1
|
Heng BL, Wu FY, Tong XY, Zou GJ, Ouyang JM. Corn Silk Polysaccharide Reduces the Risk of Kidney Stone Formation by Reducing Oxidative Stress and Inhibiting COM Crystal Adhesion and Aggregation. ACS OMEGA 2024; 9:19236-19249. [PMID: 38708219 PMCID: PMC11064203 DOI: 10.1021/acsomega.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 05/07/2024]
Abstract
The aim of this study is to explore the inhibition of nanocalcium oxalate monohydrate (nano-COM) crystal adhesion and aggregation on the HK-2 cell surface after the protection of corn silk polysaccharides (CSPs) and the effect of carboxyl group (-COOH) content and polysaccharide concentration. METHOD HK-2 cells were damaged by 100 nm COM crystals to build an injury model. The cells were protected by CSPs with -COOH contents of 3.92% (CSP0) and 16.38% (CCSP3), respectively. The changes in the biochemical indexes of HK-2 cells and the difference in adhesion amount and aggregation degree of nano-COM on the cell surface before and after CSP protection were detected. RESULTS CSP0 and CCSP3 protection can obviously inhibit HK-2 cell damage caused by nano-COM crystals, restore cytoskeleton morphology, reduce intracellular ROS level, inhibit phosphoserine eversion, restore the polarity of the mitochondrial membrane potential, normalize the cell cycle process, and reduce the expression of adhesion molecules, OPN, Annexin A1, HSP90, HAS3, and CD44 on the cell surface. Finally, the adhesion and aggregation of nano-COM crystals on the cell surface were effectively inhibited. The carboxymethylated CSP3 exhibited a higher protective effect on cells than the original CSP0, and cell viability was further improved with the increase in polysaccharide concentration. CONCLUSIONS CSPs can protect HK-2 cells from calcium oxalate crystal damage and effectively reduce the adhesion and aggregation of nano-COM crystals on the cell surface, which is conducive to inhibiting the formation of calcium oxalate kidney stones.
Collapse
Affiliation(s)
- Bao-Li Heng
- Yingde
Center, Institute of Kidney Surgery, Jinan
University, Guangdong 510000, China
- Department
of Urology, People’s Hospital of
Yingde City, Yingde 513000, China
| | - Fan-Yu Wu
- Yingde
Center, Institute of Kidney Surgery, Jinan
University, Guangdong 510000, China
- Department
of Urology, People’s Hospital of
Yingde City, Yingde 513000, China
| | - Xin-Yi Tong
- Institute
of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Guo-Jun Zou
- Institute
of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute
of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Cheng M, Zhang L, Wang J, Sun X, Qi Y, Chen L, Han C. The Artist's Conk Medicinal Mushroom Ganoderma applanatum (Agaricomycetes): Mycological, Mycochemical, and Pharmacological Properties: A Review. Int J Med Mushrooms 2024; 26:13-66. [PMID: 38884263 DOI: 10.1615/intjmedmushrooms.2024053900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
As a commonly used Chinese herbal medicine, Ganoderma applanatum (Pers.) Pat., also known as flat-ling Ganoderma (Chinese name bianlingzhi), old mother fungus (laomujun), and old ox liver (laoniugan), has high medicinal value. It is used as an anti-cancer drug in China and Japan. Besides, it can treat rheumatic tuberculosis and has the effect of relieving pain, clearing away heat, eliminating accumulation, stopping bleeding and eliminating phlegm. The purpose of this review is to analyze the research progress systematically and comprehensively in mycology, mycochemistry and pharmacological activities of G. applanatum, and discuss the prospect of prospective research and implementation of this medicinal material. A comprehensive literature search was performed on G. applanatum using scientific databases including Web of Science, PubMed, Google Scholar, CNKI, Elsevier. Collected data from different sources was comprehensively summarized for mycology, mycochemistry and pharmacology of G. applanatum. A total of 324 compounds were recorded, the main components of which were triterpenoids, meroterpenoids, steroids, and polysaccharides. G. applanatum and its active ingredients have a variety of pharmacological effects, including anti-tumor, liver protection, hypoglycemic, anti-fat, anti-oxidation, antibacterial and other activities. Although G. applanatum is widely used in traditional medicine and has diverse chemical constituents, more studies should be carried out in animals and humans to evaluate the cellular and molecular mechanisms involved in its biological activity.
Collapse
Affiliation(s)
- Mengtao Cheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Liying Zhang
- Pharmacy Intravenous Admixture Services, Jinan Zhangqiu District Hospital of TCM, Jinan, 250299, People's Republic of China
| | - Jing Wang
- Research and Development Center, Shandong Phoenix Biotechnology Co. Ltd., Taian, Shandong, 271000, P.R. China
| | - Xiaomei Sun
- Shandong University of Traditional Chinese Medicine
| | - Yitong Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Lijing Chen
- Department of Pharmacy, The Second Affiliated Hospital of Shandong University of TCM, Jinan 250000, P.R. China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
3
|
Kou F, Ge Y, Wang W, Mei Y, Cao L, Wei X, Xiao H, Wu X. A review of Ganoderma lucidum polysaccharides: Health benefit, structure-activity relationship, modification, and nanoparticle encapsulation. Int J Biol Macromol 2023:125199. [PMID: 37285888 DOI: 10.1016/j.ijbiomac.2023.125199] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Ganoderma lucidum polysaccharides possess unique functional properties. Various processing technologies have been used to produce and modify G. lucidum polysaccharides to improve their yield and utilization. In this review, the structure and health benefits were summarized, and the factors that may affect the quality of G. lucidum polysaccharides were discussed, including the use of chemical modifications such as sulfation, carboxymethylation, and selenization. Those modifications improve the physicochemical characteristics and utilization of G. lucidum polysaccharides, and make them more stable that could be used as functional biomaterials to encapsulate active substances. Ultimate, G. lucidum polysaccharide-based nanoparticles were designed to deliver various functional ingredients to achieve better health-promoting effects. Overall, this review presents an in-depth summary of current modification strategies and offers new insights into the effective processing techniques to develop G. lucidum polysaccharide-rich functional foods or nutraceuticals.
