1
|
Wang H, Luan F, Shi Y, Yan S, Xin B, Zhang X, Guo D, Sun J, Zou J. Extraction, structural features, and pharmacological effects of the polysaccharides from Porphyra yezoensis: A review. Int J Biol Macromol 2024; 279:134745. [PMID: 39147347 DOI: 10.1016/j.ijbiomac.2024.134745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Porphyra yezoensis, an important medicinal seaweed extensively cultivated and consumed in China, Japan, and South Korea, is traditionally considered a precious healthy food and food additive. Published studies showed that the polysaccharides are major bioactive macromolecules from P. yezoensis with great potential for the development of nutraceuticals and functional foods. As an important component of P. yezoensis, P. yezoensis polysaccharide (PYP) is mainly extracted by hot water extraction, ultrasonic-assisted extraction, and microwave-assisted extraction methods. Subsequently obtained by decolorization, deproteinization, removal of other small molecules, and separation on various chromatographic columns. The main structural components of PYP were (1 → 3)-linked β-D-galactose and (1 → 4)-linked 3,6-anhydro-α-L-galactose. Accumulating evidence has revealed that PYP has diverse biological activities, such as antioxidant, suppressing kidney stones, immunomodulatory, etc. This review systematically summarizes the recent preparation progress, chemical structures, bioactivities, and the underlying mechanisms of PYP. Information from this review provides insights into the further development of PYP as therapeutic agents and functional foods. Although there have been extensive studies on PYP, there are gaps in establishing quality standard, toxicological research, clinical application and other aspects. To enhance the utility of P. yezoensis, it is necessary to strengthen the research on these aspects.
Collapse
Affiliation(s)
- He Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Shuguang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bao Xin
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
2
|
Pradhan B, Ki JS. Seaweed-derived laminarin and alginate as potential chemotherapeutical agents: An updated comprehensive review considering cancer treatment. Int J Biol Macromol 2024:136593. [PMID: 39426775 DOI: 10.1016/j.ijbiomac.2024.136593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Seaweed-derived bioactive substances such as polysaccharides have proven to be effective chemotherapeutic and chemopreventive agents. Laminarin and alginate antioxidant properties aid in the prevention of cancer through dynamic modulation of critical intracellular signaling pathways via apoptosis which produce low cytotoxicity and potential chemotherapeutic effects. Understanding the effects of laminarin and alginate on human cancer cells and their molecular roles in cell death pathways can help to develop a novel chemoprevention strategy. This review emphasizes the importance of apoptosis-modulating laminarin and alginate in a range of malignancies as well as their extraction, molecular structure, and weight. In addition, future nano-formulation enhancements for greater clinical efficacy are discussed. Laminarin and alginate are perfect ingredients because of their distinct physicochemical and biological characteristics and their use-based delivery systems in cancer. The effectiveness of laminarin and alginate against cancer and more preclinical and clinical trials will open up as new chemotherapeutic natural drugs which lead to established as potential cancer drugs.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea; Department of Botany, Model Degree College, Rayagada 765017, Odisha, India
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
3
|
Zhang W, Pan M, Wang P, Xue J, Zhou X, Sun W, Hu Y, Shen Z. Comparative Analysis of XGB, CNN, and ResNet Models for Predicting Moisture Content in Porphyra yezoensis Using Near-Infrared Spectroscopy. Foods 2024; 13:3023. [PMID: 39410057 PMCID: PMC11475958 DOI: 10.3390/foods13193023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
This study explored the performance and reliability of three predictive models-extreme gradient boosting (XGB), convolutional neural network (CNN), and residual neural network (ResNet)-for determining the moisture content in Porphyra yezoensis using near-infrared (NIR) spectroscopy. We meticulously selected 380 samples from various sources to ensure a comprehensive dataset, which was then divided into training (300 samples) and test sets (80 samples). The models were evaluated based on prediction accuracy and stability, employing genetic algorithms (GA) and partial least squares (PLS) for wavelength selection to enhance the interpretability of feature extraction outcomes. The results demonstrated that the XGB model excelled with a determination coefficient (R2) of 0.979, a root mean square error of prediction (RMSEP) of 0.004, and a high ratio of performance to deviation (RPD) of 4.849, outperforming both CNN and ResNet models. A Gaussian process regression (GPR) was employed for uncertainty assessment, reinforcing the reliability of our models. Considering the XGB model's high accuracy and stability, its implementation in industrial settings for quality assurance is recommended, particularly in the food industry where rapid and non-destructive moisture content analysis is essential. This approach facilitates a more efficient process for determining moisture content, thereby enhancing product quality and safety.
Collapse
Affiliation(s)
- Wenwen Zhang
- Haide College, Ocean University of China, Qingdao 266003, China;
| | - Mingxuan Pan
- Jiangsu Coast Development Group Co., Ltd., Nanjing 210019, China; (M.P.); (J.X.); (X.Z.); (Y.H.)
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (P.W.); (W.S.)
| | - Jiao Xue
- Jiangsu Coast Development Group Co., Ltd., Nanjing 210019, China; (M.P.); (J.X.); (X.Z.); (Y.H.)
| | - Xinghu Zhou
- Jiangsu Coast Development Group Co., Ltd., Nanjing 210019, China; (M.P.); (J.X.); (X.Z.); (Y.H.)
| | - Wenke Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (P.W.); (W.S.)
| | - Yadong Hu
- Jiangsu Coast Development Group Co., Ltd., Nanjing 210019, China; (M.P.); (J.X.); (X.Z.); (Y.H.)
| | - Zhaopeng Shen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (P.W.); (W.S.)
| |
Collapse
|
4
|
Gan Z, Fang X, Yin C, Tian Y, Zhang L, Zhong X, Jiang G, Tao A. Extraction, purification, structural characterization, and bioactivities of the genus Rhodiola L. polysaccharides: A review. Int J Biol Macromol 2024; 276:133614. [PMID: 38960222 DOI: 10.1016/j.ijbiomac.2024.133614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
The genus Rhodiola L., an integral part of traditional Chinese medicine and Tibetan medicine in China, exhibits a broad spectrum of applications. This genus contains key compounds such as ginsenosides, polysaccharides, and flavonoids, which possess anti-inflammatory, antioxidant, hypoglycaemic, immune-enhancing, and anti-hypoxic properties. As a vital raw material, Rhodiola L. contributes to twenty-four kinds of Chinese patent medicines and 481 health food products in China, finding extensive application in the health food sector. Recently, polysaccharides have emerged as a focal point in natural product research, with applications spanning the medicine, food, and materials sectors. Despite this, a comprehensive and systematic review of polysaccharides from the genus Rhodiola L. polysaccharides (TGRPs) is warranted. This study undertakes a systematic review of both domestic and international literature, assessing the research advancements and chemical functional values of polysaccharides derived from Rhodiola rosea. It involves the isolation, purification, and identification of a variety of homogeneous polysaccharides, followed by a detailed analysis of their chemical structures, pharmacological activities, and molecular mechanisms, structure-activity relationship (SAR) of TGRPs. The discussion includes the influence of molecular weight, monosaccharide composition, and glycosidic bonds on their biological activities, such as sulfation and carboxymethylation et al. Such analyses are crucial for deepening the understanding of Rhodiola rosea and for fostering the development and exploitation of TGRPs, offering a reference point for further investigations into TGRPs and their resource utilization.
Collapse
Affiliation(s)
- Zhengkun Gan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao Fang
- College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, PR China
| | - Chenglong Yin
- College of Pharmacy, Dali University, Dali 671003, PR China
| | - Yongjie Tian
- College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, PR China
| | - Lingsheng Zhang
- College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, PR China
| | - Xuehua Zhong
- College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, PR China
| | - Guihua Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Aien Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, PR China.
| |
Collapse
|
5
|
Rosell MDLÁ, Quizhpe J, Ayuso P, Peñalver R, Nieto G. Proximate Composition, Health Benefits, and Food Applications in Bakery Products of Purple-Fleshed Sweet Potato ( Ipomoea batatas L.) and Its By-Products: A Comprehensive Review. Antioxidants (Basel) 2024; 13:954. [PMID: 39199200 PMCID: PMC11351671 DOI: 10.3390/antiox13080954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Ipomoea batatas (L.) Lam is a dicotyledonous plant originally from tropical regions, with China and Spain acting as the main producers from outside and within the EU, respectively. The root, including only flesh, is the edible part, and the peel, leaves, stems, or shoots are considered by-products, which are generated due to being discarded in the field and during processing. Therefore, this study aimed to perform a comprehensive review of the nutritional value, phytochemical composition, and health-promoting activities of purple-fleshed sweet potato and its by-products, which lead to its potential applications in bakery products for the development of functional foods. The methodology is applied to the selected topic and is used to conduct the search, review abstracts and full texts, and discuss the results using different general databases. The studies suggested that purple-fleshed sweet potato parts are characterized by a high content of essential minerals and bioactive compounds, including anthocyanins belonging to the cyanidin or the peonidin type. The flesh and leaves are also high in phenolic compounds and carotenoids such as lutein and β-carotene. The high content of phenolic compounds and anthocyanins provides the purple-fleshed sweet potato with high antioxidant and anti-inflammatory power due to the modulation effect of the transcription factor Nrf2 and NF-kB translocation, which may lead to protection against hepatic and neurological disorders, among others. Furthermore, purple-fleshed sweet potato and its by-products can play a dual role in food applications due to its attractive color and wide range of biological activities which enhance its nutritional profile. As a result, it is essential to harness the potential of the purple-fleshed sweet potato and its by-products that are generated during its processing through an appropriate agro-industrial valorization system.
