1
|
Kang J, Wang L, Dong L, Yin M, Wei S, Luo P. Agrocybe cylindracea Dietary Fiber Modification: Sodium Hydroxide Treatment Outperforms High-Temperature, Cellulase, and Lactobacillus Fermentation. Molecules 2024; 29:3519. [PMID: 39124923 PMCID: PMC11314503 DOI: 10.3390/molecules29153519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/30/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Agrocybe cylindracea dietary fiber (ADF) contains 95% water-insoluble dietary fiber, resulting in poor application performance. To address this issue, ADF was modified by four methods (cellulase, sodium hydroxide, high-temperature, and Lactobacillus fermentation) in this paper. By comparing the physicochemical properties, microstructures, monosaccharide compositions, and functional characteristics (antioxidant and α-glucosidase inhibitory activities in vitro) of all modified ADF samples, the optimal modification method was selected. Results showed that sodium hydroxide treatment was deemed the most effective modification method for ADF, as alkali-treated ADF (ADF-A) revealed a higher oil-holding capacity (2.02 g/g), swelling capacity (8.38 mL/g), cholesterol adsorption (6.79 mg/g), and α-glucosidase inhibitory activity (more than 70% at 0.4-0.6 mg/mL) than the other modified samples. The looser microstructure in ADF-A might be attributed to molecular rearrangement and spatial structure disruption, which resulted in smaller molecular sizes and decreased viscosity, hence improving ADF's physicochemical and functional qualities. All these findings indicate the greater application potential of modified ADF products in food and weight-loss industries, providing a comprehensive reference for the industrial application of ADF.
Collapse
Affiliation(s)
- Jingjing Kang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guian New Area, Guiyang 561113, China; (L.W.); (L.D.); (M.Y.); (S.W.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| | - Li Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guian New Area, Guiyang 561113, China; (L.W.); (L.D.); (M.Y.); (S.W.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| | - Ling Dong
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guian New Area, Guiyang 561113, China; (L.W.); (L.D.); (M.Y.); (S.W.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| | - Mingyue Yin
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guian New Area, Guiyang 561113, China; (L.W.); (L.D.); (M.Y.); (S.W.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guian New Area, Guiyang 561113, China; (L.W.); (L.D.); (M.Y.); (S.W.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guian New Area, Guiyang 561113, China; (L.W.); (L.D.); (M.Y.); (S.W.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| |
Collapse
|
2
|
Song Y, Sun G, Wang D, Chen J, Lv J, Jiang S, Zhang G, Yu S, Zheng H. Optimization of Composite Enzymatic Extraction, Structural Characterization and Biological Activity of Soluble Dietary Fiber from Akebia trifoliata Peel. Molecules 2024; 29:2085. [PMID: 38731576 PMCID: PMC11085559 DOI: 10.3390/molecules29092085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
In order to reduce the waste of Akebia trifoliata peel and maximize its utilization, in this study, on the basis of a single-factor experiment and the response surface method, the optimum technological conditions for the extraction of soluble dietary fiber from Akebia trifoliata peel with the compound enzyme method were obtained. The chemical composition, physical and chemical properties, structural characterization and biological activity of the purified soluble dietary fiber (AP-SDF) from the Akebia trifoliata peel were analyzed. We discovered that that the optimum yield was 20.87% under the conditions of cellulase addition 600 U/g, enzymolysis time 100 min, solid-liquid ratio 1:24 g/mL and enzymolysis temperature 51 °C. At the same time, AP-SDF was a porous network structure cellulose type I acidic polysaccharose mainly composed of arabinoxylan (36.03%), galacturonic acid (27.40%) and glucose (19.00%), which possessed the structural characteristic peaks of the infrared spectra of polysaccharides and the average molecular weight (Mw) was 95.52 kDa with good uniformity. In addition, the AP-SDF exhibited high oil-holding capacity (15.11 g/g), good water-holding capacity and swelling capacity, a certain antioxidant capacity in vitro, hypoglycemic activity in vitro for α-glucosidase inhibition and hypolipidemic activity in vitro for the binding ability of bile acids and cholesterol. These results will provide a theoretical basis for the development of functional products with antioxidant, hypoglycemic and hypolipidemic effects, which have certain application value in related industries.
Collapse
Affiliation(s)
- Ya Song
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Guoshun Sun
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Dian Wang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Jin Chen
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Jun Lv
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Sixia Jiang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Guoqiang Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
- Engineering Technology Research Center of Health Wine Brewing, Renhuai 564507, China
| | - Huayan Zheng
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
- Talent Cultivation Center of Moutai Institute on Characteristic Food Resource Utilization, Renhuai 564507, China
| |
Collapse
|
3
|
Chen L, Wu Y, Jiang X, Gan D, Fan J, Sun Y, Liu W, Li X. Dietary fiber extraction from citrus peel pomace: Yield optimization and evaluation of its functionality, rheological behavior, and microstructure properties. J Food Sci 2023; 88:3507-3523. [PMID: 37458301 DOI: 10.1111/1750-3841.16702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
Citrus fruits were widely used in processing and production, generating a large amount of peel pomace and a low utilization rate, resulting in substantial economic losses and environmental risks. It was important to extract compounds from citrus peel pomaces and find suitable preparation methods to improve their yield and physicochemical properties. Grapefruit peel pomace (GP) and navel orange peel pomace (OP) were used as raw materials in this study to prepare green and edible soluble dietary fiber (SDF) and insoluble dietary fiber (IDF). Analysis was done on the effects of solid-liquid ratio, cellulase hydrolysis time, cellulase dosage, and ultrasonic time on dietary fiber (DF) yield. To obtain the best DF preparation conditions, we used range analysis, variance analysis, and orthogonal experimental design. We also analyzed the structural, physicochemical, and rheological characteristics of SDF and IDF. According to the study's findings, SDF and IDF showed a loose and expansive structure with reduced particle size, higher specific surface area, and noticeably better physical and chemical properties after treating GP and OP with ultrasound-assisted composite enzyme method. Both SDF solution and IDF suspension were discovered through rheological analysis to be non-Newtonian pseudoplastic fluids, which was advantageous for expanding their applications in the field of food packaging. In conclusion, DF prepared using the ultrasound-assisted composite enzyme method was an excellent source of edible packaging materials, offering a benchmark for the recycling of other citrus peel wastes and ultimately paving the way for new methods of recycling citrus waste.
