1
|
Abd Elkader RS, Mohamed MK, Hasanien YA, Kandeel EM. Experimental and Modeling Optimization of Strontium Adsorption on Microbial Nanocellulose, Eco-friendly Approach. J CLUST SCI 2023. [DOI: 10.1007/s10876-023-02454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/22/2023] [Indexed: 09/02/2023]
Abstract
AbstractGreen synthesized cellulose nanocrystals (CNCs) was prepared using Neurospora intermedia, characterized, and used to remove Strontium ions (Sr2+) from an aqueous solution with high efficiency. The characterization of CNCs was performed using a UV-Vis Spectrophotometer, Dynamic Light Scattering (DLS), Zeta Potential (ZP), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) mapping, EDX elemental analysis and BET surface analyzer. In this study, Response Surface Methodology (RSM) based on Box-Behnken Design (BBD) was successfully applied for the first time to optimize the dynamic adsorption conditions for the maximum removal of Sr2+ ions from aqueous solutions using CNCs as adsorbent. The effects of parameters, such as initial concentration of Sr2+ (50–500 ppm), adsorbent dosage (0.05–0.2 g/50ml), and contact time (15–120 min.) on removal efficiency were investigated. A mathematical model was studied to predict the removal performance. The significance and adequacy of the model were surveyed using the analysis of variance (ANOVA). The results showed that the second-order polynomial model is suitable for the prediction removal of Sr2+ with regression coefficient (R2 = 97.41%). The highest sorption capacity value of Sr2+ was obtained (281.89 mg/g) at the adsorbent dosage of 0.05 g/50 ml, contact time of 120 min., and the pollutant (Sr2+) concentration of 275 ppm.
Collapse
|
2
|
Orasugh JT, Saasa V, Ray SS, Mwakikunga B. Supersensitive metal free in-situ synthesized graphene oxide@cellulose nanocrystals acetone sensitive bioderived sensors. Int J Biol Macromol 2023; 241:124514. [PMID: 37086769 DOI: 10.1016/j.ijbiomac.2023.124514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/31/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023]
Abstract
A series of graphene oxide@cellulose nanocrystal (GO@CNC) nanoparticles (NPs) were synthesized in this study using a room temperature-based simple modified hummers process. The morphological structures, as well as chemical characteristics of these materials were characterized using, transmission electron microscopy (TEM), X-ray diffraction (XRD), and other techniques. The results show that the as-prepared nanoparticles are made up of crystallite grains with an average size of around 7.82, 14.69, 10.77, 7.82, and 12.51 nm for GO, CNC, GO1@CNC1, GO2@CNC3, and GO3@CNC3 respectively, and OH &COOH functionalities on the NPs' surfaces. GO@CNC NPs exhibit significantly better sensing characteristics towards acetone when compared to virgin GO nanoplatelets; specifically, the optimal sensor based on GO3@CNC3 NPs showed the highest response (60.88 at 5 ppm), which was higher than that of the virgin GO sensor at 200 °C operating temperature and including those reported. Furthermore, the sensors have a high sensitivity towards acetone in sub-ppm concentrations as well as a detection limit of 5 ppm, making it a viable candidate for diabetes breath testing.
Collapse
Affiliation(s)
- Jonathan Tersur Orasugh
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa; Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa.
| | - Valentine Saasa
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa; Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa.
