1
|
Wu S, Luo H, Li S, Zheng Z, Long Q, Wei C, Rong H. Polydopamine/chitosan hydrogels-functionalized polyurethane foams in situ decorated with silver nanoparticles for water disinfection. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121858. [PMID: 39018838 DOI: 10.1016/j.jenvman.2024.121858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
A new facile route to decorate polyurethane foams (PUF) with dense and uniform silver nanoparticles (AgNPs) to ensure efficient and long-term water disinfection is proposed. The antibacterial sponge was fabricated by sequential treatment with chitosan hydrogels grafting, polydopamine (PDA) coating, and finally in situ growth of AgNPs on the surface of substrate. The morphologies, chemical composition, crystalline nature, mechanical property, and swelling capacity of the composite were characterized. Its silver release behavior and bactericidal performances against Escherichia coli (E. coli) were evaluated. Results show that the composite demonstrated higher mechanical strength (compression strength, 51.34 kPa) and a rapid swelling rate with an equilibrium swelling ratio of 18.2 g/g. It possessed a higher loading amount of AgNPs (35.87 mg/g) than that of PUF@Ag (8.21 mg/g) and restricted the cumulative silver release of below 0.05% after 24-h immersion in water. Besides, it presented efficient bactericidal activity with complete reduction of E. coli with 10 min of contact time. The strong bactericidal action was probably governed by strengthening the contact between AgNPs immobilized on the substrate and bacteria cells. Furthermore, the composite demonstrated exceptional reusability for five cycles and exhibited a superior processing capacity in the flow test. Finally, the composite could effectively disinfect the natural water sample like a river in 30 min under real conditions.
Collapse
Affiliation(s)
- Shuhan Wu
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Huayong Luo
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Shiyin Li
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zexin Zheng
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qingwu Long
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, 528333, China
| | - Chunhai Wei
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Gou T, Li W, Chen S, Yi C, Guo Y, Cao Z, Zhou L, Lee K, Chen M, Liu Y. Facile fabrication of microfibrillated cellulose-based aerogels incorporated with nisin/β-cyclodextrin microcapsule for channel catfish preservation. Food Chem 2024; 448:139027. [PMID: 38552462 DOI: 10.1016/j.foodchem.2024.139027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 04/24/2024]
Abstract
In this study, a hydrophobic and antibacterial pad was prepared to preserve Channel Catfish (Ictalurus punctatus). The pad composite the microfibrillated cellulose and β-cyclodextrin/nisin microcapsules. The hydrophobic pad ensures a dry surface in contact with the fish, reducing microbial contamination. The pad has a low density and high porosity, making it lightweight and suitable for packaging applications, while also providing a large surface area for antibacterial activity. Results demonstrated that this antibacterial pad exhibits an ultralow density of 9.0 mg/cm3 and an ultrahigh porosity of 99.10%. It can extend the shelf life of Channel Catfish fillets to 9 days at 4 °C, with a total volatile base nitrogen below 20 mg/100 g. The study proposes a novel solution for preserving aquatic products by combining antibacterial substances with the natural base material aerogel. This approach also extends the utilization of aerogel and nisin in food packaging.
Collapse
Affiliation(s)
- Tao Gou
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China; Department of Healthcare and Medical Engineering, Chonnam National University, Yeosu 59626, South Korea
| | - Wenxiu Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Shenglin Chen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Chao Yi
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yu Guo
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Zheng Cao
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Lei Zhou
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - KangJu Lee
- Department of Healthcare and Medical Engineering, Chonnam National University, Yeosu 59626, South Korea
| | - Mingrui Chen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
3
|
Gupta S, Acharya U, Thottappali MA, Pištěková H, Morávková Z, Hromádková J, Taboubi O, Pfleger J, Humpolíček P, Bober P. Tuning of Morphological and Antibacterial Properties of Poly(3,4-ethylenedioxythiophene):Peroxodisulfate by Methyl Violet. Polymers (Basel) 2023; 15:3026. [PMID: 37514416 PMCID: PMC10386557 DOI: 10.3390/polym15143026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
This study demonstrates a one-step synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) in the presence of the methyl violet (MV) dye. The structural properties of PEDOT:peroxodisulfate were studied using Raman and MALDI-TOF spectroscopies. The use of the MV dye in the polymerization process resulted in a change in the typical irregular morphology of PEDOT:peroxodisulfate, leading to the formation of spherical patterns. SEM and TEM analyses revealed that increasing the dye concentration can produce larger spherical aggregates probably due to the hydrophobic and π-π interactions. These larger aggregates hindered the charge transport and reduced the electrical conductivity. Interestingly, at higher dye concentrations (0.05 and 0.075 M), the PEDOT:peroxodisulfate/MV films exhibited significantly improved antibacterial activity against Staphylococcus aureus and Escherichia coli. Furthermore, the PEDOT:peroxodisulfate films with the incorporated MV dye exhibited a well-defined and repeatable redox behavior. The remarkable amalgamation of their optical, electrochemical and antibacterial properties provides the PEDOT:peroxodisulfate/MV materials with an immensely diverse spectrum of applications, including in optical sensors and medical devices.
