1
|
Nikoofar K, Sadathosainy M. Phthalic anhydride (PA): a valuable substrate in organic transformations. RSC Adv 2023; 13:23870-23946. [PMID: 37588043 PMCID: PMC10426397 DOI: 10.1039/d3ra03378c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023] Open
Abstract
This review has been centralized on applications of phthalic anhydride (PA) as a valuable and significant heterocyclic substrate in two- and multicomponent organic reactions. The article has been subdivided into the following parts: (i) PA introduction by focusing on its characterization, synthesizing procedure, and multiple-aspect applications. In addition, the previous review articles based on PA have also been indicated; (ii) the applications of PA as a substrate have been subdivided into parts with a glance on the reaction components numbers; (iii) the applications of PA in esterification reactions; and (iv) some examples of PA in multistep synthesis. The review covers the corresponding literature up to the end of 2022. According to the abovementioned classifications, PA is a potent substrate to design a wide range of heterocyclic compounds that possess various kinds of properties and applications in chemistry, industry, and pharmaceuticals.
Collapse
Affiliation(s)
- Kobra Nikoofar
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University P.O. Box 1993891176 Tehran Iran +98 2188041344 +98 2188041344
| | - Mansoorehsadat Sadathosainy
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University P.O. Box 1993891176 Tehran Iran +98 2188041344 +98 2188041344
| |
Collapse
|
2
|
Polybutylene succinate/modified cellulose bionanocomposites as sorbent for needle trap microextraction. J Chromatogr A 2023; 1689:463715. [PMID: 36587587 DOI: 10.1016/j.chroma.2022.463715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022]
Abstract
In this work, different polybutylene succinate/modified cellulose bio-nanocomposites were synthesized by solving the casting method and then used as a new sorbent for needle trap microextraction of some polycyclic aromatic hydrocarbons from the water samples in headspace mode. The surface of cellulose nanocrystalline was modified using aminosilane groups to improve the dispersion of nanoparticles in the polybutylene succinate matrix. The characterization of synthesized nanocomposites, were performed using TGA, SEM, BET analysis and FT-IR spectroscopy. Adding modified nanocrystalline cellulose to a polybutylene succinate matrix increased the surface area, and thermal and mechanical stabilities. The significant parameters of the sorbent extraction process, including the amount of modified cellulose nanoparticles, the extraction time, and temperatures and salt content, were studied and optimized. Under the optimized extraction conditions (extraction time of 25 min, and extraction temperature of 50 °C), an analytical method for selected polycyclic aromatic hydrocarbons with low detection limits (0.75-1 ng L-1) and the quantification limit (3-5 ng L-1), good repeatability (3-7% at 20 ng L-1), and reproducibility (9%-14%, n = 3) was developed. The linearity of the method was obtained in the range of 5-1000 ng L-1 with R2 > 0.9996. The enrichment factor was obtained for the spiked real aqueous samples (at 50 ng L-1) in the range of 276-311. Also, the performance of the developed method was studied via the extraction of selected analytes in real water samples, and the relative recovery values were found to be in the range of 98-103%.
Collapse
|
3
|
Pan S, Jiang Z, Qiu Z. Crystallization and mechanical property of fully biobased poly(hexamethylene 2,5-furandicarboxylate)/cellulose nanocrystals composites. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Li Z, Zhu G, Lin N. Dispersibility Characterization of Cellulose Nanocrystals in Polymeric-Based Composites. Biomacromolecules 2022; 23:4439-4468. [PMID: 36195577 DOI: 10.1021/acs.biomac.2c00987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cellulose nanocrystals (CNCs) are hydrophilic nanoparticles extracted from biomass with properties and functions different from cellulose and are being developed for property-oriented applications such as high stiffness, abundant active groups, and biocompatibility. It has broad application prospects in the field of composite materials, while the dispersibility of the CNC in polymers is the key to its application performance. Many reviews have discussed in-depth the modification strategies to improve the dispersibility of the CNC and summarized all characterization for the CNC, but there are no reviews on the in-depth exploration of dispersion characterization. This review is a comprehensive summary of the characterization of CNC dispersion in the matrix in terms of direct observation, indirect evaluation, and quantified evaluation, summarizing how and why different characterization tools reveal dispersibility. In addition, "decision tree" flowcharts are presented to provide the reader with a reference for selecting the appropriate characterization method for a specific composite.