Collapse
Affiliation(s)
- Lily Chen
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, China
- School of Fine Arts, Hengyang Normal University, Hengyang, China
| | - Yincai Wu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, China
| | - Xinjia Jiang
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, China
| | - Diansong Gan
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, China
| | - Jingxin Fan
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, China
| | - Yanmei Sun
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, China
| | - Wenliang Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, China
| | - Xianggang Li
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
4
|
Dong Y, Li Q, Zhao Y, Cao J. Effects of ultrasonic assisted high-temperature cooking method on the physicochemical structure characteristics and in vitro antioxidant capacities of dietary fiber from Dendrocalamus brandisii Munro shoots. ULTRASONICS SONOCHEMISTRY 2023; 97:106462. [PMID: 37285633 DOI: 10.1016/j.ultsonch.2023.106462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/03/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
In this study, the ultrasonic assisted high-temperature cooking extraction method of soluble dietary fiber from bamboo shoots was optimized by response surface methodology, and the effects of ultrasonic assisted high-temperature cooking extraction on the structural characteristics, physicochemical properties and antioxidant activity of soluble dietary fiber (SDF) from bamboo shoots were evaluated. The yield of modified UH-SDF1 was significantly higher than that of untreated D-SDF2. FTIR and XRD confirmed that UH-SDF had more hydrophilic groups and higher crystallinity (28.73 %), resulting in better thermal stability. SEM observation showed that UH-SDF exhibited a more loose microstructure, and the particle size of UH-SDF (601.52 μm) was significantly smaller than that of D-SDF (242.59 μm), so UH-SDF had a larger specific surface area. In addition, UH-SDF has stronger water holding capacity, water swelling capacity and oil holding capacity than D-SDF. The DPPH radical and hydroxyl radical scavenging rates of UH-SDF were 8.91 % and 7.49 % higher than those of D-SDF. In addition, the reducing ability of UH-SDF was higher than that of D-SDF, which had better antioxidant activity. In summary, UH-SDF has the potential to be developed as an anti-inflammatory functional food.
Collapse
Affiliation(s)
- Yufan Dong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China; Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Qin Li
- Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Yihe Zhao
- Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China.
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
5
|
Dong Y, Li Q, Guo Y, Zhao Y, Cao J. Comparison of physicochemical and in vitro hypoglycemic activity of bamboo shoot dietary fibers from different regions of Yunnan. Front Nutr 2023; 9:1102671. [PMID: 36712536 PMCID: PMC9879356 DOI: 10.3389/fnut.2022.1102671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023] Open
Abstract
In this study, the physicochemical properties, thermal characteristics, and in vitro hypoglycemic activity of dietary fibers extracted from four bamboo shoots were characterized and compared. The results showed that Dendrocalamus brandisii Munro (C-BSDF) had the highest dietary fiber content (6.1%) and the smallest particle size (222.21 μm). SEM observations found that C-BSDF exhibited a loose and porous microstructure, while FTIR and XRD confirmed that C-BSDF had a higher degree of decomposition of insoluble dietary fiber components and the highest crystallinity, resulting in a better microstructure. Furthermore, C-BSDF exhibited excellent physiochemical properties with the highest water hold capacity, water swelling capacity, and preferable oil holding capacity. Thermal analysis showed that C-BSDF had the lowest mass loss (64.25%) and the highest denaturation temperature (114.03°C). The hypoglycemic activity of dietary fibers from bamboo shoots were examined in vitro and followed this order of activity: C-BSDF>D-BSDF>A-BSDF>B-BSDF. The inhibition ratios of GAC, GDRI and α-amylase activity of C-BSDF were 21.57 mmol/g, 24.1, and 23.34%, respectively. In short, C-BSDF display excellent physicochemical and functional properties due to its high soluble dietary fiber content, small particle size with a high specific surface area, and loose microstructure. Thus, D. brandisii Munro can be considered a promising new source of dietary fiber for hypoglycemic health products.
Collapse
Affiliation(s)
- Yufan Dong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China,Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Qin Li
- Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Yuhong Guo
- Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Yihe Zhao
- Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China,*Correspondence: Yihe Zhao,
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China,Jianxin Cao,
| |
Collapse
|
6
|
Iqbal S, Tirpanalan-Staben Ö, Franke K. Modification of Dietary Fibers to Valorize the By-Products of Cereal, Fruit and Vegetable Industry-A Review on Treatment Methods. PLANTS (BASEL, SWITZERLAND) 2022; 11:3466. [PMID: 36559578 PMCID: PMC9781242 DOI: 10.3390/plants11243466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Many by-products originating from cereal, fruit and vegetable industries contain quite high amounts of dietary fiber (DF), which play an important role in maintaining the healthy state of the human body. Nevertheless, huge proportions of these by-products are still underutilized as feed ingredients, to generate energy within an anaerobic digestion plant or even landfilled. One of the biggest hindrances in the valorization of such by-products is their very low soluble dietary fiber (SDF) to insoluble dietary fiber (IDF) ratios, impairing their nutritional functionality, palatability and technological applicability. Therefore, it is of interest to develop methods that can enhance the SDF to IDF ratio and that can be applied to the by-product streams of the food industry, enabling better valorization perspectives for human nutrition purposes. In this regard, the review paper provides an overview of existing technologies to modify the SDF to IDF ratio in by-products of the food industry by means of physical, chemical and biological treatments. For each type of treatment, available data on application examples including achieved increases in SDF contents are given. Additionally, a comparative discussion regarding the advantages and disadvantages of these methods is provided.
Collapse
|
7
|
Ma C, Ni L, Guo Z, Zeng H, Wu M, Zhang M, Zheng B. Principle and Application of Steam Explosion Technology in Modification of Food Fiber. Foods 2022; 11:3370. [PMID: 36359983 PMCID: PMC9658468 DOI: 10.3390/foods11213370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Steam explosion is a widely used hydrothermal pretreatment method, also known as autohydrolysis, which has become a popular pretreatment method due to its lower energy consumption and lower chemical usage. In this review, we summarized the technical principle of steam explosion, and its definition, modification and application in dietary fiber, which have been explored by researchers in recent years. The principle and application of steam explosion technology in the modification of food dietary fiber were analyzed. The change in dietary fiber structure; physical, chemical, and functional characteristics; the advantages and disadvantages of the method; and future development trends were discussed, with the aim to strengthen the economic value and utilization of plants with high dietary fiber content and their byproducts.