Collapse
Affiliation(s)
| | | | | | | | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (M.d.l.Á.R.); (J.Q.); (P.A.); (R.P.)
| |
Collapse
|
6
|
Pereira DT, García-García P, Korbee N, Vega J, Señoráns FJ, Figueroa FL. Optimizing the Extraction of Bioactive Compounds from Porphyra linearis (Rhodophyta): Evaluating Alkaline and Enzymatic Hydrolysis for Nutraceutical Applications. Mar Drugs 2024; 22:284. [PMID: 38921595 PMCID: PMC11204741 DOI: 10.3390/md22060284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Porphyra sensu lato is one of the most economically significant and widely cultured and consumed algae in the world. Porphyra species present excellent nutraceutic properties due to their bioactive compounds (BACs). This research aimed to find the most efficient aqueous extraction method for BACs by examining alkaline and enzymatic hydrolysis. Alkaline hydrolysis with 2.5% sodium carbonate (SC) and at 80 °C proved optimal for extracting all BACs (phycobiliproteins, soluble proteins, polyphenols, and carbohydrates) except mycosporine-like amino acids (MAAs), which were best extracted with water only, and at 80 °C. Enzymatic hydrolysis, particularly with the 'Miura' enzymatic cocktail (cellulase, xylanase, glycoside hydrolase, and β-glucanase), showed superior results in extracting phycoerythrin (PE), phycocyanin (PC), soluble proteins, and carbohydrates, with increases of approximately 195%, 510%, 890%, and 65%, respectively, compared to the best alkaline hydrolysis extraction (2.5% SC and 80 °C). Phenolic content analysis showed no significant difference between the 'Miura' cocktail and 2.5% SC treatments. Antioxidant activity was higher in samples from alkaline hydrolysis, while extraction of MAAs showed no significant difference between water-only and 'Miura' treatments. The study concludes that enzymatic hydrolysis improves the efficiency of BACs extraction in P. linearis, highlighting its potential for the nutraceutical industry, and especially with respect to MAAs for topical and oral UV-photoprotectors.
Collapse
Affiliation(s)
- Débora Tomazi Pereira
- Experimental Center Grice Hutchinson, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, Lomas de San Julián, 2, 29004 Malaga, Spain; (D.T.P.); (N.K.); (J.V.)
| | - Paz García-García
- Group of Bioactive Extracts and Healthy Lipids, Faculty of Sciences, Cantoblanco Campus, 28049 Madrid, Spain; (P.G.-G.); (F.J.S.)
| | - Nathalie Korbee
- Experimental Center Grice Hutchinson, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, Lomas de San Julián, 2, 29004 Malaga, Spain; (D.T.P.); (N.K.); (J.V.)
| | - Julia Vega
- Experimental Center Grice Hutchinson, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, Lomas de San Julián, 2, 29004 Malaga, Spain; (D.T.P.); (N.K.); (J.V.)
| | - Francisco J. Señoráns
- Group of Bioactive Extracts and Healthy Lipids, Faculty of Sciences, Cantoblanco Campus, 28049 Madrid, Spain; (P.G.-G.); (F.J.S.)
| | - Félix L. Figueroa
- Experimental Center Grice Hutchinson, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, Lomas de San Julián, 2, 29004 Malaga, Spain; (D.T.P.); (N.K.); (J.V.)
| |
Collapse
|
7
|
Hou F, Song S, Yang S, Wang Y, Jia F, Wang W. Study on the Optimization, Extraction Kinetics and Thermodynamics of the Ultrasound-Assisted Enzymatic Extraction of Tremella fuciformis Polysaccharides. Foods 2024; 13:1408. [PMID: 38731779 PMCID: PMC11083265 DOI: 10.3390/foods13091408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, Tremella fuciformis polysaccharides (TFPs) were extracted by ultrasound-assisted enzymatic extraction (UAE) at different extraction parameters in order to explore the potential of ultrasound in intensifying the extraction yield. The effects of experimental conditions on the extraction yields were optimized using response surface methodology, with the optimal ultrasonic power of 700 W, temperature of 45 °C and time of 50 min. The kinetic analysis revealed that UAE significantly promoted the dissolution, diffusion and migration with the maximum yield of 26.39%, which was enhanced by 40.45% and 156.96% compared with individual ultrasonic extraction (UE) and enzymatic extraction (EE). According to the modified Fick's second law of diffusion, the extraction process of TFPs illustrated a good linear correlation (R2 ≥ 0.9), and the rate constant gradually elevated as the temperature increased from 25 to 45 °C, while the presence of ultrasound exerted a vital role in extracting TFPs. Regarding to the thermodynamic results, the positive values of ΔH and ΔG demonstrated that UAE, UE and EE were endothermic and unspontaneous processes. This study provides a theoretical basis for polysaccharide extraction processing.
Collapse
Affiliation(s)
- Furong Hou
- Institute of Agro-Food Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.H.); (S.S.); (S.Y.); (Y.W.); (F.J.)
| | - Shasha Song
- Institute of Agro-Food Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.H.); (S.S.); (S.Y.); (Y.W.); (F.J.)
| | - Shuhui Yang
- Institute of Agro-Food Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.H.); (S.S.); (S.Y.); (Y.W.); (F.J.)
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yansheng Wang
- Institute of Agro-Food Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.H.); (S.S.); (S.Y.); (Y.W.); (F.J.)
| | - Fengjuan Jia
- Institute of Agro-Food Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.H.); (S.S.); (S.Y.); (Y.W.); (F.J.)
| | - Wenliang Wang
- Institute of Agro-Food Sciences and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.H.); (S.S.); (S.Y.); (Y.W.); (F.J.)
| |
Collapse
|
8
|
Yang Z, Zhang Y, Jin G, Lei D, Liu Y. Insights into the impact of modification methods on the structural characteristics and health functions of pectin: A comprehensive review. Int J Biol Macromol 2024; 261:129851. [PMID: 38307429 DOI: 10.1016/j.ijbiomac.2024.129851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/04/2024]
Abstract
Pectin is a complex polysaccharide that is widely present in plant cells and has multiple physiological functions. However, most pectin exists in the form of protopectin, which has a large molecular weight and cannot be fully absorbed and utilized in the human gut to exert its effects. The significant differences in the structure of different sources of pectin also limited their application in the food and medical fields. In order to achieve greater development and utilization of pectin functions, this paper reviewed several commonly used methods for pectin modification from physical, chemical, and biological perspectives, and elaborated on the relationship between these modification methods and the structure and functional properties of pectin. At the same time, the functional characteristics of modified pectin and its application in medical health, such as regulating intestinal health, anticancer, anti-inflammatory, and drug transport, were reviewed, so as to provide a theoretical basis for targeted modification of pectin and the development of new modified pectin products.