| | - Bonex Mwakikunga
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; Department of Physics, Arcadia Campus, Tshwane University of Technology, Pretoria 0001, South Africa
| |
Collapse
|
3
|
Loskutova K, Torras M, Zhao Y, Svagan AJ, Grishenkov D. Cellulose Nanofiber-Coated Perfluoropentane Droplets: Fabrication and Biocompatibility Study. Int J Nanomedicine 2023; 18:1835-1847. [PMID: 37051314 PMCID: PMC10085006 DOI: 10.2147/ijn.s397626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Purpose To study the effect of cellulose nanofiber (CNF)-shelled perfluoropentane (PFP) droplets on the cell viability of 4T1 breast cancer cells with or without the addition of non-encapsulated paclitaxel. Methods The CNF-shelled PFP droplets were produced by mixing a CNF suspension and PFP using a homogenizer. The volume size distribution and concentration of CNF-shelled PFP droplets were estimated from images taken with an optical microscope and analyzed using Fiji software and an in-house Matlab script. The thermal stability was qualitatively assessed by comparing the size distribution and concentration of CNF-shelled PFP droplets at room temperature (~22°) and 37°C. The cell viability of 4T1 cells was measured using a 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, a hemolysis assay was performed to assess blood compatibility of CNF-shelled PFP droplets. Results The droplet diameter and concentration of CNF-shelled PFP droplets decreased after 48 hours at both room temperature and 37°C. In addition, the decrease in concentration was more significant at 37°C, from 3.50 ± 0.64×106 droplets/mL to 1.94 ± 0.10×106 droplets/mL, than at room temperature, from 3.65 ± 0.29×106 droplets/mL to 2.56 ± 0.22×106 droplets/mL. The 4T1 cell viability decreased with increased exposure time and concentration of paclitaxel, but it was not affected by the presence of CNF-shelled PFP droplets. No hemolysis was observed at any concentration of CNF-shelled PFP droplets. Conclusion CNF-shelled PFP droplets have the potential to be applied as drug carriers in ultrasound-mediated therapy.
Collapse
Affiliation(s)
- Ksenia Loskutova
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, SE-141 57, Sweden
- Correspondence: Ksenia Loskutova, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Hälsovägen 11C, Huddinge, SE-14157, Sweden, Tel +46 707 26 76 77, Email
| | - Mar Torras
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, SE-141 57, Sweden
| | - Ying Zhao
- Department of Laboratory Medicine, Karolinska Institute, Huddinge, SE-141 57, Sweden
| | - Anna J Svagan
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Dmitry Grishenkov
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, SE-141 57, Sweden
| |
Collapse
|
4
|
Grafting natural nicotinamide on tempo-oxidized cellulose nanofibrils to prepare flexible and transparent nanocomposite films with fascinating mechanical strength and UV shielding performance. Int J Biol Macromol 2022; 223:1633-1640. [PMID: 36270399 DOI: 10.1016/j.ijbiomac.2022.10.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
Abstract
Light pollution from ultraviolet (UV) radiation is gaining growing concerns, as the emissions and burning of fossil fuels destroyed the ozone layer. Seeking a solution against skin exposure to excessive radiation is an urgent requirement. In this study, nicotinamide (NA), the main component of vitamin B3, was introduced as a new modifier into Tempo-oxidized cellulose nanofibrils (TOCNFs) together with the physical cross-linking with tannin acid (TA) to improve anti-UV performance of the nanocomposite films. Incorporation of NA into the films presents distinguished UV shielding capability UVB wavelength range from 200 nm to 320 nm (NTA1-5) due to the introduced functional groups like CO and benzene rings. Moreover, mechanical properties were notably enhanced, which overcome the low strength of common nanocellulosic materials. The stress increased from 69.8 MPa to 116.3 MPa, and the toughness can reach 131.58 MJ/m3 by tuning the additional amount of NA. Meanwhile, TGA and DTG analysis demonstrated that the incorporation of amide bonds and TA into the composite films greatly improved the thermal stability. Thus, the proposed materials fabricated from natural biomolecules show great potential in serving as new kinds of UV-resistant products in the application areas of sunscreen, protective clothing, and building materials.
