1
|
Shi H, Zhou WH, Xu YY, He XE, He FY, Wang Y. Effect of calcium spray at flowering combined with post-harvest 1-MCP treatment on the preservation of grapes. Heliyon 2023; 9:e19918. [PMID: 37809379 PMCID: PMC10559319 DOI: 10.1016/j.heliyon.2023.e19918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
These tests were carried out to find out how calcium and 1-MCP treatment affected the preservation of grapes, as grapes are highly susceptible to decay during post-harvest storage. The grapes were treated with 5 g/L calcium at the flowering stage, followed by 1 μL/L 1-MCP treatment after harvesting. When grapevines were treated with a combination of calcium and 1-MCP, the marketable fruit rate (At day 56 of storage, the 1-MCP + Ca2+ treatment group was still 93%, an increase of 29.03% compared to the control group.) and quality improved (At day 28 of storage, the VC content of the 1-MCP + Ca2+ treated group was 4.35 mg/100g, an increase of 25.01% compared to the control group.), while the fruit weight loss rate decreased (At day 56 of storage, the weight loss of the control group was 6.97%, an increase of 39.43% compared to the 1-MCP + Ca2+ treated group.). According to the experimental results, there are several reasons for this. First, in the early stages of fruit storage, the concentration of soluble pectin and soluble fiber, as well as the activities of pectinase and cellulase (related gene levels) were decreased. Secondly, the activity of antioxidant enzymes was increased, while MDA content was decreased. Third, during fruit storage, the respiratory intensity and ethylene release rate were reduced, as was the activity of energy metabolism enzymes. As a result, the aging and deterioration of the fruit during storage were delayed. Principal component analysis revealed that the calcium and 1-MCP combination therapy slowed the decline in grape berry quality, followed by the calcium-treated and 1-MCP-treated fruits. In contrast, grape berry quality declined the most rapidly in the control group.
Collapse
Affiliation(s)
- Hao Shi
- College of Life and Environmental Science, Hunan University of Arts and Science, Changde, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Agriculture and Forestry Science, Hunan Applied technology University, Changde, China
| | - Wen hua Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yin yu Xu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xiao e He
- College of Agriculture and Forestry Science, Hunan Applied technology University, Changde, China
| | - Fu yin He
- College of Agriculture and Forestry Science, Hunan Applied technology University, Changde, China
| | - Yun Wang
- College of Life and Environmental Science, Hunan University of Arts and Science, Changde, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
2
|
Cosgrove DJ. Building an extensible cell wall. PLANT PHYSIOLOGY 2022; 189:1246-1277. [PMID: 35460252 PMCID: PMC9237729 DOI: 10.1093/plphys/kiac184] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 05/15/2023]
Abstract
This article recounts, from my perspective of four decades in this field, evolving paradigms of primary cell wall structure and the mechanism of surface enlargement of growing cell walls. Updates of the structures, physical interactions, and roles of cellulose, xyloglucan, and pectins are presented. This leads to an example of how a conceptual depiction of wall structure can be translated into an explicit quantitative model based on molecular dynamics methods. Comparison of the model's mechanical behavior with experimental results provides insights into the molecular basis of complex mechanical behaviors of primary cell wall and uncovers the dominant role of cellulose-cellulose interactions in forming a strong yet extensible network.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Penn State University, Pennsylvania 16802, USA
| |
Collapse
|
3
|
Du J, Anderson CT, Xiao C. Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development. NATURE PLANTS 2022; 8:332-340. [PMID: 35411046 DOI: 10.1038/s41477-022-01120-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Homogalacturonan (HG) is the most abundant pectin subtype in plant cell walls. Although it is a linear homopolymer, its modification states allow for complex molecular encoding. HG metabolism affects its structure, chemical properties, mobility and binding capacity, allowing it to interact dynamically with other polymers during wall assembly and remodelling and to facilitate anisotropic cell growth, cell adhesion and separation, and organ morphogenesis. HGs have also recently been found to function as signalling molecules that transmit information about wall integrity to the cell. Here we highlight recent advances in our understanding of the dual functions of HG as a dynamic structural component of the cell wall and an initiator of intrinsic and environmental signalling. We also predict how HG might interconnect the cell wall, plasma membrane and intracellular components with transcriptional networks to regulate plant growth and development.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Charles T Anderson
