1
|
Shee M, Lal Banerjee S, Dey A, Das Jana I, Basak P, Mandal M, Mondal A, Kumar Das A, Das NC. pH-induced fluorescent active sodium alginate-based ionically conjugated and REDOX responsive multi-functional microgels for the anticancer drug delivery. Int J Pharm 2024; 662:124490. [PMID: 39032873 DOI: 10.1016/j.ijpharm.2024.124490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
A sodium alginate (Alg) based REDOX (reduction and oxidation)-responsive and fluorescent active microgel was prepared via water in oil (w/o) mini-emulsion polymerization technique. Here, we initially synthesized sodium alginate-based disulfide cross linked microgels and after that those microgels were tagged with rhodamine amine derivative (RhB-NH2) by ionic interaction to get the pH-responsive fluorescent property. Functionalized microgels were characterized using 1H NMR, FTIR, DLS, HRTEM, FESEM, UV-vis, and fluorescence spectroscopy analyses. Presence of the REDOX-responsive disulfide-containing crosslinkers in the microgels enhances the release of doxorubicin (DOX), an anti-cancer drug in the reducing environment of the cancer-cells (simulated). Existence of the rhodamine-amine derivative in the microgels triggers the pH-dependent fluorescence property by showing fluorescence emission at 560-580 nm at pH 5.5 (cancer cell pH). The cytotoxicity of the biopolymer based microgel was assessed over both cancerous HeLa (IC50 100 µg/mL) and non-cancerous MDCK (IC50 200 µg/mL) cells by MTT assay which showed the synthesized microgel is non-toxic whereas DOX-loaded microgels showed significant toxicity. FACS and cell uptake (in vitro) analyses were conducted to understand the cell apoptosis cycle and behavior of the cancer cells in presence of the DOX-loaded microgels. This pH-responsive fluorescent active alginate-based biomaterial could be a promising material for the anti-cancer drug delivery and other medical fields.
Collapse
Affiliation(s)
- Moumita Shee
- School of Nano Science and Technology (SNST), Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Sovan Lal Banerjee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Amundson Hall, 421 Washington Ave SE #151, Minneapolis, MN 55455, USA
| | - Ankita Dey
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Indrani Das Jana
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University, Kolkata, West Bengal, India
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Arindam Mondal
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Narayan Ch Das
- School of Nano Science and Technology (SNST), Indian Institute of Technology, Kharagpur, West Bengal 721302, India; Rubber Technology Center, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
| |
Collapse
|
2
|
Saleem U, Khalid I, Hussain L, Alshammari A, Albekairi NA. Crosslinked PVA- g-poly(AMPS) Nanogels for Enhanced Solubility and Dissolution of Ticagrelor: Synthesis, Characterization, and Toxicity Evaluation. ACS OMEGA 2024; 9:21401-21415. [PMID: 38764664 PMCID: PMC11097175 DOI: 10.1021/acsomega.4c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024]
Abstract
In this study, we synthesized PVA-g-poly(AMPS) nanogels with the aim of enhancing the solubility and dissolution of ticagrelor (TGR). Ticagrelor, a noncompetitive, reversible P2Y12 receptor antagonist, is prescribed to treat acute coronary syndrome. Ticagrelor has restricted oral bioavailability (≈36%) because of its poor solubility and permeability. The free radical polymerization methodology was employed to synthesize nanogels with varied concentrations of poly(vinyl alcohol) (polymer), 2-acrylamido-2-methylpropanesulfonic acid (monomer), and N,N-methylene bis(acrylamide) (crosslinker). The prepared nanogels were analyzed by swelling studies, % drug entrapment efficiency (DEE), solubility studies, in vitro drug release studies, zeta sizer, Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The optimized formulation (PA5) revealed a particle size of 45.86 nm, with a polydispersity index (PDI) of 0.41 and a %DEE of 85.1%. FTIR spectroscopy, XRD, and SEM confirmed the formation of crosslinked nanogels with amorphous and porous structures, and TGA/DSC proved their thermal stability. In vitro dissolution studies showed 99.91% drug release, and the ticagrelor solubility from the synthesized formulations was significantly improved up to 8.2-fold. All formulations followed the Korsmeyer-Peppas model with the Fickian diffusion as the release mechanism. The toxicity studies carried out on rats and the MTT assay on the Caco-2 cell line validated the biocompatibility of the nanogel formulations. The outcomes of the current study led to the conclusion that the PVA-g-poly(AMPS) nanogels synthesized by us could be used as dedicated pharmaceutical delivery systems to achieve enhanced solubility and dissolution of ticagrelor.
Collapse
Affiliation(s)
- Usman Saleem
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ikrima Khalid
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Liaqat Hussain
- Department
of Pharmacology, School of Medicine and Public Health, Zhejiang University, Hanzghou 310027, China
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Abdulrahman Alshammari
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah A. Albekairi
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Zhao S, Wang X, Zhang H, Li W, He Y, Meng X, Liu B. Bacteriostatic Pickering emulsions stabilized by whey protein isolate-vanillin nanoparticles: Fabrication, characterization and stability in vitro. Food Chem 2023; 429:136871. [PMID: 37478609 DOI: 10.1016/j.foodchem.2023.136871] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/20/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
The purpose of this work was to prepare Pickering emulsion stabilized by bacteriostatic whey protein isolate-vanillin (WPI-Van) nanoparticles as a carrier for encapsulating vitamin E. The particle size, ζ potential, PDI were used to study the optimal preparation conditions of nanoparticles. The results showed that the optimal preparation condition was achieved at WPI/Van mass ratio of 3:1. FTIR spectra demonstrated the complexation of WPI and Van. SEM image showed spherical and slightly rough surface of nanoparticles. Inhibitory effects of nanoparticles on E. coli and S. aureus were also observed. After storage of 21 days at 4 °C, the retention rate of vitamin E in the emulsions remained 43% higher than that of unencapsulated vitamin E. Moreover, the release rate of vitamin E encapsulated in emulsions in the small intestine was 81%, indicating excellent bioaccessibility. The research can provide a new insight for production and application of antibacterial Pickering emulsions.
Collapse
Affiliation(s)
- Shenghan Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Haoyu Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Weiwei Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yangeng He
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
4
|
Al-Musawi MH, Khoshkalampour A, Adnan Shaker Al-Naymi H, Farooq Shafeeq Z, Pourvatan Doust S, Ghorbani M. Optimization and characterization of carrageenan/gelatin-based nanogel containing ginger essential oil enriched electrospun ethyl cellulose/casein nanofibers. Int J Biol Macromol 2023; 248:125969. [PMID: 37494989 DOI: 10.1016/j.ijbiomac.2023.125969] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
This study aimed to evaluate the effects of nano-gels containing ginger essential oil (GEO) (NGs) made from gelatin and carrageenan gum on ethyl cellulose/casein nano-fibers (NFs). For this purpose, the mechanical, thermal, morphological, antibacterial, antioxidant, hemocompatibility, and biocompatibility properties of the NFs were assessed. It was observed that incorporating NGs into ethyl cellulose/casein NFs improved their morphology, porosity, mechanical properties, and thermal stability. Analysis of the SEM images revealed that adding NGs resulted in NFs with appropriate morphology, devoid of beads, and smaller diameters. The NFs containing NGs exhibited favorable antioxidant properties and inhibited the growth of Escherichia coli and Staphylococcus aureus. Cell viability studies demonstrated that none of the NFs were toxic to normal cells (Human umbilical vein endothelial cells (HUVEC)) and exhibited hemocompatibility. Considering these properties, ethyl cellulose/casein NFs containing NGs and GEO can be utilized as food packaging materials.
