintains homeostasis by restoring general biological functions and non-specifically enhancing the body's resistance to external stress. Several P. ginseng effects have been reported. Korean Red Ginseng, in particular, has been reported in both basic and clinical studies to possess diverse effects such as enhanced immunity, fatigue relief, memory, blood circulation, and anti-oxidation. Moreover, it also protects against menopausal symptoms, cancer, cardiac diseases, and neurological disorders. The active components found in most Korean Red Ginseng varieties are known to include ginsenosides, polysaccharides, peptides, alkaloids, polyacetylene, and phenolic compounds. In this review, the identity and bioactivity of the non-saponin components of Korean Red Ginseng discovered to date are evaluated and the components are classified into polysaccharide and nitrogen compounds (protein, peptide, amino acid, nucleic acid, and alkaloid), as well as fat-soluble components such as polyacetylene, phenols, essential oils, and phytosterols. The distinct bioactivity of Korean Red Ginseng was found to originate from both saponin and non-saponin components rather than from only one or two specific components. Therefore, it is important to consider saponin and non-saponin elements together.
Collapse
Affiliation(s)
- Sun Hee Hyun
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Sung Won Kim
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Hwi Won Seo
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Soo Hyun Youn
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Jong Soo Kyung
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Yong Yook Lee
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Gyo In
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Chae-Kyu Park
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
27
|
Analysis of the Rule of TCM Compatibility in TCM Prescriptions Containing Ginseng Radix ET Rhizoma in Ancient Books for Xiaoke Bing. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9472304. [PMID: 32308724 PMCID: PMC7140142 DOI: 10.1155/2020/9472304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/17/2020] [Indexed: 11/17/2022]
Abstract
Background TCM considers that diabetes belongs to the scope of Xiaoke Bing. Compound prescriptions are characteristics of TCM. For a certain medicine, its compatibility with different medicines can exert different efficacies in different prescriptions. Using the TCM compound prescriptions containing Ginseng Radix ET Rhizoma in ancient books for Xiaoke Bing as an example, this study introduces new methods to investigate the rule of TCM compatibility. Methods Frequency analysis was accomplished by programs written in Perl. The R, Cytoscape, and DpClus software were used to carry out the association rules analysis, the construction of the TCM interconnection network, and the graph clustering analysis, respectively. Results Frequency analysis ranked the frequencies of medicine, medicinal flavors, properties, and meridian attributions, and it was found that some of them are significantly higher than others. Six association rules were obtained. The TCM interconnection network showed that there are close medicine associations among prescriptions, and we got 17 categories of closely related prescriptions from the network. Conclusions Ginseng Radix ET Rhizoma was widely used in treating Xiaoke Bing. Our results are consistent with the understanding of Xiaoke Bing in TCM; hence, it is demonstrated that the methods are effective for exploring the rule of TCM usage in prescriptions. This analysis could provide references for the treatment of diabetes.
Collapse
|
28
|
Enhancing the hardness of potato slices after boiling by combined treatment with lactic acid and calcium chloride: Mechanism and optimization. Food Chem 2020; 308:124832. [DOI: 10.1016/j.foodchem.2019.05.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 11/22/2022]
|
29
|
Wu D, Zheng J, Mao G, Hu W, Ye X, Linhardt RJ, Chen S. Rethinking the impact of RG-I mainly from fruits and vegetables on dietary health. Crit Rev Food Sci Nutr 2019; 60:2938-2960. [PMID: 31607142 DOI: 10.1080/10408398.2019.1672037] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhamnogalacturonan I (RG-I) pectin is composed of backbone of repeating disaccharide units →2)-α-L-Rhap-(1→4)-α-D-GalpA-(1→ and neutral sugar side-chains mainly consisting of arabinose and galactose having variable types of linkages. However, since traditional pectin extraction methods damages the RG-I structure, the characteristics and health effects of RG-I remains unclear. Recently, many studies have focused on RG-I, which is often more active than the homogalacturonan (HG) portion of pectic polysaccharides. In food products, RG-I is common to fruits and vegetables and possesses many health benefits. This timely and comprehensive review describes the many different facets of RG-I, including its dietary sources, history, metabolism and potential functionalities, all of which have been compiled to establish a platform for taking full advantage of the functional value of RG-I pectin.