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Lopez-Sanchez P, Assifaoui A, Cousin F, Moser J, Bonilla MR, Ström A. Impact of Glucose on the Nanostructure and Mechanical Properties of Calcium-Alginate Hydrogels. Gels 2022; 8:gels8020071. [PMID: 35200453 PMCID: PMC8871698 DOI: 10.3390/gels8020071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Alginate is a polysaccharide obtained from brown seaweed that is widely used in food, pharmaceutical, and biotechnological applications due to its versatility as a viscosifier and gelling agent. Here, we investigated the influence of the addition of glucose on the structure and mechanical properties of alginate solutions and calcium-alginate hydrogels produced by internal gelation through crosslinking with Ca2+. Using 1H low-field nuclear magnetic resonance (NMR) and small angle neutron scattering (SANS), we showed that alginate solutions at 1 wt % present structural heterogeneities at local scale whose size increases with glucose concentration (15–45 wt %). Remarkably, the molecular conformation of alginate in the gels obtained from internal gelation by Ca2+ crosslinking is similar to that found in solution. The mechanical properties of the gels evidence an increase in gel strength and elasticity upon the addition of glucose. The fitting of mechanical properties to a poroelastic model shows that structural changes within solutions prior to gelation and the increase in solvent viscosity contribute to the gel strength. The nanostructure of the gels (at local scale, i.e., up to few hundreds of Å) remains unaltered by the presence of glucose up to 30 wt %. At 45 wt %, the permeability obtained by the poroelastic model decreases, and the Young’s modulus increases. We suggest that macro (rather than micro) structural changes lead to this behavior due to the creation of a network of denser zones of chains at 45 wt % glucose. Our study paves the way for the design of calcium-alginate hydrogels with controlled structure for food and pharmaceutical applications in which interactions with glucose are of relevance.
Collapse
Affiliation(s)
- Patricia Lopez-Sanchez
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
- Correspondence:
| | - Ali Assifaoui
- Unité Mixte de Recherche Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté (UBFC), UMR PAM A 02.102, 21000 Dijon, France;
| | - Fabrice Cousin
- Laboratoire Léon Brillouin, Université Paris-Saclay, UMR 12, CEA-CNRS, 91191 Gif Sur Yvette, France;
| | - Josefine Moser
- Department Bioeconomy and Health, Research Institutes of Sweden RISE, 412 76 Gothenburg, Sweden;
| | | | - Anna Ström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
| |
Collapse
|
5
|
Codjoe JM, Miller K, Haswell ES. Plant cell mechanobiology: Greater than the sum of its parts. THE PLANT CELL 2022; 34:129-145. [PMID: 34524447 PMCID: PMC8773992 DOI: 10.1093/plcell/koab230] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/09/2021] [Indexed: 05/04/2023]
Abstract
The ability to sense and respond to physical forces is critical for the proper function of cells, tissues, and organisms across the evolutionary tree. Plants sense gravity, osmotic conditions, pathogen invasion, wind, and the presence of barriers in the soil, and dynamically integrate internal and external stimuli during every stage of growth and development. While the field of plant mechanobiology is growing, much is still poorly understood-including the interplay between mechanical and biochemical information at the single-cell level. In this review, we provide an overview of the mechanical properties of three main components of the plant cell and the mechanoperceptive pathways that link them, with an emphasis on areas of complexity and interaction. We discuss the concept of mechanical homeostasis, or "mechanostasis," and examine the ways in which cellular structures and pathways serve to maintain it. We argue that viewing mechanics and mechanotransduction as emergent properties of the plant cell can be a useful conceptual framework for synthesizing current knowledge and driving future research.