Collapse
Affiliation(s)
- Sonal Gupta
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Udit Acharya
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | | | - Hana Pištěková
- Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic
| | - Zuzana Morávková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Jiřina Hromádková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Oumayma Taboubi
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Jiří Pfleger
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Petr Humpolíček
- Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic
- Department of Lipids, Surfactants and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic
| | - Patrycja Bober
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| |
Collapse
|
4
|
Sepahvand S, Ashori A, Jonoobi M. Application of cellulose nanofiber as a promising air filter for adsorbing particulate matter and carbon dioxide. Int J Biol Macromol 2023:125344. [PMID: 37327938 DOI: 10.1016/j.ijbiomac.2023.125344] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/27/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
Pollution from particulate matter (PM) and toxic chemicals in the air cause some of the most critical health and environmental hazards in developed and developing countries. It can have a very destructive effect on human health and other living creatures. In particular, PM air pollution caused by rapid industrialization and population growth is a grave concern in developing countries. Oil and chemical-based synthetic polymers are non-environmentally friendly materials that lead to secondary environmental pollution. Thus, developing new and environmentally compatible renewable materials to construct air filters is essential. The goal of this review is to study the use of cellulose nanofibers (CNF) to adsorb PM in the air. Some of CNF's advantages include being the most abundant polymer in nature, biodegradable, and having a high specific surface area, low density, surface properties (broad possibility of chemical surface modification), high modulus and flexural stiffness, low energy consumption, which provide this new class of bio-based adsorbent with promising potential applications in environmental remediation. Such advantages have made CNF a competitive and highly in-demand material compared to other synthetic nanoparticles. Today, refining membranes and nanofiltration manufacturing are two important industries that could use CNF to provide a practical step in protecting the environment and saving energy. CNF nanofilters are capable of nearly eliminating most sources of air pollution, including carbon monoxide, sulfur oxides, nitrogen oxides, and PM2.5-10 μm. They also have a high porosity and low resistance air (pressure drop) ratio compared to ordinary filters made from cellulose fiber. If utilized correctly, humans do not need to inhale harmful chemicals.
Collapse
Affiliation(s)
- Sima Sepahvand
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran; Department of Biosystem Engineering, Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| | - Alireza Ashori
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Mehdi Jonoobi
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Iran
| |
Collapse
|
5
|
Gan J, Zhang L, Wang Q, Xin Q, Xiong Y, Hu E, Lei Z, Wang H, Wang H. Phosphorylation improved the competitive U/V adsorption on chitosan-based adsorbent containing amidoxime for rapid uranium extraction from seawater. Int J Biol Macromol 2023; 238:124074. [PMID: 36934816 DOI: 10.1016/j.ijbiomac.2023.124074] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/21/2023]
Abstract
A novel chitosan-based porous composite adsorbent with multifunctional groups, such as phosphoric acid, amidoxime, and quaternary ammonium groups, was prepared to improve the adsorption rate and competitive uranium‑vanadium adsorption of amidoxime group adsorbents. The maximum uranium adsorption capacity of PACNC was 962.226 mg g-1 at 308 K and pH = 7. The maximum adsorption rate constant of PACNC for uranium was 2.83E-2 g mg-1 min-1, which is 2.38 times that of ACNC (1.19E-2 g mg-1 min-1). Moreover, the adsorption equilibrium time was shortened from 300 (ACNC) to 50 (PACNC) min. In simulated and real seawater, the Kd and adsorption capacity of PACNC for uranium were approximately 8 and 6.62 times those for vanadium, respectively. These results suggest that phosphorylation significantly improved the competitive adsorption of uranium‑vanadium and uranium adsorption rate. PACNC also exhibited good recycling performance and maintained stable adsorption capacity after five cycles. DFT calculations were used to analyze and calculate the possible co-complex structure of PACNC and uranium. The binding structure of phosphate and amidoxime is the most stable, and its synergistic effect effectively improves the competitive adsorption of uranium-vanadium of amidoxime. All the results demonstrated that PACNC has substantial application potential for uranium extraction from seawater.