Collapse
Affiliation(s)
- Zikang Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road #122, Wuhan430070, P. R. China
| | - Ge Zhu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road #122, Wuhan430070, P. R. China
| | - Ning Lin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road #122, Wuhan430070, P. R. China
| |
Collapse
|
5
|
Nian L, Wang M, Sun X, Zeng Y, Xie Y, Cheng S, Cao C. Biodegradable active packaging: Components, preparation, and applications in the preservation of postharvest perishable fruits and vegetables. Crit Rev Food Sci Nutr 2022; 64:2304-2339. [PMID: 36123805 DOI: 10.1080/10408398.2022.2122924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The consumption of fresh fruits and vegetables is restricted by the susceptibility of fresh produce to deterioration caused by postharvest physiological and metabolic activities. Developing efficient preservation strategies is thus among the most important scientific issues to be urgently addressed in the field of food science. The incorporation of active agents into a polymer matrix to prepare biodegradable active packaging is being increasingly explored to mitigate the postharvest spoilage of fruits and vegetables during storage. This paper reviews the composition of biodegradable polymers and the methods used to prepare biodegradable active packaging. In addition, the interactions between bioactive ingredients and biodegradable polymers that can lead to plasticizing or cross-linking effects are summarized. Furthermore, the applications of biodegradable active (i.e., antibacterial, antioxidant, ethylene removing, barrier, and modified atmosphere) packaging in the preservation of fruits and vegetables are illustrated. These films may increase sensory acceptability, improve quality, and prolong the shelf life of postharvest products. Finally, the challenges and trends of biodegradable active packaging in the preservation of fruits and vegetables are discussed. This review aims to provide new ideas and insights for developing novel biodegradable active packaging materials and their practical application in the preservation of postharvest fruits and vegetables.
Collapse
Affiliation(s)
- Linyu Nian
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Mengjun Wang
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Xiaoyang Sun
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yan Zeng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yao Xie
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Shujie Cheng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Hung YJ, Chiang MY, Wang ET, Wu TM. Synthesis, Characterization, and Physical Properties of Maleic Acid-Grafted Poly(butylene adipate-co-terephthalate)/Cellulose Nanocrystal Composites. Polymers (Basel) 2022; 14:polym14132742. [PMID: 35808787 PMCID: PMC9269257 DOI: 10.3390/polym14132742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022] Open
Abstract
New sequences of nanocomposites including numerous maleic acid-grafted poly(butylene adipate-co-terephthalate) (g-PBAT) and cellulose nanocrystals (CNC) were efficaciously fabricated via transesterification and polycondensation processes with the covalent bonds between the polymer and reinforcing fillers. The grafting interaction of maleic acid onto PBAT was successfully demonstrated using Fourier transform infrared (FTIR) and 13C-nuclear magnetic resonance (NMR) spectra. The morphology of g-PBAT/CNC nanocomposites was investigated by wide-angle X-ray diffraction and transmission electron microscopy. Both results indicate that the CNC was randomly dispersed into the g-PBAT polymer matrix. The storage modulus at −80 and 25 °C was significantly enhanced with the incorporation of CNC into g-PBAT matrix. The crystallization rate of g-PBAT/CNC nanocomposites increased as the loading of CNC increased. With the incorporation of 3 wt% CNC, the half-time for crystallization of the g-PBAT/CNC composite decreased about 50~80% as compared with the same isothermal crystallization of pure polymer matrix. All water vapor permeation (WVP) values of all g-PBAT/CNC nanocomposites decreased as the loading of CNC increased. The decrease in WVP may be attributed to the addition of stiff CNC, causing the increase on the permeation route in the water molecules in the g-PBAT polymer matrix.