Collapse
|
5
|
Faye O, Szpunar JA, Eduok U. A Comparative Density Functional Theory Study of Hydrogen Storage in Cellulose and Chitosan Functionalized by Transition Metals (Ti, Mg, and Nb). MATERIALS (BASEL, SWITZERLAND) 2022; 15:7573. [PMID: 36363163 PMCID: PMC9655284 DOI: 10.3390/ma15217573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The focus of this work is hydrogen storage in pristine cellulose, chitosan, and cellulose. Chitosan doped with magnesium, titanium, and niobium is analyzed using spin unrestricted plane-wave density functional theory implemented in the Dmol3 module. The results of this study demonstrate that hydrogen interaction with pure cellulose and chitosan occurred in the gas phase, with an adsorption energy of Eb = 0.095 eV and 0.090 eV for cellulose and chitosan, respectively. Additionally, their chemical stability was determined as Eb= 4.63 eV and Eb = 4.720 eV for pure cellulose and chitosan, respectively, by evaluating their band gap. Furthermore, the presence of magnesium, titanium, and niobium on cellulose and chitosan implied the transfer of an electron from metal to cellulose and chitosan. Moreover, our calculations predict that cellulose doped with niobium is the most favorable medium where 6H2 molecules are stored compared with molecules stored in niobium-doped chitosan with Tmax = 818 K to release all H2 molecules. Furthermore, our findings showed that titanium-doped cellulose has a storage capacity of five H2 molecules, compared to a storage capacity of four H2 molecules in titanium-doped chitosan. However, magnesium-doped cellulose and chitosan have insufficient hydrogen storage capacity, with only two H2 molecules physisorbed in the gas phase. These results suggest that niobium-doped cellulose and chitosan may play a crucial role in the search for efficient and inexpensive hydrogen storage media.
Collapse
|
6
|
El Nahrawy AM, Ali AI, Mansour A, Abou Hammad AB, Hemdan BA, Kamel S. Talented Bi0.5Na0.25K0.25TiO3/oxidized cellulose films for optoelectronic and bioburden of pathogenic microbes. Carbohydr Polym 2022; 291:119656. [DOI: 10.1016/j.carbpol.2022.119656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 11/26/2022]
|
7
|
Zheng ALT, Sabidi S, Ohno T, Maeda T, Andou Y. Cu 2O/TiO 2 decorated on cellulose nanofiber/reduced graphene hydrogel for enhanced photocatalytic activity and its antibacterial applications. CHEMOSPHERE 2022; 286:131731. [PMID: 34388866 DOI: 10.1016/j.chemosphere.2021.131731] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Photocatalysis has gained attention as a viable wastewater remediation technique. However, the difficulty of recovering powder-based photocatalyst has often become a major limitation for their on-site practical application. Herein, we report on the successful in-situ preparation of a novel three-dimensional (3D) photocatalyst consisting of Cu2O/TiO2 loaded on a cellulose nanofiber (CNF)/reduced graphene hydrogel (rGH) via facile hydrothermal treatment and freeze-drying. The 3D macrostructure not only provides a template for the anchoring of Cu2O and TiO2 but also provides an efficient electron transport pathway for enhanced photocatalytic activity. The results showed that the Cu2O and TiO2 were uniformly loaded onto the aerogel framework resulting in the composites with large surface area with exposed actives sites. As compared to bare rGH, CNF/rGH, Cu2O/CNF/rGH and TiO2/CNF/rGH, the Cu2O/TiO2/CNF/rGH showed improved photocatalytic activity for methyl orange (MO) degradation. MO degradation pathway is proposed based on GC-MS analysis. The enhanced photoactivity can be attributed to the charge transfer and electron-hole separation from the synergistic effect of Cu2O/TiO2 anchored on CNF/rGH. In terms of their anti-bacterial activity towards Staphylococcus aureus and Escherichia coli, the synergistic effect of the Cu2O/TiO2 anchored on the CNF/rGH framework showed excellent activity towards the bacteria.