Collapse
Affiliation(s)
- Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Jiaqi Zheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Guizhu Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Weiwei Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Zhao B, Lv C, Lu J. Natural occurring polysaccharides from Panax ginseng C. A. Meyer: A review of isolation, structures, and bioactivities. Int J Biol Macromol 2019; 133:324-336. [DOI: 10.1016/j.ijbiomac.2019.03.229] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/24/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
|
31
|
Xin SQ, Wang Z, Hao WN, Yan XT, Xu Q, Liu Y, Liu W, Li YF, Li XD, Li W. Liver Protection Effect of Steamed Codonopsis lanceolata on Alcohol-induced Liver Injury in Mice and its Main Components by LC/MS Analysis. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.394.402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Cui Y, Su Y, Deng L, Wang W. Ginsenoside-Rg5 Inhibits Retinoblastoma Proliferation and Induces Apoptosis through Suppressing BCL2 Expression. Chemotherapy 2019; 63:293-300. [PMID: 30731458 DOI: 10.1159/000495575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Although the cure rate for retinoblastoma is high, surviving patients are at risk for developing secondary cancers and require life-long follow-up. It is imperative to discover and develop novel therapeutic agents with better efficiency and fewer adverse effects. Ginsenoside-Rg5 is an active derivate from ginseng and exerts anti-cancer activity in breast cancer cells. However, it is still unclear whether ginsenoside-Rg5 has similar anti-cancer functions in retinoblastoma. METHODS Retinoblastoma cells were treated with ginsenoside-Rg5, followed by MTT assay analysis of the cell viability, cell number assay and colony formation assay analyses of cell proliferation, and flow cytometric analysis of apoptosis. Gene mRNA levels and protein levels were determined by quantitative real-time PCR and Western blot, respectively. RESULTS Ginsenoside-Rg5 inhibited retinoblastoma cell viability in a dose-dependent and time-dependent manner via preventing cell proliferation and inducing cell apoptosis. BCL2 expression was downregulated by ginsenoside-Rg5 treatment via inactivating the AKT signaling pathway. BCL2 overexpression completely eliminated the inhibitory effect of ginsenoside-Rg5 on cancer cell viability. CONCLUSION Ginsenoside-Rg5 inhibits cell proliferation and induces apoptosis in retinoblastoma cells by inactivating the AKT signaling pathway, thereby downregulating BCL2 expression.
Collapse
Affiliation(s)
- Yong Cui
- Department of TCM Ophthalmology, Jinan Second People's Hospital, Jinan, China
| | - Yan Su
- Department of TCM Ophthalmology, Jinan Second People's Hospital, Jinan, China
| | - Liya Deng
- Department of TCM Ophthalmology, Jinan Second People's Hospital, Jinan, China
| | - Wenjing Wang
- Record Room, Jinan Second People's Hospital, Jinan, China,
| |
Collapse
|
33
|
Zheng Y, Bai L, Zhou Y, Tong R, Zeng M, Li X, Shi J. Polysaccharides from Chinese herbal medicine for anti-diabetes recent advances. Int J Biol Macromol 2019; 121:1240-1253. [DOI: 10.1016/j.ijbiomac.2018.10.072] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022]
|
34
|
Minzanova ST, Mironov VF, Arkhipova DM, Khabibullina AV, Mironova LG, Zakirova YM, Milyukov VA. Biological Activity and Pharmacological Application of Pectic Polysaccharides: A Review. Polymers (Basel) 2018; 10:E1407. [PMID: 30961332 PMCID: PMC6401843 DOI: 10.3390/polym10121407] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 01/07/2023] Open
Abstract
Pectin is a polymer with a core of alternating α-1,4-linked d-galacturonic acid and α-1,2-l-rhamnose units, as well as a variety of neutral sugars such as arabinose, galactose, and lesser amounts of other sugars. Currently, native pectins have been compared to modified ones due to the development of natural medicines and health products. In this review, the results of a study of the bioactivity of pectic polysaccharides, including its various pharmacological applications, such as its immunoregulatory, anti-inflammatory, hypoglycemic, antibacterial, antioxidant and antitumor activities, have been summarized. The potential of pectins to contribute to the enhancement of drug delivery systems has been observed.