Collapse
Affiliation(s)
- Jiali Gan
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Lieyu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qingliang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qi Xin
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Ying Xiong
- Beijing Water Science and Technology Institute, Beijing 100048, China
| | - Eming Hu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhiwu Lei
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Hongqing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hongqiang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China.
| |
Collapse
|
6
|
Borges MHR, Nagay BE, Costa RC, Souza JGS, Mathew MT, Barão VAR. Recent advances of polypyrrole conducting polymer film for biomedical application: Toward a viable platform for cell-microbial interactions. Adv Colloid Interface Sci 2023; 314:102860. [PMID: 36931199 DOI: 10.1016/j.cis.2023.102860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Polypyrrole (PPy) is one of the most studied conductive polymers due to its electrical conductivity and biological properties, which drive the possibility of numerous applications in the biomedical area. The physical-chemical features of PPy allow the manufacture of biocompatible devices, enhancing cell adhesion and proliferation. Furthermore, owing to the electrostatic interactions between the negatively charged bacterial cell wall and the positive charges in the polymer structure, PPy films can perform an effective antimicrobial activity. PPy is also frequently associated with biocompatible agents and antimicrobial compounds to improve the biological response. Thus, this comprehensive review appraised the available evidence regarding the PPy-based films deposited on metallic implanted devices for biomedical applications. We focus on understanding key concepts that could influence PPy attributes regarding antimicrobial effect and cell behavior under in vitro and in vivo settings. Furthermore, we unravel the several agents incorporated into the PPy film and strategies to improve its functionality. Our findings suggest that incorporating other elements into the PPy films, such as antimicrobial agents, biomolecules, and other biocompatible polymers, may improve the biological responses. Overall, the basic properties of PPy, when combined with other composites, electrostimulation techniques, or surface treatment methods, offer great potential in biocompatibility and/or antimicrobial activities. However, challenges in synthesis standardization and potential limitations such as low adhesion and mechanical strength of the film must be overcome to improve and broaden the application of PPy film in biomedical devices.
Collapse
Affiliation(s)
- Maria H R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University (UNG), Guarulhos, Sāo Paulo 07023-070, Brazil; Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
| | - Mathew T Mathew
- Department of Biomedical Sciences, University of Illinois, College of Medicine, Rockford, IL 61107, USA
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil.
| |
Collapse
|
7
|
Hamidi S, Monajjemzadeh F, Siahi‐Shadbad M, Khatibi SA, Farjami A. Antibacterial activity of natural polymer gels and potential applications without synthetic antibiotics. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Samin Hamidi
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Farnaz Monajjemzadeh
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical and Food Control Department, Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammadreza Siahi‐Shadbad
- Pharmaceutical and Food Control Department, Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
| | - Seyed Amin Khatibi
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
8
|
Anžlovar A, Žagar E. Cellulose Structures as a Support or Template for Inorganic Nanostructures and Their Assemblies. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1837. [PMID: 35683693 PMCID: PMC9182054 DOI: 10.3390/nano12111837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Cellulose is the most abundant natural polymer and deserves the special attention of the scientific community because it represents a sustainable source of carbon and plays an important role as a sustainable energent for replacing crude oil, coal, and natural gas in the future. Intense research and studies over the past few decades on cellulose structures have mainly focused on cellulose as a biomass for exploitation as an alternative energent or as a reinforcing material in polymer matrices. However, studies on cellulose structures have revealed more diverse potential applications by exploiting the functionalities of cellulose such as biomedical materials, biomimetic optical materials, bio-inspired mechanically adaptive materials, selective nanostructured membranes, and as a growth template for inorganic nanostructures. This article comprehensively reviews the potential of cellulose structures as a support, biotemplate, and growing vector in the formation of various complex hybrid hierarchical inorganic nanostructures with a wide scope of applications. We focus on the preparation of inorganic nanostructures by exploiting the unique properties and performances of cellulose structures. The advantages, physicochemical properties, and chemical modifications of the cellulose structures are comparatively discussed from the aspect of materials development and processing. Finally, the perspective and potential applications of cellulose-based bioinspired hierarchical functional nanomaterials in the future are outlined.