Collapse
Affiliation(s)
- Fang Kou
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China; Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Yunfei Ge
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Weihao Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuxia Mei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Longkui Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States of America
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH, United States of America
| |
Collapse
|
4
|
Maneewattanapinyo P, Pichayakorn W, Monton C, Dangmanee N, Wunnakup T, Suksaeree J. Effect of Ionic Liquid on Silver-Nanoparticle-Complexed Ganoderma applanatum and Its Topical Film Formulation. Pharmaceutics 2023; 15:pharmaceutics15041098. [PMID: 37111583 PMCID: PMC10144981 DOI: 10.3390/pharmaceutics15041098] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Imidazolium-based ionic liquids have been widely utilized as versatile solvents for metal nanoparticle preparation. Silver nanoparticles and Ganoderma applanatum have displayed potent antimicrobial activities. This work aimed to study the effect of 1-butyl-3-methylimidazolium bromide-based ionic liquid on the silver-nanoparticle-complexed G. applanatum and its topical film. The ratio and conditions for preparation were optimized by the design of the experiments. The optimal ratio was silver nanoparticles: G. applanatum extract: ionic liquid at 97:1:2, and the conditions were 80 °C for 1 h. The prediction was corrected with a low percentage error. The optimized formula was loaded into a topical film made of polyvinyl alcohol and Eudragit®, and its properties were evaluated. The topical film was uniform, smooth, and compact and had other desired characteristics. The topical film was able to control the release of silver-nanoparticle-complexed G. applanatum from the matrix layer. Higuchi's model was used to fit the kinetic of the release. The skin permeability of the silver-nanoparticle-complexed G. applanatum was improved by about 1.7 times by the ionic liquid, which might increase solubility. The produced film is suitable for topical applications and may be utilized in the development of potential future therapeutic agents for the treatment of diseases.
Collapse
Affiliation(s)
- Pattwat Maneewattanapinyo
- Department of Pharmaceutical Chemistry, College of Pharmacy, Rangsit University, Muang 12000, Pathum Thani, Thailand
| | - Wiwat Pichayakorn
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Songkhla, Thailand
| | - Chaowalit Monton
- Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Muang 12000, Pathum Thani, Thailand
| | - Nattakan Dangmanee
- Cosmetic Technology and Dietary Supplement Products Program, Faculty of Agro and Bio Industry, Thaksin University, Ban Pa Phayom 93210, Phatthalung, Thailand
| | - Thaniya Wunnakup
- Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Muang 12000, Pathum Thani, Thailand
| | - Jirapornchai Suksaeree
- Department of Pharmaceutical Chemistry, College of Pharmacy, Rangsit University, Muang 12000, Pathum Thani, Thailand
| |
Collapse
|
5
|
Nataraj A, Govindan S, Rajendran A, Ramani P, Subbaiah KA, Munekata PES, Pateiro M, Lorenzo JM. Effects of Carboxymethyl Modification on the Acidic Polysaccharides from Calocybe indica: Physicochemical Properties, Antioxidant, Antitumor and Anticoagulant Activities. Antioxidants (Basel) 2022; 12:antiox12010105. [PMID: 36670967 PMCID: PMC9854956 DOI: 10.3390/antiox12010105] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
An acidic polysaccharide fraction was obtained from Calocybe indica (CIP3a) after subjecting it to hot water extraction followed by purification through DEAE-cellulose 52 and Sepaharose 6B column chromatography. The CIP3a was further modified using chloroacetic acid to yield carboxymethylated derivatives (CMCIP3a). The modified polysaccharide was characterized using various spectroscopic methods. In addition, further antioxidant, antitumor and anticoagulant activities were also investigated. The polysaccharides CIP3a and CMCIP3a were heterogeneous in nature and composed of various molar percentages of glucose, arabinose and mannose with molecular weights of 1.456 × 103 and 4.023 × 103 Da, respectively. The NMR and FT-IR data demonstrated that the carboxymethylation on the polysaccharide was successful. In comparison to CIP3a polysaccharides, the modified derivatives had lower sugar and protein contents, and higher levels of uronic acid. The in vitro antioxidant activity showed that CMCIP3a with higher molecular weight displayed an elevated ability in scavenging the DPPH radical, ABTS, superoxide, hydroxyl radical, ferric reducing power, cupric reducing power and erythrocyte hemolysis inhibition with an EC50 value of 2.49, 2.66, 4.10, 1.60, 3.48, 1.41 and 2.30 mg/mL, respectively. The MTT assay results revealed that CMCIP3a displayed a dose-dependent inhibition on five cancer cells (HT29, PC3, HeLa, Jurkat and HepG-2) in the range of 10-320 μg/mL. The APTT, PT and TT were significantly extended by CMCIP3a in relation to dosage, indicating that the anticoagulant effect of CIP was both extrinsic and intrinsic, along with a common coagulation pathway. These findings demonstrated that carboxymethylation might effectively improve the biological potential of the derivatives and offer a theoretical framework for the creation of novel natural antioxidants, low-toxicity antitumor and antithrombotic drugs.
Collapse
Affiliation(s)
- Ambika Nataraj
- Department of Biochemistry, School of Biosciences, Periyar University, Salem 636001, India
| | - Sudha Govindan
- Department of Biochemistry, School of Biosciences, Periyar University, Salem 636001, India
- Correspondence: (S.G.); (P.R.); (J.M.L.)
| | - Archana Rajendran
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Prasanna Ramani
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Correspondence: (S.G.); (P.R.); (J.M.L.)
| | | | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia No. 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia No. 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia No. 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
- Correspondence: (S.G.); (P.R.); (J.M.L.)