Collapse
Affiliation(s)
- Ziyi Yang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yue Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guoxuan Jin
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Dengwen Lei
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yanhong Liu
- College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
9
|
Chumsook K, Praiboon J, Fu X. Sulfated Galactans from Agarophytes: Review of Extraction Methods, Structural Features, and Biological Activities. Biomolecules 2023; 13:1745. [PMID: 38136616 PMCID: PMC10741836 DOI: 10.3390/biom13121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Agarophytes are important seaweeds of the Rhodophyta type, which have been highly exploited for industrial use as sources of a widely consumed polysaccharide of agar. In addition to that, sulfated galactans (SGs) from agarophytes, which consist of various functional sulfate groups, have attracted the attention of scientists in current studies. SGs possess various biological activities, such as anti-tumor, anticoagulant, anti-inflammatory, antioxidant, anti-obesity, anti-diabetic, anti-microbial, anti-diarrhea, and gut microbiota regulation properties. Meanwhile, the taxonomy, ecological factors, i.e., environmental factors, and harvest period, as well as preparation methods, i.e., the pretreatment, extraction, and purification conditions, have been found to influence the chemical compositions and fine structures of SGs, which have, further, been shown to have an impact on their biological activities. However, the gaps in the knowledge of the properties of SGs due to the above complex factors have hindered their industrial application. The aim of this paper is to collect and systematically review the scientific evidence about SGs and, thus, to pave the way for broader and otherwise valuable industrial applications of agarophytes for human enterprise. In the future, this harvested biomass could be sustainably used not only as a source of agar production but also as natural materials in functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Khosook Chumsook
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
- Department of Fishery Science and Technology (International) Program, Kasetsart University, Bangkok 10900, Thailand
| | - Jantana Praiboon
- Department of Fishery Biology, Kasetsart University, Bangkok 10900, Thailand;
| | - Xiaoting Fu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
| |
Collapse
|
10
|
Liu S, Kong T, Feng Y, Fan Y, Yu J, Duan Y, Cai M, Hu K, Ma H, Zhang H. Effects of slit dual-frequency ultrasound-assisted pulping on the structure, functional properties and antioxidant activity of Lycium barbarum proteins and in situ real-time monitoring process. ULTRASONICS SONOCHEMISTRY 2023; 101:106696. [PMID: 37988957 PMCID: PMC10696417 DOI: 10.1016/j.ultsonch.2023.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
To improve the protein dissolution rate and the quality of fresh Lycium barbarum pulp (LBP), we optimized the slit dual-frequency ultrasound-assisted pulping process, explored the dissolution kinetics of Lycium barbarum protein (LBPr), and established a near-infrared spectroscopy in situ real-time monitoring model for LBPr dissolution through spectral information analysis and chemometric methods. The results showed that under optimal conditions (dual-frequency 28-33 kHz, 300 W, 31 min, 40 °C, interval ratio 5:2 s/s), ultrasonic treatment not only significantly increased LBPr dissolution rate (increased by 71.48 %, p < 0.05), improved other nutrient contents and color, but also reduced the protein particle size, changed the amino acid composition ratio and protein structure, and increased the surface hydrophobicity, zeta potential, and free sulfhydryl content of protein, as well as the antioxidant activity of LBPr. In addition, ultrasonication significantly improved the functional properties of the protein, including thermal stability, foaming, emulsification and oil absorption capacity. Furthermore, the real-time monitoring model of the dissolution process was able to quantitatively predict the dissolution rate of LBPr with good calibration and prediction performance (Rc = 0.9835, RMSECV = 2.174, Rp = 0.9841, RMSEP = 1.206). These findings indicated that dual-frequency ultrasound has great potential to improve the quality of LBP and may provide a theoretical basis for the establishment of an intelligent control system in the industrialized production of LBP and the functional development of LBPr.
Collapse
Affiliation(s)
- Shuhan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianyu Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanli Fan
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Junwei Yu
- Ningxia Zhongning Goji Industry Innovation Research Institute, Zhongning 755100, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kai Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
11
|
Chen SK, Wang X, Guo YQ, Song XX, Yin JY, Nie SP. Exploring the partial degradation of polysaccharides: Structure, mechanism, bioactivities, and perspectives. Compr Rev Food Sci Food Saf 2023; 22:4831-4870. [PMID: 37755239 DOI: 10.1111/1541-4337.13244] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Polysaccharides are promising biomolecules with lowtoxicity and diverse bioactivities in food processing and clinical drug development. However, an essential prerequisite for their applications is the fine structure characterization. Due to the complexity of polysaccharide structure, partial degradation is a powerful tool for fine structure analysis, which can effectively provide valid information on the structure of backbone and branching glycosidic fragments of complex polysaccharides. This review aims to conclude current methods of partial degradation employed for polysaccharide structural characterization, discuss the molecular mechanisms, and describe the molecular structure and solution properties of degraded polysaccharides. In addition, the effects of polysaccharide degradation on the conformational relationships between the molecular structure and bioactivities, such as antioxidant, antitumor, and immunomodulatory activities, are also discussed. Finally, we summarize the prospects and current challenges for the partial degradation of polysaccharides. This review will be of great value for the scientific elucidation of polysaccharide fine structures and potential applications.
Collapse
Affiliation(s)
- Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Yu-Qing Guo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
12
|
Zhang P, Zhang X, Zhu X, Hua Y. Chemical Constituents, Bioactivities, and Pharmacological Mechanisms of Dendrobium officinale: A Review of the Past Decade. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14870-14889. [PMID: 37800982 DOI: 10.1021/acs.jafc.3c04154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Dendrobium officinale, a plant in the Orchidaceae family, has been used in traditional Chinese medicine for thousands of years. Sweet and slightly cold in nature, it can invigorate the stomach, promote fluid production, nourish Yin, and dissipate heat. Over the past decade, more than 60 compounds have been derived from D. officinale, including flavonoids, bibenzyl, and phenanthrene. Various studies have explored the underlying pharmacological mechanisms of these compounds, which have shown antitumor, hypoglycemic, hypertensive, gastrointestinal-regulatory, visceral organ protection, antiaging, and neurorestorative effects. This paper presents a systematic review of the structural classification, biological activity, and pharmacological mechanisms of different chemical components obtained from D. officinale over the past decade. This review aims to provide a reference for future study and establish a foundation for clinical applications. Furthermore, this review identifies potential shortcomings in current research as well as potential directions and methodologies in future plant research.
Collapse
Affiliation(s)
- Ping Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xingyu Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xingyi Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yunfen Hua
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
13
|
Zadeike D, Degutyte R. Recent Advances in Acoustic Technology in Food Processing. Foods 2023; 12:3365. [PMID: 37761074 PMCID: PMC10530031 DOI: 10.3390/foods12183365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The development of food industry technologies and increasing the sustainability and effectiveness of processing comprise some of the relevant objectives of EU policy. Furthermore, advances in the development of innovative non-thermal technologies can meet consumers' demand for high-quality, safe, nutritious, and minimally processed foods. Acoustic technology is characterized as environmentally friendly and is considered an alternative method due to its sustainability and economic efficiency. This technology provides advantages such as the intensification of processes, increasing the efficiency of processes and eliminating inefficient ones, improving product quality, maintaining the product's texture, organoleptic properties, and nutritional value, and ensuring the microbiological safety of the product. This review summarizes some important applications of acoustic technology in food processing, from monitoring the safety of raw materials and products, intensifying bioprocesses, increasing the effectiveness of the extraction of valuable food components, modifying food polymers' texture and technological properties, to developing biodegradable biopolymer-based composites and materials for food packaging, along with the advantages and challenges of this technology.
Collapse
Affiliation(s)
- Daiva Zadeike
- Department of Food Science and Technology, Faculty of Chemical Technology, Kaunas University of Technology, 50254 Kaunas, Lithuania;
| | | |
Collapse
|
14
|
Kong T, Liu S, Feng Y, Fan Y, Yu J, Zhang H, Cai M, Ma H, Duan Y. Slit dual-frequency ultrasound-assisted pulping of Lycium barbarum fresh fruit to improve the dissolution of polysaccharides and in situ real-time monitoring. ULTRASONICS SONOCHEMISTRY 2023; 98:106509. [PMID: 37406542 PMCID: PMC10422114 DOI: 10.1016/j.ultsonch.2023.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
In this study, the slit dual-frequency ultrasound-assisted pulping of fresh Lycium barbarum fruit was optimized to improve the dissolution of polysaccharides. The microscopic mechanism of polysaccharide dissolution was explored through establishing polysaccharides dissolution kinetics model and visualizing the multi-physical fields during ultrasonic process, and an in situ real-time monitoring model was established by the relationship between the chemical value and spectral information collected by near-infrared spectroscopy. The results showed that, under optimal conditions, treatment with ultrasound (28-33 kHz, 250 W, 30 min) not only significantly promoted the dissolution rate of polysaccharides in Lycium barbarum pulp (LBPPs, increased by 43.64 %, p < 0.01), reduced its molecular weight, but also improved the arabinose molar ratio, the uniformity of polysaccharide particles, and the antioxidant activity of LBPPs. Correlation analysis indicated that ultrasonic treatment is closely related to LBPPs content, particle size and scavenging capacity against superoxide anion radicals (ptotal sugar content < 0.01, pparticle size < 0.05 and psuperoxide anion scavenging < 0.05). Moreover, the in situ real-time monitoring model for the pulping process could quantitatively predict LBPPs dissolution rate and its superoxide anion radical scavenging capacity with good calibration and prediction performance (Rc = 0.9841, RMSECV = 0.0873, Rp = 0.9772, RMSEP = 0.0530; Rc = 0.9874, RMSECV = 0.1246, Rp = 0.9868, RMSEP = 0.0665). These results indicated that slit dual-frequency ultrasound has great potential in improving the quality of Lycium barbarum pulp, which may provide theoretical support for the industrial development of intelligent systems for polysaccharides preparation.