Collapse
Affiliation(s)
- Alvin Lim Teik Zheng
- Department of Life Science and Systems Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan
| | - Sarah Sabidi
- Department of Life Science and Systems Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan
| | - Teruhisa Ohno
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan
| | - Toshinari Maeda
- Department of Life Science and Systems Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan; Collaborative Research Centre for Green Materials on Environmental Technology, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan
| | - Yoshito Andou
- Department of Life Science and Systems Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan; Collaborative Research Centre for Green Materials on Environmental Technology, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan.
| |
Collapse
|
8
|
Loskutova K, Olofsson K, Hammarström B, Wiklund M, Svagan AJ, Grishenkov D. Measuring the Compressibility of Cellulose Nanofiber-Stabilized Microdroplets Using Acoustophoresis. MICROMACHINES 2021; 12:mi12121465. [PMID: 34945315 PMCID: PMC8707857 DOI: 10.3390/mi12121465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022]
Abstract
Droplets with a liquid perfluoropentane core and a cellulose nanofiber shell have the potential to be used as drug carriers in ultrasound-mediated drug delivery. However, it is necessary to understand their mechanical properties to develop ultrasound imaging sequences that enable in vivo imaging of the vaporization process to ensure optimized drug delivery. In this work, the compressibility of droplets stabilized with cellulose nanofibers was estimated using acoustophoresis at three different acoustic pressures. Polyamide particles of known size and material properties were used for calibration. The droplet compressibility was then used to estimate the cellulose nanofiber bulk modulus and compare it to experimentally determined values. The results showed that the acoustic contrast factor for these droplets was negative, as the droplets relocated to pressure antinodes during ultrasonic actuation. The droplet compressibility was 6.6–6.8 ×10−10 Pa−1, which is higher than for water (4.4×10−10 Pa−1) but lower than for pure perfluoropentane (2.7×10−9 Pa−1). The compressibility was constant across different droplet diameters, which was consistent with the idea that the shell thickness depends on the droplet size, rather than being constant.
Collapse
Affiliation(s)
- Ksenia Loskutova
- Department of Biomedical Engineering and Health Systems, Royal Institute of Technology, KTH-Flemingsberg, SE-141 57 Huddinge, Sweden;
- Correspondence:
| | - Karl Olofsson
- Department of Applied Physics, Royal Institute of Technology, KTH-Albanova, SE-106 91 Stockholm, Sweden; (K.O.); (B.H.); (M.W.)
| | - Björn Hammarström
- Department of Applied Physics, Royal Institute of Technology, KTH-Albanova, SE-106 91 Stockholm, Sweden; (K.O.); (B.H.); (M.W.)
| | - Martin Wiklund
- Department of Applied Physics, Royal Institute of Technology, KTH-Albanova, SE-106 91 Stockholm, Sweden; (K.O.); (B.H.); (M.W.)
| | - Anna J. Svagan
- Department of Fibre and Polymer Technology, Royal Institute of Technology, KTH-Valhallavägen, SE-114 28 Stockholm, Sweden;
| | - Dmitry Grishenkov
- Department of Biomedical Engineering and Health Systems, Royal Institute of Technology, KTH-Flemingsberg, SE-141 57 Huddinge, Sweden;
| |
Collapse
|
9
|
Jaiswal AK, Hokkanen A, Kumar V, Mäkelä T, Harlin A, Orelma H. Thermoresponsive Nanocellulose Films as an Optical Modulation Device: Proof-of-Concept. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25346-25356. [PMID: 34006108 PMCID: PMC8289189 DOI: 10.1021/acsami.1c03541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/05/2021] [Indexed: 06/02/2023]
Abstract
Flexible optoelectronic technologies are becoming increasingly important with the advent of concepts such as smart-built environments and wearable systems, where they have found applications in displays, sensing, healthcare, and energy harvesting. Parallelly, there is also a need to make these innovations environmentally sustainable by design. In the present work, we employ nanocellulose and its excellent film-forming properties as a basis to develop a green flexible photonic device for sensing applications. Cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) were used as matrix materials along with a black thermochromic pigment to prepare thermoresponsive hybrid films. Optical properties of nanocellulose films such as transparency and haze were tuned by varying pigment loading. Nearly 90% transparent CNF and CNC films could be tuned to reduce the transmission to as low as 4 and 17%, respectively. However, the films regained transparency to up to 60% when heated above the thermochromic transition temperature (31 °C). The thermoresponsive behavior of the prepared films was exploited to demonstrate an all-optical modulation device. Continuous infrared light (1300 nm) was modulated by using a 660 nm visible diode laser. The laser intensity was sufficient to cause a localized thermochromic transition in the films. The laser was pulsed at 0.3 Hz and a uniform cyclic modulation depth of 0.3 dB was achieved. The demonstrated application of functional nanocellulose hybrid films as a light switch (modulator) could be harnessed in various thermally stimulated sensing systems such as temperature monitoring, energy-saving, and anti-counterfeiting.