| |
Collapse
|
6
|
Nataraj A, Govindan S, Ramani P, Subbaiah KA, Sathianarayanan S, Venkidasamy B, Thiruvengadam M, Rebezov M, Shariati MA, Lorenzo JM, Pateiro M. Antioxidant, Anti-Tumour, and Anticoagulant Activities of Polysaccharide from Calocybe indica (APK2). Antioxidants (Basel) 2022; 11:antiox11091694. [PMID: 36139769 PMCID: PMC9495384 DOI: 10.3390/antiox11091694] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/12/2022] Open
Abstract
The initial structural features and in vitro biological study of crude polysaccharides from Calocybe indica (CICP) extracted by hot water followed by ethanol precipitation was investigated. High-performance gel permeation chromatography, HPLC-DAD, UV, IR and NMR spectroscopy, X-ray diffraction, scanning electron microscopy, and Congo red methods were used to determine structural features. The results revealed that CICP is a hetero-polysaccharide with a molecular weight of 9.371 × 104 Da and 2.457 × 103 Da which is composed of xylose, mannose, fucose, rhamnose, arabinose, galactose, and glucose. The antioxidant activity of CICP was evaluated using radical scavenging activity (three methods), reducing ability (three methods), metal chelating activity, and lipid peroxidation inhibition activity (two methods). It was found that the antioxidant capacity is concentration-dependent and EC50 values were found to be 1.99–3.82 mg/mL (radical scavenging activities), 0.78–2.78 mg/mL (reducing ability), 4.11 mg/mL (metal chelating activity), and 0.56–4.18 mg/mL (lipid peroxidation inhibition activity). In vitro anticoagulant assay revealed that CICP could prolong activated partial thromboplastin time (APTT), thrombin time (TT), but not prothrombin time (PT). CICP exhibited antiproliferative activity on HeLa, PC3, HT29, HepG2, and Jurkat cell lines with IC50 (μg/mL) values of 148.40, 143.60,151.00, 168.30, and 156.30, respectively. The above findings suggested that CICP could be considered a natural antioxidant and cancer preventative.
Collapse
Affiliation(s)
- Ambika Nataraj
- Department of Biochemistry, School of Biosciences, Periyar University, Salem 636011, India
| | - Sudha Govindan
- Department of Biochemistry, School of Biosciences, Periyar University, Salem 636011, India
- Correspondence: (S.G.); (P.R.); (M.P.)
| | - Prasanna Ramani
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Correspondence: (S.G.); (P.R.); (M.P.)
| | | | - S. Sathianarayanan
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Baskar Venkidasamy
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhin st., 109316 Moscow, Russia
- Biophotonics center, Prokhorov General Physics Institute of the Russian Academy of Science, 38 Vavilov st., 119991 Moscow, Russia
| | - Mohammad Ali Shariati
- Semey Branch of the Institute, Kazakh Research Institute of Processing and Food Industry, 238«G» Gagarin Ave., Almaty 050060, Kazakhstan
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Correspondence: (S.G.); (P.R.); (M.P.)
| |
Collapse
|
7
|
Carboxymethylation of Desmodium styracifolium Polysaccharide and Its Repair Effect on Damaged HK-2 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2082263. [PMID: 35993017 PMCID: PMC9391130 DOI: 10.1155/2022/2082263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022]
Abstract
Objective Desmodium styracifolium is the best traditional medicine for treating kidney calculi in China. This study is aimed at increasing the carboxyl (-COOH) content of D. styracifolium polysaccharide (DSP0) and further increasing its antistone activity. Methods DSP0 was carboxymethylated with chloroacetic acid at varying degrees. Then, oxalate-damaged HK-2 cells were repaired with modified polysaccharide, and the changes in biochemical indices before and after repair were detected. Results Three modified polysaccharides with 7.45% (CDSP1), 12.2% (CDSP2), and 17.7% (CDSP3) -COOH are obtained. Compared with DSP0 (-COOH content = 1.17%), CDSPs have stronger antioxidant activity in vitro and can improve the vitality of damaged HK-2 cells. CDSPs repair the cell morphology and cytoskeleton, increase the cell healing ability, reduce reactive oxygen species and nitric oxide levels, increase mitochondrial membrane potential, limit autophagy level to a low level, reduce the eversion of phosphatidylserine in the cell membrane, weaken the inhibition of oxalate on DNA synthesis, restore cell cycle to normal state, promote cell proliferation, and reduce apoptosis/necrosis. Conclusion The carboxymethylation modification of DSP0 can improve its antioxidant activity and enhance its ability to repair damaged HK-2 cells. Among them, CDSP2 with medium -COOH content has the highest activity of repairing cells, whereas CDSP3 with the highest -COOH content has the highest antioxidant activity. This difference may be related to the active environment of polysaccharide and conformation of the polysaccharide and cell signal pathway. This result suggests that Desmodium styracifolium polysaccharide with increased -COOH content may have improved potential treatment and prevention of kidney calculi.
Collapse
|
8
|
Zhang X, Liu J, Wang X, Hu H, Zhang Y, Liu T, Zhao H. Structure characterization and antioxidant activity of carboxymethylated polysaccharide from
Pholiota nameko. J Food Biochem 2022; 46:e14121. [DOI: 10.1111/jfbc.14121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Xu Zhang
- College of Food Science and Engineering Jilin Agricultural University Changchun China
- Jilin Province Product Quality Supervision and Inspection Institute Changchun China
| | - Jiaxin Liu
- Jilin Province Product Quality Supervision and Inspection Institute Changchun China
| | - Xi Wang
- College of Food Science and Engineering Jilin Agricultural University Changchun China
| | - Hewen Hu
- College of Food Science and Engineering Jilin Agricultural University Changchun China
| | - Yanrong Zhang
- College of Food Science and Engineering Jilin Agricultural University Changchun China
| | - Tingting Liu
- College of Food Science and Engineering Jilin Agricultural University Changchun China
| | - Hui Zhao
- College of Food Science and Engineering Jilin Agricultural University Changchun China
| |
Collapse
|
9
|
Li M, Yu L, Zhai Q, Liu B, Zhao J, Zhang H, Chen W, Tian F. Ganoderma applanatum polysaccharides and ethanol extracts promote the recovery of colitis through intestinal barrier protection and gut microbiota modulations. Food Funct 2021; 13:688-701. [PMID: 34935013 DOI: 10.1039/d1fo03677g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease is associated with intestinal homeostasis dysregulation and gut microbiota dysbiosis. This study aimed to investigate the protective effect of Ganoderma applanatum extracts (G. applanatum polysaccharides (GAP) and 75% ethanol extracts (GAE)) on colon inflammation and elucidate the therapeutic mechanism. GAP and GAE showed considerable protective effects against dextran sodium sulfate (DSS)-induced colitis, as demonstrated by reduced mortality, body weight, disease activity index score, colon length, and histological score. Through GAP and GAE administration, the destroyed intestinal barrier recovered to normal, as did intestinal inflammation. We also confirmed that GAP administration promoted the recovery of colitis in a gut microbiota-dependent manner. The similarity between GAP and GAE administration was that they both altered the disordered gut microbiota damaged by DSS, exhibiting reduced abundance of Escherichia_Shigella, Enterococcus, and Staphylococcus, but the modulation of the gut microbiota was distinct between GAP and GAE.