Collapse
Affiliation(s)
- Chao Ma
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Liying Ni
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Zebin Guo
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Maoyu Wu
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Ming Zhang
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Baodong Zheng
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Ilgar M, Baytemir G, Taşaltın N, Güllülü S, Yeşilyurt İS, Karakuş S. Multifunctional maca extract coated CuO nanoparticles with antimicrobial and dopamine sensing activities: A dual electrochemical – Smartphone colorimetric detection system. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Xu F, Zhang S, Zhou T, Waterhouse GI, Du Y, Sun-Waterhouse D, Wu P. Green approaches for dietary fibre-rich polysaccharide production from the cooking liquid of Adzuki beans: Enzymatic extraction combined with ultrasonic or high-pressure homogenisation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Effects of γ-Irradiation on Structure and Functional Properties of Pea Fiber. Foods 2022; 11:foods11101433. [PMID: 35627001 PMCID: PMC9141299 DOI: 10.3390/foods11101433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
In this study, pea residue reserve insoluble diet fiber (hereinafter referred to as pea fiber) was used as a raw material. The effects of γ-irradiation doses (0, 0.5, 1, 2, 3, and 5 kGy) on the structural properties (main composition, particle size and specific surface area, scanning electron microscope (SEM) microstructure, Fourier transform infrared spectroscopy, and X-ray diffraction) and functional properties (oil-holding capacity, swelling and water-holding capacity, and adsorption properties) of pea fiber were explored. The results show that, when the γ-irradiation dose was 2 kGy, compared with the untreated sample, the contents of cellulose, hemicellulose and lignin in pea fiber decreased by 1.34 ± 0.42%, 2.56 ± 0.03% and 2.02 ± 0.05%, respectively, and the volume particle size of pea fiber decreased by 17.43 ± 2.35 μm. The specific surface area increased by 23.70 ± 2.24 m2/kg and the crystallinity decreased by 7.65%. Pore and irregular particles appeared on the microstructure surface of the pea fiber treated with γ-irradiation. The results of the infrared spectrum showed that the hemicellulose and lignin in pea fiber were destroyed by γ-irradiation. These results indicate that γ-irradiation can significantly affect the structural properties of pea fiber. When the γ-irradiation dose was 2 kGy, the highest oil-holding capacity, swelling capacity and water-holding capacity of pea fiber were 8.12 ± 0.12 g/g, 19.75 ± 0.37 mL/g and 8.35 ± 0.18 g/g, respectively, and the adsorption capacities of sodium nitre, cholesterol and glucose were also the strongest. These results indicate that the functional properties of pea fiber are improved by γ-irradiation. In this study, γ-irradiation technology was used as pretreatment to provide a theoretical basis for the application of pea fiber in food processing.
Collapse
|
11
|
Tang Y, Li AP, Xiao J, Li D, Wang L. Construction of catechin and bamboo shoot dietary fiber compounds: Their protection and release of catechin during digestion. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yumei Tang
- College of Food Science and Engineering Central South University of Forestry and Technology Changsha China
| | - An Ping Li
- College of Food Science and Engineering Central South University of Forestry and Technology Changsha China
| | - Jianping Xiao
- College of Food Science and Engineering Central South University of Forestry and Technology Changsha China
| | - Dongyang Li
- College of Food Science and Engineering Central South University of Forestry and Technology Changsha China
| | - Le Wang
- College of Food Science and Engineering Central South University of Forestry and Technology Changsha China
| |
Collapse
|
12
|
He X, Dai T, Sun J, Liang R, Liu W, Chen M, Chen J, Liu C. Disintegrating the Structure and Improving the Functionalities of Pea Fiber by Industry-Scale Microfluidizer System. Foods 2022; 11:foods11030418. [PMID: 35159568 PMCID: PMC8834372 DOI: 10.3390/foods11030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 11/16/2022] Open
Abstract
In the food industry, the most prominent and concerned points in the application of dietary fiber are hydration properties and oil absorption capacity. The target of this work was to investigate the impact of a novel industry-scale microfluidizer system (ISMS) on the changing structures and functionalities of pea fiber. Different ISMS treatment intensity (0–120 MPa for one pass and 120 MPa for two passes) was applied to treat pea fiber. ISMS treatment induced the reduction in particle size and the transformation of big compact blocks to loose flakes, and the destruction of the original ordered cellulose structure caused the decline of crystallinity. Meanwhile, the hydration properties of pea fiber were improved, and pre-pulverizer and industry-scale microfluidizer treatment together increased the swelling capacity and water retention capacity of fiber. The oil holding capacity of ISMS-treated fiber was increased to more than double the original one. The elevated functionalities of pea fiber by ISMS treatment could be attributed to loosening structure, exposing more surface area, and disordering the crystalline structure, which increased the sites of water binding and oil adsorption. These findings suggested that ISMS could be applied as an effective industrial technique to the disintegrate structure and improve the functionalities of pea fiber, so as to widen the application of pea fibers in foods.
Collapse
Affiliation(s)
- Xiaohong He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.H.); (R.L.); (W.L.); (M.C.); (J.C.)
| | - Taotao Dai
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (T.D.); (J.S.)
| | - Jian Sun
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (T.D.); (J.S.)
| | - Ruihong Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.H.); (R.L.); (W.L.); (M.C.); (J.C.)
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.H.); (R.L.); (W.L.); (M.C.); (J.C.)
| | - Mingshun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.H.); (R.L.); (W.L.); (M.C.); (J.C.)
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.H.); (R.L.); (W.L.); (M.C.); (J.C.)
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.H.); (R.L.); (W.L.); (M.C.); (J.C.)
- Correspondence:
| |
Collapse
|
13
|
Microstructure, physicochemical properties, and adsorption capacity of deoiled red raspberry pomace and its total dietary fiber. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112478] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Lyu B, Wang H, Swallah MS, Fu H, Shen Y, Guo Z, Tong X, Li Y, Yu H, Jiang L. Structure, properties and potential bioactivities of high-purity insoluble fibre from soybean dregs (Okara). Food Chem 2021; 364:130402. [PMID: 34175627 DOI: 10.1016/j.foodchem.2021.130402] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/30/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
High-purity insoluble dietary fibre (HPIDF) was obtained from low-purity dietary fibre (LPDF) of Okara using a combined-enzyme method. For exploring the value of HPIDF as a functional food material, the structure, physicochemical properties, adsorption properties, potential bioactivities of HPIDF and their changes in different stages of digestion were explored in vitro. The results show that HPIDF shows a high perfect oil-holding capacity, higher viscosity, better cation exchange capacity, α-amylase activity ratio due to smaller particle size and larger specific surface area. The heavy metals-adsorption (Cd2+, Pb2+, Zn2+) shows the same, especially in simulated gastric fluid, which is similar to the adsorbability of glucose, cholesterol and acrylamide. Beyond the structure, the dissociation degree of some functional groups result from different digestive environments is the possible cause. Okara is an ideal material for the recovery of HPIDF, which has the potential to be processed into functional food materials.