Collapse
Affiliation(s)
- Mastafa H Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Ali Khoshkalampour
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanan Adnan Shaker Al-Naymi
- Department of Chemistry, College of Education for Pure Science/Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq
| | - Zainab Farooq Shafeeq
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Sepideh Pourvatan Doust
- Department of Food Science and Technology, Sciences and Researches Branch, Islamic Azad University, Tehran, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Tan Y, Zi Y, Peng J, Shi C, Zheng Y, Zhong J. Gelatin as a bioactive nanodelivery system for functional food applications. Food Chem 2023; 423:136265. [PMID: 37167667 DOI: 10.1016/j.foodchem.2023.136265] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/01/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Gelatin has long been used as an encapsulant agent in the pharmaceutical and biomedical industries because of its low cost, wide availability, biocompatibility, and degradability. However, the exploitation of gelatin for nanodelivery application is not fully achieved in the functional food filed. In this review article, we highlight the latest work being performed for gelatin-based nanocarriers, including polyelectrolyte complexes, nanoemulsions, nanoliposomes, nanogels, and nanofibers. Specifically, we discuss the applications and challenges of these nanocarriers for stabilization and controlled release of bioactive compounds. To achieve better efficacy, gelatin is frequently used in combination with other biomaterials such as polysaccharides. The fabrication and synergistic effects of the newly developed gelatin composite nanocarriers are also present.
Collapse
Affiliation(s)
- Yang Tan
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ye Zi
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiawei Peng
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Cuiping Shi
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yulu Zheng
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
6
|
Xie Y, Xu W, Jin Z, Zhao K. Chondroitin sulfate functionalized palmitic acid and cysteine cografted-quaternized chitosan for CD44 and gut microbiota dual-targeted delivery of curcumin. Mater Today Bio 2023. [DOI: 10.1016/j.mtbio.2023.100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
7
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opin Drug Deliv 2022; 19:1664-1695. [PMID: 36440488 DOI: 10.1080/17425247.2022.2152791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Polysaccharide-based hydrogels (PBHs) offer several advantages over their synthetic counterparts. Their natural origin contributes to their nontoxicity, high biocompatibility, and in vivo biodegradability. Their properties can be tuned finely to obtain hydrogels with desired mechanical, structural, and chemical properties. AREAS COVERED Such versatile characteristics have potentiated the use of PBHs for the delivery of drugs, vaccines, protein and peptide therapeutics, genes, cells, probiotics, bacteriophages, and other therapeutic agents. Recent advances in hydrogel-based formulations such as nanogels, microgels, microneedles, hydrogel beads, nanocarrier-loaded hydrogels, and complexation hydrogels have enabled the precise delivery of a wide range of therapeutics. This review aims to give a holistic overview of hydrogels in the delivery of a variety of therapeutics through different routes. EXPERT OPINION PBHs have been used to enable the oral delivery of vaccines and other biologicals, thereby allowing self-administration of life-saving vaccines during public health emergencies. There is a lack of commercialized wound dressings for the treatment of chronic wounds. PBH-based wound dressings, especially those based on chitosan and loaded with actives and growth factors, have the potential to help in the long-term treatment of such wounds. Recent developments in the 3D printing of hydrogels can enable the quick and large-scale production of drug-loaded hydrogels.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai School of Pharmacy and Technology Management, Mumbai, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Vinita Kale
- Department of Pharmaceutics, Guru Nanak College of Pharmacy, Nagpur, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| |
Collapse
|
8
|
Mortazavi Moghadam FA, Khoshkalampour A, Mortazavi Moghadam FA, PourvatanDoust S, Naeijian F, Ghorbani M. Preparation and physicochemical evaluation of casein/basil seed gum film integrated with guar gum/gelatin based nanogel containing lemon peel essential oil for active food packaging application. Int J Biol Macromol 2022; 224:786-796. [DOI: 10.1016/j.ijbiomac.2022.10.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/30/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
9
|
Mohanta YK, Nayak D, Mishra AK, Chakrabartty I, Ray MK, Mohanta TK, Tayung K, Rajaganesh R, Vasanthakumaran M, Muthupandian S, Murugan K, Sharma G, Dahms HU, Hwang JS. Green Synthesis of Endolichenic Fungi Functionalized Silver Nanoparticles: The Role in Antimicrobial, Anti-Cancer, and Mosquitocidal Activities. Int J Mol Sci 2022; 23:ijms231810626. [PMID: 36142546 PMCID: PMC9502095 DOI: 10.3390/ijms231810626] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Green nanotechnology is currently a very crucial and indispensable technology for handling diverse problems regarding the living planet. The concoction of reactive oxygen species (ROS) and biologically synthesized silver nanoparticles (AgNPs) has opened new insights in cancer therapy. The current investigation caters to the concept of the involvement of a novel eco-friendly avenue to produce AgNPs employing the wild endolichenic fungus Talaromyces funiculosus. The synthesized Talaromyces funiculosus–AgNPs were evaluated with the aid of UV visible spectroscopy, dynamic light scattering (DLS), Fourier infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The synthesized Talaromyces funiculosus–AgNPs (TF-AgNPs) exhibited hemo-compatibility as evidenced by a hemolytic assay. Further, they were evaluated for their efficacy against foodborne pathogens Staphylococcus aureus, Streptococcus faecalis, Listeria innocua, and Micrococcus luteus and nosocomial Pseudomonas aeruginosa, Escherichia coli, Vibrio cholerae, and Bacillus subtilis bacterial strains. The synthesized TF-AgNPs displayed cytotoxicity in a dose-dependent manner against MDA-MB-231 breast carcinoma cells and eventually condensed the chromatin material observed through the Hoechst 33342 stain. Subsequent analysis using flow cytometry and fluorescence microscopy provided the inference of a possible role of intracellular ROS (OH−, O−, H2O2, and O2−) radicals in the destruction of mitochondria, DNA machinery, the nucleus, and overall damage of the cellular machinery of breast cancerous cells. The combined effect of predation by the cyclopoid copepod Mesocyclops aspericornis and TF-AgNPS for the larval management of dengue vectors were provided. A promising larval control was evident after the conjunction of both predatory organisms and bio-fabricated nanoparticles. Thus, this study provides a novel, cost-effective, extracellular approach of TF-AgNPs production with hemo-compatible, antioxidant, and antimicrobial efficacy against both human and foodborne pathogens with cytotoxicity (dose dependent) towards MDA-MB-231 breast carcinoma.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, Meghalaya, India
| | - Debasis Nayak
- Department of Wildlife and Biodiversity Conservation, Maharaja Sriram Chandra Bhanj Deo University, Baripada 757003, Odisha, India
| | | | - Ishani Chakrabartty
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, Meghalaya, India
| | - Manjit Kumar Ray
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, Meghalaya, India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman
| | - Kumananda Tayung
- Department of Botany, Gauhati University, Jalukbari, Guwahati 781014, Assam, India
| | | | | | - Saravanan Muthupandian
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Chennai, India
| | - Kadarkarai Murugan
- Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Gouridutta Sharma
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, Meghalaya, India
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University (KMU), Kaohsiung 80708, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung 80708, Taiwan
- Correspondence: (H.-U.D.); (J.-S.H.)