Collapse
Affiliation(s)
- Salima T Minzanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Vladimir F Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Daria M Arkhipova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Anna V Khabibullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Lubov G Mironova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Yulia M Zakirova
- Kazan (Volga region) Federal University, Kazan University, KFU, Kazan 420008, Russia.
| | - Vasili A Milyukov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| |
Collapse
|
35
|
Karmazyn M, Gan XT. Ginseng for the treatment of diabetes and diabetes-related cardiovascular complications: a discussion of the evidence 1. Can J Physiol Pharmacol 2018; 97:265-276. [PMID: 30395481 DOI: 10.1139/cjpp-2018-0440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder associated with elevated blood glucose levels due either to insufficient insulin production (type 1 DM) or to insulin resistance (type 2 DM). The incidence of DM around the world continues to rise dramatically with more than 400 million cases reported today. Among the most serious consequences of chronic DM are cardiovascular complications that can have deleterious effects. Although numerous treatment options are available, including both pharmacological and nonpharmacological, there is substantial emerging interest in the use of traditional medicines for the treatment of this condition and its complications. Among these is ginseng, a medicinal herb that belongs to the genus Panax and has been used for thousands of years as a medicinal agent especially in Asian cultures. There is emerging evidence from both animal and clinical studies that ginseng, ginseng constituents including ginsenosides, and ginseng-containing formulations can produce beneficial effects in terms of normalization of blood glucose levels and attenuation of cardiovascular complications through a multiplicity of mechanisms. Although more research is required, ginseng may offer a useful therapy for the treatment of diabetes as well as its complications.
Collapse
|
36
|
Zhao LC, Liu Y, Wang Z, Tang N, Leng J, Zheng B, Liu YY, Li W. Liquid Chromatography/Mass Spectrometry Analysis and Hepatoprotective Effect of Steamed Platycodi Radix on Acute Alcohol-induced Liver Injury. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.952.962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
So SH, Lee JW, Kim YS, Hyun SH, Han CK. Red ginseng monograph. J Ginseng Res 2018; 42:549-561. [PMID: 30337816 PMCID: PMC6190493 DOI: 10.1016/j.jgr.2018.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022] Open
Abstract
Ginseng has been traditionally used for several millennia in Asian countries, including Korea, China, and Japan, not only as a nourishing and tonifying agent but also as a therapeutic agent for a variety of diseases. In recent years, the various effects of red ginseng including immunity improvement, fatigue relief, memory improvement, blood circulation improvement, antioxidation, mitigation of menopausal women's symptoms, and anticancer an effect have been reported in clinical as well as basic research. Around the world, there is a trend of the rising consumption of health functional foods on the level of disease prevention along with increased interest in maintaining health because of population aging and the awareness of lifestyle diseases and chronic diseases. Red ginseng occupies an important position as a health functional food. But till now, international ginseng monographs including those of the World Health Organization have been based on data on white ginseng and have mentioned red ginseng only partly. Therefore, the red ginseng monograph is needed for component of red ginseng, functionality certified as a health functional food in the Korea Food and Drug Administration, major efficacy, action mechanism, and safety. The present red ginseng monograph will contribute to providing accurate information on red ginseng to agencies, businesses, and consumers both in South Korea and abroad.