Collapse
Affiliation(s)
- Miaoyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bingshu Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
10
|
Structure, function and food applications of carboxymethylated polysaccharides: A comprehensive review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Extraction and Hypolipidemic Activity of Low Molecular Weight Polysaccharides Isolated from Rosa Laevigata Fruits. BIOMED RESEARCH INTERNATIONAL 2021; 2020:2043785. [PMID: 33145340 PMCID: PMC7599405 DOI: 10.1155/2020/2043785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 12/25/2022]
Abstract
Three novel low molecular weight polysaccharides (RLP-1a, RLP-2a, and RLP-3a) with 9004, 8761, and 7571 Da were first obtained by purifying the crude polysaccharides from the fruits of a traditional Chinese medicinal herb Rosae Laevigatae. The conditions for polysaccharides from the R. Laevigatae fruit (RLP) extraction were optimized by the response surface methodology, and the optimal conditions were as follows: extraction temperature, 93°C; extraction time, 2.8 h; water to raw material ratio, 22; extraction frequency, 3. Structural characterization showed that RLP-1a consisted of rhamnose, arabinose, xylose, glucose, and galactose with the ratio of 3.14 : 8.21 : 1 : 1.37 : 4.90, whereas RLP-2a was composed of rhamnose, mannose, glucose, and galactose with the ratio of 1.70 : 1 : 93.59 : 2.73, and RLP-3a was composed of rhamnose, arabinose, xylose, mannose, glucose, and galactose with the ratio of 6.04 : 26.51 : 2.05 : 1 : 3.17 : 31.77. The NMR analyses revealed that RLP-1a, RLP-2a, and RLP-3a contained 6, 4, and 6 types of glycosidic linkages, respectively. RLP-1a and RLP-3a exhibited distinct antioxidant abilities on the superoxide anions, 1,1-diphenyl-2-picrylhydrazyl (DPPH), and hydroxyl radicals in vitro. RLPs could decrease the serum lipid levels, elevate the serum high-density lipoprotein cholesterol levels, enhance the antioxidant enzymes levels, and upregulate of FADS2, ACOX3, and SCD-1 which involved in the lipid metabolic processes and oxidative stress in the high-fat diet-induced rats. These results suggested that RLPs ameliorated the high-fat diet- (HFD-) induced lipid metabolism disturbance in the rat liver through the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Low molecular weight polysaccharides of RLP could be served as a novel potential functional food for improving hyperlipidemia and liver oxidative stress responses.
Collapse
|
12
|
Song X, Cui W, Gao Z, Zhang J, Jia L. Structural characterization and amelioration of sulfated polysaccharides from Ganoderma applanatum residue against CCl 4-induced hepatotoxicity. Int Immunopharmacol 2021; 96:107554. [PMID: 33812257 DOI: 10.1016/j.intimp.2021.107554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/13/2021] [Accepted: 02/28/2021] [Indexed: 12/24/2022]
Abstract
Natural polysaccharides and their derivatives have attracted academic attention due to their extensive physiological activities. However, the hepatoprotective effects against carbon tetrachloride (CCl4) toxicity have not been well elucidated. The objectives of this study were to characterize the structural properties of sulfated Ganoderma applanatum residue polysaccharides (SGRP) and to evaluate their inhibitory effects on liver fibrosis caused by oxidative stress and inflammation. Our in vivo study showed that SGRP was hepatoprotective in CCl4-induced chronic liver injury mice. It reduced the histopathological damages, down-regulated CYP2E1 (cytochrome P450 2E1) expression, reduced serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, improved the anti-oxidative and anti-inflammatory properties, inhibited TLR4/NF-κB signaling pathway, and reduced the release of inflammatory cytokines. The structural studies indicated that SGRP is a heteropolysaccharide with 7.8% sulfur content and α-linked residue. Our study projects SGRP as a potential candidate in anti-fibrosis treatment by using it as a food supplement or in medicines produced by pharmaceutical industries.
Collapse
Affiliation(s)
- Xinling Song
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Weijun Cui
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Zheng Gao
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China.
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
13
|
Chakka VP, Zhou T. Carboxymethylation of polysaccharides: Synthesis and bioactivities. Int J Biol Macromol 2020; 165:2425-2431. [PMID: 33132131 DOI: 10.1016/j.ijbiomac.2020.10.178] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022]
Abstract
Polysaccharides are a structurally diverse class of biomolecules with a wide variety of bioactivities. Natural polysaccharides isolated from plants and fungi are used as raw materials in food and pharmaceutical industries due to their therapeutic properties, non-toxicity, and negligible side effects, but many natural polysaccharides possess low bioactivities when compared to synthetic medicines due to their structure and physicochemical properties. Literature studies revealed that carboxymethylation of polysaccharides enhances the bioactivities and water solubility of native polysaccharides significantly, and provide structural diversity and even the addition of new bioactivities. This review article mainly focuses on the recent research on carboxymethylation of polysaccharides including preparation, characterization, and bioactivities. This article also throws light on future directions and scope to develop new carboxymethylated polysaccharide derivatives for many industries such as food processing, cosmetics, nutraceuticals, and pharmaceutical industry.