Collapse
Affiliation(s)
- Bo Lyu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; HeilongjiangBeidahuang Green Health Food Co. LTD, Heilongjiang, Jiamusi 154000, China
| | - Mohammed Sharif Swallah
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hongling Fu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Yue Shen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohong Tong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
15
|
Lyu B, Wang Y, Zhang X, Chen Y, Fu H, Liu T, Hao J, Li Y, Yu H, Jiang L. Changes of High-Purity Insoluble Fiber from Soybean Dregs (Okara) after Being Fermented by Colonic Flora and Its Adsorption Capacity. Foods 2021; 10:foods10102485. [PMID: 34681533 PMCID: PMC8536182 DOI: 10.3390/foods10102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
In order to explore the changes and properties of high-purity insoluble dietary fiber from okara (HPIDF) after entering the colon and be fermented by colonic flora, fermented high-purity insoluble dietary fiber (F-HPIDF) was obtained by simulated fermentation in vitro by HPIDF and colonic flora from C57BL/6 mice. For exploring the differences of HPIDF and F-HPIDF, the changes of structure (SEM. FTIR, XRD, particle size, specific surface area, monosaccharide composition) and adsorption properties (water, oil, heavy metal irons, harmful substances) of HPIDF/F-HPIDF were explored. The results showed that F-HPIDF had a higher water-holding capacity (19.17 g/g), water-swelling capacity (24.83 mL/g), heavy metals-adsorption capacity (Cd2+: 1.82 μmol/g; Pb2+: 1.91 μmol/g; Zn2+: 1.30 μmol/g; Cu2+: 0.68 μmol/g), and harmful substances-adsorption capacity (GAC: 0.23 g/g; CAC: 14.80 mg/g; SCAC: 0.49 g/g) than HPIDF due to the changes of structure caused by fermentation. In addition, with the fermentation of HPIDF, some beneficial substances were produced, which might be potential intestinal prebiotics. The study of F-HPIDF strengthens the speculation that HPIDF may have potential bioactivities after entering the colon, which proved that okara-HPIDF may have potential functionality.
Collapse
Affiliation(s)
- Bo Lyu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (B.L.); (X.Z.); (Y.L.)
- Soybean Research & Development Center, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China; (Y.W.); (Y.C.); (H.F.)
| | - Yi Wang
- Soybean Research & Development Center, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China; (Y.W.); (Y.C.); (H.F.)
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xin Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (B.L.); (X.Z.); (Y.L.)
- Soybean Research & Development Center, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China; (Y.W.); (Y.C.); (H.F.)
| | - Yuxi Chen
- Soybean Research & Development Center, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China; (Y.W.); (Y.C.); (H.F.)
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Hongling Fu
- Soybean Research & Development Center, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China; (Y.W.); (Y.C.); (H.F.)
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun 130118, China;
| | - Jianyu Hao
- School of Food and Biotechnology, Changchun Vocational Institute of Technology, Changchun 130118, China;
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (B.L.); (X.Z.); (Y.L.)
- Soybean Research & Development Center, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China; (Y.W.); (Y.C.); (H.F.)
| | - Hansong Yu
- Soybean Research & Development Center, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China; (Y.W.); (Y.C.); (H.F.)
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (H.Y.); (L.J.); Tel.: +86-133-3176-0468 (H.Y.); +86-139-0465-1669 (L.J.)
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (B.L.); (X.Z.); (Y.L.)
- Soybean Research & Development Center, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China; (Y.W.); (Y.C.); (H.F.)
- Correspondence: (H.Y.); (L.J.); Tel.: +86-133-3176-0468 (H.Y.); +86-139-0465-1669 (L.J.)
| |
Collapse
|
16
|
Gan J, Xie L, Peng G, Xie J, Chen Y, Yu Q. Systematic review on modification methods of dietary fiber. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106872] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Trejo Rodríguez IS, Alcántara Quintana LE, Algara Suarez P, Ruiz Cabrera MA, Grajales Lagunes A. Physicochemical Properties, Antioxidant Capacity, Prebiotic Activity and Anticancer Potential in Human Cells of Jackfruit ( Artocarpus heterophyllus) Seed Flour. Molecules 2021; 26:4854. [PMID: 34443442 PMCID: PMC8398192 DOI: 10.3390/molecules26164854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
The general aim of this study was to evaluate physicochemical properties, prebiotic activity and anticancer potential of jackfruit (Artocarpus heterophyllus) seed flour. The drying processes of jackfruit seeds were performed at 50, 60 and 70 °C in order to choose the optimal temperature for obtaining the flour based on drying time, polyphenol content and antioxidant capacity. The experimental values of the moisture ratio during jackfruit seed drying at different temperatures were obtained using Page's equation to establish the drying time for the required moisture between 5 and 7% in the flour. The temperature of 60 °C was considered adequate for obtaining good flour and for performing its characterization. The chemical composition, total dietary fiber, functional properties and antioxidant capacity were then examined in the flour. The seed flour contains carbohydrates (73.87 g/100 g), dietary fiber (31 g/100 g), protein (14 g/100 g) and lipids (1 g/100 g). The lipid profile showed that the flour contained monounsaturated (4 g/100 g) and polyunsaturated (46 g/100 g) fatty acids. Sucrose, glucose, and fructose were found to be the predominant soluble sugars, and non-digestible oligosaccharides like 1-kestose were also found. The total polyphenol content was 2.42 mg of gallic acid/g of the sample; furthermore, the antioxidant capacity obtained by ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) was 901.45 µmol Trolox/100 g and 1607.87 µmol Trolox/100 g, respectively. The obtained flour exhibited good functional properties, such as water and oil absorption capacity, swelling power and emulsifier capacity. Additionally, this flour had a protective and preventive effect which is associated with the potential prebiotic activity in Lactobacillus casei and Bifidobacterium longum. These results demonstrate that jackfruit seed flour has good nutritional value and antioxidant and prebiotic activity, as well as potential protective effects and functional properties, making it an attractive food or ingredient in developing innovative functional products.
Collapse
Affiliation(s)
- Ibna Suli Trejo Rodríguez
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, Universitaria, San Luis Potosí 78210, Mexico; (I.S.T.R.); (M.A.R.C.)
- Faculty of Nursing and Nutrition, Autonomous University of San Luis Potosí, San Luis Potosí 78240, Mexico; (L.E.A.Q.); (P.A.S.)
| | - Luz Eugenia Alcántara Quintana
- Faculty of Nursing and Nutrition, Autonomous University of San Luis Potosí, San Luis Potosí 78240, Mexico; (L.E.A.Q.); (P.A.S.)
| | - Paola Algara Suarez
- Faculty of Nursing and Nutrition, Autonomous University of San Luis Potosí, San Luis Potosí 78240, Mexico; (L.E.A.Q.); (P.A.S.)
| | - Miguel Angel Ruiz Cabrera
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, Universitaria, San Luis Potosí 78210, Mexico; (I.S.T.R.); (M.A.R.C.)
| | - Alicia Grajales Lagunes
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, Universitaria, San Luis Potosí 78210, Mexico; (I.S.T.R.); (M.A.R.C.)