Collapse
Affiliation(s)
- Aayush Kumar Jaiswal
- Biomass
Processing and Products, VTT Technical Research
Centre of Finland Ltd., Tietotie 4E, 02044 Espoo, Finland
| | - Ari Hokkanen
- Microelectronics, VTT Technical Research Centre of Finland Ltd., Tietotie 3, 02044 Espoo, Finland
| | - Vinay Kumar
- Biomass
Processing and Products, VTT Technical Research
Centre of Finland Ltd., Tietotie 4E, 02044 Espoo, Finland
| | - Tapio Mäkelä
- Sensing
and Integration, VTT Technical Research
Centre of Finland Ltd., Tietotie 3, 02044 Espoo, Finland
| | - Ali Harlin
- Biomass
Processing and Products, VTT Technical Research
Centre of Finland Ltd., Tietotie 4E, 02044 Espoo, Finland
| | - Hannes Orelma
- Biomass
Processing and Products, VTT Technical Research
Centre of Finland Ltd., Tietotie 4E, 02044 Espoo, Finland
| |
Collapse
|
10
|
Srivastava D, Kuklin MS, Ahopelto J, Karttunen AJ. Electronic band structures of pristine and chemically modified cellulose allomorphs. Carbohydr Polym 2020; 243:116440. [PMID: 32532390 DOI: 10.1016/j.carbpol.2020.116440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
We have investigated the structural properties, vibrational spectra, and electronic band structures of crystalline cellulose allomorphs and chemically modified cellulose with quantum chemical methods. The electronic band gaps of cellulose allomorphs Iα, Iβ, II, and III1 lie in the range of 5.0 to 5.6 eV. We show that extra states can be created in the band gap of cellulose by chemical modification. Experimentally feasible amidation of cellulose Iβ with aniline or 4,4' diaminoazobenzene creates narrow bands in the cellulose band gap, reducing the difference between the occupied and empty states to 4.0 or 1.8 eV, respectively. The predicted states 4,4'diaminoazobenzene-modified cellulose Iβ fall in the visible spectrum, suggesting uses in optical applications.
Collapse
Affiliation(s)
- Divya Srivastava
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076, Aalto, Finland
| | - Mikhail S Kuklin
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076, Aalto, Finland
| | - Jouni Ahopelto
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044, VTT, Espoo, Finland
| | - Antti J Karttunen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076, Aalto, Finland.