Collapse
Affiliation(s)
- Vara Prasad Chakka
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
14
|
Recent findings on the role of fungal products in the treatment of cancer. Clin Transl Oncol 2020; 23:197-204. [PMID: 32557335 DOI: 10.1007/s12094-020-02428-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
In modern medicine, natural products have aided humans against their battles with cancer. Among these products, microorganisms, medicinal herbs and marine organisms are considered to be of great benefit. In recent decades, more than 30 fungal immunity proteins have been identified and proved to be extractable from a wide range of fungi, including mushrooms. Although chemotherapy is used to overcome cancer cells, the side effects of this method are of great concern in clinical practice. Fungal products and their derivatives constitute more than 50% of the clinical drugs currently being used globally. Approximately 60% of the clinically approved drugs for cancer treatment have natural roots. Anti-tumor immunotherapy is prospective with a rapidly growing market worldwide due to its high efficiency, immunity, and profit. Polysaccharide extracts from natural sources are being used in clinical and therapeutic trials on cancer patients. This review aims to present the latest findings in cancer treatment through isolated and extraction of fungal derivatives and other natural biomaterials.
Collapse
|
15
|
Mahfuz S, Long S, Piao X. Role of medicinal mushroom on growth performance and physiological responses in broiler chicken. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1729670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- S.U. Mahfuz
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Animal Nutrition, Sylhet Agricultural University, Sylhet, Bangladesh
| | - S.F. Long
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - X.S. Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Preparation, characterization and antioxidant activities of derivatives of exopolysaccharide from Lactobacillus helveticus MB2-1. Int J Biol Macromol 2020; 145:1008-1017. [DOI: 10.1016/j.ijbiomac.2019.09.192] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/12/2019] [Accepted: 09/22/2019] [Indexed: 01/06/2023]
|
17
|
Chen JY, Sun XY, Ouyang JM. Modulation of Calcium Oxalate Crystal Growth and Protection from Oxidatively Damaged Renal Epithelial Cells of Corn Silk Polysaccharides with Different Molecular Weights. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6982948. [PMID: 32089775 PMCID: PMC7008244 DOI: 10.1155/2020/6982948] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
Corn silk polysaccharide (CSP0; molecular weight = 124 kDa) was degraded by ultrasonication to obtain five degraded polysaccharides, namely, CSP1, CSP2, CSP3, CSP4, and CSP5, with molecular weights of 26.1, 12.2, 6.0, 3.5, and 2.0 kDa, respectively. The structures of these polysaccharides were characterized by FT-IR, 1H NMR, and 13C NMR analyses. The antioxidant activities, including scavenging ability for hydroxyl radicals and DPPH free radicals, chelation ability for Fe2+ ions, and reducing ability of CSP increased with decreased molecular weight of CSPs within 6.0 to 124 kDa. However, antioxidant activity weakened when the molecular weight of CSPs reached 3.5 and 2 kDa. CSP3 with a molecular weight of 6.0 kDa exhibited the strongest antioxidant activity. After protection with 60 μg/mL CSPs, the viability of human renal proximal tubular epithelial cells (HK-2) damaged by nano-COM crystals increased, the level of reactive oxygen species decreased, and the amount of COM crystal adhered onto the cell surface decreased. The ability of CSPs to protect cells from CaOx crystal damage was consistent with their antioxidant activity. CSPs can specifically combine with CaOx crystal to inhibit the conversion of calcium oxalate dihydrate crystal to calcium oxalate monohydrate crystal. All these results showed that the activity of CSPs was closely correlated with molecular weight. A very high or low molecular weight of CSPs was not conducive to their activity. CSPs, especially CSP3 with a molecular weight of 6.0 kDa, can be used as a potential antistone drug.
Collapse
Affiliation(s)
- Jia-Yun Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Xin-Yuan Sun
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Jian-Ming Ouyang
- Department of Chemistry, Jinan University, Guangzhou 510632, China
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
18
|
Zhang X, Luo Y, Wei G, Li Y, Huang Y, Huang J, Liu C, Huang R, Liu G, Wei Z, Du S. Physicochemical and Antioxidant Properties of the Degradations of Polysaccharides from Dendrobium officinale and Their Suitable Molecular Weight Range on Inducing HeLa Cell Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:4127360. [PMID: 31915445 PMCID: PMC6935464 DOI: 10.1155/2019/4127360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022]
Abstract
Different molecular weight polysaccharides of Dendrobium officinale (DOPs) have gradually attracted attention because of their broad biological activities. They, however, remain poorly defined whether their antitumor activity is associated with molecular weight. In this study, the physicochemical, antioxidant, and antitumor properties of DOPs, including the crude polysaccharide (DOP) and its six degradation fractions (DOP1-DOP6) extracted from Dendrobium officinale, were determined. Consequently, DOPs were mainly composed of different ratios of mannose and glucose as follows: 5.15 : 1, 4.62 : 1, 4.19 : 1, 4.46 : 1, 4.32 : 1, 4.29 : 1, and 4.23 : 1, and their molecular weights were significantly different ranging from 652.29 kDa to 11.10 kDa. With the concentration increase of DOPs, the scavenging capacity against OH and DPPH free radicals increased. The antitumor ability of DOPs was different that DOP1-DOP5 (Mw: 176.29 kDa-28.48 kDa) exhibited the best antiproliferation activity than DOP (Mw: 652.29 kDa) and DOP6 (Mw: 11.10 kDa) in HeLa cells rather than PC9, A549, and HepG2 cells. Moreover, it is worth mentioning that DOP1 and DOP5 showed stronger capability on inducing apoptosis of HeLa cells than DOP and DOP6 via the mitochondrial pathway by upregulating the ratio of the Bax/Bal-2 mRNA expression. The results demonstrated that DOPs can be used as the potential natural antioxidant and antitumor products in pharmaceutical industries, and the molecular weight is a crucial influential factor of their antitumor activity that 28.48 kDa-176.29 kDa is a suitable range we may refer to.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yingyi Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Gang Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Shaoguan Institute of Danxia Dendrobium Officinale, Shaoguan 512005, China