Collapse
|
7
|
Cindradewi AW, Bandi R, Park CW, Park JS, Lee EA, Kim JK, Kwon GJ, Han SY, Lee SH. Preparation and Characterization of Polybutylene Succinate Reinforced with Pure Cellulose Nanofibril and Lignocellulose Nanofibril Using Two-Step Process. Polymers (Basel) 2021; 13:polym13223945. [PMID: 34833243 PMCID: PMC8623250 DOI: 10.3390/polym13223945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022] Open
Abstract
This study reports the preparation of a polybutylene succinate (PBS) film reinforced with pure cellulose nanofibril (PCNF) and lignocellulose nanofibril (LCNF) by a two-step process that consists of solvent dispersion and twin-screw extrusion. Compared to the conventional one-step process, this method offered improved mechanical properties. The addition of 5% CNF increased the tensile properties up to 18.8%. Further, the effect of the lignin content was also studied by using LCNF as a reinforcement. The LCNF was prepared with and without a deep eutectic solvent (DES) pretreatment to gain LCNF with a lignin content that varied between 5, 19, and 30%. The mechanical properties results show that a 5% addition of LCNF to the PBS matrix increased its tensile strength and elastic modulus. Further, the morphological and thermal properties of the composites were also studied in detail.
Collapse
Affiliation(s)
- Azelia Wulan Cindradewi
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (A.W.C.); (J.-S.P.); (E.-A.L.); (J.-K.K.)
| | - Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (R.B.); (C.-W.P.); (G.-J.K.); (S.-Y.H.)
| | - Chan-Woo Park
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (R.B.); (C.-W.P.); (G.-J.K.); (S.-Y.H.)
| | - Ji-Soo Park
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (A.W.C.); (J.-S.P.); (E.-A.L.); (J.-K.K.)
- National Institute of Forest Science, Seoul 02455, Korea
| | - Eun-Ah Lee
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (A.W.C.); (J.-S.P.); (E.-A.L.); (J.-K.K.)
| | - Jeong-Ki Kim
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (A.W.C.); (J.-S.P.); (E.-A.L.); (J.-K.K.)
| | - Gu-Joong Kwon
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (R.B.); (C.-W.P.); (G.-J.K.); (S.-Y.H.)
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Song-Yi Han
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (R.B.); (C.-W.P.); (G.-J.K.); (S.-Y.H.)
| | - Seung-Hwan Lee
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (A.W.C.); (J.-S.P.); (E.-A.L.); (J.-K.K.)
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (R.B.); (C.-W.P.); (G.-J.K.); (S.-Y.H.)
- Correspondence: ; Tel.: +82-33-250-8323
| |
Collapse
|
8
|
Wang JM, Wang H, Chen EC, Chen YJ, Wu TM. Role of Organically-Modified Zn-Ti Layered Double Hydroxides in Poly(Butylene Succinate-Co-Adipate) Composites: Enhanced Material Properties and Photodegradation Protection. Polymers (Basel) 2021; 13:2181. [PMID: 34209173 PMCID: PMC8272187 DOI: 10.3390/polym13132181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
In this research, the effects of Zn-Ti layered double hydroxide (Zn-Ti LDH) as a UV-protection additive, which was added to the poly(butylene succinate-co-adipate) (PBSA) matrix, were investigated. Stearic acid was used to increase the hydrophobicity of Zn-Ti LDH via ion-exchange method. Transmission electron microscopy images of PBSA composites showed that modified Zn-Ti LDH (m-LDH) well-dispersed in the polymer matrix. Due to the effect of heterogeneous nucleation, the crystallization temperature of the composite increased to 52.9 °C, and the accompanying crystallinity increased to 31.0% with the addition of 1 wt% m-LDH. The additional m-LDH into PBSA copolymer matrix significantly enhanced the storage modulus, as compared to pure PBSA. Gel permeation chromatography and Fourier transform infrared spectroscopy analysis confirmed that the addition of m-LDH can reduce the photodegradation of PBSA.