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence: (H.-U.D.); (J.-S.H.)
| |
Collapse
|
10
|
Topuz F, Uyar T. Advances in the development of cyclodextrin-based nanogels/microgels for biomedical applications: Drug delivery and beyond. Carbohydr Polym 2022; 297:120033. [DOI: 10.1016/j.carbpol.2022.120033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 12/20/2022]
|
11
|
Impacts of Nano-Gelatin Coating Containing Thymol and Nisin on Chemical Quality Indices of Rainbow Trout Fillets Stored at 4°C. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp-122177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Seafood such as fish is an integral part of human nutrition and an excellent source of protein. However, their short shelf life is quite challenging for the food industry. Objectives: This study was carried out to investigate the effects of nano-gelatin coating embedded with thymol and nisin on the chemical quality indices of rainbow trout fillets during 16 days of storage at 4°C. Methods: The fillets were randomly divided into six groups, including control (C), gelatin (G), nano-gelatin (NG), nano-gelatin + thymol (NG-T), nano-gelatin + nisin (NG-N), and nano-gelatin + nisin and thymol (NG-T-N). The chemical quality of fish samples was assessed by performing pH, thiobarbituric acid reactive substance (TBARS), peroxide value (PV), free fatty acid (FFA), and total volatile basic nitrogen (TVB-N) analyses every four days. Results: The results revealed the stunning effect of nisin and thymol addition to the nano-gelatin coating on all chemical quality indices. Besides, PV, TBARS, and FFA analyses showed that nano-gelatin containing thymol significantly decreased lipid oxidation in fish fillet samples (P < 0.05). The lowest amounts of PV (8.33 meq oxygen/kg oil), TBARS, and FFA were recorded for NG-T-N. The best results in the TBARS test (P < 0.05) were observed in NG-T-N, followed by NG-T (1.45 and 1.69 mg of malonaldehyde/kg of tissue, respectively), and similar results were recorded for FFA analysis. On day 16, the lowest amounts of TVB-N were measured for NG-T-N, followed by NG-N and NG-T (26.13, 29.86, and 38.26 mg N/100 g, respectively). Both nisin and thymol reduced the TVB-N and increased the shelf life, and the best results were observed in groups treated with nisin and thymol simultaneously. However, the application of gelatin and nano-gelatin coating without nisin and thymol was ineffective in improving the chemical quality of samples, and they must be used with nisin and/or thymol. Conclusions: Gelatin nanogel embedded with thymol and nisin can be utilized to enhance the chemical quality and shelf life of fish fillets.
Collapse
|
12
|
Pooresmaeil M, Namazi H. Folic acid-modified photoluminescent dialdehyde carboxymethyl cellulose crosslinked bionanogels for pH-controlled and tumor-targeted co-drug delivery. Int J Biol Macromol 2022; 200:247-262. [PMID: 35007630 DOI: 10.1016/j.ijbiomac.2022.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/21/2021] [Accepted: 01/01/2022] [Indexed: 01/21/2023]
Abstract
This work aimed to fabricate a new photoluminescent bionanogel with both targeted anticancer drug delivery and bioimaging potentials. Briefly, at first photoluminescent carbon dots (CDs) were synthesized from the low-cost and more available black pepper with traditional medicinal properties. The as-synthesized dialdehyde carboxymethyl cellulose (DCMC) was used as a safe crosslinker for gelatin crosslinking in the presence of CDs (CDs/DCMC-Gel). Eventually, the residual amine functional groups of gelatin were used for the conjugation of CDs/DCMC-Gel with folic acid (FA) ((CDs/DCMC-Gel)-FA bionanogels). All employed physicochemical characterization methods approved the (CDs/DCMC-Gel)-FA bionanogels fabrication route. SEM analysis specified the spherical morphology with a diameter of ~70-90 nm for it. Curcumin (CUR) and doxorubicin (DOX) respectively were loaded with drug entrapment efficiency of about 44.0% and 41.4%. The release rate for both drugs in acidic conditions was higher than in physiological conditions. In vitro antitumor experiments; MTT, DAPI staining, cellular uptake, and cell cycle tests showed the superior anticancer effect of the CUR@DOX@(CDs/DCMC-Gel)-FA in comparison with free CUR@DOX. Moreover, the (CDs/DCMC-Gel)-FA acted as a hopeful bio-imaging tool. Taken together, the designed (CDs/DCMC-Gel)-FA could be proposed as a promising nanosystem for efficient chemotherapy.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
13
|
Sarker SR, Polash SA, Karim MN, Saha T, Dekiwadia C, Bansal V, Sabri Y, Kandjani AE, Bhargava SK. Functionalized Concave Cube Gold Nanoparticles as Potent Antimicrobial Agents against Pathogenic Bacteria. ACS APPLIED BIO MATERIALS 2022; 5:492-503. [PMID: 35129945 DOI: 10.1021/acsabm.1c00902] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gold (Au) is an inert metal in a bulk state; however, it can be used for the preparation of Au nanoparticles (i.e., AuNPs) for multidimensional applications in the field of nanomedicine and nanobiotechnology. Herein, monodisperse concave cube AuNPs (CCAuNPs) were synthesized and functionalized with a natural antioxidant lipoic acid (LA) and a tripeptide glutathione (GSH) because different crystal facets of AuNPs provide binding sites for distinct ligands. There was an ∼10 nm bathochromic shift of the UV-vis spectrum when CCAuNPs were functionalized with LA, and the size of the as-synthesized monodisperse CCAu nanoparticles was 76 nm. The LA-functionalized CCAu nanoparticles (i.e., CCAuLA) showed the highest antibacterial activity against Bacillus subtilis. Both fluorescence images and scanning electron microscopy images confirm the damage of the bacterial cell wall as the mode of antibacterial activity of CCAuNPs. CCAuNPs also cause the oxidation of bacterial cell membrane fatty acids to produce reactive oxygen species, which pave the way for the death of bacteria. Both CCAu nanoparticles and their functionalized derivatives showed excellent hemocompatibility (i.e., percentage of hemolysis is <5% at 80 μg of AuNPs) to human red blood cells and very high biocompatibility to HeLa, L929, and Chinese hamster ovary-green fluorescent protein (CHO-GFP) cells. Taken together, LA and GSH enhance the antibacterial activity and biocompatibility, respectively, of CCAu nanoparticles that interact with the bacteria through Coulomb as well as hydrophobic interactions before demonstrating antibacterial propensity.
Collapse
Affiliation(s)
- Satya Ranjan Sarker
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne 3001, Victoria, Australia.,Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, Savar 1342, Bangladesh
| | - Shakil Ahmed Polash
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, Savar 1342, Bangladesh.,Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne 3001, Victoria, Australia
| | - Md Nurul Karim
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne 3001, Victoria, Australia.,Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne 3001, Victoria, Australia
| | - Tanushree Saha
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, Gazipur 1700, Bangladesh.,School of Engineering, RMIT University, Melbourne 3001, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne 3001, Victoria, Australia
| | - Vipul Bansal
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne 3001, Victoria, Australia.,Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne 3001, Victoria, Australia
| | - Ylias Sabri
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne 3001, Victoria, Australia
| | - Ahmad E Kandjani
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne 3001, Victoria, Australia.,Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton 3168, Victoria, Australia
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne 3001, Victoria, Australia
| |
Collapse
|
14
|
Keskin D, Zu G, Forson AM, Tromp L, Sjollema J, van Rijn P. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioact Mater 2021; 6:3634-3657. [PMID: 33898869 PMCID: PMC8047124 DOI: 10.1016/j.bioactmat.2021.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
The implementation of nanotechnology to develop efficient antimicrobial systems has a significant impact on the prospects of the biomedical field. Nanogels are soft polymeric particles with an internally cross-linked structure, which behave as hydrogels and can be reversibly hydrated/dehydrated (swollen/shrunken) by the dispersing solvent and external stimuli. Their excellent properties, such as biocompatibility, colloidal stability, high water content, desirable mechanical properties, tunable chemical functionalities, and interior gel-like network for the incorporation of biomolecules, make them fascinating in the field of biological/biomedical applications. In this review, various approaches will be discussed and compared to the newly developed nanogel technology in terms of efficiency and applicability for determining their potential role in combating infections in the biomedical area including implant-associated infections.