| |
Collapse
|
18
|
Tang YM, Li AP, Xiao JP, Li DY, Wang L. Effects of bamboo shoots (Phyllostachys edulis) dietary fibers prepared by different processes on the adsorption characteristics of polyphenols. J Food Biochem 2021; 45:e13721. [PMID: 33837560 DOI: 10.1111/jfbc.13721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/11/2021] [Accepted: 03/21/2021] [Indexed: 11/28/2022]
Abstract
In this work, adopting bamboo shoots as raw materials, three kinds of bamboo shoots dietary fibers were prepared by physical, chemical, and enzymatic methods, termed BSPDF, BSCDF, and BSEDF, respectively, and then investigating their adsorption characteristics for polyphenols through soaked them in different concentrations and different types of polyphenol solutions. The results of the adsorption kinetics showed that the adsorption amounts of polyphenols significantly increased during the initial 30 s of soaking, and the subsequent adsorption rate became slower and slower achieving adsorption kinetics after 2 hr. Moreover, their adsorption isotherms met well with the Langmuir model, but differences in saturated adsorption capacity and adsorption rate. More impressively, the maximum adsorption capacities Qmax of them to polyphenols followed the order of catechin > phlorizin dihydrate > chlorogenic acid > gallic acid. In addition, BSPDF, BSCDF and BSEDF all could adsorb a large amount of free catechin with the saturated adsorption capacity of 15.77, 14.69 and 16.76 mg/g, respectively and which exhibited blue and green characteristic fluorescence emission signals in the presence of catechin. Therefore, compared with the other two methods, the enzymatic hydrolysis method retains the spatial network structure of the fibrils, has a larger surface area and porosity, retains the original bound phenol of fibrils, with stronger physiological activity and more potential applications. PRACTICAL APPLICATIONS: Polyphenols are easy to oxidize in vitro, and are easily affected by gastric acid and various enzymes in vivo, which reduce their physiological activity. However, dietary fibers can resist the destruction of various enzymes and acids in the gastrointestinal tract. It is increasingly being realized that dietary fibers play a very important role in adsorbing polyphenols into its network structure, which can achieve the purpose of protecting polyphenols. In this contest, the bamboo shoots dietary fibers prepared by different methods had different adsorption characteristics for polyphenols. The aim of current study was to compare the saturated adsorption capacity of three kinds of dietary fibers to polyphenols, and screen suitable processing technology. We believed that our findings could be to provide basis for the development of new functional foods.
Collapse
Affiliation(s)
- Yu Mei Tang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - An Ping Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jian Ping Xiao
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Dong Yang Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Le Wang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
19
|
Liu X, Yu X, Zhang X, Li F, Zhang X. Preparation of polysaccharides from
Osmunda japonica
(Thunb) with the potential of food additives: Structural features and functional properties. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaochen Liu
- School of Marine and Biology Engineering Yancheng Institute of Technology Yancheng China
| | - Xiaohong Yu
- School of Marine and Biology Engineering Yancheng Institute of Technology Yancheng China
| | - Xueting Zhang
- College of Food Science Northeast Agricultural University Harbin China
| | - Fengfeng Li
- College of Food Science Northeast Agricultural University Harbin China
| | - Xiuling Zhang
- College of Food Science Northeast Agricultural University Harbin China
| |
Collapse
|
20
|
Hydrogen peroxide modification affects the structure and physicochemical properties of dietary fibers from white turnip (Brassica Rapa L.). Sci Rep 2021; 11:1024. [PMID: 33441935 PMCID: PMC7807005 DOI: 10.1038/s41598-020-80410-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 12/15/2020] [Indexed: 11/08/2022] Open
Abstract
Turnip (Brassica rapa L.) is widely consumed as a vegetable and traditional Chinese medicine with high dietary fiber content. Soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) were obtained from white turnips, and the IDF was modified with alkaline hydrogen peroxide to obtain modified IDF (MIDF) and modified SDF (MSDF). The compositional, structural, and functional properties of the four samples were investigated. After modification, the modified dietary fibers (MDFs) showed smaller particle sizes and lower contents of pectin and polyphenol than those of unmodified dietary fibers (DFs) The results of scanning electron microscopy (SEM), Fourier transformed infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) showed that compared to the DFs, the MDFs were smaller and had more exposed hydroxyl groups. Analysis of the microrheological behaviors showed that the MDFs had higher viscosity than that of the DFs, with a looser structure for the MSDF and a stable structure for the MIDF. Therefore, due to structural changes, the physical and functional properties of the MDFs were improved compared to those of the unmodified DFs. Pearson correlation analysis showed that the particle size was positively correlated with the pectin content. The water holding capacity (WHC), oil adsorption capacity (OAC) and water swelling capacity (WSC) showed positive correlations with each other. This work indicated that white turnip could be a potential new source of DFs, which presented desirable functional properties after modification.
Collapse
|
21
|
Jiang Y, Yin H, Zheng Y, Wang D, Liu Z, Deng Y, Zhao Y. Structure, physicochemical and bioactive properties of dietary fibers from Akebia trifoliata (Thunb.) Koidz. seeds using ultrasonication/shear emulsifying/microwave-assisted enzymatic extraction. Food Res Int 2020; 136:109348. [DOI: 10.1016/j.foodres.2020.109348] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/05/2023]
|
22
|
Modification of insoluble dietary fiber from ginger residue through enzymatic treatments to improve its bioactive properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109220] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Gan J, Huang Z, Yu Q, Peng G, Chen Y, Xie J, Nie S, Xie M. Microwave assisted extraction with three modifications on structural and functional properties of soluble dietary fibers from grapefruit peel. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105549] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Zhang F, Yi W, Cao J, He K, Liu Y, Bai X. Microstructure characteristics of tea seed dietary fibre and its effect on cholesterol, glucose and nitrite ion adsorption capacities
in vitro
: a comparison study among different modifications. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fangfang Zhang
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Ministry of Education Hainan University Haikou 570228 China
| | - Wangrui Yi
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Ministry of Education Hainan University Haikou 570228 China
| | - Jun Cao
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Ministry of Education Hainan University Haikou 570228 China
| | - Kunming He
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Ministry of Education Hainan University Haikou 570228 China
| | - Yawen Liu
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Ministry of Education Hainan University Haikou 570228 China
| | - Xinpeng Bai
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Ministry of Education Hainan University Haikou 570228 China
| |
Collapse
|
25
|
Karra S, Sebii H, Yaich H, Bouaziz MA, Blecker C, Danthine S, Attia H, Besbes S. Effect of extraction methods on the physicochemical, structural, functional, and antioxidant properties of the dietary fiber concentrates from male date palm flowers. J Food Biochem 2020; 44:e13202. [PMID: 32189367 DOI: 10.1111/jfbc.13202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/07/2020] [Accepted: 02/16/2020] [Indexed: 12/19/2022]
Abstract
The current study evaluates the effect of both aqueous and alkaline extraction methods on the physicochemical, structural, functional, and antioxidant properties of dietary fibers (DF) from male date palm flowers (MDPF). The DF extracted by the alkali treatment (ADF) display a higher DF content as well as lower protein and lipid content than the DF resulting from watery extraction (WDF). The scanning electron microscopy, the Fourier-transform infrared spectroscopy, and the X-ray diffraction show that the alkaline treatment contributes to a slight modification of the structural characteristics of ADF leading to better purity and functional properties. The oil holding capacity and the antioxidant activity of ADF have improved compared to the WDF, which makes this concentrate a promoting functional ingredient and a natural antioxidant. Therefore, these findings confirm the wealth of both concentrates in DF, especially ADF, as well as their potential of functional and antioxidant properties, which emphasize their suitability to be used in food applications as functional ingredients. PRACTICAL APPLICATIONS: Nowadays, studies on the extraction of DF from vegetable waste are of considerable interest in the face of the rising global demand for dietetic food. The male date palm flowers (MDPF), an agricultural waste generated during the period of pollination, are valuable natural sources of DF and antioxidants. The insoluble DF of MDPF could be essential in a balanced diet as they could fight against obesity by creating a feeling of satiety. The presence of antioxidants, which are known for preventing or slowing cell damage caused by free radicals, could contribute to the improvement of the antioxidant properties of the formulated food. The functional properties of DF concentrates from MDPF are able to solve the technical problems of agri-food industries when used as food ingredients. The use of DF from MDPF, consequently, contributes to the minimization of waste and provides value addition to the by-product considered as waste in agricultural processing.