Collapse
Affiliation(s)
- Alojz Anžlovar
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia;
| | | |
Collapse
|
9
|
Cellulose nanofibers aerogels functionalized with AgO: Preparation, characterization and antibacterial activity. Int J Biol Macromol 2022; 194:58-65. [PMID: 34863833 DOI: 10.1016/j.ijbiomac.2021.11.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022]
Abstract
In the experiment, a chemical oxidation method was used to prepare nano-divalent silver oxide powder with a particle size of about 10 nm. Compared with silver nanoparticles and monovalent silver compounds, nano‑silver oxide has better antibacterial properties. The cellulose antibacterial aerogel was prepared by combining it with cellulose nanofibrils and using freeze-thaw cycles and freeze-drying methods. The microscopic morphology, mechanical properties, in vitro release of silver ions, antibacterial properties and biodegradability of composite aerogels were studied. The porosity of the cellulose antibacterial aerogel can reach 94%, the swelling rate was greater than 1000%, and the pore size was between 13 and 15 nm, which showed a larger storage space and attachment site for the aerogel. The diameter of the inhibition zone of the aerogel against Escherichia coli and Staphylococcus aureus was 23 mm and 20 mm respectively, and the aerogels still exhibited significant antibacterial activities with more than 99.5% reductions in Escherichia coli and Staphylococcus aureus, which shows highly effective antibacterial properties. This research proposes an economical and novel preparation method of antibacterial cellulose aerogel, making it a candidate material with high efficiency, broad-spectrum antibacterial and more suitable for life needs.
Collapse
|
10
|
Acharya S, Liyanage S, Parajuli P, Rumi SS, Shamshina JL, Abidi N. Utilization of Cellulose to Its Full Potential: A Review on Cellulose Dissolution, Regeneration, and Applications. Polymers (Basel) 2021; 13:4344. [PMID: 34960895 PMCID: PMC8704128 DOI: 10.3390/polym13244344] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022] Open
Abstract
As the most abundant natural polymer, cellulose is a prime candidate for the preparation of both sustainable and economically viable polymeric products hitherto predominantly produced from oil-based synthetic polymers. However, the utilization of cellulose to its full potential is constrained by its recalcitrance to chemical processing. Both fundamental and applied aspects of cellulose dissolution remain active areas of research and include mechanistic studies on solvent-cellulose interactions, the development of novel solvents and/or solvent systems, the optimization of dissolution conditions, and the preparation of various cellulose-based materials. In this review, we build on existing knowledge on cellulose dissolution, including the structural characteristics of the polymer that are important for dissolution (molecular weight, crystallinity, and effect of hydrophobic interactions), and evaluate widely used non-derivatizing solvents (sodium hydroxide (NaOH)-based systems, N,N-dimethylacetamide (DMAc)/lithium chloride (LiCl), N-methylmorpholine-N-oxide (NMMO), and ionic liquids). We also cover the subsequent regeneration of cellulose solutions from these solvents into various architectures (fibers, films, membranes, beads, aerogels, and hydrogels) and review uses of these materials in specific applications, such as biomedical, sorption, and energy uses.
Collapse
Affiliation(s)
| | | | | | | | | | - Noureddine Abidi
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (S.A.); (S.L.); (P.P.); (S.S.R.); (J.L.S.)
| |
Collapse
|
11
|
Kudzin MH, Giełdowska M, Mrozińska Z, Boguń M. Poly(lactic acid)/Zinc/Alginate Complex Material: Preparation and Antimicrobial Properties. Antibiotics (Basel) 2021; 10:1327. [PMID: 34827265 PMCID: PMC8614701 DOI: 10.3390/antibiotics10111327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to investigate an antimicrobial and degradable composite material consisting of melt-blown poly(lactic acid) nonwoven fabrics, alginate, and zinc. This paper describes the method of preparation and the characterization of the physicochemical and antimicrobial properties of the new fibrous composite material. The procedure consists of fabrication of nonwoven fabric and two steps of dip-coating modification: (1) impregnation of nonwoven samples in the solution of alginic sodium salt and (2) immersion in a solution of zinc (II) chloride. The characterization and analysis of new material included scanning electron microscopy (SEM), specific surface area (SSA), and total/average pore volume (BET). The polylactide/alginate/Zn fibrous composite were subjected to microbial activity tests against colonies of Gram-positive (Staphylococcus aureus), Gram-negative (Escherichia coli) bacterial strains, and the following fungal strains: Aspergillus niger van Tieghem and Chaetomium globosum. These results lay a technical foundation for the development and potential application of new composite as an antibacterial/antifungal material in biomedical areas.