Collapse
Affiliation(s)
| | | | | | | | - Tzong-Ming Wu
- Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan; (J.-M.W.); (H.W.); (E.-C.C.); (Y.-J.C.)
| |
Collapse
|
9
|
Nilsen‐Nygaard J, Fernández EN, Radusin T, Rotabakk BT, Sarfraz J, Sharmin N, Sivertsvik M, Sone I, Pettersen MK. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Compr Rev Food Sci Food Saf 2021; 20:1333-1380. [DOI: 10.1111/1541-4337.12715] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Julie Nilsen‐Nygaard
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | | | - Tanja Radusin
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Bjørn Tore Rotabakk
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Jawad Sarfraz
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Nusrat Sharmin
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Morten Sivertsvik
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Izumi Sone
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Marit Kvalvåg Pettersen
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| |
Collapse
|
10
|
Biodegradable PLA/PBSA Multinanolayer Nanocomposites: Effect of Nanoclays Incorporation in Multinanolayered Structure on Mechanical and Water Barrier Properties. NANOMATERIALS 2020; 10:nano10122561. [PMID: 33419300 PMCID: PMC7767261 DOI: 10.3390/nano10122561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 11/20/2022]
Abstract
Biodegradable PLA/PBSA multinanolayer nanocomposites were obtained from semi-crystalline poly(butylene succinate-co-butylene adipate) (PBSA) nanolayers filled with nanoclays and confined against amorphous poly(lactic acid) (PLA) nanolayers in a continuous manner by applying an innovative coextrusion technology. The cloisite 30B (C30B) filler incorporation in nanolayers was considered to be an improvement of barrier properties of the multilayer films additional to the confinement effect resulting to forced assembly during the multilayer coextrusion process. 2049-layer films of ~300 µm thick were processed containing loaded PBSA nanolayers of ~200 nm, which presented certain homogeneity and were mostly continuous for the 80/20 wt% PLA/PBSA composition. The nanocomposite PBSA films (monolayer) were also processed for comparison. The presence of exfoliated and intercalated clay structure and some aggregates were observed within the PBSA nanolayers depending on the C30B content. A greater reduction of macromolecular chain segment mobility was measured due to combined effects of confinement effect and clays constraints. The absence of both polymer and clays interdiffusions was highlighted since the PLA glass transition was unchanged. Besides, a larger increase in local chain rigidification was evidenced through RAF values due to geometrical constraints initiated by close nanoclay contact without changing the crystallinity of PBSA. Tortuosity effects into the filled PBSA layers adding to confinement effects induced by PLA layers have caused a significant improvement of water barrier properties through a reduction of water permeability, water vapor solubility and water vapor diffusivity. The obtaining barrier properties were successfully correlated to microstructure, thermal properties and mobility of PBSA amorphous phase.
Collapse
|
11
|
Oliveira ACDJ, Chaves LL, Ribeiro FDOS, de Lima LRM, Oliveira TC, García-Villén F, Viseras C, de Paula RCM, Rolim-Neto PJ, Hallwass F, Silva-Filho EC, Alves da Silva D, Soares-Sobrinho JL, Soares MFDLR. Microwave-initiated rapid synthesis of phthalated cashew gum for drug delivery systems. Carbohydr Polym 2020; 254:117226. [PMID: 33357841 DOI: 10.1016/j.carbpol.2020.117226] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022]
Abstract
Chemical modification of polysaccharides is an important approach for their transformation into customized matrices that suit different applications. Microwave irradiation (MW) has been used to catalyze chemical reactions. This study developed a method of MW-initiated synthesis for the production of phthalated cashew gum (Phat-CG). The structural characteristics and physicochemical properties of the modified biopolymers were investigated by FTIR, GPC, 1H NMR, relaxometry, elemental analysis, thermal analysis, XRD, degree of substitution, and solubility. Phat-CG was used as a matrix for drug delivery systems using benznidazole (BNZ) as a model drug. BNZ is used in the pharmacotherapy of Chagas disease. The nanoparticles were characterized by size, PDI, zeta potential, AFM, and in vitro release. The nanoparticles had a size of 288.8 nm, PDI of 0.27, and zeta potential of -31.8 mV. The results showed that Phat-CG has interesting and promising properties as a new alternative for improving the treatment of Chagas disease.