Collapse
Affiliation(s)
| | | | | | - Lisa Tromp
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| |
Collapse
|
15
|
Shabani Samghabadi M, Karkhaneh A, Katbab AA. Synthesis and characterization of electroconductive hydrogels based on oxidized alginate and polypyrrole-grafted gelatin as tissue scaffolds. SOFT MATTER 2021; 17:8465-8473. [PMID: 34586146 DOI: 10.1039/d1sm00118c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electroconductive biocompatible hydrogels with tunable properties have extensively been taken into account in tissue engineering applications due to their potential to provide suitable microenvironmental responses for the cells. In the present study, novel electroconductive hydrogels are designed and synthesized by reacting oxidized alginate with polypyrrole-grafted gelatin copolymer (PPy-g-gelatin) via formation of a Schiff-base linkage. The influence of the composition and the concentration of the components on the compressive modulus and functional performance of the hydrogels is investigated. The conductivity of the hydrogels measured by a two-probe method increased by increasing the level of polypyrrole-grafted gelatin, and a conductivity of 0.7753 S m-1 was exhibited by the hydrogel composed of 8% w/v polypyrrole-grafted gelatin (oxidized alginate:gelatin:polypyrrole-grafted gelatin; 30 : 35 : 35% v/v). The hydrogel compressive modulus was shown to be enhanced by increasing the total concentration of hydrogel. The characteristic features of the prepared hydrogels, including swelling ratio, volume fraction, cross-link density, and mesh size, are also studied and analyzed. Besides, the conductive hydrogels have a smaller mesh size and higher cross-link density than the non-conductive hydrogels. However, the hydrogels with high cross-link density, small mesh size, and large pore size presented higher electroconductivity as a result of easier movement of the ions throughout the hydrogel. These conductive hydrogels exhibited electrical conductivity and biodegradability with cell viability, implying potential as scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Mina Shabani Samghabadi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran.
| | - Akbar Karkhaneh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran.
| | - Ali Asghar Katbab
- Department of Polymer Engineering and Colour Technology, Amirkabir University of Technology, Tehran, 1591634311, Iran.
| |
Collapse
|
16
|
Guo S, Shi Y, Liang Y, Liu L, Sun K, Li Y. Relationship and improvement strategies between drug nanocarrier characteristics and hemocompatibility: What can we learn from the literature. Asian J Pharm Sci 2021; 16:551-576. [PMID: 34849162 PMCID: PMC8609445 DOI: 10.1016/j.ajps.2020.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
This article discusses the various blood interactions that may occur with various types of nano drug-loading systems. Nanoparticles enter the blood circulation as foreign objects. On the one hand, they may cause a series of inflammatory reactions and immune reactions, resulting in the rapid elimination of immune cells and the reticuloendothelial system, affecting their durability in the blood circulation. On the other hand, the premise of the drug-carrying system to play a therapeutic role depends on whether they cause coagulation and platelet activation, the absence of hemolysis and the elimination of immune cells. For different forms of nano drug-carrying systems, we can find the characteristics, elements and coping strategies of adverse blood reactions that we can find in previous researches. These adverse reactions may include destruction of blood cells, abnormal coagulation system, abnormal effects of plasma proteins, abnormal blood cell behavior, adverse immune and inflammatory reactions, and excessive vascular stimulation. In order to provide help for future research and formulation work on the blood compatibility of nano drug carriers.
Collapse
Affiliation(s)
- Shiqi Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yanan Shi
- College of Life Science, Yantai University, Yantai 264005, China
| | - Yanzi Liang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Lanze Liu
- College of Life Science, Yantai University, Yantai 264005, China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai 264003, China
| | - Youxin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai 264003, China
| |
Collapse
|
17
|
Zhang M, Qiao X, Han W, Jiang T, Liu F, Zhao X. Alginate-chitosan oligosaccharide-ZnO composite hydrogel for accelerating wound healing. Carbohydr Polym 2021; 266:118100. [PMID: 34044919 DOI: 10.1016/j.carbpol.2021.118100] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022]
Abstract
Moist, breathable and antibacterial microenvironment can promote cell proliferation and migration, which is beneficial to wound healing. Here, we fabricated a novel sodium alginate-chitosan oligosaccharide‑zinc oxide (SA-COS-ZnO) composite hydrogel by spontaneous Schiff base reaction, using aldehydated sodium alginate (SA), chitosan oligosaccharide (COS), and zinc oxide (ZnO) nanoparticles, which can provide a moist and antibacterial environment for wound healing. The porosity and swelling degree of SA-COS-ZnO hydrogel are 80% and 150%, respectively, and its water vapor permeability is 682 g/m2/24h. The composite hydrogel showed good biocompatibility to blood cells, 3T3 cells, and 293T cells, and significant antibacterial activity against Escherichia coli, Staphylococcus aureus, Candida albicans, and Bacillus subtilis. Moreover, the hydrogel showed a promoting effect on wound healing in a rat scald model. The present study suggests that marine carbohydrates composite hydrogels are promising in wound care management.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoni Qiao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenwei Han
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fei Liu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
18
|
Zhao Q, Zhang S, Wu F, Li D, Zhang X, Chen W, Xing B. Rationales Design von Nanogelen zur Überwindung biologischer Barrieren auf verschiedenen Verabreichungswegen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201911048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences Beijing 100012 China
| | - Dengyu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
| | - Wei Chen
- Department of Pharmaceutical Engineering School of Engineering China Pharmaceutical University Nanjing 211198 China
| | - Baoshan Xing
- Stockbridge School of Agriculture University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
19
|
Tanveer S, Ahmad M, Minhas MU, Ahmad A, Khan KU. Chitosan-PVA-co-poly (2-Acrylamido-2-Methylpropane Sulfonic Acid) Cross-linked Hybrid IPN-Nanogels for Transdermal Delivery of Ondansetron; Synthesis, Characterization and Toxicological Evaluation. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1934019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sana Tanveer
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Khawaja Fareed Campus, Punjab, Pakistan
| | - Mahmood Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Khawaja Fareed Campus, Punjab, Pakistan
| | | | - Aousaf Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Khawaja Fareed Campus, Punjab, Pakistan
| | - Kifayat Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Khawaja Fareed Campus, Punjab, Pakistan
| |
Collapse
|
20
|
Zhao Q, Zhang S, Wu F, Li D, Zhang X, Chen W, Xing B. Rational Design of Nanogels for Overcoming the Biological Barriers in Various Administration Routes. Angew Chem Int Ed Engl 2021; 60:14760-14778. [DOI: 10.1002/anie.201911048] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences Beijing 100012 China
| | - Dengyu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
| | - Wei Chen
- Department of Pharmaceutical Engineering School of Engineering China Pharmaceutical University Nanjing 211198 P.R. China
| | - Baoshan Xing
- Stockbridge School of Agriculture University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
21
|
Characterization of an oxidized alginate-gelatin hydrogel incorporating a COS-salicylic acid conjugate for wound healing. Carbohydr Polym 2021; 252:117145. [DOI: 10.1016/j.carbpol.2020.117145] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/26/2022]
|
22
|
Bashiri G, Shojaosadati SA, Abdollahi M. Synthesis and characterization of Schiff base containing bovine serum albumin-gum arabic aldehyde hybrid nanogels via inverse miniemulsion for delivery of anticancer drug. Int J Biol Macromol 2020; 170:222-231. [PMID: 33359811 DOI: 10.1016/j.ijbiomac.2020.12.150] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/16/2022]
Abstract
The periodate modified gum arabic was used as a natural-based, non-toxic cross-linker to synthesize hybrid bovine serum albumin-gum arabic aldehyde (BSA-GAA) nanogels by Schiff base reaction through the inverse miniemulsion method for the first time. The synthesis process was performed in the absence of toxic organic solvents using fractionated coconut oil as the continuous phase. The particle size of the nanogels was managed by tweaking the concentration of the surfactants (Span 80/Tween 80) and the total volume of the aqueous phase. Based on the bicinchoninic acid method, the cross-linking efficiency of BSA and GAA was estimated at 98%. 5-fluorouracil (5-FU) was selected as the sample drug. The 5-FU-loaded hybrid nanogels showed a spherical morphology with an average diameter of 231.33 ±12.74 nm and a zeta potential of -31.6 mV. The encapsulation and loading efficiency of the nanogels were calculated at 42 ± 4.52% and 2.37 ± 0.59%, respectively. The properties of the hybrid nanogels were analyzed by dynamic light scattering (DLS), Fourier transform infrared microscopy (FTIR) analysis, field emission scanning electron microscopy (FE-SEM), and thermogravimetric analysis (TGA). The pH sensitivity of the hybrid nanogels was confirmed by the in vitro release profiles of 5-FU in different buffers. Hemolysis assay revealed the in vitro hemocompatibility of the hybrid nanogels which inhibited the growth of MCF-7 cells with an IC50 value of 16.21 μM. The present study suggested that these biobased hybrid nanogels could have a great potential in drug delivery and other biomedical applications.