Collapse
Affiliation(s)
- Marcin H. Kudzin
- Lukasiewicz Research Network-Textile Research Institute, Brzezinska 5/15, 92-103 Lodz, Poland; (M.G.); (Z.M.); (M.B.)
| | | | | | | |
Collapse
|
12
|
Guzel Kaya G, Aznar E, Deveci H, Martínez-Máñez R. Aerogels as promising materials for antibacterial applications: a mini-review. Biomater Sci 2021; 9:7034-7048. [PMID: 34636816 DOI: 10.1039/d1bm01147b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The increasing cases of bacterial infections originating from resistant bacteria are a serious problem globally and many approaches have been developed for different purposes to treat bacterial infections. Aerogels are a novel class of smart porous materials composed of three-dimensional networks. Recently, aerogels with the advantages of ultra-low density, high porosity, tunable particle and pore sizes, and biocompatibility have been regarded as promising carriers for the design of delivery systems. Recently, aerogels have also been provided with antibacterial activity through loading of antibacterial agents, incorporation of metal/metal oxides and via surface functionalization and coating with various functional groups. In this mini-review, the synthesis of aerogels from both conventional and low-cost precursors is reported and examples of aerogels displaying antibacterial properties are summarized. As a result, it is clear that the encouraging antibacterial performance of aerogels promotes their use in many antibacterial applications, especially in the food industry, pharmaceutics and medicine.
Collapse
Affiliation(s)
- Gulcihan Guzel Kaya
- Department of Chemical Engineering, Konya Technical University, Konya, Turkey.,Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Unidad Mixta UPC-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina. Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Huseyin Deveci
- Department of Chemical Engineering, Konya Technical University, Konya, Turkey
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Unidad Mixta UPC-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina. Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
13
|
Zhou T, Zhao M, Zhao X, Guo Y, Zhao Y. Simultaneous remediation and fertility improvement of heavy metals contaminated soil by a novel composite hydrogel synthesized from food waste. CHEMOSPHERE 2021; 275:129984. [PMID: 33984900 DOI: 10.1016/j.chemosphere.2021.129984] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 05/24/2023]
Abstract
Soil contamination by heavy metals constitutes a serious global environmental problem, and numerous remediation technologies have been developed. In this study, a novel soil remediation agent, namely composite hydrogel (leftover rice-g-poly(acrylic acid)/montmorillonite/Urea, LR-g-PAA/MMT/urea), was prepared based on free radical polymerization cross-linking technology. Experimental results indicated that the LR-g-PAA/MMT/urea dosage increased from 0% to 10%, the oxidizable state proportions of Cd, Cu, Pb and Zn in contaminated soil increased from 8.3%, 23.7%, 54.0% and 11.4%-71.3%, 61.0%, 76.5%, and 27.9%, respectively. Compared with control experiment, the residue state growth rate were 56.6%, 23.4% and 39.8% for Cu, Pb and Zn respectively with 10% dosage of composite hydrogel. Simultaneously, the LR-g-PAA/MMT/urea was also seen to enhance soil fertility, including organic matter content, cation exchange capacity, and N and P contents. Pot experiments for biological toxicity suggested that the addition of hydrogel weakened the toxic effect of heavy metals on cotton seeds, and the action effect was increasingly visible with the increase of hydrogel dosage. The analysis of the mechanism involved suggested that the organic matter and its possessed characteristic functional groups could weaken the biological toxicity via complexation, adsorption, and ion exchange. Overall, the synthesized composite hydrogel exhibits great potential for the simultaneous remediation and fertility improvement of heavy metal contaminated soil.
Collapse
Affiliation(s)
- Tao Zhou
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai, 200092, PR China.
| | - Minhui Zhao
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 563100, China
| | - Xin Zhao
- Shanghai National Engineering Research Center of Urban Water Resources Co.,Ltd, Shanghai, 200082, China
| | - Yanyan Guo
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Youcai Zhao
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai, 200092, PR China.
| |
Collapse
|
14
|
Dhananjayan N, Viswanathan K, Jeyaraj W, Ayyakannu A, Karuppasamy G. Antibiofilm and antimicrobial efficacy evaluation of polypyrrole nanotubes embedded in aminated gum acacia based nanocomposite. IET Nanobiotechnol 2021; 15:441-454. [PMID: 34694716 PMCID: PMC8675859 DOI: 10.1049/nbt2.12055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/29/2021] [Accepted: 04/23/2021] [Indexed: 11/20/2022] Open
Abstract
The sustainable development of natural polysaccharide-based hybrid composites is highly important for the effective replacement of metal nanoparticles in diverse applications. Here, polypyrrole nanotubes (PPyNTs) were embedded on the surface of aminated gum acacia (AGA) to produce ecofriendly nanocomposites for biomedical applications. The morphology of a PPyNT-enhanced AGA (PPyNT@AGA) hybrid nanocomposite was studied by scanning electron microscopy and transmission electron microscopy and their affirmed interactions were characterised by X-ray diffraction, Raman, Fourier transform-infrared and UV-visible spectroscopy. Interestingly, the prepared PPyNT@AGA nanocomposite exhibited 90% biofilm inhibition against gram-negative Pseudomonas aeruginosa, gram-positive Streptococcus pneumoniae and fungal strain Candida albicans with promising antimicrobial performance. This study establishes the good inhibition of a PPyNT@AGA hybrid composite against various microorganisms. The stability of the nanocomposite coupled with antimicrobial activity enables an effective strategy for diagnosing and controlling pathogens.