| | - Yunrong Li
- Guangxi International Zhuang Medicine Hospital, The Affiliated International Zhuang Medicine Hospital, Guangxi Traditional Chinese Medical University, Nanning 530201, China
| | - Yuechun Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiahui Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chenxing Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Runping Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Guoxiong Liu
- Shaoguan Institute of Danxia Dendrobium Officinale, Shaoguan 512005, China
- Shaoguan Hejiantang Ecological Agriculture Company Ltd., Shaoguan 512000, China
| | - Zhaofeng Wei
- Shaoguan Institute of Danxia Dendrobium Officinale, Shaoguan 512005, China
- Shaoguan Danxia Mountain Engineering Center of Dendrobium Technology, Shaoguan 512000, China
| | - Shuxiu Du
- Shaoguan Institute of Danxia Dendrobium Officinale, Shaoguan 512005, China
- Shaoguan Runhu Ecological Agriculture Company Ltd., Shaoguan 512000, China
| |
Collapse
|
19
|
Gao Z, Yuan F, Li H, Feng Y, Zhang Y, Zhang C, Zhang J, Song Z, Jia L. The ameliorations of Ganoderma applanatum residue polysaccharides against CCl 4 induced liver injury. Int J Biol Macromol 2019; 137:1130-1140. [PMID: 31295484 DOI: 10.1016/j.ijbiomac.2019.07.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 01/22/2023]
Abstract
This work investigated the protective effects of Ganoderma applanatum residue polysaccharides (GRP) on the CCl4-induced hepatotoxicity. The results indicated that GRP showed significantly effects on preventing the increase of AST, ALT and ALP levels in serum, elevating the activities of SOD, GSH-Px and CAT, decreasing the contents of MDA and LPO, and reducing the CYP2E1 and TGF-β concentrations in CCl4-induced mice, respectively. Meanwhile, the levels of TNF-α and IL-6 were significantly decreased, while the value of IL-10 was increased by GRP treatment. Besides, the western blot assay showed the IκBα expressions were significantly increased and the p-p65 was decreased by the treatment with GRP. The characterizations indicated that the GRP was heteropolysaccharide with lower molecular weights and α-furanoside residues. These results demonstrated that GRP might be a potential material for drug and functional food development against chemical hepatic injury.
Collapse
Affiliation(s)
- Zheng Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Fangfang Yuan
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Huaping Li
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Yanbo Feng
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Yiwen Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Chen Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Zhen Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
20
|
Ji HY, Yu J, Dong XD, Liu AJ. Preparation of soluble dietary fibers from Gracilaria lemaneiformis and its antitumor activity in vivo. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00073-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Zhang J, Liu Y, Tang Q, Zhou S, Feng J, Chen H. Polysaccharide of Ganoderma and Its Bioactivities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1181:107-134. [PMID: 31677141 DOI: 10.1007/978-981-13-9867-4_4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ganoderma, named lingzhi in China, has been used for centuries as drug and nutraceutical to treat diseases. Based on our research and other literatures, the chapter summarizes the progress of preparation, structural features and properties, bioactivities of Ganoderma polysaccharides. The aim is to provide a comprehensive source of information for researchers and consumers of Ganoderma, so they can better understand Ganoderma polysaccharides and their biological activities. In addition, more clinical studies should be carried out to meet the criteria for new drug development, and more convincing scientific data should be provided. In addition, on the basis of a large number of studies on Ganoderma polysaccharides, we suggest that more clinical studies should be carried out so that Ganoderma can be better recognized and applied all over the world.
Collapse
Affiliation(s)
- Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qingjiu Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jie Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hongyu Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
22
|
Zheng M, Tang R, Deng Y, Yang K, Chen L, Li H. Steroids from Ganoderma sinense as new natural inhibitors of cancer-associated mutant IDH1. Bioorg Chem 2018; 79:89-97. [DOI: 10.1016/j.bioorg.2018.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022]
|
23
|
Liang D, Yong T, Chen S, Xie Y, Chen D, Zhou X, Li D, Li M, Su L, Zuo D. Hypouricemic Effect of 2,5-Dihydroxyacetophenone, a Computational Screened Bioactive Compound from Ganoderma applanatum, on Hyperuricemic Mice. Int J Mol Sci 2018; 19:ijms19051394. [PMID: 29735945 PMCID: PMC5983617 DOI: 10.3390/ijms19051394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
Searching novel hypouricemic agents of high efficacy and safety has attracted a great attention. Previously, we reported the hypouricemic effect of Ganoderma applanatum, but its bioactives, was not referred. Herein, we report the hypouricemic effect of 2,5-dihydroxyacetophenone (DHAP), a compound screened from Ganoderma applanatum computationally. Serum parameters, such as uric acid (SUA), xanthine oxidase (XOD) activity, blood urea nitrogen (BUN), and creatinine were recorded. Real-time reverse transcription PCR (RT-PCR) and Western blot were exploited to assay RNA and protein expressions of organic anion transporter 1 (OAT1), glucose transporter 9 (GLUT9), uric acid transporter 1 (URAT1), and gastrointestinal concentrative nucleoside transporter 2 (CNT2). DHAP at 20, 40, and 80 mg/kg exerted excellent hypouricemic action on hyperuricemic mice, reducing SUA from hyperuricemic control (407 ± 31 μmol/L, p < 0.01) to 180 ± 29, 144 ± 13, and 139 ± 31 μmol/L, respectively. In contrast to the renal toxic allopurinol, DHAP showed some kidney-protective effects. Moreover, its suppression on XOD activity, in vivo and in vitro, suggested that XOD inhibition may be a mechanism for its hypouricemic effect. Given this, its binding mode to XOD was explored by molecular docking and revealed that three hydrogen bonds may play key roles in its binding and orientation. It upregulated OAT1 and downregulated GLUT9, URAT1, and CNT2 too. In summary, its hypouricemic effect may be mediated by regulation of XOD, OAT1, GLUT9, URAT1, and CNT2.