Collapse
Affiliation(s)
- Seung-Ho So
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Jong Won Lee
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Young-Sook Kim
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Sun Hee Hyun
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| |
Collapse
|
38
|
Eom SJ, Kim KT, Paik HD. Microbial bioconversion of ginsenosides in Panax ginseng and their improved bioactivities. FOOD REVIEWS INTERNATIONAL 2018. [DOI: 10.1080/87559129.2018.1424183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Su Jin Eom
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - Kee-Tae Kim
- Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
- Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| |
Collapse
|
39
|
Advanced analysis of polysaccharides, novel functional components in food and medicine dual purposes Chinese herbs. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Wang D, Fu JF, Zhou RJ, Li ZB, Xie YJ. Proteomics research and related functional classification of liquid sclerotial exudates of Sclerotinia ginseng. PeerJ 2017; 5:e3979. [PMID: 29104825 PMCID: PMC5669253 DOI: 10.7717/peerj.3979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/11/2017] [Indexed: 02/01/2023] Open
Abstract
Sclerotinia ginseng is a necrotrophic soil pathogen that mainly infects the root and basal stem of ginseng, causing serious commercial losses. Sclerotia, which are important in the fungal life cycle, are hard, asexual, resting structures that can survive in soil for several years. Generally, sclerotium development is accompanied by the exudation of droplets. Here, the yellowish droplets of S. ginseng were first examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the proteome was identified by a combination of different analytical platforms. A total of 59 proteins were identified and classified into six categories: carbohydrate metabolism (39%), oxidation-reduction process (12%), transport and catabolism (5%), amino acid metabolism (3%), other functions (18%), and unknown protein (23%), which exhibited considerable differences in protein composition compared with droplets of S. sclerotium. In the carbohydrate metabolism group, several proteins were associated with sclerotium development, particularly fungal cell wall formation. The pathogenicity and virulence of the identified proteins are also discussed in this report. The findings of this study may improve our understanding of the function of exudate droplets as well as the life cycle and pathogenesis of S. ginseng.
Collapse
Affiliation(s)
- Dan Wang
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jun Fan Fu
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ru Jun Zhou
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zi Bo Li
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yu Jiao Xie
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
41
|
Wang Z, Hu JN, Yan MH, Xing JJ, Liu WC, Li W. Caspase-Mediated Anti-Apoptotic Effect of Ginsenoside Rg5, a Main Rare Ginsenoside, on Acetaminophen-Induced Hepatotoxicity in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9226-9236. [PMID: 28965396 DOI: 10.1021/acs.jafc.7b03361] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Frequent overdose of acetaminophen (APAP) is one of the most common and important incentives of acute hepatotoxicity. Prior to this work, our research group confirmed that black ginseng (Panax ginseng, BG) showed powerful protective effects on APAP-induced ALI. However, it is not clear which kind of individual ginsenoside from BG plays such a liver protection effect. The objective of the current investigation was to evaluate whether ginsenoside Rg5 (G-Rg5) protected against APAP-induced hepatotoxicity and the involved action mechanisms. Mice were administrated with G-Rg5 at two dosages of 10 or 20 mg/kg for 7 consecutive days. After the last treatment, all of the animals that received a single intraperitoneal injection of APAP (250 mg/kg) showed severe liver toxicity after 24 h, and the liver protection effects of G-Rg5 were examined. The results clearly indicated that pretreatment with G-Rg5 remarkably inhibited the production of serum tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β) compared with the APAP group. Meanwhile, G-Rg5 decreased the hepatic malondialdehyde (MDA) content, the protein expression levels of 4-hydroxynonenal (4-HNE) and cytochrome P450 2E1 (CYP2E1) in the liver tissues. G-Rg5 decreased APAP caused the hepatic overexpression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Furthermore, analysis of immunohistochemistry and Western blotting also indicated that G-Rg5 pretreatment inhibited activation of apoptotic pathways mainly via increasing the expression of Bcl-2 protein, decreasing the expression of Bax protein, proliferating cell nuclear antigen (PCNA), cytochrome c, caspase-3, caspase-8, and caspase-9. Liver histopathological observation provided further evidence that pretreatment with G-Rg5 could significantly inhibit hepatocyte necrosis, inflammatory cell infiltration, and apoptosis caused by APAP. In conclusion, the present study clearly demonstrates that G-Rg5 exerts a liver protection effect against APAP-induced acute hepatotoxicity mainly via a caspase-mediated anti-apoptotic effect.