Collapse
Affiliation(s)
- Tianyu Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shuhan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanli Fan
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Junwei Yu
- Ningxia Zhongning Goji Industry Innovation Research Institute Co., Ltd, Zhongning 755100, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China; Nourse Pet Nutrition Jiangsu Research Institute, Zhenjiang 212009, China.
| |
Collapse
|
15
|
Wang Z, Zhou X, Shu Z, Zheng Y, Hu X, Zhang P, Huang H, Sheng L, Zhang P, Wang Q, Wang X, Li N. Regulation strategy, bioactivity, and physical property of plant and microbial polysaccharides based on molecular weight. Int J Biol Macromol 2023; 244:125360. [PMID: 37321440 DOI: 10.1016/j.ijbiomac.2023.125360] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
Structural features affect the bioactivity, physical property, and application of plant and microbial polysaccharides. However, an indistinct structure-function relationship limits the production, preparation, and utilization of plant and microbial polysaccharides. Molecular weight is an easily regulated structural feature that affects the bioactivity and physical property of plant and microbial polysaccharides, and plant and microbial polysaccharides with a specific molecular weight are important for exerting their bioactivity and physical property. Therefore, this review summarized the regulation strategies of molecular weight via metabolic regulation; physical, chemical, and enzymic degradations; and the influence of molecular weight on the bioactivity and physical property of plant and microbial polysaccharides. Moreover, further problems and suggestions must be paid attention to during regulation, and the molecular weight of plant and microbial polysaccharides must be analyzed. The present work will promote the production, preparation, utilization, and investigation of the structure-function relationship of plant and microbial polysaccharides based on their molecular weight.
Collapse
Affiliation(s)
- Zichao Wang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueyan Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhihan Shu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of International Education, Henan University of Technology, Zhengzhou 450001,China
| | - Xilei Hu
- School of International Education, Henan University of Technology, Zhengzhou 450001,China
| | - Peiyao Zhang
- School of International Education, Henan University of Technology, Zhengzhou 450001,China
| | - Hongtao Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lili Sheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Pengshuai Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Xueqin Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Li
- Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
16
|
Wang Z, Zhou X, Sheng L, Zhang D, Zheng X, Pan Y, Yu X, Liang X, Wang Q, Wang B, Li N. Effect of ultrasonic degradation on the structural feature, physicochemical property and bioactivity of plant and microbial polysaccharides: A review. Int J Biol Macromol 2023; 236:123924. [PMID: 36871679 DOI: 10.1016/j.ijbiomac.2023.123924] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
With the bioactivities of antioxidant, anti-bacteria, anti-inflammation, immune regulation, antitumor and anti-coagulation, plant and microbial polysaccharides have been widely used in foods, medicine and cosmetics. However, how structure features affect the physicochemical property and bioactivity of plant and microbial polysaccharides is still unclear. Ultrasonic degradation usually degrades or modifies plant and microbial polysaccharides with different physicochemical properties and bioactivities by affecting their chemical or spatial structures via mechanical bond breaking and cavitation effects. Therefore, ultrasonic degradation might be an effective strategy for producing bioactive plant and microbial polysaccharides and analyzing their structure-function relationship. Present review summarized the influence of ultrasonic degradation on structural feature, physicochemical property and bioactivity of plant and microbial polysaccharides. Moreover, further problems need to be paid attention to during the application of ultrasonication for plant and microbial polysaccharides degradation are also recommended. Overall, present review will provide an efficient method for producing enhanced bioactive plant and microbial polysaccharides and analyzing their structure-activity relationship based on ultrasonic degradation.
Collapse
Affiliation(s)
- Zichao Wang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueyan Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lili Sheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Di Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xinxin Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yaping Pan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoxue Yu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaona Liang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Baoshi Wang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Na Li
- Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
17
|
Preparation methods, biological activities, and potential applications of marine algae oligosaccharides: a review. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Influences of Ultrasonic Treatments on the Structure and Antioxidant Properties of Sugar Beet Pectin. Foods 2023; 12:foods12051020. [PMID: 36900538 PMCID: PMC10001074 DOI: 10.3390/foods12051020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
The objective of this study was to explore the structural changes and oxidation resistance of ultrasonic degradation products of sugar beet pectin (SBP). The changes in the structures and antioxidant activity between SBP and its degradation products were compared. As the ultrasonic treatment time increased, the content of α-D-1,4-galacturonic acid (GalA) also increased, to 68.28%. In addition, the neutral sugar (NS) content, esterification degree (DE), particle size, intrinsic viscosity and viscosity-average molecular weight (MV) of the modified SBP decreased. Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were used to study the degradation of the SBP structure after ultrasonication. After ultrasonic treatment, the DPPH and ABTS free radical scavenging activities of the modified SBP reached 67.84% and 54.67% at the concentration of 4 mg/mL, respectively, and the thermal stability of modified SBP was also improved. All of the results indicate that the ultrasonic technology is an environmentally friendly, simple, and effective strategy to improve the antioxidant capacity of SBP.
Collapse
|
19
|
Insight into the structural and immunomodulatory relationships of polysaccharides from Dendrobium officinale-an in vivo study. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Seaweed-Derived Sulfated Polysaccharides; The New Age Chemopreventives: A Comprehensive Review. Cancers (Basel) 2023; 15:cancers15030715. [PMID: 36765670 PMCID: PMC9913163 DOI: 10.3390/cancers15030715] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Seaweed-derived bioactive compounds are regularly employed to treat human diseases. Sulfated polysaccharides are potent chemotherapeutic or chemopreventive medications since it has been discovered. They have exhibited anti-cancer properties by enhancing immunity and driving apoptosis. Through dynamic modulation of critical intracellular signalling pathways, such as control of ROS generation and preservation of essential cell survival and death processes, sulfated polysaccharides' antioxidant and immunomodulatory potentials contribute to their disease-preventive effectiveness. Sulfated polysaccharides provide low cytotoxicity and good efficacy therapeutic outcomes via dynamic modulation of apoptosis in cancer. Understanding how sulfated polysaccharides affect human cancer cells and their molecular involvement in cell death pathways will showcase a new way of chemoprevention. In this review, the significance of apoptosis and autophagy-modulating sulfated polysaccharides has been emphasized, as well as the future direction of enhanced nano-formulation for greater clinical efficacy. Moreover, this review focuses on the recent findings about the possible mechanisms of chemotherapeutic use of sulfated polysaccharides, their potential as anti-cancer drugs, and proposed mechanisms of action to drive apoptosis in diverse malignancies. Because of their unique physicochemical and biological properties, sulfated polysaccharides are ideal for their bioactive ingredients, which can improve function and application in disease. However, there is a gap in the literature regarding the physicochemical properties and functionalities of sulfated polysaccharides and the use of sulfated polysaccharide-based delivery systems in functional cancer. Furthermore, the preclinical and clinical trials will reveal the drug's efficacy in cancer.
Collapse
|
21
|
Biswas S, Rashid TU. Effect of ultrasound on the physical properties and processing of major biopolymers-a review. SOFT MATTER 2022; 18:8367-8383. [PMID: 36321472 DOI: 10.1039/d2sm01339h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Designing and developing modern techniques to facilitate the extraction and modification of functional properties of biopolymers are key motivations among researchers. As a low-cost, sustainable, non-toxic, and fast process, ultrasound has been considered a method to improve the processing of carbohydrate and protein-based biopolymers such as cellulose, chitin, starch, alginate, carrageenan, gelatine, and guar gum. A better understanding of the complex physicochemical behavior of biopolymers under ultrasonication may fortify the eminence of this technology in advanced-level applications. This review summarizes the recent advances in biopolymer processing and the effect of ultrasound on the physical properties of the selected biopolymers. A major focus will be given to the mechanisms of action and their impact on the properties and extraction. At the end, some possible suggestions are highlighted which need future investigation for amending the physical properties of biopolymers using ultrasonication.
Collapse
Affiliation(s)
- Shanta Biswas
- Department of Chemistry, Louisiana State University, Baton Rouge, LA-70803, USA.
| | - Taslim Ur Rashid
- Fiber and Polymer Science, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, 1020 Main Campus Drive, Raleigh, NC, 27695, USA
- Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka-1000, Bangladesh.
| |
Collapse
|
22
|
Immunomodulatory and anti-inflammatory and anticancer activities of porphyran, a sulfated galactan. Carbohydr Polym 2022; 301:120326. [DOI: 10.1016/j.carbpol.2022.120326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
23
|
Wang Y, Zhang M, Dong K, Yin X, Hao C, Zhang W, Irfan M, Chen L, Wang Y. Metabolomic and transcriptomic exploration of the uric acid-reducing flavonoids biosynthetic pathways in the fruit of Actinidia arguta Sieb. Zucc. FRONTIERS IN PLANT SCIENCE 2022; 13:1025317. [PMID: 36388584 PMCID: PMC9647161 DOI: 10.3389/fpls.2022.1025317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/04/2022] [Indexed: 05/25/2023]
Abstract
Flavonoids from Actinidia arguta Sieb. Zucc. can reduce uric acid in mice. However, the molecular basis of its biosynthesis is still unclear. In this paper, we used a combination of extensively targeted metabolomics and transcriptomics analysis to determine the types and differences of flavonoids in the fruit ripening period (August to September) of two main cultivated varieties in northern China. The ethanol extract was prepared, and the potential flavonoids of Chrysin (Flavone1), Rutin (Flavone2), and Daidzein (Flavone3) in Actinidia arguta Sieb. Zucc. were separated and purified by HPD600 macroporous adsorption resin and preparative liquid chromatography. The structure was identified by MS-HPLC, and the serum uric acid index of male Kunming mice was determined by an animal model test.125 flavonoids and 50 differentially regulated genes were identified. The contents of UA (uric acid), BUN (urea nitrogen), Cr (creatinine), and GAPDH in mouse serum and mouse liver glycogen decreased or increased in varying degrees. This paper reveals the biosynthetic pathway of uric acid-reducing flavonoids in the fruit of Actinidia arguta Sieb. Zucc., a major cultivar in northern China, provides valuable information for the development of food and drug homologous functional foods.