Collapse
Affiliation(s)
- Sirine Karra
- Laboratory of Analysis Valorisation and Food Safety, Department of Biology, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Haifa Sebii
- Laboratory of Analysis Valorisation and Food Safety, Department of Biology, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Hela Yaich
- Laboratory of Analysis Valorisation and Food Safety, Department of Biology, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Mohamed Ali Bouaziz
- Laboratory of Analysis Valorisation and Food Safety, Department of Biology, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Christophe Blecker
- Laboratory of Food Science and Formulation, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Sabine Danthine
- Laboratory of Food Science and Formulation, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Hamadi Attia
- Laboratory of Analysis Valorisation and Food Safety, Department of Biology, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Souhail Besbes
- Laboratory of Analysis Valorisation and Food Safety, Department of Biology, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia.,Laboratory of Food Science and Formulation, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
26
|
Zhang D, Wang L, Tan B, Zhang W. Dietary fibre extracted from different types of whole grains and beans: a comparative study. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Duqin Zhang
- Institute of Cereal & Oil Science and Technology Academy of National Food and Strategic Reserves Administration No. 11 Baiwan Zhuang Street Xicheng District Beijing 100037 China
| | - Liping Wang
- Institute of Cereal & Oil Science and Technology Academy of National Food and Strategic Reserves Administration No. 11 Baiwan Zhuang Street Xicheng District Beijing 100037 China
| | - Bin Tan
- Institute of Cereal & Oil Science and Technology Academy of National Food and Strategic Reserves Administration No. 11 Baiwan Zhuang Street Xicheng District Beijing 100037 China
| | - Weiqing Zhang
- Institute of Cereal & Oil Science and Technology Academy of National Food and Strategic Reserves Administration No. 11 Baiwan Zhuang Street Xicheng District Beijing 100037 China
| |
Collapse
|
27
|
Xue Z, Ma Q, Guo Q, Santhanam RK, Gao X, Chen Z, Wang C, Chen H. Physicochemical and functional properties of extruded dietary fiber from mushroom Lentinula edodes residues. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.100452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
28
|
He Y, Li W, Zhang X, Li T, Ren D, Lu J. Physicochemical, functional, and microstructural properties of modified insoluble dietary fiber extracted from rose pomace. Journal of Food Science and Technology 2019; 57:1421-1429. [PMID: 32180638 DOI: 10.1007/s13197-019-04177-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/04/2019] [Accepted: 11/13/2019] [Indexed: 01/03/2023]
Abstract
Rose pomace, a by-product of the essential oil extraction process, is rich in dietary fiber. Insoluble dietary fiber (IDF) extracted from rose pomace was modified by enzymatic hydrolysis (EH) and ultrasound-assisted enzymatic hydrolysis (UEH) methods, and their physicochemical, functional, and microstructural properties were studied. The results showed that EH treatment performed better in the yield of soluble dietary fiber and the glucose adsorption capacity than UEH which contributed to better oil-holding, swelling, cation-exchange, and cholesterol adsorption capacities. Moreover, cellulose, hemicellulose, and lignin were detected based on Fourier transform infrared spectra and X-ray diffraction patterns. Scanning electron microscopy revealed that IDF had a shaly surface with a loose block structure after modification. In conclusion, different modification degrees have respective advantages, and modified IDF from rose pomace could be utilized in the food industry as a new source of functional ingredients, as well as to increase the economic value of rose products.
Collapse
Affiliation(s)
- Yuanyuan He
- 1Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Hai-Dian District, Beijing, 100083 People's Republic of China
- 2Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Chao-Yang District, Beijing, 100015 People's Republic of China
| | - Wen Li
- 1Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Hai-Dian District, Beijing, 100083 People's Republic of China
| | - Xiaoyu Zhang
- 1Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Hai-Dian District, Beijing, 100083 People's Republic of China
| | - Taotao Li
- 1Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Hai-Dian District, Beijing, 100083 People's Republic of China
| | - Difeng Ren
- 1Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Hai-Dian District, Beijing, 100083 People's Republic of China
| | - Jun Lu
- 2Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Chao-Yang District, Beijing, 100015 People's Republic of China
| |
Collapse
|
29
|
Meng X, Liu F, Xiao Y, Cao J, Wang M, Duan X. Alterations in physicochemical and functional properties of buckwheat straw insoluble dietary fiber by alkaline hydrogen peroxide treatment. FOOD CHEMISTRY-X 2019; 3:100029. [PMID: 31432021 PMCID: PMC6694851 DOI: 10.1016/j.fochx.2019.100029] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 04/09/2019] [Accepted: 05/07/2019] [Indexed: 01/05/2023]
Abstract
The untreated IDF tended to strong antioxidant properties in vitro. The changes of antioxidation might be related to specific substrates. AHP treatment could led to redistribution of monosaccharide in IDF. AHP treatment could improve physicochemical properties of IDF.
To enhance the physicochemical and functional properties of insoluble dietary fiber (IDF) from buckwheat straw, we investigated the effects of alkaline hydrogen peroxide (AHP) treatment. Electron microscopy showed that the IDF had regular and compact tubes that turned into wrinkled lamellar products. After AHP treatment, X-ray diffraction indicated that the crystalline structure of the IDF was perturbed. And an undesirable decrease was observed in the content of hydroxybenzoic acid derivatives, hydroxycinnamic acid derivatives, flavonoids and the antioxidant capacity of IDF modified by AHP; however, the hydration properties (such as water holding capacity), α-amylase inhibition activity and glucose adsorption capacity of IDF were significantly enhanced by AHP. Furthermore, AHP led to a redistribution of monosaccharides in soluble dietary fiber and IDF, an interesting finding hinting at the mechanism and potential applications of AHP modification of IDF. In this study, AHP enhanced the physiological and functional properties of buckwheat straw IDF.