Collapse
Affiliation(s)
- Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun 130118, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun 130118, China
| | - Meng-Han Yan
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun 130118, China
| | - Jing-Jing Xing
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun 130118, China
| | - Wen-Cong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun 130118, China
| |
Collapse
|
42
|
Chen Q, Zhu L, Tang Y, Zhao Z, Yi T, Chen H. Preparation-related structural diversity and medical potential in the treatment of diabetes mellitus with ginseng pectins. Ann N Y Acad Sci 2017; 1401:75-89. [DOI: 10.1111/nyas.13424] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University; Hong Kong Special Administrative Region; Hong Kong P.R. China
| | - Lin Zhu
- Shenzhen Research Institute; The Chinese University of Hong Kong; Shenzhen P.R. China
| | - Yina Tang
- Sichuan Academy of Chinese Medical Sciences; Sichuan P.R. China
| | - Zhongzhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University; Hong Kong Special Administrative Region; Hong Kong P.R. China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University; Hong Kong Special Administrative Region; Hong Kong P.R. China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University; Hong Kong Special Administrative Region; Hong Kong P.R. China
| |
Collapse
|
43
|
Hu JN, Xu XY, Li W, Wang YM, Liu Y, Wang Z, Wang YP. Ginsenoside Rk1 ameliorates paracetamol-induced hepatotoxicity in mice through inhibition of inflammation, oxidative stress, nitrative stress and apoptosis. J Ginseng Res 2017; 43:10-19. [PMID: 30662289 PMCID: PMC6323149 DOI: 10.1016/j.jgr.2017.07.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/21/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Background Frequent overdose of paracetamol (APAP) has become the major cause of acute liver injury. The present study was designed to evaluate the potential protective effects of ginsenoside Rk1 on APAP-induced hepatotoxicity and investigate the underlying mechanisms for the first time. Methods Mice were treated with Rk1 (10 mg/kg or 20 mg/kg) by oral gavage once per d for 7 d. On the 7th d, all mice treated with 250 mg/kg APAP exhibited severe liver injury after 24 h, and hepatotoxicity was assessed. Results Our results showed that pretreatment with Rk1 significantly decreased the levels of serum alanine aminotransferase, aspartate aminotransferase, tumor necrosis factor, and interleukin-1β compared with the APAP group. Meanwhile, hepatic antioxidants, including superoxide dismutase and glutathione, were elevated compared with the APAP group. In contrast, a significant decrease in levels of the lipid peroxidation product malondialdehyde was observed in the ginsenoside Rk1-treated group compared with the APAP group. These effects were associated with a significant increase of cytochrome P450 E1 and 4-hydroxynonenal levels in liver tissues. Moreover, ginsenoside Rk1 supplementation suppressed activation of apoptotic pathways by increasing Bcl-2 and decreasing Bax protein expression levels, which was shown using western blotting analysis. Histopathological observation also revealed that ginsenoside Rk1 pretreatment significantly reversed APAP-induced necrosis and inflammatory infiltration in liver tissues. Biological indicators of nitrative stress, such as 3-nitrotyrosine, were also inhibited after pretreatment with Rk1 compared with the APAP group. Conclusion The results clearly suggest that the underlying molecular mechanisms in the hepatoprotection of ginsenoside Rk1 in APAP-induced hepatotoxicity may be due to its antioxidation, antiapoptosis, anti-inflammation, and antinitrative effects.