Collapse
Affiliation(s)
- Yubo Wang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Minghui Zhang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Kuiling Dong
- Oriental Language Institute, Mudanjiang Normal University, Mudanjiang, China
| | - Xiaojuan Yin
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Chunhui Hao
- Pet Medicine Teaching and Research Office, Liaoning Agricultural College, Yingkou, China
| | - Wenge Zhang
- Biochemistry Teaching and Research Office, Anshan Health School, Anshan, China
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Lijing Chen
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yong Wang
- College of Chemical Engineering, Liaoning University of Science and Technology, Anshan, China
| |
Collapse
|
24
|
Zhang Y, Wu S. Hypoglycemic Effect of Polysaccharides from Porphyra yezoensis Associated with Reduced Intestinal α-Amylase Activity in Diabetes Mellitus KKAy Mice. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2133583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yu Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Haizhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Haizhou, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Haizhou, China
| | - Shengjun Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Haizhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Haizhou, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Haizhou, China
| |
Collapse
|
25
|
Ulagesan S, Eom T, Nam TJ, Choi YH. Antioxidant and chemoprotective peptides from simulated gastrointestinal digested (SGID) protein hydrolysate of Pyropia yezoensis against acetaminophen-induced HepG2 cells. Bioprocess Biosyst Eng 2022; 45:1645-1660. [PMID: 35976436 PMCID: PMC9381401 DOI: 10.1007/s00449-022-02770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022]
Abstract
Excessive production of reactive oxygen and nitrogen species may result in oxidative damage to tissues and organs. Oxidative stress is a pathological mechanism that contributes to the initiation and progression of liver injury. In the present study, antioxidative peptides purified from simulated gastrointestinal-digested (SGID) protein hydrolysate of Pyropia yezoensis, showed significant antioxidant activity and also showed a protective effect against acetaminophen (N-acetyl-p-aminophenol, APAP) -induced injury in HepG2 (human liver cancer cells) cells. The antioxidant activity was increased in a dose-dependent manner. Higher cell viability (73.26 ± 0.9%) and decreasing NO levels (107.6 ± 8.9%) were observed in 15 mM APAP-induced cells when treated with the concentration of (100 μg ml-1) Pyropia peptide. Py. (pep). The sequences of the eight identified peptides present in the active fractions of the protein hydrolysate included hydrophobic and aromatic amino acids, which may have been responsible for their chemoprotective and antioxidant activities. Results indicated that the treatment with the Pyropia-peptides significantly promoted the proliferation of HepG2 cells, protecting them against APAP-mediated injury, and showed a significant antioxidant capacity. This study revealed that the Py. (pep) will be beneficial in treating drug-induced oxidative stress and liver damage conditions. Py. (pep) can also serve as a better alternative for synthetic antioxidant drugs.
Collapse
Affiliation(s)
- Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Nam-gu, Busan, 48513, Republic of Korea
| | - Taekil Eom
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan, 46041, Republic of Korea
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan, 46041, Republic of Korea
| | - Youn-Hee Choi
- Division of Fisheries Life Sciences, Pukyong National University, Nam-gu, Busan, 48513, Republic of Korea.
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan, 46041, Republic of Korea.
| |
Collapse
|
26
|
Recent advances in qualitative and quantitative analysis of polysaccharides in natural medicines: A critical review. J Pharm Biomed Anal 2022; 220:115016. [PMID: 36030753 DOI: 10.1016/j.jpba.2022.115016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022]
Abstract
Polysaccharides from natural medicines, being safe and effective natural mixtures, show great potential to be developed into botanical drugs. However, there is yet one polysaccharide-based case that has fulfilled the Botanical Guidance definition of a botanical drug product. One of the reasons is the analytical methods commonly used for qualitative and quantitative analysis of polysaccharides fall far behind the quality control criteria of botanical drugs. Here we systemically reviewed the recent advances in analytical methods. A critical evaluation of the strength and weaknesses of these methods was provided, together with possible solutions to the difficulties. Mass spectrometry with or without robust chromatographic separation was increasingly employed. And scientists have made significant progress in simplifying polysaccharide quantification by depolymerizing it into oligosaccharides. This oligosaccharides-based strategy is promising for qualitative and quantitative analysis of polysaccharides. And continuous efforts are still needed to develop a standardized quality control method that is specific, accurate, repeatable, and applicable for analyzing individual components in natural medicine formulas.
Collapse
|
27
|
Cheng X, Jiang J, Li C, Xue C, Kong B, Chang Y, Tang Q. The compound enzymatic hydrolysate of Neoporphyra haitanensis improved hyperglycemia and regulated the gut microbiome in high-fat diet-fed mice. Food Funct 2022; 13:6777-6791. [PMID: 35667104 DOI: 10.1039/d2fo00055e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We previously found that the combination of protease and a novel β-porphyranase Por16A_Wf may contribute to the deep-processing of laver. The purpose of the present study is to assess the hypoglycemic effect of the compound enzymatic hydrolysate (CEH) of Neoporphyra haitanensis. Thus, biochemical indexes related to diet-induced hyperglycemia were mainly detected using hematoxylin and eosin (H&E) staining, fluorescence quantitative PCR, and ultrahigh performance liquid chromatography-mass spectrometry (UPLC-MS). Then 16s rRNA gene sequencing was performed to analyze the effects of CEH on the gut microbiome in high-fat diet (HFD)-fed mice. The results suggested that CEH reduced the blood glucose level and alleviated insulin resistance. Possibly because CEH repressed intestinal α-glucosidase activity, inhibiting key enzymes (G6Pase and PEPCK) related to hepatic gluconeogenesis, and increased the expression of the enzyme (GLUT4) involved in peripheral glucose uptake. As potential indicators of hyperglycemia, total bile acids in the feces were reversed to the control levels after CEH intervention. Particularly, CEH decreased the content of tauro-α-muricholic acid (TαMCA) and ω-muricholic acid (ωMCA). Furthermore, CEH promoted the proliferation of beneficial bacteria (e.g. Parabacteroides), which may play a role in glycemic control. CEH also regulated the KEGG pathways associated with glycometabolism, such as "fructose and mannose metabolism". In summary, CEH supplementation has favorable effects on improving glucose metabolism and regulating the gut microbiome in HFD-fed mice. CEH has potential to be applied in the development of functional foods.
Collapse
Affiliation(s)
- Xiaojie Cheng
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Jiali Jiang
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Chunjun Li
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Biao Kong
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
28
|
Liu Y, Liu Y, Mu D, Yang H, Feng Y, Ji R, Wu R, Wu J. Preparation, structural characterization and bioactivities of polysaccharides from mulberry (Mori Fructus). FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Development and Characterization of Films for Food Application Incorporating Porphyran Extracted from Porphyra dioica. COATINGS 2022. [DOI: 10.3390/coatings12020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Non-biodegradable plastic is one of the biggest environmental problems of our lifetime and, considering the present societal needs, it will get worse. Consequently, there is an urgent need to develop sustainable and renewable alternatives to plastic, such as plastic-like materials obtained from biodegradable polymers, namely sulfated polysaccharides, considered one of the most viable alternatives. There is also a need to obtain these materials in an environmentally and economically sustainable way. The hereby developed process of obtaining film-forming solutions from semi-refined porphyran (PorphSR) uses a green solvent (hot water) with a high extraction yield of semi-refined porphyran (26.66 ± 0.27%) in a reproducible way and with low levels of contaminants. The obtained semi-refined porphyran showed good antioxidant potential in all tests performed: HPSA (Δ0.066 ± 0.002), DPPH (2.23 ± 0.78%), FRAP (0.420 ± 0.014 eq. ascorbic acid µg mg−1 of extract) and ABTS (20.46 ± 0.90%). After being cast into films, the most notable antioxidant properties were those of the semi-refined porphyran in the DPPH, FRAP and ABTS assays and of the pectin, (PorphSR_PcT and PorphSR_PcT_Gly) in the HPSA assay. Morphologically, the films showed relatively homogeneous and low roughness surfaces. It is concluded that the described method to obtain semi-refined porphyran is feasible and reproducible, and that the developed films, mainly PorfP2_PcT_Gly, proved to be a potential candidate for non-biodegradable plastic substitutes.