Collapse
Affiliation(s)
- Jennette M Codjoe
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, St Louis, Missouri, 63130, USA
| | - Kari Miller
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, St Louis, Missouri, 63130, USA
| | | |
Collapse
|
6
|
Chen SQ, Meldrum OW, Liao Q, Li Z, Cao X, Guo L, Zhang S, Zhu J, Li L. The influence of alkaline treatment on the mechanical and structural properties of bacterial cellulose. Carbohydr Polym 2021; 271:118431. [PMID: 34364571 DOI: 10.1016/j.carbpol.2021.118431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
The unique mechanical properties of hydrated bacterial cellulose make it suitable for biomedical applications. This study evaluates the effect of concentrated sodium hydroxide treatment on the structural and mechanical properties of bacterial cellulose hydrogels using rheological, tensile, and compression tests combined with mathematical modelling. Bacterial cellulose hydrogels show a concentration-dependent and irreversible reduction in shear moduli, compression, and tensile strength after alkaline treatment. Applying a poroelastic biphasic model to through-thickness compressive stress-relaxation tests showed the alkaline treatment to induce no significant change in axial compression, an effect was observed in the radial direction, potentially due to the escape of water from within the hydrogel. Scanning electron microscopy showed a more porous structure of bacterial cellulose. These results show how concentration-dependent alkaline treatment induces selective weakening of intramolecular interactions between cellulose fibres, allowing the opportunity to precisely tune the mechanical properties for specific biomedical application, e.g., faster-degradable materials.
Collapse
Affiliation(s)
- Si-Qian Chen
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, PR China
| | - Oliver W Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Qiudong Liao
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhaofeng Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiao Cao
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, PR China
| | - Lei Guo
- The School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shuyan Zhang
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, PR China
| | - Jie Zhu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, PR China.
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, PR China.
| |
Collapse
|
7
|
Li HT, Chen SQ, Bui AT, Xu B, Dhital S. Natural ‘capsule’ in food plants: Cell wall porosity controls starch digestion and fermentation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106657] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Ajdary R, Tardy BL, Mattos BD, Bai L, Rojas OJ. Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001085. [PMID: 32537860 PMCID: PMC11468645 DOI: 10.1002/adma.202001085] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/08/2020] [Accepted: 03/20/2020] [Indexed: 05/26/2023]
Abstract
Recent developments in the area of plant-based hydrogels are introduced, especially those derived from wood as a widely available, multiscale, and hierarchical source of nanomaterials, as well as other cell wall elements. With water being fundamental in a hydrogel, water interactions, hydration, and swelling, all critically important in designing, processing, and achieving the desired properties of sustainable and functional hydrogels, are highlighted. A plant, by itself, is a form of a hydrogel, at least at given states of development, and for this reason phenomena such as fluid transport, diffusion, capillarity, and ionic effects are examined. These aspects are highly relevant not only to plants, especially lignified tissues, but also to the porous structures produced after removal of water (foams, sponges, cryogels, xerogels, and aerogels). Thus, a useful source of critical and comprehensive information is provided regarding the synthesis of hydrogels from plant materials (and especially wood nanostructures), and about the role of water, not only for processing but for developing hydrogel properties and uses.
Collapse
Affiliation(s)
- Rubina Ajdary
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Blaise L. Tardy
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Bruno D. Mattos
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Long Bai
- Departments of Chemical & Biological EngineeringChemistry and, Wood ScienceThe University of British Columbia2360 East MallVancouverBCV6T 1Z3Canada
| | - Orlando J. Rojas
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
- Departments of Chemical & Biological EngineeringChemistry and, Wood ScienceThe University of British Columbia2360 East MallVancouverBCV6T 1Z3Canada
| |
Collapse
|
9
|
Thompson DS, Islam A. Plant Cell Wall Hydration and Plant Physiology: An Exploration of the Consequences of Direct Effects of Water Deficit on the Plant Cell Wall. PLANTS (BASEL, SWITZERLAND) 2021; 10:1263. [PMID: 34206199 PMCID: PMC8309141 DOI: 10.3390/plants10071263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
The extensibility of synthetic polymers is routinely modulated by the addition of lower molecular weight spacing molecules known as plasticizers, and there is some evidence that water may have similar effects on plant cell walls. Furthermore, it appears that changes in wall hydration could affect wall behavior to a degree that seems likely to have physiological consequences at water potentials that many plants would experience under field conditions. Osmotica large enough to be excluded from plant cell walls and bacterial cellulose composites with other cell wall polysaccharides were used to alter their water content and to demonstrate that the relationship between water potential and degree of hydration of these materials is affected by their composition. Additionally, it was found that expansins facilitate rehydration of bacterial cellulose and cellulose composites and cause swelling of plant cell wall fragments in suspension and that these responses are also affected by polysaccharide composition. Given these observations, it seems probable that plant environmental responses include measures to regulate cell wall water content or mitigate the consequences of changes in wall hydration and that it may be possible to exploit such mechanisms to improve crop resilience.