Collapse
Affiliation(s)
- Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Xing-Yue Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,Institute of Special Wild Economic Animals and Plant, CAAS, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Yi-Ming Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ying Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Republic of Korea
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Ying-Ping Wang
- Institute of Special Wild Economic Animals and Plant, CAAS, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| |
Collapse
|
44
|
Ameliorative Effects and Possible Molecular Mechanism of Action of Black Ginseng (Panax ginseng) on Acetaminophen-Mediated Liver Injury. Molecules 2017; 22:molecules22040664. [PMID: 28430162 PMCID: PMC6154718 DOI: 10.3390/molecules22040664] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/11/2017] [Accepted: 04/17/2017] [Indexed: 12/13/2022] Open
Abstract
Background: Frequent overdosing of acetaminophen (APAP) has become the major cause of acute liver injury (ALI). The present study aimed to evaluate the potential hepatoprotective effects of black ginseng (BG) on APAP-induced mice liver injuries and the underlying mechanisms of action were further investigated for the first time. Methods: Mice were treated with BG (300, 600 mg/kg) by oral gavage once a day for seven days. On the 7th day, all mice were treated with 250 mg/kg APAP which caused severe liver injury after 24 h and hepatotoxicity was assessed. Results: Our results showed that pretreatment with BG significantly decreased the levels of serum alanine aminotransferase (ALT) and aspartate transaminase (AST) compared with the APAP group. Meanwhile, hepatic antioxidant including glutathione (GSH) was elevated compared with the APAP group. In contrast, a significant decrease of the levels of the lipid peroxidation product malondialdehyde (MDA) was observed in the BG-treated groups compared with the APAP group. These effects were associated with significant increases of cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) levels in liver tissues. Moreover, BG supplementation suppressed activation of apoptotic pathways through increasing Bcl-2 and decreasing Bax protein expression levels according to western blotting analysis. Histopathological examination revealed that BG pretreatment significantly inhibited APAP-induced necrosis and inflammatory infiltration in liver tissues. Biological indicators of nitrative stress like 3-nitrotyrosine (3-NT) were also inhibited after pretreatment with BG, compared with the APAP group. Conclusions: The results clearly suggest that the underlying molecular mechanisms of action of BG-mediated alleviation of APAP-induced hepatotoxicity may involve its anti-oxidant, anti-apoptotic, anti-inflammatory and anti-nitrative effects.
Collapse
|
45
|
Xu XF, Gao Y, Xu SY, Liu H, Xue X, Zhang Y, Zhang H, Liu MN, Xiong H, Lin RC, Li XR. Remarkable impact of steam temperature on ginsenosides transformation from fresh ginseng to red ginseng. J Ginseng Res 2017; 42:277-287. [PMID: 29983609 PMCID: PMC6026370 DOI: 10.1016/j.jgr.2017.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 02/20/2017] [Indexed: 12/30/2022] Open
Abstract
Background Temperature is an essential condition in red ginseng processing. The pharmacological activities of red ginseng under different steam temperatures are significantly different. Methods In this study, an ultrahigh-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry was developed to distinguish the red ginseng products that were steamed at high and low temperatures. Multivariate statistical analyses such as principal component analysis and supervised orthogonal partial least squared discrimination analysis were used to determine the influential components of the different samples. Results The results showed that different steamed red ginseng samples can be identified, and the characteristic components were 20-gluco-ginsenoside Rf, ginsenoside Re, ginsenoside Rg1, and malonyl-ginsenoside Rb1 in red ginseng steamed at low temperature. Meanwhile, the characteristic components in red ginseng steamed at high temperature were 20R-ginsenoside Rs3 and ginsenoside Rs4. Polar ginsenosides were abundant in red ginseng steamed at low temperature, whereas higher levels of less polar ginsenosides were detected in red ginseng steamed at high temperature. Conclusion This study makes the first time that differences between red ginseng steamed under different temperatures and their ginsenosides transformation have been observed systematically at the chemistry level. The results suggested that the identified chemical markers can be used to illustrate the transformation of ginsenosides in red ginseng processing.