Collapse
Affiliation(s)
- Ghazal Bashiri
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, PO Box: 14155-114, Iran
| | - Seyed Abbas Shojaosadati
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, PO Box: 14155-114, Iran.
| | - Mahdi Abdollahi
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, PO Box: 14155-114, Iran
| |
Collapse
|
23
|
Ghabri R, Kassab G, Mohamed AB. Effect of Micelle Size on the Dielectric Relaxation and Dynamic Behavior of Reverse Micelles Using the Open-Ended Coaxial Line Technique. J MACROMOL SCI B 2020. [DOI: 10.1080/00222348.2020.1755788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Rim Ghabri
- Université de Tunis, Ecole Nationale Supérieure d’Ingénieurs de Tunis, Tunisie
- Université de Carthage, Ecole Nationale des Sciences et Technologies Avancées, Laboratoire de Réseaux Intelligents et Nanotechnologie (LaRINa), Borj Cédria, Tunisie
| | - Ghazi Kassab
- Université de Tunis, Ecole Nationale Supérieure d’Ingénieurs de Tunis, Tunisie
- Université de Carthage, Ecole Nationale des Sciences et Technologies Avancées, Laboratoire de Réseaux Intelligents et Nanotechnologie (LaRINa), Borj Cédria, Tunisie
| | - Abdelatif Belhadj Mohamed
- Université de Carthage, Ecole Nationale des Sciences et Technologies Avancées, Laboratoire de Réseaux Intelligents et Nanotechnologie (LaRINa), Borj Cédria, Tunisie
| |
Collapse
|
24
|
High stabilization of immobilized Rhizomucor miehei lipase by additional coating with hydrophilic crosslinked polymers: Poly-allylamine/Aldehyde–dextran. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Hossain MM, Polash SA, Takikawa M, Shubhra RD, Saha T, Islam Z, Hossain S, Hasan MA, Takeoka S, Sarker SR. Investigation of the Antibacterial Activity and in vivo Cytotoxicity of Biogenic Silver Nanoparticles as Potent Therapeutics. Front Bioeng Biotechnol 2019; 7:239. [PMID: 31649922 PMCID: PMC6794407 DOI: 10.3389/fbioe.2019.00239] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/11/2019] [Indexed: 11/13/2022] Open
Abstract
Biogenic nanoparticles are the smartest weapons to deal with the multidrug-resistant "superbugs" because of their broad-spectrum antibacterial propensity as well as excellent biocompatibility. The aqueous biogenic silver nanoparticles (Aq-bAgNPs) and ethanolic biogenic silver nanoparticles (Et-bAgNPs) were synthesized using aqueous and ethanolic extracts of Andrographis paniculata stem, respectively, as reducing agents. Electron microscopic images confirmed the synthesis of almost spherical shaped biogenic silver nanoparticles (bAgNPs). The zeta potentials of the nanoparticles were negative and were -22 and -26 mV for Aq-bAgNPs and Et-bAgNPs, respectively. The antibacterial activity of bAgNPs was investigated against seven pathogenic (i.e., enteropathogenic Escherichia coli, Salmonella typhi, Staphylococcus aureus, Vibrio cholerae, Enterococcus faecalis, Hafnia alvei, Acinetobacter baumannii) and three nonpathogenic (i.e., E. coli DH5α, E. coli K12, and Bacillus subtilis) bacteria at different time points (i.e., 12, 16, 20, and 24 h) in a dose-dependent manner (i.e., 20, 40, and 60 μg) through broth dilution assay, disk diffusion assay, CellToxTM Green uptake assay, and trypan blue dye exclusion assay. The lowest minimum inhibitory concentration value for both the bAgNPs was 0.125 μg. Et-bAgNPs showed the highest antibacterial activity against S. aureus at 60 μg after 16 h and the diameter of inhibited zone was 28 mm. Lipid peroxidation assay using all the bacterial strains revealed the formation of malondialdehyde-thiobarbituric acid adduct due to the oxidation of cell membrane fatty acids by bAgNPs. The bAgNPs showed excellent hemocompatibility against human as well as rat red blood cells. Furthermore, there was no significant toxicity observed when the levels of rat serum ALT, AST, γ-GT (i.e., liver function biomarkers), and creatinine (i.e., kidney function biomarker) were determined.
Collapse
Affiliation(s)
- Md Monir Hossain
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, Bangladesh
| | - Shakil Ahmed Polash
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, Bangladesh
| | - Masato Takikawa
- Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Razib Datta Shubhra
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, Bangladesh
| | - Tanushree Saha
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, Bangladesh
| | - Zinia Islam
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, Bangladesh
| | - Sharif Hossain
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, Bangladesh
| | - Md Ashraful Hasan
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - Shinji Takeoka
- Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Satya Ranjan Sarker
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
26
|
Abstract
Introduction: The development of more efficacious vaccines, especially subunit vaccines administered via non-invasive routes, is a priority in vaccinology. Nanogels are materials that can meet the requirements to serve as efficient vaccine delivery vehicles (in terms of thermo-sensitivity, biocompatibility, and pH-responsiveness; among others); thus there is a growing interest in exploring the potential of nanogels for vaccine development. Areas covered: Herein, a critical analysis of nanogel synthesis methodologies is presented and nanogel-based vaccines under development are summarized and placed in perspective. Promising vaccine candidates based on nanogels have been reported for cancer, obesity, and infectious diseases (mainly respiratory diseases). Some of the candidates were administered by mucosal routes which are highly attractive in terms of simple administration and induction of protective responses at both mucosal and systemic levels. Expert opinion: The most advanced models of nanogel-based vaccines comprise candidates against cancer, based on cholesteryl pullulan nanogels evaluated in clinical trials with promising findings; as well as some vaccines against respiratory pathogens tested in mice thus far. Nonetheless, the challenge for this field is advancing in clinical trials and proving the protective potential in test animals for many other candidates. Implementing green synthesis approaches for nanogels is also required.