Collapse
Affiliation(s)
- David Stuart Thompson
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK;
| | | |
Collapse
|
10
|
Huang JY, Liao JS, Qi JR, Jiang WX, Yang XQ. Structural and physicochemical properties of pectin-rich dietary fiber prepared from citrus peel. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106140] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Du J, Kirui A, Huang S, Wang L, Barnes WJ, Kiemle SN, Zheng Y, Rui Y, Ruan M, Qi S, Kim SH, Wang T, Cosgrove DJ, Anderson CT, Xiao C. Mutations in the Pectin Methyltransferase QUASIMODO2 Influence Cellulose Biosynthesis and Wall Integrity in Arabidopsis. THE PLANT CELL 2020; 32:3576-3597. [PMID: 32883711 PMCID: PMC7610292 DOI: 10.1105/tpc.20.00252] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023]
Abstract
Pectins are abundant in the cell walls of dicotyledonous plants, but how they interact with other wall polymers and influence wall integrity and cell growth has remained mysterious. Here, we verified that QUASIMODO2 (QUA2) is a pectin methyltransferase and determined that QUA2 is required for normal pectin biosynthesis. To gain further insight into how pectin affects wall assembly and integrity maintenance, we investigated cellulose biosynthesis, cellulose organization, cortical microtubules, and wall integrity signaling in two mutant alleles of Arabidopsis (Arabidopsis thaliana) QUA2, qua2 and tsd2 In both mutants, crystalline cellulose content is reduced, cellulose synthase particles move more slowly, and cellulose organization is aberrant. NMR analysis shows higher mobility of cellulose and matrix polysaccharides in the mutants. Microtubules in mutant hypocotyls have aberrant organization and depolymerize more readily upon treatment with oryzalin or external force. The expression of genes related to wall integrity, wall biosynthesis, and microtubule stability is dysregulated in both mutants. These data provide insights into how homogalacturonan is methylesterified upon its synthesis, the mechanisms by which pectin functionally interacts with cellulose, and how these interactions are translated into intracellular regulation to maintain the structural integrity of the cell wall during plant growth and development.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Alex Kirui
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Shixin Huang
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Lianglei Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - William J Barnes
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Sarah N Kiemle
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yunzhen Zheng
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yue Rui
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Mei Ruan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu 610041, People's Republic of China
| | - Seong H Kim
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Daniel J Cosgrove
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Charles T Anderson
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
12
|
Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks. Nat Commun 2020; 11:4692. [PMID: 32943624 PMCID: PMC7499266 DOI: 10.1038/s41467-020-18390-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/20/2020] [Indexed: 12/03/2022] Open
Abstract
Hemicelluloses, a family of heterogeneous polysaccharides with complex molecular structures, constitute a fundamental component of lignocellulosic biomass. However, the contribution of each hemicellulose type to the mechanical properties of secondary plant cell walls remains elusive. Here we homogeneously incorporate different combinations of extracted and purified hemicelluloses (xylans and glucomannans) from softwood and hardwood species into self-assembled networks during cellulose biosynthesis in a bacterial model, without altering the morphology and the crystallinity of the cellulose bundles. These composite hydrogels can be therefore envisioned as models of secondary plant cell walls prior to lignification. The incorporated hemicelluloses exhibit both a rigid phase having close interactions with cellulose, together with a flexible phase contributing to the multiscale architecture of the bacterial cellulose hydrogels. The wood hemicelluloses exhibit distinct biomechanical contributions, with glucomannans increasing the elastic modulus in compression, and xylans contributing to a dramatic increase of the elongation at break under tension. These diverging effects cannot be explained solely from the nature of their direct interactions with cellulose, but can be related to the distinct molecular structure of wood xylans and mannans, the multiphase architecture of the hydrogels and the aggregative effects amongst hemicellulose-coated fibrils. Our study contributes to understanding the specific roles of wood xylans and glucomannans in the biomechanical integrity of secondary cell walls in tension and compression and has significance for the development of lignocellulosic materials with controlled assembly and tailored mechanical properties. Hemicelluloses are an essential constituent of plant cell walls, but the individual biomechanical roles remain elusive. Here the authors report on the interaction of wood hemicellulose with bacterial cellulose during deposition and explore the resultant fibrillar architecture and mechanical properties.