Collapse
Affiliation(s)
- Antônia Carla de Jesus Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Luíse Lopes Chaves
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | - Thaisa Cardoso Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain; Andalusian Institute of Earth Sciences, CSIC - UGR, Armilla, Granada, Spain
| | - Regina C M de Paula
- Department of Organic and Inorganic Chemistry, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Pedro José Rolim-Neto
- Laboratory of Technology of Medicines - LTM, Federal University of Pernambuco, Recife, Brazil
| | - Fernando Hallwass
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, Brazil
| | - Edson C Silva-Filho
- Interdisciplinary Laboratory for Advanced Materials - LIMAV, Federal University of Piaui, Teresina, PI, Brazil
| | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology - BIOTEC, Federal University of Delta of Parnaiba, Parnaiba, PI, Brazil
| | - José Lamartine Soares-Sobrinho
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| | - Mônica Felts de La Roca Soares
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
12
|
Nazrin A, Sapuan SM, Zuhri MYM, Ilyas RA, Syafiq R, Sherwani SFK. Nanocellulose Reinforced Thermoplastic Starch (TPS), Polylactic Acid (PLA), and Polybutylene Succinate (PBS) for Food Packaging Applications. Front Chem 2020; 8:213. [PMID: 32351928 PMCID: PMC7174692 DOI: 10.3389/fchem.2020.00213] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/06/2020] [Indexed: 11/13/2022] Open
Abstract
Synthetic plastics are severely detrimental to the environment because non-biodegradable plastics do not degrade for hundreds of years. Nowadays, these plastics are very commonly used for food packaging. To overcome this problem, food packaging materials should be substituted with "green" or environmentally friendly materials, normally in the form of natural fiber reinforced biopolymer composites. Thermoplastic starch (TPS), polylactic acid (PLA) and polybutylene succinate (PBS) were chosen for the substitution, because of their availability, biodegradability, and good food contact properties. Plasticizer (glycerol) was used to modify the starch, such as TPS under a heating condition, which improved its processability. TPS films are sensitive to moisture and their mechanical properties are generally not suitable for food packaging if used alone, while PLA and PBS have a low oxygen barrier but good mechanical properties and processability. In general, TPS, PLA, and PBS need to be modified for food packaging requirements. Natural fibers are often incorporated as reinforcements into TPS, PLA, and PBS to overcome their weaknesses. Natural fibers are normally used in the form of fibers, fillers, celluloses, and nanocelluloses, but the focus of this paper is on nanocellulose. Nanocellulose reinforced polymer composites demonstrate an improvement in mechanical, barrier, and thermal properties. The addition of compatibilizer as a coupling agent promotes a fine dispersion of nanocelluloses in polymer. Additionally, nanocellulose and TPS are also mixed with PLA and PBS because they are costly, despite having commendable properties. Starch and natural fibers are utilized as fillers because they are abundant, cheap and biodegradable.