Collapse
|
27
|
Hajebi S, Rabiee N, Bagherzadeh M, Ahmadi S, Rabiee M, Roghani-Mamaqani H, Tahriri M, Tayebi L, Hamblin MR. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater 2019; 92:1-18. [PMID: 31096042 PMCID: PMC6661071 DOI: 10.1016/j.actbio.2019.05.018] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
Abstract
Nanogels are three-dimensional nanoscale networks formed by physically or chemically cross-linking polymers. Nanogels have been explored as drug delivery systems due to their advantageous properties, such as biocompatibility, high stability, tunable particle size, drug loading capacity, and possible modification of the surface for active targeting by attaching ligands that recognize cognate receptors on the target cells or tissues. Nanogels can be designed to be stimulus responsive, and react to internal or external stimuli such as pH, temperature, light and redox, thus resulting in the controlled release of loaded drugs. This "smart" targeting ability prevents drug accumulation in non-target tissues and minimizes the side effects of the drug. This review aims to provide an introduction to nanogels, their preparation methods, and to discuss the design of various stimulus-responsive nanogels that are able to provide controlled drug release in response to particular stimuli. STATEMENT OF SIGNIFICANCE: Smart and stimulus-responsive drug delivery is a rapidly growing area of biomaterial research. The explosive rise in nanotechnology and nanomedicine, has provided a host of nanoparticles and nanovehicles which may bewilder the uninitiated reader. This review will lay out the evidence that polymeric nanogels have an important role to play in the design of innovative drug delivery vehicles that respond to internal and external stimuli such as temperature, pH, redox, and light.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Sepideh Ahmadi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Division of Diseases, Advanced Technologies Research Group, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA; Department of Dermatology, Harvard Medical School, Boston, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, USA.
| |
Collapse
|
28
|
You Y, Xie Y, Jiang Z. Injectable and biocompatible chitosan-alginic acid hydrogels. Biomed Mater 2019; 14:025010. [DOI: 10.1088/1748-605x/aaff3d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Sahu P, Kashaw SK, Sau S, Kushwah V, Jain S, Agrawal RK, Iyer AK. pH triggered and charge attracted nanogel for simultaneous evaluation of penetration and toxicity against skin cancer: In-vitro and ex-vivo study. Int J Biol Macromol 2019; 128:740-751. [PMID: 30699336 DOI: 10.1016/j.ijbiomac.2019.01.147] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/10/2019] [Accepted: 01/25/2019] [Indexed: 12/30/2022]
Abstract
The current research is focused to develop and investigate the toxicity and penetration potential of biocompatible chitosan nanogel encapsulating capecitabine by ionic interaction mechanism exhibiting pH triggered transdermal targeting. The nanogel (CPNL) was synthesized by ion gelation mechanism using Pluronic F 127 and surface decoration by Transcutol as non-ionic penetration enhancer. The CPNL possesses fine morphology and nano size range when evaluated by TEM, SEM and DLS analysis with cationic charge and slightly acidic pH assayed by zeta potential and pH analysis. It showed pH responsive drug release characteristics mimicking the skin cancer micro-environment. The MTT assay and apoptotic index of CPNL on HaCaT cell line elaborated optimal cell toxicity and retention on 24h of exposure. The ex-vivo skin penetration analysis exhibited noteworthy diffusion and penetration caliber through concentration depth profile, steady state flux and fluorescent skin imaging on porcine tissue. Overall outcomes suggested CPNL as a potent alternative biocompatible, transdermal nanotherapy against skin cancer displaying significant penetration caliber with enhance toxicity on cancerous cell.
Collapse
Affiliation(s)
- Prashant Sahu
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, MP, India
| | - Sushil K Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, MP, India; Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA.
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar (Mohali), Punjab, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar (Mohali), Punjab, India
| | - Ram K Agrawal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, MP, India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA; Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
30
|
Facile sonochemistry-assisted assembly of the water-loving drug-loaded micro-organogel with thermo- and redox-sensitive behavior. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.10.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Carreira-Barral I, Rumbo C, Mielczarek M, Alonso-Carrillo D, Herran E, Pastor M, Del Pozo A, García-Valverde M, Quesada R. Small molecule anion transporters display in vitro antimicrobial activity against clinically relevant bacterial strains. Chem Commun (Camb) 2019; 55:10080-10083. [DOI: 10.1039/c9cc04304g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Highly active transmembrane anion transporters have demonstrated their activity against antibiotic-resistant and clinically relevant bacterial strains.
Collapse
Affiliation(s)
| | - Carlos Rumbo
- Departamento de Química, Universidad de Burgos
- Burgos 09001
- Spain
- International Research Centre in Critical Raw Materials-ICCRAM
- Universidad de Burgos
| | | | | | - Enara Herran
- Biokeralty Research Institute AIE
- Hermanos Lumière 5
- 01510 Miñano
- Spain
| | - Marta Pastor
- Biokeralty Research Institute AIE
- Hermanos Lumière 5
- 01510 Miñano
- Spain
| | - Angel Del Pozo
- Biokeralty Research Institute AIE
- Hermanos Lumière 5
- 01510 Miñano
- Spain
| | | | - Roberto Quesada
- Departamento de Química, Universidad de Burgos
- Burgos 09001
- Spain
| |
Collapse
|
32
|
Mousaviasl S, Saleh T, Shojaosadati SA, Boddohi S. Synthesis and characterization of schizophyllan nanogels via inverse emulsion using biobased materials. Int J Biol Macromol 2018; 120:468-474. [DOI: 10.1016/j.ijbiomac.2018.08.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/07/2018] [Accepted: 08/24/2018] [Indexed: 01/15/2023]
|
33
|
Bari E, Perteghella S, Di Silvestre D, Sorlini M, Catenacci L, Sorrenti M, Marrubini G, Rossi R, Tripodo G, Mauri P, Marazzi M, Torre ML. Pilot Production of Mesenchymal Stem/Stromal Freeze-Dried Secretome for Cell-Free Regenerative Nanomedicine: A Validated GMP-Compliant Process. Cells 2018; 7:cells7110190. [PMID: 30380806 PMCID: PMC6262564 DOI: 10.3390/cells7110190] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/12/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022] Open
Abstract
In this paper, a pilot production process for mesenchymal stem/stromal freeze-dried secretome was performed in a validated good manufacturing practice (GMP)-compliant cell factory. Secretome was purified from culture supernatants by ultrafiltration, added to cryoprotectant, lyophilized and characterized. We obtained a freeze-dried, "ready-off-the-shelf" and free soluble powder containing extracellular vesicles and proteins. In the freeze-dried product, a not-aggregated population of extracellular vesicles was detected by nanoparticle tracking analysis; Fourier transform infrared spectra showed the simultaneous presence of protein and lipids, while differential scanning calorimetry demonstrated that lyophilization process successfully occurred. A proteomic characterization allowed the identification of proteins involved in immune response, response to stress, cytoskeleton and metabolism. Moreover, the product was not cytotoxic up to concentrations of 25 mg/mL (on human fibroblasts, chondrocytes and nucleus pulposus cells by MTT assay) and was blood compatible up to 150 mg/mL. Finally, at concentrations between 5 and 50 mg/mL, freeze-dried secretome showed to in vitro counteract the oxidative stress damage induced by H₂O₂ on nucleus pulposus cells by MTT assay.