Collapse
Affiliation(s)
- Xin-Fang Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Ya Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Meng-Nan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Xiong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui-Chao Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Ri Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Corresponding author. School of Chinese Materia Medica, Beijing University of Chinese Medicine, Number 6 Wangjing Zhonghuannan Road, Beijing 100102, China.
| |
Collapse
|
46
|
Ginsenoside Rg5 Ameliorates Cisplatin-Induced Nephrotoxicity in Mice through Inhibition of Inflammation, Oxidative Stress, and Apoptosis. Nutrients 2016; 8:nu8090566. [PMID: 27649238 PMCID: PMC5037551 DOI: 10.3390/nu8090566] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/17/2022] Open
Abstract
Although cisplatin is an effective anti-cancer agent that is widely used for treating various types of malignant solid tumors, the nephrotoxicity induced by cisplatin severely limits its clinical application. The present study was designed to explore the potential protective effect of ginsenoside Rg5, a rare ginsenoside generated during steaming ginseng, on cisplatin-induced nephrotoxicity in a mouse experimental model. The possible mechanisms underlying this nephroprotective effect were also investigated for the first time. Rg5 was given at doses of 10 and 20 mg/kg for 10 consecutive days. On Day 7, a single nephrotoxic dose of cisplatin (25 mg/kg) was injected to mice. Cisplatin administration resulted in renal dysfunction as evidenced by increase in serum creatinine (CRE) and blood urea nitrogen (BUN) levels. In addition, cisplatin increased the level of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), the makers of lipid peroxidation, and depleted glutathione (GSH) content and superoxide dismutase (SOD) activity in renal tissues. These effects were associated with the significantly increased levels of cytochrome P450 E1 (CYP2E1), 4-hydroxynonenal (4-HNE), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, nuclear factor-kappa B (NF-κB) p65, and cyclooxygenase-2 (COX-2) in renal tissues. However, pretreatment with ginsenoside Rg5 significantly attenuated the renal dysfunction, oxidative stress and inflammation response induced by cisplatin. Furthermore, ginsenoside Rg5 supplementation inhibited activation of apoptotic pathways through increasing Bcl-2 and decreasing Bax expression levels. Histopathological examination further confirmed the nephroprotective effect of Rg5. Collectively, these results clearly suggest that Rg5-mediated alleviation of cisplatin-induced nephrotoxicity may be related to its anti-oxidant, anti-apoptotic and anti-inflammatory effects.
Collapse
|
47
|
Anti-Tumor Effect of Steamed Codonopsis lanceolata in H22 Tumor-Bearing Mice and Its Possible Mechanism. Nutrients 2015; 7:8294-307. [PMID: 26426041 PMCID: PMC4632415 DOI: 10.3390/nu7105395] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/08/2015] [Accepted: 09/17/2015] [Indexed: 02/07/2023] Open
Abstract
Although previous studies confirmed that steaming and the fermentation process could significantly improve the cognitive-enhancement and neuroprotective effects of Codonopsis lanceolata, the anti-tumor efficacy of steamed C. lanceolata (SCL) and what mechanisms are involved remain largely unknown. The present study was designed to evaluate the anti-tumor effect in vivo of SCL in H22 tumor-bearing mice. The results clearly indicated that SCL could not only inhibit the tumor growth, but also prolong the survival time of H22 tumor-bearing mice. Besides, the serum levels of cytokines, such as interferon gamma (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-2 (IL-2), were enhanced by SCL administration. The observations of Hoechst 33258 staining demonstrated that SCL was able to induce tumor cell apoptosis. Finally, immunohistochemical analysis revealed that SCL treatment significantly increased Bax expression and decreased Bcl-2 and vascular endothelial growth factor (VEGF) expression of H22 tumor tissues in a dose-dependent manner. Moreover, LC/MS analysis of SCL indicated that it mainly contained lobetyolin and six saponins. Taken all together, the findings in the present study clearly demonstrated that SCL inhibited the H22 tumor growth in vivo at least partly via improving the immune functions, inducing apoptosis and inhibiting angiogenesis.
Collapse
|