Collapse
Affiliation(s)
- A Nazrin
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - S M Sapuan
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Seri Kembangan, Malaysia.,Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - M Y M Zuhri
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - R A Ilyas
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - R Syafiq
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - S F K Sherwani
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| |
Collapse
|
13
|
Zheng T, Pilla S. Melt Processing of Cellulose Nanocrystal-Filled Composites: Toward Reinforcement and Foam Nucleation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00170] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ting Zheng
- Department of Automotive Engineering, Clemson University, 4 Research Drive, Greenville, South Carolina 29607, United States
- Clemson Composites Center, Clemson University, Greenville, South Carolina 29607, United States
| | - Srikanth Pilla
- Department of Automotive Engineering, Clemson University, 4 Research Drive, Greenville, South Carolina 29607, United States
- Clemson Composites Center, Clemson University, Greenville, South Carolina 29607, United States
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29602, United States
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29602, United States
| |
Collapse
|
14
|
Abushammala H. Nano-Brushes of Alcohols Grafted onto Cellulose Nanocrystals for Reinforcing Poly(Butylene Succinate): Impact of Alcohol Chain Length on Interfacial Adhesion. Polymers (Basel) 2020; 12:polym12010095. [PMID: 31947910 PMCID: PMC7023635 DOI: 10.3390/polym12010095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 11/20/2022] Open
Abstract
Despite the many interesting properties of cellulose nanocrystals (CNCs), their hydrophilicity is one of the main challenges for their processing with hydrophobic polymers and matrices. To overcome this challenge, this paper describes the preparation of brush-like CNCs with tailored surface properties by grafting alcohols of different chain lengths onto their surfaces. Ethanol, 1-butanol, 1-hexanol, and 1-octanol were grafted on the CNC surface using 2,4-toluene diisocyanate (TDI) as a linker. The CNCs were characterized for their structural, morphological, surface, and thermal properties. Because of the grafting, the water contact angle of the CNCs significantly increased from 32° to up to 120°, which was dependent on the chain length of the grafted alcohol. The thermal stability of the CNCs was also improved, mainly as a result of the reaction of TDI with the CNC hydroxyl groups. Later, the CNCs were used to reinforce films of poly(butylene succinate) (PBS), which were then characterized using dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). An increase of up to two-fold in the storage modulus was observed using DMA, which was dependent on the chain length of the grafted alcohol. However, no change in the glass transition temperature or degradation temperature of PBS was detected. This approach is proved efficient for tailoring the surface properties of CNCs towards excellent interfacial adhesion in their composites.
Collapse
Affiliation(s)
- Hatem Abushammala
- Fraunhofer Institute for Wood Research (WKI), Bienroder Weg 54E, 38108 Braunschweig, Germany
| |
Collapse
|
15
|
Ding W, Zhou Y, Wang W, Wang J. The reactive compatibilization of montmorillonite for immiscible anionic polyamide 6/polystyrene blends via in situ polymerization. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2019.1708101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Weijie Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Yunfei Zhou
- Shanghai Volkswagen Ningbo Branch., Ltd, Ningbo, Zhejiang Province, P. R. China
| | - Wenqi Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Jikui Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
16
|
Motloung MP, Ojijo V, Bandyopadhyay J, Ray SS. Cellulose Nanostructure-Based Biodegradable Nanocomposite Foams: A Brief Overview on the Recent Advancements and Perspectives. Polymers (Basel) 2019; 11:E1270. [PMID: 31370292 PMCID: PMC6723299 DOI: 10.3390/polym11081270] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/20/2019] [Accepted: 07/29/2019] [Indexed: 11/17/2022] Open
Abstract
The interest in designing new environmentally friendly materials has led to the development of biodegradable foams as a potential substitute to most currently used fossil fuel-derived polymer foams. Despite the possibility of developing biodegradable and environmentally friendly polymer foams, the challenge of foaming biopolymers still persists as they have very low melt strength and viscosity as well as low crystallisation kinetics. Studies have shown that the incorporation of cellulose nanostructure (CN) particles into biopolymers can enhance the foamability of these materials. In addition, the final properties and performance of the foamed products can be improved with the addition of these nanoparticles. They not only aid in foamability but also act as nucleating agents by controlling the morphological properties of the foamed material. Here, we provide a critical and accessible overview of the influence of CN particles on the properties of biodegradable foams; in particular, their rheological, thermal, mechanical, and flammability and thermal insulating properties and biodegradability.
Collapse
Affiliation(s)
- Mpho Phillip Motloung
- DST-CSIR National Centre for Nanostructured Materials, Council for Scientific and, Industrial Research, Pretoria 0001, South Africa
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Vincent Ojijo
- DST-CSIR National Centre for Nanostructured Materials, Council for Scientific and, Industrial Research, Pretoria 0001, South Africa
| | - Jayita Bandyopadhyay
- DST-CSIR National Centre for Nanostructured Materials, Council for Scientific and, Industrial Research, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- DST-CSIR National Centre for Nanostructured Materials, Council for Scientific and, Industrial Research, Pretoria 0001, South Africa.