Collapse
Affiliation(s)
- Nathiya Dhananjayan
- Department of Bioelectronics and BiosensorsAlagappa UniversityKaraikudiIndia
| | | | - Wilson Jeyaraj
- Department of Bioelectronics and BiosensorsAlagappa UniversityKaraikudiIndia
| | | | | |
Collapse
|
15
|
Lee HJ, Choi WS. 2D and 3D Bulk Materials for Environmental Remediation: Air Filtration and Oil/Water Separation. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5714. [PMID: 33333822 PMCID: PMC7765286 DOI: 10.3390/ma13245714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 01/17/2023]
Abstract
Air and water pollution pose an enormous threat to human health and ecosystems. In particular, particulate matter (PM) and oily wastewater can cause serious environmental and health concerns. Thus, controlling PM and oily wastewater has been a great challenge. Various techniques have been reported to effectively remove PM particles and purify oily wastewater. In this article, we provide a review of the recent advancements in air filtration and oil/water separation using two- and three-dimensional (2D and 3D) bulk materials. Our review covers the advantages, characteristics, limitations, and challenges of air filters and oil/water separators using 2D and 3D bulk materials. In each section, we present representative works in detail and describe the concepts, backgrounds, employed materials, fabrication methods, and characteristics of 2D and 3D bulk material-based air filters and oil/water separators. Finally, the challenges, technical problems, and future research directions are briefly discussed for each section.
Collapse
Affiliation(s)
- Ha-Jin Lee
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyun-ro, Seoudaemun-gu, Seoul 120-140, Korea;
| | - Won San Choi
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 305-719, Korea
| |
Collapse
|
16
|
Singh A, Goswami A, Nain S. Enhanced antibacterial activity and photo-remediation of toxic dyes using Ag/SWCNT/PPy based nanocomposite with core–shell structure. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01394-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
|
18
|
Wu T, Zeng Z, Siqueira G, De France K, Sivaraman D, Schreiner C, Figi R, Zhang Q, Nyström G. Dual-porous cellulose nanofibril aerogels via modular drying and cross-linking. NANOSCALE 2020; 12:7383-7394. [PMID: 32207510 DOI: 10.1039/d0nr00860e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanofibrillar foams and aerogels are traditionally either macroporous with low surface area and high mechanical strength, or mesoporous with high surface area and low mechanical strength. In this work, an anionic cellulose nanofibril (CNF)-based dual-porous aerogel with BET specific surface area up to 430 m2 g-1 was prepared via a modular process combining directional freeze-thawing (creating macro-pores, ca. 50-200 μm) and supercritical drying (creating meso-pores, ca. 2-50 nm). Furthermore, by optionally utilizing both physical and chemical cross-linking strategies, aerogels with a Young's modulus of up to 711 kPa and good stability in aqueous conditions were demonstrated. By altering cross-linking strategies, the properties of resulting aerogels, such as hydrophilicity, mechanical strength and stability in water, can be precisely controlled for different applications. As a result, cationic methylene blue (MB) and metal ions (Ag+) were chosen as model species to investigate the absorption properties of the physically cross-linked aerogels in water. The aerogels showed a maximum adsorption of MB up to 234 mg g-1 and of Ag+ up to 116 mg g-1 as a result of the high specific surface area of the aerogels and their strong electrostatic interaction with the model species. Importantly, the hierarchical dual porosity of the aerogels enabled fast adsorption kinetics combined with a considerable adsorption capacity overall. Finally, it was shown that the adsorbed Ag+ could be converted to metallic Ag, demonstrating the additional functionality of these dual porous hybrid aerogels for antibacterial or catalytic applications.