Collapse
Affiliation(s)
- Elia Bari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
- PharmaExceed srl, 27100 Pavia, Italy.
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, F.lli Cervi 93, 20090 Segrate, Milan, Italy.
| | - Marzio Sorlini
- PharmaExceed srl, 27100 Pavia, Italy.
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, SUPSI, Via Pobiette 11, 6928 Manno, Switzerland.
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Giorgio Marrubini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Rossana Rossi
- Institute for Biomedical Technologies, F.lli Cervi 93, 20090 Segrate, Milan, Italy.
| | - Giuseppe Tripodo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Pierluigi Mauri
- Institute for Biomedical Technologies, F.lli Cervi 93, 20090 Segrate, Milan, Italy.
| | - Mario Marazzi
- Tissue Therapy Unit, ASST Niguarda Hospital, Piazza Ospedale Maggiore 3, 20162 Milan, Italy.
| | - Maria Luisa Torre
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
- PharmaExceed srl, 27100 Pavia, Italy.
| |
Collapse
|
34
|
Jimenez-Rosales A, Flores-Merino MV. A Brief Review of the Pathophysiology of Non-melanoma Skin Cancer and Applications of Interpenetrating and Semi-interpenetrating Polymer Networks in Its Treatment. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0061-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Aderibigbe BA, Naki T. Design and Efficacy of Nanogels Formulations for Intranasal Administration. Molecules 2018; 23:E1241. [PMID: 29789506 PMCID: PMC6100477 DOI: 10.3390/molecules23061241] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
Nanogels are drug delivery systems that can bypass the blood-brain barrier and deliver drugs to the desired site when administered intranasally. They have been used as a drug delivery platform for the management of brain diseases such as Alzheimer disease, migraine, schizophrenia and depression. nanogels have also been developed as vaccine carriers for the protection of bacterial infections such as influenza, meningitis, pneumonia and as veterinary vaccine carriers for the protection of animals from encephalomyelitis and mouth to foot disease. It has been developed as vaccine carriers for the prevention of lifestyle disease such as obesity. Intranasal administration of therapeutics using nanogels for the management of brain diseases revealed that the drug transportation was via the olfactory nerve pathway resulting in rapid drug delivery to the brain with excellent neuroprotective effect. The application of nanogels as vaccine carriers also induced significant responses associated with protective immunity against selected bacterial and viral infections. This review provides a detailed information on the enhanced therapeutic effects, mechanisms and biological efficacy of nanogels for intranasal administration.
Collapse
Affiliation(s)
- Blessing A Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| | - Tobeka Naki
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| |
Collapse
|
36
|
|
37
|
Yang G, Wang X, Fu S, Tang R, Wang J. pH-triggered chitosan nanogels via an ortho ester-based linkage for efficient chemotherapy. Acta Biomater 2017; 60:232-243. [PMID: 28479490 DOI: 10.1016/j.actbio.2017.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/21/2017] [Accepted: 05/04/2017] [Indexed: 11/26/2022]
Abstract
We report on new types of chitosan-based nanogels via an ortho ester-based linkage, used as drug carriers for efficient chemotherapy. First, we synthesized a novel diacrylamide containing ortho ester (OEAM) as an acid-labile cross-linker. Subsequently, methacrylated succinyl-chitosan (MASCS) was prepared and polymerized with OEAM at different molar ratios to give a series of pH-triggered MASCS nanogels. Doxorubicin (DOX) as a model anticancer drug was loaded into MASCS nanogels with a loading content of 16.5%. As expected, with the incorporation of ortho ester linkages, these nanogels showed pH-triggered degradation and drug release at acidic pH values. In vitro cellular uptake shows that the DOX-loaded nanogels could be preferentially internalized by two-dimensional (2D) cells and three-dimensional (3D) multicellular spheroids (MCs), resulting in higher inhibition of the proliferation of tumor cells. In vivo biodistribution and anti-tumor effect were determined in H22 tumor-bearing mice, and the results demonstrate that the acid-labile MASCS nanogels can significantly prolong the blood circulation time of DOX and improve the accumulation in tumor areas, leading to higher therapeutic efficacy. STATEMENT OF SIGNIFICANCE We designed new pH-triggered chitosan nanogels via an ortho ester-based cross-linker for efficient drug-loading and chemotherapy. These drug-loaded nanogels exhibit excellent pH-triggered drug release behavior due to the degradation of ortho ester linkages in mildly acidic environments. In vitro and in vivo results demonstrate that the nanogels could be efficiently internalized by 2D cells and 3D-MCs, improve drug concentration in solid tumors, and lead to higher therapeutic efficacy. To the best of our knowledge, this is the first report on using an ortho ester-based cross-linker to prepare pH-triggered chitosan nanogels as tumor carriers, which may provide a potential route for improved safety and to increase the therapeutic efficacy of anticancer therapy.
Collapse
|
38
|
Synthesis, characterization and toxicological evaluation of pH-sensitive polyelectrolyte Nanogels. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1321-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Chen E, Wu S, McClements DJ, Li B, Li Y. Influence of pH and cinnamaldehyde on the physical stability and lipolysis of whey protein isolate-stabilized emulsions. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.01.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Wolfel A, Romero MR, Alvarez Igarzabal CI. Post-synthesis modification of hydrogels. Total and partial rupture of crosslinks: Formation of aldehyde groups and re-crosslinking of cleaved hydrogels. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.03.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Physico-mechanical, morphological and biomedical properties of a novel natural wound dressing material. J Mech Behav Biomed Mater 2017; 65:373-382. [DOI: 10.1016/j.jmbbm.2016.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/02/2016] [Accepted: 09/04/2016] [Indexed: 01/11/2023]
|
42
|
Nayak D, Boxi A, Ashe S, Thathapudi NC, Nayak B. Stavudine loaded gelatin liposomes for HIV therapy: Preparation, characterization and in vitro cytotoxic evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:406-416. [PMID: 28183626 DOI: 10.1016/j.msec.2016.12.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 01/19/2023]
Abstract
Despite continuous research and availability of 25 different active compounds for treating chronic HIV-1 infection, there is no absolute cure for this deadly disease. Primarily, the residual viremia remains hidden in latently infected reservoir sites and persistently release the viral RNA into the blood stream. The study proposes the dual utilization of the prepared stavudine-containing nanoformulations to control the residual viremia as well as target the reservoir sites. Gelatin nanoformulations containing very low dosage of stavudine were prepared through classical desolvation process and were later loaded in soya lecithin-liposomes. The nanoformulations were characterized through dynamic light scattering (DLS), Transmission electron microscopy (TEM), X-ray diffraction (XRD) and ATR-FTIR. All the formulations were in nano regime with high hemocompatibility and exhibited dose-dependent cytotoxicity towards Raw 264.7 macrophages. Among the various formulations, SG-3 (Stavudine-Gelatin Nanoformulation sample 3) and SG-LP-3 (Stavudine-Gelatin Nano-Liposome formulation sample 3) showed the best results in terms of yield, size, charge, encapsulation efficiency, hemocompatibility and % cell viability. For the first time, liposomal delivery of antiretroviral drugs using nanocarriers has been demonstrated using very low dosage (lower than the recommended WHO dosage) showing the prominent linear release of stavudine for up to 12h which would reduce the circulatory viremia as well as reach the sanctuary reservoir sites due to their nanosize. This method of liposomal delivery of antiretroviral drugs in very low concentrations using nanocarriers could provide a novel therapeutic alternative to target HIV reservoir sites.