| |
Collapse
|
11
|
Harling M, Breeding P, Haysley T, Chesley M, Mason M, Tilbury K. Multiphoton Microscopy for the Characterization of Cellular Behavior on Naturally Derived Polysaccharide Tissue Constructs With Irregular Surfaces for the Development of Platform Biomaterials. Front Bioeng Biotechnol 2020; 8:802. [PMID: 32850702 PMCID: PMC7396702 DOI: 10.3389/fbioe.2020.00802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/22/2020] [Indexed: 01/02/2023] Open
Abstract
Over the past decade, the use of polymers as platform materials for biomedical applications including tissue engineering has been of rising interest. Recently, the use of naturally derived polysaccharides as 3-D scaffolds for tissue regeneration has shown promising material characteristics; however, due to complexities in composition, morphology, and optical properties, adequate spatial and temporal characterization of cellular behavior in these materials is lacking. Multiphoton microscopy has emerged as a viable tool for performing such quantification by permitting greater imaging depth while simultaneously minimizing un-favorable scattering and producing high-resolution optical cross sections for non-invasive analysis. Here we describe a method using endogenous contrast of cellulose nanofibers (CNF) using Second Harmonic Generation (SHG), combined with 2-photon fluorescence of Cell Tracker Orange for spatial and longitudinal imaging of cellular proliferation. Cell Tracker Orange is an ideal fluorophore to avoid the broad CNF autofluorescence allowing for segmentation of cells using a semi-automatic routine. Individual cells were identified using centroid locations for 3D cell proliferation. Overall, the methods presented are viable for investigation of cellular interactions with polysaccharide candidate biomaterials.
Collapse
Affiliation(s)
- Mitchell Harling
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, United States
| | - Patrick Breeding
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, United States
| | - Travis Haysley
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - Mitchell Chesley
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, United States
| | - Michael Mason
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, United States.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - Karissa Tilbury
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, United States.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| |
Collapse
|
12
|
Ahmadi MT, Razmdideh A, Rahimian Koloor SS, Petrů M. Carbon-Based Band Gap Engineering in the h-BN Analytical Modeling. MATERIALS 2020; 13:ma13051026. [PMID: 32106402 PMCID: PMC7084880 DOI: 10.3390/ma13051026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 11/16/2022]
Abstract
The absence of a band gap in graphene is a hindrance to its application in electronic devices. Alternately, the complete replacement of carbon atoms with B and N atoms in graphene structures led to the formation of hexagonal boron nitride (h-BN) and caused the opening of its gap. Now, an exciting possibility is a partial substitution of C atoms with B and N atoms in the graphene structure, which caused the formation of a boron nitride composite with specified stoichiometry. BC2N nanotubes are more stable than other triple compounds due to the existence of a maximum number of B–N and C–C bonds. This paper focused on the nearest neighbor’s tight-binding method to explore the dispersion relation of BC2N, which has no chemical bond between its carbon atoms. More specifically, the band dispersion of this specific structure and the effects of energy hopping in boron–carbon and nitrogen–carbon atoms on the band gap are studied. Besides, the band structure is achieved from density functional theory (DFT) using the generalized gradient approximations (GGA) approximation method. This calculation shows that this specific structure is semimetal, and the band gap energy is 0.167 ev.
Collapse
Affiliation(s)
- Mohammad Taghi Ahmadi
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Correspondence: (M.T.A.); (M.P.)
| | - Ahmad Razmdideh
- Nano-electronic Research Group, Physics Department, Faculty of Science, Urmia University, Urmia 57147, Iran;
| | - Seyed Saeid Rahimian Koloor
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic;
| | - Michal Petrů
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic;
- Correspondence: (M.T.A.); (M.P.)
| |
Collapse
|
13
|
Bergamonti L, Potenza M, Haghighi Poshtiri A, Lorenzi A, Sanangelantoni AM, Lazzarini L, Lottici PP, Graiff C. Ag-functionalized nanocrystalline cellulose for paper preservation and strengthening. Carbohydr Polym 2019; 231:115773. [PMID: 31888832 DOI: 10.1016/j.carbpol.2019.115773] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022]
Abstract
Waste paper is an environmentally friendly source of cellulosic material. Here we propose a new treatment based on nanocrystalline cellulose (CNC) for paper preservation and consolidation. Suspensions of CNC were prepared by sulfuric acid hydrolysis using waste paper as cellulose source (CNCWP) and compared with CNC from cotton linter (CNCCL). Both CNCs were obtained with good yield, showing high crystallinity index and comparable morphology, as demonstrated by DLS-ELS, XRD, FTIR, Raman and TEM analyses. CNCs were mixed with silver nanoparticles (CNC/Ag) and their biocidal activity was tested against Escherichia coli and Bacillus subtilis, measuring the minimum inhibitory concentration. CNCs were exploited as treatments for biocidal activity and consolidation on Whatman paper. The presence of silver nanoparticles doesn't affect aesthetic appearance of the original paper and prevents the growth of Aspergillus niger fungus. Mechanical tests demonstrated that the coatings by CNC based products improve stretch and toughness of the paper support.