Collapse
|
30
|
Guo X, Liu S, Wang Z, Zhang G. Ultrasonic-assisted extraction of polysaccharide from Dendrobium officinale: Kinetics, thermodynamics and optimization. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Qiu SM, Aweya JJ, Liu X, Liu Y, Tang S, Zhang W, Cheong KL. Bioactive polysaccharides from red seaweed as potent food supplements: a systematic review of their extraction, purification, and biological activities. Carbohydr Polym 2022; 275:118696. [PMID: 34742423 DOI: 10.1016/j.carbpol.2021.118696] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/07/2021] [Accepted: 09/19/2021] [Indexed: 02/05/2023]
Abstract
Most marine macroalgae such as red seaweeds are potential alternative sources of useful bioactive compounds. Beside serving as food source, recent studies have shown that red seaweeds are rich sources of bioactive polysaccharides. Red seaweed polysaccharides (RSPs) have various physiological and biological activities, which allow them to be used as immunomodulators, anti-obesity agents, and prebiotic ingredients. Lack of summary information and human clinical trials on the various polysaccharides from red seaweeds, however limits industrial-scale utilization of RSPs in functional foods. This review summarizes recent information on the approaches used for RSPs extraction and purification, mechanistic investigations of their biological activities, and related molecular principles behind their purported ability to prevent diseases. The information here also provides a theoretical foundation for further research into the structure and mechanism of action of RSPs and their potential applications in functional foods.
Collapse
Affiliation(s)
- Si-Min Qiu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Jude Juventus Aweya
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China..
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China..
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China..
| |
Collapse
|
32
|
Tao S, Ren Z, Yang Z, Duan S, Wan Z, Huang J, Liu C, Wei G. Effects of Different Molecular Weight Polysaccharides From Dendrobium officinale Kimura & Migo on Human Colorectal Cancer and Transcriptome Analysis of Differentially Expressed Genes. Front Pharmacol 2021; 12:704486. [PMID: 34925000 PMCID: PMC8678483 DOI: 10.3389/fphar.2021.704486] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
We investigated the antitumor effects of four fractions of Dendrobium officinale Kimura & Migo (D. officinale) polysaccharides with different molecular weights (Mw), Astragalus membranaceus polysaccharides (APS) and Lentinus edodes polysaccharides (LNT) on colorectal cancer (CRC) using a zebrafish xenograft model. Transcriptome sequencing was performed to further explore the possible antitumor mechanisms of D. officinale polysaccharides. Fractions of D. officinale polysaccharides, LNT, and APS could significantly inhibit the growth of HT-29 cells in a zebrafish xenograft model. One fraction of D. officinale polysaccharides called DOPW-1 (Mw of 389.98 kDa) exhibited the strongest tumor inhibition. Compared with the control group, RNA-seq revealed that the DOPW-1–treated experimental group had 119 differentially expressed genes (DEGs), of which 45 had upregulated expression and 74 had downregulated expression. Analyses using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes suggested that the pathway “apoptosis-multiple species” was the most significantly enriched. Our data indicated that 1) fractions of D. officinale polysaccharides of Mw 389.98 kDa were most suitable against CRC; 2) DOPW-1 could be developed into a clinical agent against CRC; and 3) an apoptosis pathway is important for DOPW-1 to inhibit the proliferation of HT-29 cells.
Collapse
Affiliation(s)
- Shengchang Tao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Zhiyao Ren
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China.,NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China.,Department of Central Laboratory, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Zerui Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuna Duan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Shaoguan Institute of Danxia Dendrobium Officinale, Shaoguan, China
| | - Zhongxian Wan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahui Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Shaoguan Institute of Danxia Dendrobium Officinale, Shaoguan, China
| | - Chenxing Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Shaoguan Institute of Danxia Dendrobium Officinale, Shaoguan, China
| | - Gang Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
33
|
Sun XY, Zhang H, Deng JW, Yu BX, Zhang YH, Ouyang JM. Regulatory Effects of Damaged Renal Epithelial Cells After Repair by Porphyra yezoensis Polysaccharides with Different Sulfation Degree on the Calcium Oxalate Crystal-Cell Interaction. Int J Nanomedicine 2021; 16:8087-8102. [PMID: 34934314 PMCID: PMC8684390 DOI: 10.2147/ijn.s320278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The interaction between urinary microcrystals and renal epithelial cells is closely related to kidney stone formation. However, the mechanism of cell state changes that affect crystal-cell interaction remains unclear. METHODS This study investigated the relationship between the sulfate group (-OSO3 -) content in Porphyra yezoensis polysaccharide (PYP) and the ability to repair damaged cells, as well as the changes in cell adhesion and endocytosis of nano-calcium oxalate monohydrate (COM) crystals before and after PYP repair of damaged renal tubular epithelial cells. The sulfur trioxide-pyridine method was used to sulfate PYP (-OSO3 - content of 14.14%), and two kinds of sulfated PYPs with -OSO3 - content of 20.28% (SPYP1) and 27.14% (SPYP2) were obtained. The above three PYPs were used to repair oxalate-damaged human proximal tubular epithelial cells (HK-2), and the changes in the biochemical indicators of the cells before and after the repair and the changes in cell adhesion and endocytosis of nano-COM crystals were detected. RESULTS After repair by PYPs, the cell viability increased, the number of reactive oxygen species decreased, and the reduction of mitochondrial membrane potential and the release of intracellular Ca2+ were suppressed. The cells repaired by PYPs inhibited the adhesion of nano-COM crystals while promoting the endocytosis of the adhered crystals. The endocytosed crystals mainly accumulated in the lysosome. The ability of PYPs to repair cell damage, inhibit crystal adhesion, and promote crystal endocytosis was enhanced when the -OSO3 - content increased. Among them, SPYP2 with the highest -OSO3 - content showed the best biological activity. CONCLUSION SPYP2 showed the best ability to repair damaged cells, followed by SPYP1 and PYP. SPYP2 may become a potential green drug that inhibits the formation and recurrence of calcium oxalate stones.
Collapse
Affiliation(s)
- Xin-Yuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, People’s Republic of China
| | - Hui Zhang
- Department of Chemistry, Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Ji-Wang Deng
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, People’s Republic of China
| | - Bang-Xian Yu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, People’s Republic of China
| | - Yi-Han Zhang
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, People’s Republic of China
| | - Jian-Ming Ouyang
- Department of Chemistry, Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
34
|
Dabbour M, Jiang H, Mintah BK, Wahia H, He R. Ultrasonic-assisted protein extraction from sunflower meal: Kinetic modeling, functional, and structural traits. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Effects of multi-mode divergent ultrasound pretreatment on the physicochemical and functional properties of polysaccharides from Sagittaria sagittifolia L. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Mahendiran B, Muthusamy S, Sampath S, Jaisankar SN, Popat KC, Selvakumar R, Krishnakumar GS. Recent trends in natural polysaccharide based bioinks for multiscale 3D printing in tissue regeneration: A review. Int J Biol Macromol 2021; 183:564-588. [PMID: 33933542 DOI: 10.1016/j.ijbiomac.2021.04.179] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/21/2023]
Abstract
Biofabrication by three-dimensional (3D) printing has been an attractive technology in harnessing the possibility to print anatomical shaped native tissues with controlled architecture and resolution. 3D printing offers the possibility to reproduce complex microarchitecture of native tissues by printing live cells in a layer by layer deposition to provide a biomimetic structural environment for tissue formation and host tissue integration. Plant based biomaterials derived from green and sustainable sources have represented to emulate native physicochemical and biological cues in order to direct specific cellular response and formation of new tissues through biomolecular recognition patterns. This comprehensive review aims to analyze and identify the most commonly used plant based bioinks for 3D printing applications. An overview on the role of different plant based biomaterial of terrestrial origin (Starch, Nanocellulose and Pectin) and marine origin (Ulvan, Alginate, Fucoidan, Agarose and Carrageenan) used for 3D printing applications are discussed elaborately. Furthermore, this review will also emphasis in the functional aspects of different 3D printers, appropriate printing material, merits and demerits of numerous plant based bioinks in developing 3D printed tissue-like constructs. Additionally, the underlying potential benefits, limitations and future perspectives of plant based bioinks for tissue engineering (TE) applications are also discussed.