Collapse
Affiliation(s)
- Tingting Wu
- Cellulose & Wood Materials Laboratory, Empa, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Silva Júnior FAGD, Vieira SA, Botton SDA, Costa MMD, Oliveira HPD. Antibacterial activity of polypyrrole-based nanocomposites: a mini-review. POLIMEROS 2020. [DOI: 10.1590/0104-1428.08020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
The advances of polysaccharide-based aerogels: Preparation and potential application. Carbohydr Polym 2019; 226:115242. [DOI: 10.1016/j.carbpol.2019.115242] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022]
|
21
|
Limaye MV, Gupta V, Singh SB, Paik GR, Singh P. Antimicrobial Activity of Composite Consisting of Cellulose Nanofibers and Silver Nanoparticles. ChemistrySelect 2019. [DOI: 10.1002/slct.201901572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mukta V. Limaye
- Department of PhysicsIndian Institute of Science Education & Research Berhampur 760010, Odisha India
| | - Varun Gupta
- Department of PhysicsIndian Institute of Science Education & Research Berhampur 760010, Odisha India
| | - Shashi B. Singh
- Department of PhysicsIndian Institute of Science Education & Research Berhampur 760010, Odisha India
| | - Gyan Ranjan Paik
- Department of Biological SciencesIndian Institute of Science Education & Research, Berhampur 760010 Odisha India
| | - Prabhat Singh
- Department of Biological SciencesIndian Institute of Science Education & Research, Berhampur 760010 Odisha India
| |
Collapse
|
22
|
Tayyab Z, Safi SZ, Rahim A, Khan AS, Sharif F, Khan ZUH, Rehman F, Ullah Z, Iqbal J, Muhammad N. Preparation of cellulosic Ag-nanocomposites using an ionic liquid. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:785-796. [PMID: 31018777 DOI: 10.1080/09205063.2019.1605869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zuhra Tayyab
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Sher Zaman Safi
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Abdur Rahim
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Amir Sada Khan
- Department of Chemistry, University of Science and Technology, Bannu, Pakistan
| | - Faiza Sharif
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Zia Ul Haq Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Fozia Rehman
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Zahoor Ullah
- Department of Chemistry, Balochistan University of IT, Engineering and Management Sciences (BUITEMS), Takatu Campus, Quetta, Pakistan
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, UAE
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
23
|
Souzandeh H, Wang Y, Netravali AN, Zhong WH. Towards Sustainable and Multifunctional Air-Filters: A Review on Biopolymer-Based Filtration Materials. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1599391] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hamid Souzandeh
- Fiber Science and Apparel Design, Cornell University, Ithaca, New York, USA
| | - Yu Wang
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Anil N. Netravali
- Fiber Science and Apparel Design, Cornell University, Ithaca, New York, USA
| | - Wei-Hong Zhong
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
24
|
Jiao Y, Wan C, Zhang W, Bao W, Li J. Carbon Fibers Encapsulated with Nano-Copper: A Core‒Shell Structured Composite for Antibacterial and Electromagnetic Interference Shielding Applications. NANOMATERIALS 2019; 9:nano9030460. [PMID: 30893932 PMCID: PMC6474105 DOI: 10.3390/nano9030460] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/11/2023]
Abstract
A facile and scalable two-step method (including pyrolysis and magnetron sputtering) is created to prepare a core–shell structured composite consisting of cotton-derived carbon fibers (CDCFs) and nano-copper. Excellent hydrophobicity (water contact angle = 144°) and outstanding antibacterial activity against Escherichia coli and Staphylococcus aureus (antibacterial ratios of >92%) are achieved for the composite owing to the composition transformation from cellulose to carbon and nano-size effects as well as strong oxidizing ability of oxygen reactive radicals from interactions of nano-Cu with sulfhydryl groups of enzymes. Moreover, the core–shell material with high electrical conductivity induces the interfacial polarization loss and conduction loss, contributing to a high electromagnetic interference (EMI) shielding effectiveness of 29.3 dB. Consequently, this flexible and multi-purpose hybrid of nano-copper/CDCFs may be useful for numerous applications like self-cleaning wall cladding, EMI shielding layer and antibacterial products.
Collapse
Affiliation(s)
- Yue Jiao
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Caichao Wan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Wenbo Zhang
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Wenhui Bao
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Jian Li
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
25
|
Xiao Y, Rong L, Wang B, Mao Z, Xu H, Zhong Y, Zhang L, Sui X. A light-weight and high-efficacy antibacterial nanocellulose-based sponge via covalent immobilization of gentamicin. Carbohydr Polym 2018; 200:595-601. [PMID: 30177203 DOI: 10.1016/j.carbpol.2018.07.091] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 01/04/2023]
Abstract
Covalent grafting of gentamicin to nanocellulose-based sponge was realized for the first time. The named sponge was prepared by initially multi-crosslinking among cellulose nanofibers (CNF), cellulose acetoacetate (CAA) and 3-aminopropyl(triethoxy)silane (APTES) followed by surface modification with gentamicin via the formation of enamine bond. The structure and mechanical performances of the obtained gentamicin-functionalized CNF sponge were characterized with FT-IR, XPS, EDX, SEM, Nitrogen adsorption-desorption measurement, and compressive test. Its antibacterial activity against E. coli and S. aureus was evaluated using disc diffusion and colony forming units (CFU) count methods. The results showed that gentamicin was successfully grafted on the surface of CNF sponges without significant change in morphology and slight improvement in mechanical performance. The superior lightness of the sponge (0.0174 g cm-3) was demonstrated by showing the sponge could be supported by a flower branch without crushing it. Gentamicin-functionalized CNF sponges showed excellent antibacterial performance against E. coli and S. aureus, with bactericidal rates of over 99.9%.