Collapse
Affiliation(s)
- Laura Bergamonti
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma, Italy
| | - Marianna Potenza
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma, Italy
| | | | - Andrea Lorenzi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma, Italy
| | - Anna Maria Sanangelantoni
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma, Italy
| | - Laura Lazzarini
- Istituto dei Materiali per l'Elettronica ed il Magnetismo, IMEM, Consiglio delle Ricerche, Parco Area delle Scienze 37/A, Parma, Italy
| | - Pier Paolo Lottici
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, Parma, Italy
| | - Claudia Graiff
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma, Italy.
| |
Collapse
|
14
|
Naz S, Ali JS, Zia M. Nanocellulose isolation characterization and applications: a journey from non-remedial to biomedical claims. Biodes Manuf 2019. [DOI: 10.1007/s42242-019-00049-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Doane TA. A survey of photogeochemistry. GEOCHEMICAL TRANSACTIONS 2017; 18:1. [PMID: 28246525 PMCID: PMC5307419 DOI: 10.1186/s12932-017-0039-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/28/2017] [Indexed: 05/08/2023]
Abstract
The participation of sunlight in the natural chemistry of the earth is presented as a unique field of study, from historical observations to prospects for future inquiry. A compilation of known reactions shows the extent of light-driven interactions between naturally occurring components of land, air, and water, and provides the backdrop for an outline of the mechanisms of these phenomena. Catalyzed reactions, uncatalyzed reactions, direct processes, and indirect processes all operate in natural photochemical transformations, many of which are analogous to well-known biological reactions. By overlaying photochemistry and surface geochemistry, complementary approaches can be adopted to identify natural photochemical reactions and discern their significance in the environment.
Collapse
Affiliation(s)
- Timothy A. Doane
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA 95616-5270 USA
| |
Collapse
|
16
|
Huang F, Wu X, Yu Y, Lu Y, Chen Q. Acylation of cellulose nanocrystals with acids/trifluoroacetic anhydride and properties of films from esters of CNCs. Carbohydr Polym 2017; 155:525-534. [DOI: 10.1016/j.carbpol.2016.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/17/2016] [Accepted: 09/03/2016] [Indexed: 10/21/2022]
|
17
|
García Y, Ruiz-Blanco YB, Marrero-Ponce Y, Sotomayor-Torres CM. Orthotropic Piezoelectricity in 2D Nanocellulose. Sci Rep 2016; 6:34616. [PMID: 27708364 PMCID: PMC5052617 DOI: 10.1038/srep34616] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/02/2016] [Indexed: 11/08/2022] Open
Abstract
The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V-1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.
Collapse
Affiliation(s)
- Y. García
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Yasser B. Ruiz-Blanco
- Unit of Computer-Aided Molecular “Biosilico” Discovery and Bioinformatics Research (CAMD-BIR Unit), Facultad de Química y Farmacia. Universidad Central “Marta Abreu” de Las Villas, 54830 Santa Clara, Cuba
| | - Yovani Marrero-Ponce
- Unit of Computer-Aided Molecular “Biosilico” Discovery and Bioinformatics Research (CAMD-BIR Unit), Facultad de Química y Farmacia. Universidad Central “Marta Abreu” de Las Villas, 54830 Santa Clara, Cuba
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Hospital de los Valles, Av. Interoceánica Km 12 —Cumbayá, e Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito 170157, Ecuador
| | - C. M. Sotomayor-Torres
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- ICREA—Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
| |
Collapse
|