Collapse
Affiliation(s)
- Balaji Mahendiran
- Tissue Engineering Laboratory, PSG Institute of Advanced studies, Coimbatore 641004, Tamil Nadu, India
| | - Shalini Muthusamy
- Tissue Engineering Laboratory, PSG Institute of Advanced studies, Coimbatore 641004, Tamil Nadu, India
| | - Sowndarya Sampath
- Department of Polymer Science and Technology, Council of Scientific and Industrial Research-Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
| | - S N Jaisankar
- Department of Polymer Science and Technology, Council of Scientific and Industrial Research-Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
| | - Ketul C Popat
- Biomaterial Surface Micro/Nanoengineering Laboratory, Department of Mechanical Engineering/School of Biomedical Engineering/School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado-80523, USA
| | - R Selvakumar
- Tissue Engineering Laboratory, PSG Institute of Advanced studies, Coimbatore 641004, Tamil Nadu, India
| | | |
Collapse
|
37
|
Wang F, Kong LM, Xie YY, Wang C, Wang XL, Wang YB, Fu LL, Zhou T. Purification, structural characterization, and biological activities of degraded polysaccharides from Porphyra yezoensis. J Food Biochem 2021; 45:e13661. [PMID: 33595138 DOI: 10.1111/jfbc.13661] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
The degraded polysaccharides from Porphyra yezoensis (DPPY) prepared using the H2 O2 -Vc method under optimized conditions were isolated and purified by DEAE Cellulose-52, and Sephadex G-100, providing four pure components, namely, DPPY-0, DPPY-0.1, DPPY-0.3, and DPPY-0.5. Their relative molecular weights were measured to be 10.8, 10.7, 18.7, and 35.5 kDa, respectively. GC-MS analysis revealed that all the four fractions were mainly composed of galactose, together with a small portion of glucose, mannose, xylose, and rhamnose. Structural analysis revealed that the purified polysaccharides mainly possess a backbone of (1 → 3)-β-D-galactose (1 → 4)-3,6-anhydro-α-L-galactopyranose (G-A) units and (1 → 3)-β-D-galactose (1 → 4)-α-L-galactose-6-sulfate (G-L6S) units. They were found to promote the proliferation of RAW264.7 macrophages and enhance phagocytosis of the RAW264.7 cells. Antioxidant assays indicated that DPPY-0.5 possessed the most potent reducing power and free radical scavenging ability among the four purified polysaccharides. High sulfate content and proper molecular weight of these fractions are favorable to their immunomodulatory and antioxidant activities. PRACTICAL APPLICATIONS: Porphyra yezoensis, common economic red algae widely distributed in East Asian countries, contains a high content of polysaccharides with a variety of biological activities. However, P. yezoensis polysaccharide (PPY) has not been well utilized due to the relatively low biological activities and lack of understanding of its structure-activity relationship. Thus, it is necessary to improve the bioactivities and elucidate the structure-activity relationship of this polysaccharide for its practical use. In the present work, four purified fractions (DPPY-0, DPPY-0.1, DPPY-0.3, and DPPY-0.5) were isolated from the degraded P. yezoensis polysaccharide, and were investigated for their antioxidant and immunoregulatory activities. The results of the present work will lay a foundation for the application of the degraded P. yezoensis polysaccharide in the food industry as a functional food ingredient.
Collapse
Affiliation(s)
- Fan Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Li-Min Kong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Yuan-Yuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Chong Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Xiao-Ling Wang
- Faculty of Food Science, Zhejiang Pharmaceutical College, Ningbo, P.R. China
| | - Yan-Bo Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Ling-Lin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| |
Collapse
|
38
|
Porphyran and oligo-porphyran originating from red algae Porphyra: Preparation, biological activities, and potential applications. Food Chem 2021; 349:129209. [PMID: 33588184 DOI: 10.1016/j.foodchem.2021.129209] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/17/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Porphyra is one of the most economically important red algae in the world. The functional components extracted from Porphyra such as porphyrans, proteins, lipids, and minerals have strong physiological activities. Porphyran, a sulfated galactan, is composed of alternating 1,4-linked α-l-galactopyranose-6-sulfate (L6S) and 1,3-linked β-d-galactopyranose (G). Porphyran and oligo-porphyran have a series of pharmacological and biological functions, such as antioxidation, anticancer, antiaging, antiallergic, immunomodulatory, hypoglycaemic, and hypolipidemic effects. Thus, red algae Porphyra-derived porphyran and oligo-porphyran have various potential applications in food, medicine, and cosmetic fields. For better application, this review introduces and summarizes the structure and source of porphyran as well as the preparation methods, biological activities, and potential applications of porphyran and oligo-porphyran. Moreover, the future research directions and emphasis of porphyran and oligo-porphyran preparation as well as their functional activities and applications are highlighted and prospected.
Collapse
|
39
|
Cui R, Zhu F. Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Ma F, Zhang S, Li P, Sun B, Xu Y, Tao D, Zhao H, Cui S, Zhu R, Zhang B. Investigation on the role of the free radicals and the controlled degradation of chitosan under solution plasma process based on radical scavengers. Carbohydr Polym 2020; 257:117567. [PMID: 33541628 DOI: 10.1016/j.carbpol.2020.117567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022]
Abstract
This study investigated the role of various active species (OH, O, and H2O2) under solution plasma process (SPP) degradation based on the influence of different radical scavengers on the degradation effect and ESR spectra. The structures of oligochitosan with different radical scavengers were characterized by FT-IR, 1H NMR, and XRD analysis. The results indicated that OH, O, and H2O2 played important roles in SPP degradation. The degradation effect of the O was even higher than that of the OH. The physical effects (e.g. UV light and shockwaves) of SPP method or Fenton's reaction might contribute to the degradation treatment. Furthermore, the different scavengers could adjust the degradation effect of the corresponding free radicals. FT-IR, 1H NMR, and XRD analysis revealed that the primary chemical structure of chitosan was not changed by the scavengers. This study found that the controlled degradation by addition of a radical scavenger is feasible. Therefore, this study provided a straightforward analysis of the role of the free radicals and the controlled degradation of chitosan under SPP treatment, which will be beneficial to further develop SPP techniques for chitosan degradation.
Collapse
Affiliation(s)
- Fengming Ma
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Shihao Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Pu Li
- College of Art Design and Architecture, Liaoning University of Technology, Jinzhou, 121001, China.
| | - Bingxin Sun
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yufeng Xu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Dongbing Tao
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China.
| | - Shiwen Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Ruiyin Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Baiqing Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
41
|
Anwar M, Birch EJ, Ding Y, Bekhit AED. Water-soluble non-starch polysaccharides of root and tuber crops: extraction, characteristics, properties, bioactivities, and applications. Crit Rev Food Sci Nutr 2020; 62:2309-2341. [DOI: 10.1080/10408398.2020.1852388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mylene Anwar
- Department of Food Science, University of Otago, Dunedin, New Zealand
- Department of Food Science, Central Mindanao University, Musuan, Maramag, Bukidnon, Philippines
| | - Edward John Birch
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, PR China
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, PR China
| | | |
Collapse
|
42
|
Anticancer Activity of the Potential Pyropia yezoensis Galactan Fractionated in Human Prostate Cancer Cells. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0157-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Karwasra BL, Kaur M, Gill BS. Impact of ultrasonication on functional and structural properties of Indian wheat (Triticum aestivum L.) cultivar starches. Int J Biol Macromol 2020; 164:1858-1866. [DOI: 10.1016/j.ijbiomac.2020.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/18/2020] [Accepted: 08/02/2020] [Indexed: 11/27/2022]
|
44
|
Choi SY, Lee SY, Jang DH, Lee SJ, Cho JY, Kim SH. Inhibitory effects of Porphyra dentata extract on 3T3-L1 adipocyte differentiation. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:854-863. [PMID: 33987565 PMCID: PMC7721580 DOI: 10.5187/jast.2020.62.6.854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/26/2020] [Accepted: 10/02/2020] [Indexed: 12/04/2022]
Abstract
This study was aimed to investigate the inhibitory effects of Porphyra
dentata (P. dentata) extract on the adipogenesis
of 3T3-L1 cells and evaluate its anti-obesity effect. The proliferation of
3T3-L1 cells and differentiation of adipocytes under treatment of P.
dentata extract was examined by measuring the cell viability using
alamarBlue assay and lipid droplets by Oil Red O staining. Results showed that
P. dentata extract has no cytotoxicity effect and lipid
droplets formation decreased in a concentration-dependent manner in 3T3-L1
cells. It has been confirmed that transcription factors affecting lipid
accumulation and anti-adipogenic effects during cell differentiation are linked
to P. dentata extract. We observed that P.
dentata shows lowering the mRNA expression of peroxisome
proliferator-activated receptor γ2 (PPARγ2), CCAAT/enhancer
binding protein α (C/EBPα) that adipogenesis-associated key
transcription factors and inhibiting adipogenesis in the early stages of
differentiation. Treating the cells with P. dentata did not
only suppressed PPARγ2 and C/EBPα but also significantly decreased
the mRNA expression of adiponectin, Leptin, fatty acid synthase, adipocyte
protein 2, and Acetyl-coA carboxylase 1. Overall, the P.
dentata extract demonstrated inhibitory property in adipogenesis,
which has a potential effect in anti-obesity in 3T3-L1 cells.