Collapse
|
13
|
Lopez-Sanchez P, Martinez-Sanz M, Bonilla M, Sonni F, Gilbert E, Gidley M. Nanostructure and poroviscoelasticity in cell wall materials from onion, carrot and apple: Roles of pectin. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105253] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Lahaye M, Falourd X, Laillet B, Le Gall S. Cellulose, pectin and water in cell walls determine apple flesh viscoelastic mechanical properties. Carbohydr Polym 2019; 232:115768. [PMID: 31952582 DOI: 10.1016/j.carbpol.2019.115768] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
Abstract
The viscoelastic mechanical properties are important quality traits for fleshy fruit uses. The contribution of cell wall polysaccharides chemistry and organization on their variability was studied in six varieties of apple. Correlation between damping and storage modulus of plasmolyzed tissue distinguished better apple varieties on their viscoelasticity than fresh samples. Galactose, arabinose and uronic acids correlated positively with the storage modulus of fresh apple samples (E'f). These corresponded to 4-linked galactan but no specific arabinose linkage. Galacturonic acid branched on O-3 and terminal rhamnose correlated negatively with E'f. These correlations formed two groups of fruit except for branched methyl-esterified galacturonic. Solid-state 13C NMR spectroscopy analyses showed that E'f correlated negatively with cellulose C4 T1ρH relaxation and positively with pectin methyl esters THH proton diffusion. The results point to the key roles of pectin structure and hydration and cellulose microfibrils distribution on apple mechanical properties.
Collapse
|
15
|
|
16
|
Probing adhesion between nanoscale cellulose fibres using AFM lateral force spectroscopy: The effect of hemicelluloses on hydrogen bonding. Carbohydr Polym 2018; 208:97-107. [PMID: 30658836 DOI: 10.1016/j.carbpol.2018.12.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 11/20/2022]
Abstract
Inter-fibre adhesion is a key contributing factor to the mechanical response and functionality of cellulose-based biomaterials. 'Dip-and-Drag' lateral force atomic force microscopy technique is used here to evaluate the influence of arabinoxylan and xyloglucan on interactions between nanoscale cellulose fibres within a hydrated network of bacterial cellulose. A cohesive zone model of the detachment event between two nano-fibres is used to interpret the experimental data and evaluate inter-fibre adhesion energy. The presence of xyloglucan or arabinoxylan is found to increase the adhesive energy by a factor of 4.3 and 1.3, respectively, which is consistent with these two hemicellulose polysaccharides having different specificity of hydrogen bonding with cellulose. Importantly, xyloglucan's ability to strengthen adhesion between cellulose nano-fibres supports emergent models of the primary plant cell walls (Park & Cosgrove, 2012b), which suggest that xyloglucan chains confined within cellulose-cellulose junctions play a key role in cell wall's mechanical response.
Collapse
|
17
|
Saffer AM. Expanding roles for pectins in plant development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:910-923. [PMID: 29727062 DOI: 10.1111/jipb.12662] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/02/2018] [Indexed: 05/19/2023]
Abstract
Pectins are complex cell wall polysaccharides important for many aspects of plant development. Recent studies have discovered extensive physical interactions between pectins and other cell wall components, implicating pectins in new molecular functions. Pectins are often localized in spatially-restricted patterns, and some of these non-uniform pectin distributions contribute to multiple aspects of plant development, including the morphogenesis of cells and organs. Furthermore, a growing number of mutants affecting cell wall composition have begun to reveal the distinct contributions of different pectins to plant development. This review discusses the interactions of pectins with other cell wall components, the functions of pectins in controlling cellular morphology, and how non-uniform pectin composition can be an important determinant of developmental processes.