Collapse
Affiliation(s)
- Danling Liang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou 510663, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Tianqiao Yong
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou 510663, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Shaodan Chen
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou 510663, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Yizhen Xie
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou 510663, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Diling Chen
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou 510663, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Xinxin Zhou
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Dan Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou 510663, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Muxia Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou 510663, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Lu Su
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou 510663, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Dan Zuo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
24
|
Purification, partial characterization and inducing tumor cell apoptosis activity of a polysaccharide from Ganoderma applanatum. Int J Biol Macromol 2018; 115:10-17. [PMID: 29653168 DOI: 10.1016/j.ijbiomac.2018.03.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 12/31/2022]
Abstract
In this study, a homogeneous polysaccharide (designated as GAP-3S) with an average molecular weight of 6.82×105 Da was purified from Ganoderma applanatum. GAP-3S was composed of glucose, galactose, fucose and xylose in the molar ratio of 7.1:2.6:1.1:1. It could significantly inhibit the proliferation of MCF-7 cells in a dose- and time-dependent manner. Flow cytometry analysis indicated that GAP-3S could also induce cell apoptosis. Treatment of MCF-7 cells with GAP-3S lead to the collapse of mitochondrial membrane potential and the accumulation of ROS, up-regulated expression of Bax, cleavage of PARP, p-p38 and p-JNK, and the down-regulated expression of Bcl-2, PARP and p-ERK. The activities of caspase-3 and caspase-9 were also increased in GAP-3S-treated MCF-7 cells compared to untreated cells. These findings suggested that GAP-3S probably induced apoptosis in MCF-7 cells through intrinsic mitochondrial apoptosis and MAPK signaling pathways.
Collapse
|
25
|
Yu J, Ji H, Liu A. Preliminary Structural Characteristics of Polysaccharides from Pomelo Peels and Their Antitumor Mechanism on S180 Tumor-Bearing Mice. Polymers (Basel) 2018; 10:polym10040419. [PMID: 30966454 PMCID: PMC6415451 DOI: 10.3390/polym10040419] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 12/14/2022] Open
Abstract
In this study, the polysaccharides (PPs) from pomelo peels were investigated for their structural characteristics and antitumor mechanism on sarcoma S180-bearing mice. Components, FT-IR, and GC analysis showed that PPs, mainly composed of glucose, were typical acid polysaccharides with α-d-pyranoid glucose containing 74.52% carbohydrate and 16.33% uronic acid. The in vivo antitumor tests revealed that PPs could effectively suppress the transplanted S180 tumors growth, as well as protect the immune organs, improve proliferation ability of splenic lymphocytes and killing activity of NK cells in tumor-bearing mice. Furthermore, the levels of serum cytokines (IL-2, IFN-γ and TNF-α) and the proportion of CD4⁺ T cells in peripheral blood of mice bearing S180 tumors were also significantly increased after treatment with PPs. Meanwhile, the transplanted S180 tumor cells exhibited obvious apoptotic phenotype after PPs treatment by arresting the cell cycle in S phase, down-regulating the Bcl-2 expressions and up-regulating the Bax levels. These data showed that PPs were mainly composed of glucose with α-d-pyranoid ring and could induce apoptosis of solid tumor cells by enhancing the antitumor immunity of tumor-bearing mice, which would provide a theoretical basis for the practical application in food and medical industries.
Collapse
Affiliation(s)
- Juan Yu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Haiyu Ji
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
26
|
A bioactive polysaccharide TLH-3 isolated from Tricholoma lobayense protects against oxidative stress-induced premature senescence in cells and mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
27
|
Bao F, Yang K, Wu C, Gao S, Wang P, Chen L, Li H. New natural inhibitors of hexokinase 2 (HK2): Steroids from Ganoderma sinense. Fitoterapia 2018; 125:123-129. [DOI: 10.1016/j.fitote.2018.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/31/2017] [Accepted: 01/02/2018] [Indexed: 10/18/2022]
|
28
|
Liu AJ, Yu J, Ji HY, Zhang HC, Zhang Y, Liu HP. Extraction of a Novel Cold-Water-Soluble Polysaccharide from Astragalus membranaceus and Its Antitumor and Immunological Activities. Molecules 2017; 23:E62. [PMID: 29283407 PMCID: PMC6017583 DOI: 10.3390/molecules23010062] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/24/2017] [Accepted: 12/24/2017] [Indexed: 02/03/2023] Open
Abstract
The polysaccharides of Astragalus membranaceus have received extensive study and attention, but there have been few reports on the extraction of these polysaccharides using cold water (4 °C). In this study, we fractionated a novel cold-water-soluble polysaccharide (cAMPs-1A) from Astragalus membranaceus with a 92.00% carbohydrate content using a DEAE-cellulose 52 anion exchange column and a Sephadex G-100 column. Our UV, Fourier-transform infrared spectroscopy (FTIR), high-performance gel permeation chromatography, and ion chromatography analysis results indicated the monosaccharide composition of cAMPs-1A with 1.23 × 10⁴ Da molecular weight to be fucose, arabinose, galactose, glucose, and xylose, with molar ratios of 0.01:0.06:0.20:1.00:0.06, respectively. The UV spectroscopy detected no protein and nucleic acid in cAMPs-1A. We used FTIR analysis to characterize the α-d-pyranoid configuration in cAMPs-1A. In addition, we performed animal experiments in vivo to evaluate the antitumor and immunomodulatory effects of cAMPs-1A. The results suggested that cAMPs-1A oral administration could significantly inhibit tumor growth with the inhibitory rate of 20.53%, 36.50% and 44.49%, respectively, at the dosage of 75,150, and 300 mg/kg. Moreover, cAMPs-1A treatment could also effectively protect the immune organs, promote macrophage pinocytosis, and improve the percentages of lymphocyte subsets in the peripheral blood of tumor-bearing mice. These findings demonstrate that the polysaccharide cAMPs-1A has an underlying application as natural antitumor agents.