Collapse
Affiliation(s)
- Su-Young Choi
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea
| | - Su Yeon Lee
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Da Hye Jang
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Suk Jun Lee
- Department of Biomedical Laboratory Science, College of Health & Medical Sciences, Cheongju University, Chungbuk 28503, Korea
| | - Jeong-Yong Cho
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Sung-Hak Kim
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
45
|
Pacheco D, Araújo GS, Cotas J, Gaspar R, Neto JM, Pereira L. Invasive Seaweeds in the Iberian Peninsula: A Contribution for Food Supply. Mar Drugs 2020; 18:E560. [PMID: 33207613 PMCID: PMC7697577 DOI: 10.3390/md18110560] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The introduction of exotic organisms in marine ecosystems can lead to economic and ecological losses. Globally, seaweeds represent a significant part of these non-indigenous species (NIS), with 407 introduced algal species. Furthermore, the presence of NIS seaweeds has been reported as a major concern worldwide since the patterns of their potential invasion mechanisms and vectors are not yet fully understood. Currently, in the Iberian Peninsula, around 50 NIS seaweeds have been recorded. Some of these are also considered invasive due to their overgrowth characteristic and competition with other species. However, invasive seaweeds are suitable for industrial applications due to their high feedstock. Hence, seaweeds' historical use in daily food diet, allied to research findings, showed that macroalgae are a source of nutrients and bioactive compounds with nutraceutical properties. The main goal of this review is to evaluate the records of NIS seaweeds in the Iberian Peninsula and critically analyze the potential of invasive seaweeds application in the food industry.
Collapse
Affiliation(s)
- Diana Pacheco
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - Glacio Souza Araújo
- Federal Institute of Education, Science and Technology of Ceará–IFCE, Campus Aracati, CE 040, km 137,1, Aracati 62800-000, Ceará, Brazil;
| | - João Cotas
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - Rui Gaspar
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - João M. Neto
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - Leonel Pereira
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| |
Collapse
|
46
|
Liu Z, Sun X. A Critical Review of the Abilities, Determinants, and Possible Molecular Mechanisms of Seaweed Polysaccharides Antioxidants. Int J Mol Sci 2020; 21:E7774. [PMID: 33096625 PMCID: PMC7589308 DOI: 10.3390/ijms21207774] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress induces various cardiovascular, neurodegenerative, and cancer diseases, caused by excess reactive oxygen species (ROS). It is attributed to the lack of sufficient antioxidant defense capacity to eliminate unnecessary ROS. Seaweeds are largely cultivated for their edible and commercial purposes. Excessive proliferation of some seaweeds has occurred in coastal areas, causing environmental and economic disasters, and even threating human health. Removing and disposing of the excess seaweeds are costly and labor-intensive with few rewards. Therefore, improving the value of seaweeds utilizes this resource, but also deals with the accumulated biomass in the environment. Seaweed has been demonstrated to be a great source of polysaccharides antioxidants, which are effective in enhancing the antioxidant system in humans and animals. They have been reported to be a healthful method to prevent and/or reduce oxidative damage. Current studies indicate that they have a good potential for treating various diseases. Polysaccharides, the main components in seaweeds, are commonly used as industrial feedstock. They are readily extracted by aqueous and acetone solutions. This study attempts to review the current researches related to seaweed polysaccharides as an antioxidant. We discuss the main categories, their antioxidant abilities, their determinants, and their possible molecular mechanisms of action. This review proposes possible high-value ways to utilize seaweed resources.
Collapse
Affiliation(s)
- Zhiwei Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China;
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 511458, China
| | - Xian Sun
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 511458, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
47
|
Anti-Inflammatory Properties and Gut Microbiota Modulation of Porphyra tenera Extracts in Dextran Sodium Sulfate-Induced Colitis in Mice. Antioxidants (Basel) 2020; 9:antiox9100988. [PMID: 33066339 PMCID: PMC7602078 DOI: 10.3390/antiox9100988] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Porphyra tenera (PT) is a functional seaweed food that has been reported for health benefits such as antioxidant, immunostimulant, anti-inflammation, and hepatoprotective effects. In this study, we investigated the effect of PT extracts on gut microbiota modulation in colitis-induced mice. The mice experiment was designed as three groups including normal mice (CTL), dextran sodium sulfate (DSS)-fed mice, and DSS plus PT extracts-fed mice (PTE). DSS was administrated through drinking water containing DSS for 1 week, and the PT extract was ingested into the gastrointestinal tract in mice. PT extract ameliorated the decreased body weight and colon length and improved disease activity index and pro-inflammatory cytokine expression. In addition, PT extract significantly shifted the gut microbiota of mice. DSS treatment significantly increased the portion of harmful bacteria (i.e., Helicobacter, Mucipirillum, and Parasutterella) and decreased the butyrate producing bacteria (i.e., Acetatifactor, Alistipes, Oscillibacter, and Clostridium_XIVb). PT extract increased the abundance of genera Clostridium_XIVb and also enriched some of predicted metabolic activities such as glyoxylate cycle, ethylmalonyl-CoA pathway, nitrate reduction, creatinine degradation, and glycine betaine metabolism. These results suggest that PT extract may ameliorate the DSS-induced colitis inflammation through regulating the compositions and functions of gut microbiota in mice.
Collapse
|
48
|
Li M, Ma F, Li R, Ren G, Yan D, Zhang H, Zhu X, Wu R, Wu J. Degradation of Tremella fuciformis polysaccharide by a combined ultrasound and hydrogen peroxide treatment: Process parameters, structural characteristics, and antioxidant activities. Int J Biol Macromol 2020; 160:979-990. [DOI: 10.1016/j.ijbiomac.2020.05.216] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022]
|
49
|
García-Poza S, Leandro A, Cotas C, Cotas J, Marques JC, Pereira L, Gonçalves AMM. The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6528. [PMID: 32911710 PMCID: PMC7560192 DOI: 10.3390/ijerph17186528] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Seaweeds (marine macroalgae) are autotrophic organisms capable of producing many compounds of interest. For a long time, seaweeds have been seen as a great nutritional resource, primarily in Asian countries to later gain importance in Europe and South America, as well as in North America and Australia. It has been reported that edible seaweeds are rich in proteins, lipids and dietary fibers. Moreover, they have plenty of bioactive molecules that can be applied in nutraceutical, pharmaceutical and cosmetic areas. There are historical registers of harvest and cultivation of seaweeds but with the increment of the studies of seaweeds and their valuable compounds, their aquaculture has increased. The methodology of cultivation varies from onshore to offshore. Seaweeds can also be part of integrated multi-trophic aquaculture (IMTA), which has great opportunities but is also very challenging to the farmers. This multidisciplinary field applied to the seaweed aquaculture is very promising to improve the methods and techniques; this area is developed under the denominated industry 4.0.
Collapse
Affiliation(s)
- Sara García-Poza
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Adriana Leandro
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Carla Cotas
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
| | - João Cotas
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - João C. Marques
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Leonel Pereira
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Ana M. M. Gonçalves
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
50
|
He D, Yan L, Ma X, Cheng Y, Wu S, Zuo J, Park EJ, Liu J, Wu M, Choi JI, Tong H. Gamma-irradiation degraded sulfated polysaccharide from a new red algal strain Pyropia yezoensis Sookwawon 104 with in vitro antiproliferative activity. Oncol Lett 2020; 20:91. [PMID: 32831910 DOI: 10.3892/ol.2020.11952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 07/21/2020] [Indexed: 01/30/2023] Open
Abstract
Pyropia yezoensis Sookwawon 104 is a newly cultivated strain of red marine algae. The present study aimed to investigate the in vitro antiproliferative activity of sulfated polysaccharide extracted from P. yezoensis Sookwawon 104 (PYSP), as well as that of its low molecular weight (Mw) derivatives. PYSP is a heterogeneous sulfated polysaccharide mainly composed of galactose, glucose and fucose. PYSP was degraded by gamma-irradiation at doses of 20 and 100 kGy to produce two derivatives, named as PYSP-20 and PYSP-100, respectively. Comparison of PYSP, PYSP-20 and PYSP-100 revealed clear differences in their molecular weight (Mw) distributions, and distinct in vitro antiproliferative activities against Hep3B, MDA-MB-231 and HeLa cancer cell lines. PYSP-20 and PYSP-100 exhibited stronger antiproliferative effects than PYSP, suggesting that the reduction in Mw may have increased the in vitro antiproliferative activity. Furthermore, the mRNA expression levels of the antitumor gene P53 and cell cycle-associated genes P21, Cyclin B1 and cyclin dependent kinase 1 (Cdk1) were further analyzed by reverse transcription-quantitative PCR in PYSP-20 and PYSP-100-treated cancer cells. PYSP and its derivatives were shown to inhibit the proliferation of tumor cells by regulating the expression of P53, P21, Cyclin B1 and Cdk1. In conclusion, low-Mw polysaccharide derivatives prepared from P. yezoensis Sookwawon 104 by gamma-irradiation exhibit significant inhibition effects on cancer cell proliferation in vitro and may be a novel source of potential anticancer therapeutic agents.
Collapse
Affiliation(s)
- Dan He
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China.,Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Liping Yan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiaojing Ma
- National Resource Center of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Yang Cheng
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Siya Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jihui Zuo
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Eun-Jeong Park
- Seaweed Research Center, National Institute of Fisheries Science, Haenam, South Jeolla 59002, Republic of Korea
| | - Jian Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China.,Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Mingjiang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|