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
17
|
Younas M, Noreen A, Sharif A, Majeed A, Hassan A, Tabasum S, Mohammadi A, Zia KM. A review on versatile applications of blends and composites of CNC with natural and synthetic polymers with mathematical modeling. Int J Biol Macromol 2019; 124:591-626. [PMID: 30447361 DOI: 10.1016/j.ijbiomac.2018.11.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022]
Abstract
Cellulose is world's most abundant, renewable and recyclable polysaccharide on earth. Cellulose is composed of both amorphous and crystalline regions. Cellulose nanocrystals (CNCs) are extracted from crystalline region of cellulose. The most attractive feature of CNC is that it can be used as nanofiller to reinforce several synthetic and natural polymers. In this article, a comprehensive overview of modification of several natural and synthetic polymers using CNCs as reinforcer in respective polymer matrix is given. The immense activities of CNCs are successfully utilized to enhance the mechanical properties and to broaden the field of application of respective polymer. All the technical scientific issues have been discussed highlighting the recent advancement in biomedical and packaging field.
Collapse
Affiliation(s)
- Muhammad Younas
- Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqsa Sharif
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Ayesha Majeed
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Abida Hassan
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Abbas Mohammadi
- Department of Polymer Chemistry, University of Isfahan, Isfahan, Islamic Republic of Iran
| | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| |
Collapse
|
18
|
Li J, Qiu Z. Effect of low loadings of cellulose nanocrystals on the significantly enhanced crystallization of biodegradable poly(butylene succinate-co-butylene adipate). Carbohydr Polym 2019; 205:211-216. [DOI: 10.1016/j.carbpol.2018.10.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 10/28/2022]
|
19
|
Zhang X, Wang X. Polybutylene succinate/cellulose nanocrystals: Role of phthalic anhydride in squeeze oriented bionanocomposites. Carbohydr Polym 2018; 196:254-261. [PMID: 29891294 DOI: 10.1016/j.carbpol.2018.04.124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 11/16/2022]
Abstract
In order to reduce agglomerations and improve the compatibility of poly(butylenes succinate)/cellulose nanocrystals (PBS/CNC) composite, phthalic anhydride was introduced during the preparation of composite via melt blending. The composites were then suffered by squeezing treatment in a two-roll milling equipment at a given temperature. In order to investigate reaction mechanism among PBS, CNC and phthalic anhydride, PBS/CNC composites were separated and then tested via FTIR and UV-vis spectrophotometer. During reactive blending, phthalic anhydride selectively reacts with CNC, at an effective grafting ratio of 0.0196, which is confirmed by titration results. Before squeezing, the crystallinity of PBS in composites are increased but the mechanical properties of composites are weakened with increasing phthalic anhydride content, which is ascribed to the plasticizing effect of phthalic anhydride. After squeeze treatment at an extension ratio of 6, the tensile strength of PBS/PA/CNC(100/2/3) is dramatically increased from 35.2 MPa to 136 MPa. WAXD results show that PBS crystal type has little change but the crystallinity is sharply increased after orientation, which mostly contributes to the improvement of mechanical properties for PBS/CNC composites.
Collapse
Affiliation(s)
- Xuzhen Zhang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, China
| | - Xiuhua Wang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, China.
| |
Collapse
|
20
|
Dufresne A. Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:20170040. [PMID: 29277738 PMCID: PMC5746555 DOI: 10.1098/rsta.2017.0040] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/12/2017] [Indexed: 05/25/2023]
Abstract
Unexpected and attractive properties can be observed when decreasing the size of a material down to the nanoscale. Cellulose is no exception to the rule. In addition, the highly reactive surface of cellulose resulting from the high density of hydroxyl groups is exacerbated at this scale. Different forms of cellulose nanomaterials, resulting from a top-down deconstruction strategy (cellulose nanocrystals, cellulose nanofibrils) or bottom-up strategy (bacterial cellulose), are potentially useful for a large number of industrial applications. These include the paper and cardboard industry, use as reinforcing filler in polymer nanocomposites, the basis for low-density foams, additives in adhesives and paints, as well as a wide variety of filtration, electronic, food, hygiene, cosmetic and medical products. This paper focuses on the use of cellulose nanomaterials as a filler for the preparation of polymer nanocomposites. Impressive mechanical properties can be obtained for these materials. They obviously depend on the type of nanomaterial used, but the crucial point is the processing technique. The emphasis is on the melt processing of such nanocomposite materials, which has not yet been properly resolved and remains a challenge.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'.