Collapse
Affiliation(s)
- Xuemei Meng
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, PR China
| | - Fang Liu
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, PR China
| | - Yao Xiao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, PR China
| | - Junwei Cao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, PR China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, PR China
| | - Xuchang Duan
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, PR China
| |
Collapse
|
30
|
Structural and Physicochemical Characteristics of Rice Bran Dietary Fiber by Cellulase and High-Pressure Homogenization. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071270] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present paper aims to study the effect of cellulase hydrolysis and high-pressure homogenization on the structural and physicochemical properties of rice bran dietary fiber (RB-DF). Scanning electron microscopy showed that cellulase treatment led to the formation of a porous structure on RB-DF surface. High-pressure homogenization affected the laminated microstructure of RB-DF, leading to the formation of an irregular and loose surface structure. X-ray diffraction demonstrated that joint processing destroyed the amorphous hemicellulose and cellulose regions, and changed the crystallinity of RB-DF, albeit with a minor impact on the crystalline region of cellulose. Fourier transform infrared spectroscopy indicated that combined processing promoted dissociation of some glycosidic bonds in fiber structure, exposing the hydroxyl groups in cellulose, thus improving their ability to bind water molecules. Thermogravimetric analysis showed a significant decrease in the thermal decomposition temperature of RB-DF (p <0.05) as well as a decrease in thermal stability after combined processing. Cellulase hydrolysis and high-pressure homogenization treatment did not improve their oil holding capacity, but significantly increased water holding capacity, swelling capability, and cation exchange capacity of RB-DF. Thus, enzymatic hydrolysis and high-pressure homogenization treatment can change the structure of RB-DF, exposing a large number of hydrophilic groups and enhancing hydration, obtaining uniform RB-DF particle.
Collapse
|
31
|
Chemical composition and health effects of maca (Lepidium meyenii). Food Chem 2019; 288:422-443. [PMID: 30902313 DOI: 10.1016/j.foodchem.2019.02.071] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/28/2019] [Accepted: 02/15/2019] [Indexed: 12/31/2022]
Abstract
Maca (Lepidium meyenii Walpers) has emerged as a popular functional plant food due to various claimed health effects. This review details the major (i.e., starch, dietary fiber, and protein) and minor constituents (i.e., minerals, non-starch polysaccharides, polyphenols (flavonolignans), macaenes, macamides, glucosinolates, and alkaloids) of maca (root and aerial parts). Diverse health effects of maca are also summarized. Various bioactivities of maca include enhanced reproductive health, antifatigue, antioxidation, neuroprotection, antimicrobial activity, anticancer, hepatoprotection, immunomodulation, and improving skin health and digestive system's function. Plant genetics, botanical parts, processing, extraction, and experimental protocols represent the major factors affecting the chemical composition, physicochemical attributes, and health effects of maca-based products. However, clinical studies to support the claimed health effects of maca and related mechanisms appear to be lacking. Product innovation and diversification in food and non-food utilization of different parts of maca to maximize the value perceptions are suggested.
Collapse
|
32
|
Yang M, Wu L, Cao C, Wang S, Zhang D. Improved function of bamboo shoot fibre by high‐speed shear dispersing combined with enzyme treatment. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Mo Yang
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
| | - Liangru Wu
- China National Bamboo Research Center Hangzhou 310012 China
| | - Chongjiang Cao
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
| | - Suya Wang
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
| | - Dongmei Zhang
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
| |
Collapse
|
33
|
Zheng Y, Li Y. Physicochemical and functional properties of coconut ( Cocos nucifera L) cake dietary fibres: Effects of cellulase hydrolysis, acid treatment and particle size distribution. Food Chem 2018; 257:135-142. [DOI: 10.1016/j.foodchem.2018.03.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/17/2018] [Accepted: 03/05/2018] [Indexed: 10/17/2022]
|
34
|
Song Y, Su W, Mu YC. Modification of bamboo shoot dietary fiber by extrusion-cellulase technology and its properties. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1479715] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yu Song
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Wei Su
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Ying Chun Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
35
|
Garcia-Amezquita LE, Tejada-Ortigoza V, Serna-Saldivar SO, Welti-Chanes J. Dietary Fiber Concentrates from Fruit and Vegetable By-products: Processing, Modification, and Application as Functional Ingredients. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2117-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Chen JJ, Gong PF, Liu YL, Liu BY, Eggert D, Guo YH, Zhao MX, Zhao QS, Zhao B. Postharvest Ultrasound-Assisted Freeze-Thaw Pretreatment Improves the Drying Efficiency, Physicochemical Properties, and Macamide Biosynthesis of Maca (Lepidium meyenii
). J Food Sci 2018. [DOI: 10.1111/1750-3841.14083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin-Jin Chen
- State Key Laboratory of Biochemical Engineering, Inst. of Process Engineering; Chinese Acad. of Sciences; Beijing 100190 China
- Dept. of Food Science and Technology; Univ. of Nebraska-Lincoln; Lincoln N.E. 68588 U.S.A
| | - Peng-Fei Gong
- State Key Laboratory of Biochemical Engineering, Inst. of Process Engineering; Chinese Acad. of Sciences; Beijing 100190 China
- Univ. of Chinese Acad. of Sciences; Beijing 100049 China
| | - Yi-Lan Liu
- Dept. of Chemical and Biomolecular Engineering; Univ. of Nebraska-Lincoln; Lincoln N.E. 68588 U.S.A
| | - Bo-Yan Liu
- State Key Laboratory of Biochemical Engineering, Inst. of Process Engineering; Chinese Acad. of Sciences; Beijing 100190 China
- Univ. of Chinese Acad. of Sciences; Beijing 100049 China
| | - Dawn Eggert
- Dept. of Food Science and Technology; Univ. of Nebraska-Lincoln; Lincoln N.E. 68588 U.S.A
| | - Yuan-Heng Guo
- Univ. of Chinese Acad. of Sciences; Beijing 100049 China
| | - Ming-Xia Zhao
- State Key Laboratory of Biochemical Engineering, Inst. of Process Engineering; Chinese Acad. of Sciences; Beijing 100190 China
| | - Qing-Sheng Zhao
- State Key Laboratory of Biochemical Engineering, Inst. of Process Engineering; Chinese Acad. of Sciences; Beijing 100190 China
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering, Inst. of Process Engineering; Chinese Acad. of Sciences; Beijing 100190 China
| |
Collapse
|
37
|
Xie F, Zhang W, Lan X, Gong S, Wu J, Wang Z. Physicochemical properties and structural characteristics of soluble dietary fibers from yellow and purple fleshed potatoes by-product. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1387557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Fan Xie
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohong Lan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shengxiang Gong
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jinhong Wu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengwu Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Zheng Y, Li Y, Xu J, Gao G, Niu F. Adsorption activity of coconut (Cocos nucifera L.) cake dietary fibers: effect of acidic treatment, cellulase hydrolysis, particle size and pH. RSC Adv 2018; 8:2844-2850. [PMID: 35541191 PMCID: PMC9077583 DOI: 10.1039/c7ra13332d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/07/2018] [Indexed: 11/21/2022] Open
Abstract
This paper provides valuable information on the effects of cellulase hydrolysis, acidic treatment, particle size distribution and pH on the adsorption activity of coconut cake dietary fibers.