Collapse
Affiliation(s)
- An-Jun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Juan Yu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hai-Yu Ji
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hong-Cui Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yan Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hui-Ping Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
29
|
Characterization of carboxymethylated polysaccharides from Catathelasma ventricosum and their antioxidant and antibacterial activities. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Gao Y, Zhu L, Guo J, Yuan T, Wang L, Li H, Chen L. Farnesyl phenolic enantiomers as natural MTH1 inhibitors from Ganoderma sinense. Oncotarget 2017; 8:95865-95879. [PMID: 29221173 PMCID: PMC5707067 DOI: 10.18632/oncotarget.21430] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/17/2017] [Indexed: 01/10/2023] Open
Abstract
Cancer cells are more addictive to MTH1 than normal cells because of their dysfunctional redox regulations. MTH1 plays an important role to maintain tumor cell survival, while it is not indispensable for the growth of normal cells. Farnesyl phenols having a coumaroyl substitution are rather uncommon in nature. Eight farnesyl phenolic compounds with such substituent moiety (1-8), including six new ones, ganosinensols E-J (1-6) were isolated from the 95% EtOH extract of the fruiting bodies of Ganoderma sinense. Four pairs of enantiomers 1/2, 3/4, 5/6 and 7/8 were resolved by HPLC using a Daicel Chiralpak IE column. Their structures were elucidated from extensive spectroscopic analyses and comparison with literature data. The absolute configurations of C-1' in 1-6 were assigned by ECD spectra. These compounds were predicted to have high binding affinity to MTH1 through virtual ligand screening. The enzyme inhibition experiments and cell-based assays confirmed their inhibitory effects on MTH1. Furthermore, siRNA knockdown experiments and the cellular thermal shift assay (CETSA) confirmed that the farnesyl phenolic enantiomers specifically bound with MTH1 in intact cells. Meanwhile, the low cytotoxicity of 1-8 on normal human cells further verified their good selectivity and specificity to MTH1. These active structures are expected to be potential anti-cancer lead compounds.
Collapse
Affiliation(s)
- Ya Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Lihan Zhu
- Wuya College of Innovation, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jing Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ting Yuan
- Wuya College of Innovation, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Liqing Wang
- Wuya College of Innovation, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hua Li
- Wuya College of Innovation, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.,Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Lixia Chen
- Wuya College of Innovation, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
31
|
Hédoux A, Guinet Y, Carpentier L, Paccou L, Derollez P, Brandán SA. Structural and vibrational characterization of sugar arabinitol structures employing micro-Raman spectra and DFT calculations. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
32
|
Chen Y, Yao F, Ming K, Wang D, Hu Y, Liu J. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules 2016; 21:E1705. [PMID: 27983593 PMCID: PMC6273901 DOI: 10.3390/molecules21121705] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/23/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.
Collapse
Affiliation(s)
- Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fangke Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
33
|
Huang X, Nie S. The structure of mushroom polysaccharides and their beneficial role in health. Food Funct 2016; 6:3205-17. [PMID: 26345165 DOI: 10.1039/c5fo00678c] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mushroom is a kind of fungus that has been popular for its special flavour and renowned biological values. The polysaccharide contained in mushroom is regarded as one of the primary bioactive constituents and is beneficial for health. The structural features and bioactivities of mushroom polysaccharides have been studied extensively. It is believed that the diverse biological bioactivities of polysaccharides are closely related to their structure or conformation properties. In this review, the structural characteristics, conformational features and bioactivities of several mushroom polysaccharides are summarized, and their beneficial mechanisms and the relationships between their structure and bioactivities are also discussed.
Collapse
Affiliation(s)
- Xiaojun Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | | |
Collapse
|
34
|
Wang M, Wang F, Xu F, Ding LQ, Zhang Q, Li HX, Zhao F, Wang LQ, Zhu LH, Chen LX, Qiu F. Two pairs of farnesyl phenolic enantiomers as natural nitric oxide inhibitors from Ganoderma sinense. Bioorg Med Chem Lett 2016; 26:3342-3345. [PMID: 27256914 DOI: 10.1016/j.bmcl.2016.05.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/02/2016] [Accepted: 05/12/2016] [Indexed: 11/30/2022]
Abstract
Four new farnesyl phenolic compounds, ganosinensols A-D (1-4) were isolated from the 95% EtOH extract of the fruiting bodies of Ganoderma sinense. Two pairs of enantiomers, 1/2, and 3/4 were isolated by HPLC using a Daicel Chiralpak IE column. Their structures were elucidated from extensive spectroscopic analyses and comparison with literature data. The absolute configurations of 1-4 were assigned by ECD spectra. All of these isolated compounds showed potent inhibitory activity against LPS-induced nitric oxide production in RAW 264.7 macrophages, with IC50 values from 1.15 to 2.26μM.
Collapse
Affiliation(s)
- Meng Wang
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Fei Wang
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Feng Xu
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Li-Qin Ding
- School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, People's Republic of China
| | - Qian Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Hui-Xiang Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Feng Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Li-Qing Wang
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Li-Han Zhu
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Li-Xia Chen
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Feng Qiu
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, People's Republic of China.
| |
Collapse
|
35
|
Zhang W, Lu Y, Zhang Y, Ding Q, Hussain S, Wu Q, Pan W, Chen Y. Antioxidant and antitumour activities of exopolysaccharide from liquid-culturedGrifola frondosaby chemical modification. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenna Zhang
- School of Life Sciences; Anhui University; 111 Jiulong Road Hefei 230601 Anhui China
| | - Yongming Lu
- School of Life Sciences; Anhui University; 111 Jiulong Road Hefei 230601 Anhui China
| | - Yaping Zhang
- School of Life Sciences; Anhui University; 111 Jiulong Road Hefei 230601 Anhui China
| | - Qiuying Ding
- School of Life Sciences; Anhui University; 111 Jiulong Road Hefei 230601 Anhui China
| | - Sajid Hussain
- School of Life Sciences; Anhui University; 111 Jiulong Road Hefei 230601 Anhui China
| | - Qingxi Wu
- School of Life Sciences; Anhui University; 111 Jiulong Road Hefei 230601 Anhui China
| | - Wenjuan Pan
- School of Life Sciences; Anhui University; 111 Jiulong Road Hefei 230601 Anhui China
| | - Yan Chen
- School of Life Sciences; Anhui University; 111 Jiulong Road Hefei 230601 Anhui China
| |
Collapse
|
36
|
Li SC, Yang XM, Ma HL, Yan JK, Guo DZ. Purification, characterization and antitumor activity of polysaccharides extracted from Phellinus igniarius mycelia. Carbohydr Polym 2015; 133:24-30. [DOI: 10.1016/j.carbpol.2015.07.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/22/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
|