Collapse
Affiliation(s)
- Alain Dufresne
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| |
Collapse
|
21
|
Messin T, Follain N, Guinault A, Sollogoub C, Gaucher V, Delpouve N, Marais S. Structure and Barrier Properties of Multinanolayered Biodegradable PLA/PBSA Films: Confinement Effect via Forced Assembly Coextrusion. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29101-29112. [PMID: 28758727 DOI: 10.1021/acsami.7b08404] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multilayer coextrusion processing was applied to produce 2049-layer film of poly(butylene succinate-co-butylene adipate) (PBSA) confined against poly(lactic acid) (PLA) using forced assembly, where the PBSA layer thickness was about 60 nm. This unique technology allowed to process semicrystalline PBSA as confined polymer and amorphous PLA as confining polymer in a continuous manner. The continuity of PBSA layers within the 80/20 wt % PLA/PBSA layered films was clearly evidenced by atomic force microscopy (AFM). Similar thermal events to the reference films were revealed by thermal studies; indicating no diffusion of polymers during the melt-processing. Mechanical properties were measured for the multilayer film and the obtained results were those expected considering the fraction of each polymer, revealing the absence of delamination in the PLA/PBSA multinanolayer film. The confinement effect induced by PLA led to a slight orientation of the crystals, an increase of the rigid amorphous fraction (RAF) in PBSA with a densification of this fraction without changing film crystallinity. These structural changes allowed to strongly improve the water vapor and gas barrier properties of the PBSA layer into the multilayer film up to two decades in the case of CO2 gas. By confining the PBSA structure in very thin and continuous layers, it was then possible to improve the barrier performances of a biodegradable system and the resulting barrier properties were successfully correlated to the effect of confinement on the microstructure and the chain segment mobility of the amorphous phase. Such investigation on these multinanolayers of PLA/PBSA with the aim of evidencing relationships between microstructure implying RAF and barrier performances has never been performed yet. Besides, gas and water permeation results have shown that the barrier improvement obtained from the multilayer was mainly due to the reduction of solubility linked to the reduction of the free volume while the tortuosity effect, as usually expected, was not really observed. This work brings new insights in the field of physicochemical behaviors of new multilayer films made of biodegradable polyesters but also in interfacial processes due to the confinement effect induced in these multinanolayer structures obtained by the forced assembly coextrusion. This original coextrusion process was a very advantageous technique to produce eco-friendly materials with functional properties without the help of tie layer, additives, solvents, surface treatments, or inorganic fillers.
Collapse
Affiliation(s)
- Tiphaine Messin
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Nadège Follain
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Alain Guinault
- PIMM, Arts et Métiers ParisTech/CNRS/CNAM, 75013 Paris, France
| | | | - Valérie Gaucher
- Unité Matériaux et Transformations, UMR 8207 CNRS/Université Lille 1, 59655 Villeneuve d'Ascq, France
| | - Nicolas Delpouve
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, GPM, 76000 Rouen, France
| | - Stéphane Marais
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| |
Collapse
|
22
|
Reactive compatibilization of biodegradable poly(butylene succinate)/Spirulina microalgae composites. Macromol Res 2017. [DOI: 10.1007/s13233-017-5025-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Xu C, Chen J, Wu D, Chen Y, Lv Q, Wang M. Polylactide/acetylated nanocrystalline cellulose composites prepared by a continuous route: A phase interface-property relation study. Carbohydr Polym 2016; 146:58-66. [DOI: 10.1016/j.carbpol.2016.03.058] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/18/2016] [Accepted: 03/20/2016] [Indexed: 12/01/2022]
|
24
|
Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends. Carbohydr Polym 2016; 140:374-82. [DOI: 10.1016/j.carbpol.2015.12.073] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/06/2015] [Accepted: 12/29/2015] [Indexed: 11/23/2022]
|