Collapse
Affiliation(s)
- Yajun Zheng
- Institute of Food Sciences of Shanxi Normal University
- Linfen
- China
- College of Life Sciences and Food Engineering of Hebei Engineering University
- Handan
| | - Yan Li
- Institute of Food Sciences of Shanxi Normal University
- Linfen
- China
- College of Life Sciences and Food Engineering of Hebei Engineering University
- Handan
| | - Jianguo Xu
- Institute of Food Sciences of Shanxi Normal University
- Linfen
- China
| | - Gang Gao
- Institute of Food Sciences of Shanxi Normal University
- Linfen
- China
| | - Fuge Niu
- The School of Food Science and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- China
| |
Collapse
|
39
|
Zhou P, Zhao Y, Zhang P, Li Y, Gui T, Wang J, Jin C, Che L, Li J, Lin Y, Xu S, Feng B, Fang Z, Wu D. Microbial Mechanistic Insight into the Role of Inulin in Improving Maternal Health in a Pregnant Sow Model. Front Microbiol 2017; 8:2242. [PMID: 29204137 PMCID: PMC5698696 DOI: 10.3389/fmicb.2017.02242] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/31/2017] [Indexed: 01/08/2023] Open
Abstract
General consumption of “western diet” characterized by high refined carbohydrates, fat and energy intake has resulted in a global obesity epidemics and related metabolic disturbance even for pregnant women. Pregnancy process is accompanied by substantial hormonal, metabolic and immunological changes during which gut microbiota is also remarkably remodeled. Dietary fiber has been demonstrated to have a striking role in shifting the microbial composition so as to improve host metabolism and health in non-pregnant individuals. The present study was conducted to investigate effects of adding a soluble dietary fiber inulin (0 or 1.5%) to low- or high- fat (0 or 5% fat addition) gestational diet on maternal and neonatal health and fecal microbial composition in a sow model. Results showed that inulin addition decreased the gestational body weight gain and fat accumulation induced by fat addition. Circulating concentrations of pro-inflammatory cytokine IL-6, adipokine leptin and chemerin were decreased by inulin supplementation. Inulin addition remarkably reduced the average BMI of newborn piglets and the within litter BMI distributions (%) ranging between 17 and 20 kg/m2, and increased the BMI distribution ranging between 14 and 17 kg/m2. 16S rRNA gene sequencing of the V3-V4 region showed that fecal microbial changes at different taxonomic levels triggered by inulin addition predisposed the pregnant sow to be thinner and lower inflammatory. Meanwhile, fecal microbial composition was also profoundly altered by gestation stage with distinct changes occurring at perinatal period. Most representative volatile fatty acid (VFA) producing-related genera changed dramatically when reaching the perinatal period and varied degrees of increases were detected with inulin addition. Fecal VFA concentrations failed to show any significant effect with dietary intervention, however, were markedly increased at perinatal period. Our findings indicate that positive microbial changes resulted by 1.5% soluble fiber inulin addition would possibly be the potential mechanisms under which maternal body weight, metabolic and inflammatory status and neonatal BMI were improved. Besides, distinct changes of microbial community at perinatal period indicated the mother sow is undergoing a catabolic state with increased energy loss and inflammation response at that period compared with other stages of gestation.
Collapse
Affiliation(s)
- Pan Zhou
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Zhao
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Pan Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Taotao Gui
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun Wang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Chao Jin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
40
|
Response Surface Methodology Optimization Extraction of Polysaccharides from Maca (Lepidium meyenii) Leaves and Primary Characterization. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-981-10-4801-2_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
41
|
Xie F, Zhang W, Lan X, Gong S, Wu J, Zhang S, Wang Z. Insoluble dietary fibers from yellow- and purple-fleshed potatoes by-products and their physicochemical properties and structural characteristics: A comparative study. STARCH-STARKE 2017. [DOI: 10.1002/star.201700104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Fan Xie
- Department of Food Science and Technology; School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai P.R. China
| | - Wei Zhang
- Department of Food Science and Technology; School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai P.R. China
| | - Xiaohong Lan
- Department of Food Science and Technology; School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai P.R. China
| | - Shengxiang Gong
- Department of Food Science and Technology; School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai P.R. China
| | - Jinhong Wu
- Department of Food Science and Technology; School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai P.R. China
| | - Shixian Zhang
- Chemical Engineering Department; Zunyi Normal College; Zunyi Guizhou P.R. China
| | - Zhengwu Wang
- Department of Food Science and Technology; School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai P.R. China
| |
Collapse
|
42
|
Modification of dietary fibers from purple-fleshed potatoes ( Heimeiren ) with high hydrostatic pressure and high pressure homogenization processing: A comparative study. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.05.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
43
|
Xie F, Wang Y, Wu J, Wang Z. Functional Properties and Morphological Characters of Soluble Dietary Fibers in Different Edible Parts of Angelica Keiskei. J Food Sci 2016; 81:C2189-98. [DOI: 10.1111/1750-3841.13399] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/02/2016] [Accepted: 06/17/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Fan Xie
- School of Agriculture and Biology; Shanghai Jiao Tong Univ; 800 Dongchuan Road Shanghai 200240 China
| | - Yuqiang Wang
- School of Perfume and Aroma Technology; Shanghai Inst. of Technology; 100 Haiquan Road Shanghai 201418 China
| | - Jinhong Wu
- School of Agriculture and Biology; Shanghai Jiao Tong Univ; 800 Dongchuan Road Shanghai 200240 China
| | - Zhengwu Wang
- School of Agriculture and Biology; Shanghai Jiao Tong Univ; 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
44
|
Pan Y, Zhang J, Li H, Wang YZ, Li WY. Simultaneous Analysis of Macamides in Maca (Lepidium meyenii) with Different Drying Process by Liquid Chromatography Tandem Mass Spectrometry. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0346-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|