Collapse
Affiliation(s)
- Debasis Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela 769008, Odisha, India
| | - Ankita Boxi
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela 769008, Odisha, India
| | - Sarbani Ashe
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela 769008, Odisha, India
| | - Neethi Chandra Thathapudi
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela 769008, Odisha, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela 769008, Odisha, India.
| |
Collapse
|
43
|
Padhi JR, Nayak D, Nanda A, Rauta PR, Ashe S, Nayak B. Development of highly biocompatible Gelatin & i-Carrageenan based composite hydrogels: In depth physiochemical analysis for biomedical applications. Carbohydr Polym 2016; 153:292-301. [DOI: 10.1016/j.carbpol.2016.07.098] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/05/2016] [Accepted: 07/22/2016] [Indexed: 12/20/2022]
|
44
|
Debele TA, Mekuria SL, Tsai HC. Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:964-981. [DOI: 10.1016/j.msec.2016.05.121] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 11/08/2022]
|
45
|
Su H, Jia Q, Shan S. Synthesis and characterization of Schiff base contained dextran microgels in water-in-oil inverse microemulsion. Carbohydr Polym 2016; 152:156-162. [DOI: 10.1016/j.carbpol.2016.06.091] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023]
|
46
|
Nayak D, Kumari M, Rajachandar S, Ashe S, Thathapudi NC, Nayak B. Biofilm Impeding AgNPs Target Skin Carcinoma by Inducing Mitochondrial Membrane Depolarization Mediated through ROS Production. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28538-28553. [PMID: 27715004 DOI: 10.1021/acsami.6b11391] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Reactive oxygen species (ROS) are a double-edged sword that possesses both beneficial and harmful effects. Although basic research on skin cancer prevention has undergone a huge transformation, cases of recurrence with higher rates of drug resistance are some of its drawbacks. Therefore, targeting mitochondria by ROS overproduction provides an alternate approach for anticancer therapy. In the present study, green-synthesized silver nanoparticles (AgNPs) were explored for triggering the ROS production in A431 skin carcinoma cells. The synthesized AgNPs were characterized for size, charge, morphology, and phase through high-throughput DLS, Fe-SEM, XRD, and ATR-FTIR techniques. Their physiochemical properties with hemoglobin and blood plasma were screened through hemolysis, hemagglutination assay, and circular dichroism spectroscopy confirmed their nontoxic nature. The AgNPs also exhibited additional efficacy in inhibiting biofilm produced by V. cholerae and B. subtilis, thereby facilitating better applicability in wound-healing biomaterials. The depolarization of mitochondrial membrane potential ΔΨm through excess ROS production was deduced to be the triggering force behind the apoptotic cell death mechanism of the skin carcinoma. Subsequent experimentation through DNA fragmentation, comet tail formation, cell membrane blebbing, and reduced invasiveness potentials through scratch assay confirmed the physiological hallmarks of apoptosis. Thus, depolarizing mitochondrial membrane potential through green-synthesized AgNPs provides an economic, nontoxic, specific approach for targeting skin carcinoma with additional benefits of antibacterial activities.
Collapse
Affiliation(s)
- Debasis Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| | - Manisha Kumari
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| | - Sripathi Rajachandar
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| | - Sarbani Ashe
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| | - Neethi Chandra Thathapudi
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| |
Collapse
|
47
|
Mauri E, Moroni I, Magagnin L, Masi M, Sacchetti A, Rossi F. Comparison between two different click strategies to synthesize fluorescent nanogels for therapeutic applications. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
P R S, James NR, P R AK, Raj DK. Preparation, characterization and biological evaluation of curcumin loaded alginate aldehyde-gelatin nanogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:251-257. [PMID: 27524019 DOI: 10.1016/j.msec.2016.05.046] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/04/2016] [Accepted: 05/12/2016] [Indexed: 12/11/2022]
Abstract
Curcumin, a natural polyphenol exhibits chemopreventive and chemotherapeutic activities towards cancer. In order to improve the bioavailability and therapeutic efficacy, curcumin is encapsulated in alginate aldehyde-gelatin (Alg Ald-Gel) nanogels. Alginate aldehyde-gelatin nanogels are prepared by inverse miniemulsion technique. Physicochemical properties of the curcumin loaded nanogels are evaluated by, Dynamic light scattering (DLS), NMR spectroscopy and Scanning electron microscopy (SEM). Curcumin loaded nanogels show hydrodynamic diameter of 431±8nm and a zeta potential of -36±4mV. The prepared nanogels exhibit an encapsulation efficiency of 72±2%. In vitro drug release studies show a controlled release of curcumin from nanogels over a period of 48h. Hemocompatibility and cytocompatibility of the nanogels are evaluated. Bare nanogels are cytocompatible and curcumin loaded nanogels induce anticancer activity towards MCF-7 cells. In vitro cellular uptake of the curcumin loaded nanogels using confocal laser scanning microscopy (CLSM) confirms the uptake of nanogels in MCF-7 cells. Hence, the developed nanogel system can be a suitable candidate for curcumin delivery to cancer cells.
Collapse
Affiliation(s)
- Sarika P R
- Department of Chemistry, Indian Institute of Space Science and Technology (IIST), Valiamala, Thiruvananthapuram, Kerala 695 547, India.
| | - Nirmala Rachel James
- Department of Chemistry, Indian Institute of Space Science and Technology (IIST), Valiamala, Thiruvananthapuram, Kerala 695 547, India.
| | - Anil Kumar P R
- Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012, India.
| | - Deepa K Raj
- Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012, India.
| |
Collapse
|
49
|
Chopra P, Nayak D, Nanda A, Ashe S, Rauta PR, Nayak B. Fabrication of poly(vinyl alcohol)-Carrageenan scaffolds for cryopreservation: Effect of composition on cell viability. Carbohydr Polym 2016; 147:509-516. [PMID: 27178958 DOI: 10.1016/j.carbpol.2016.04.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/29/2016] [Accepted: 04/06/2016] [Indexed: 01/16/2023]
Abstract
The present investigation reports the fabrication of three dimensional (3D), interconnected, highly porous, biodegradable scaffolds using freeze-gelation technique. The hydrogels prepared with different ratios (5:5, 6:4, 7:3, 8:2 and 9:1) of poly(vinyl alcohol) (PVA) and Carrageenan (Car) was lyophilized to obtain their respective scaffolds. The PVA-Car scaffolds were further characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The prepared scaffolds were found to be biodegradable and highly compatible with hemoglobin. Further, normal keratinocyte (HaCaT) and osteosarcoma (Saos-2) cells seeded on PVA-Car scaffolds were cryopreserved for 15days and their viability was checked at regular interval of 3days (0, 3, 6, 9, 12, 15 days) through MTT assay and fluorescence microscopy. Overall, the collective results indicate the scaffold constructs with 7:3 and 8:2 PVA-Car ratios possess ideal characteristics for tissue engineering applications and for long term cryopreservation of cells.
Collapse
Affiliation(s)
- Pankaj Chopra
- Department of Biotechnology, Thapar University, Patiala, Punjab, 147004, India
| | - Debasis Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Arpita Nanda
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Sarbani Ashe
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Pradipta Ranjan Rauta
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
50
|
Zhenqian Z, Bo X, Jianning D, Bijun F. Preparation of CdFe2O4-polymeric nanoparticles by inverse miniemulsion and its film properties. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|