Collapse
Affiliation(s)
- Yongmei Xiao
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Liduo Rong
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Bijia Wang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Zhiping Mao
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Hong Xu
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Yi Zhong
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Linping Zhang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Xiaofeng Sui
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China.
| |
Collapse
|
26
|
Wei F, Zhao X, Li C, Han X. A novel strategy for water disinfection with a AgNPs/gelatin sponge filter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19480-19487. [PMID: 29730757 DOI: 10.1007/s11356-018-2157-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Disinfection of bacteria in water with sustainable and energy-efficient methods is still a great challenge. Herein, a novel gelatin sponge with embedded AgNPs is fabricated via freeze-drying using gelatin as the reducing agent to synthesize AgNPs in situ. UV-vis spectroscopy, HRTEM, XRD, and XPS characterization prove the formation of AgNPs with an average size of 8.55 ± 0.35 nm. TEM and SEM images confirm the even distribution of AgNPs throughout the AgNPs/gelatin sponges. The composite sponge has a low bulk density of 20 ± 3.5 mg/cm3 and a pore size of 6.2 ± 1.5 μm. The AgNPs/gelatin sponges exhibit excellent antibacterial performance to E. coli in water, probably by destroying their cell membranes. The porous AgNPs/gelatin composite sponges are promising filter materials for water disinfection. The removal rate of AgNPs/gelatin composite sponges on E. coli reached almost 100%. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Urban Water Resources and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Xiaole Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Chao Li
- State Key Laboratory of Urban Water Resources and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resources and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China.
| |
Collapse
|
27
|
Jiao Y, Wan C, Bao W, Gao H, Liang D, Li J. Facile hydrothermal synthesis of Fe3O4@cellulose aerogel nanocomposite and its application in Fenton-like degradation of Rhodamine B. Carbohydr Polym 2018; 189:371-378. [DOI: 10.1016/j.carbpol.2018.02.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/03/2018] [Accepted: 02/10/2018] [Indexed: 11/15/2022]
|
28
|
Zulkifli FH, Hussain FSJ, Zeyohannes SS, Rasad MSBA, Yusuff MM. A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Pandey AK, Pandey PC, Agrawal NR, Das I. Synthesis and characterization of dendritic polypyrrole silver nanocomposite and its application as a new urea biosensor. J Appl Polym Sci 2017. [DOI: 10.1002/app.45705] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Avinash Kumar Pandey
- Chemistry Department; DDU Gorakhpur University; Gorakhpur 273009 Uttar Pradesh India
| | - Prem Chandra Pandey
- Chemistry Department; IIT Banaras Hindu University; Varanasi 221005 Uttar Pradesh India
| | - Namita Rani Agrawal
- Chemistry Department; St. Andrew's College; Gorakhpur 273001 Uttar Pradesh India
| | - Ishwar Das
- Chemistry Department; DDU Gorakhpur University; Gorakhpur 273009 Uttar Pradesh India
| |
Collapse
|
30
|
Elayaraja S, Zagorsek K, Li F, Xiang J. In situ synthesis of silver nanoparticles into TEMPO-mediated oxidized bacterial cellulose and their antivibriocidal activity against shrimp pathogens. Carbohydr Polym 2017; 166:329-337. [DOI: 10.1016/j.carbpol.2017.02.093] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/19/2017] [Accepted: 02/22/2017] [Indexed: 12/21/2022]
|
31
|
Wan C, Li J. Synthesis and electromagnetic interference shielding of cellulose-derived carbon aerogels functionalized with α-Fe2O3 and polypyrrole. Carbohydr Polym 2017; 161:158-165. [DOI: 10.1016/j.carbpol.2017.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/07/2016] [Accepted: 01/03/2017] [Indexed: 12/14/2022]
|
32
|
Hydroxypropyl methylcellulose based aerogels: Synthesis, characterization and application as adsorbents for wastewater pollutants. Carbohydr Polym 2017; 155:173-181. [DOI: 10.1016/j.carbpol.2016.08.082] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 01/02/2023]
|
33
|
Cellulose-derived carbon aerogels supported goethite (α-FeOOH) nanoneedles and nanoflowers for electromagnetic interference shielding. Carbohydr Polym 2017; 156:427-434. [DOI: 10.1016/j.carbpol.2016.09.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/31/2016] [Accepted: 09/10/2016] [Indexed: 01/29/2023]
|