Collapse
Affiliation(s)
- Adam M Saffer
- Department of Molecular, Cellular and Developmental Biology, Yale University, OML260, 266 Whitney Ave, New Haven, CT 06520-8104, USA
| |
Collapse
|
18
|
Wood K, Mata JP, Garvey CJ, Wu CM, Hamilton WA, Abbeywick P, Bartlett D, Bartsch F, Baxter P, Booth N, Brown W, Christoforidis J, Clowes D, d'Adam T, Darmann F, Deura M, Harrison S, Hauser N, Horton G, Federici D, Franceschini F, Hanson P, Imamovic E, Imperia P, Jones M, Kennedy S, Kim S, Lam T, Lee WT, Lesha M, Mannicke D, Noakes T, Olsen SR, Osborn JC, Penny D, Perry M, Pullen SA, Robinson RA, Schulz JC, Xiong N, Gilbert EP. QUOKKA, the pinhole small-angle neutron scattering instrument at the OPAL Research Reactor, Australia: design, performance, operation and scientific highlights. J Appl Crystallogr 2018. [DOI: 10.1107/s1600576718002534] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
QUOKKA is a 40 m pinhole small-angle neutron scattering instrument in routine user operation at the OPAL research reactor at the Australian Nuclear Science and Technology Organisation. Operating with a neutron velocity selector enabling variable wavelength, QUOKKA has an adjustable collimation system providing source–sample distances of up to 20 m. Following the large-area sample position, a two-dimensional 1 m2position-sensitive detector measures neutrons scattered from the sample over a secondary flight path of up to 20 m. Also offering incident beam polarization and analysis capability as well as lens focusing optics, QUOKKA has been designed as a general purpose SANS instrument to conduct research across a broad range of scientific disciplines, from structural biology to magnetism. As it has recently generated its first 100 publications through serving the needs of the domestic and international user communities, it is timely to detail a description of its as-built design, performance and operation as well as its scientific highlights. Scientific examples presented here reflect the Australian context, as do the industrial applications, many combined with innovative and unique sample environments.
Collapse
|
19
|
Chan SY, Chan BQY, Liu Z, Parikh BH, Zhang K, Lin Q, Su X, Kai D, Choo WS, Young DJ, Loh XJ. Electrospun Pectin-Polyhydroxybutyrate Nanofibers for Retinal Tissue Engineering. ACS OMEGA 2017; 2:8959-8968. [PMID: 30023596 PMCID: PMC6044805 DOI: 10.1021/acsomega.7b01604] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/01/2017] [Indexed: 05/19/2023]
Abstract
Natural polysaccharide pectin has for the first time been grafted with polyhydroxybutyrate (PHB) via ring-opening polymerization of β-butyrolactone. This copolymer, pectin-polyhydroxybutyrate (pec-PHB), was blended with PHB in various proportions and electrospun to produce nanofibers that exhibited uniform and bead-free nanostructures, suggesting the miscibility of PHB and pec-PHB. These nanofiber blends exhibited reduced fiber diameters from 499 to 336-426 nm and water contact angles from 123.8 to 88.2° on incorporation of pec-PHB. They also displayed 39-335% enhancement of elongation at break relative to pristine PHB nanofibers. pec-PHB nanofibers were found to be noncytotoxic and biocompatible. Human retinal pigmented epithelium (ARPE-19) cells were seeded onto pristine PHB and pec-PHB nanofibers as scaffold and showed good proliferation. Higher proportions of pec-PHB (pec-PHB10 and pec-PHB20) yielded higher densities of cells with similar characteristics to normal RPE cells. We propose, therefore, that nanofibers of pec-PHB have significant potential as retinal tissue engineering scaffold materials.
Collapse
Affiliation(s)
- Siew Yin Chan
- School
of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Benjamin Qi Yu Chan
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
- Department
of Materials Science and Engineering, National
University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Zengping Liu
- Department
of Ophthalmology, Yong Loo Lin School of
Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Bhav Harshad Parikh
- Department
of Ophthalmology, Yong Loo Lin School of
Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Kangyi Zhang
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Qianyu Lin
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
- Department
of Materials Science and Engineering, National
University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Xinyi Su
- Department
of Ophthalmology, Yong Loo Lin School of
Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Institute
of Molecular and Cell Biology (IMCB), Agency
for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department
of Ophthalmology, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
- Singapore
Eye Research Institute (SERI), 11 Third Hospital Avenue, Singapore 168751, Singapore
| | - Dan Kai
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Wee Sim Choo
- School
of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - David James Young
- School
of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
- Faculty
of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Xian Jun Loh
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
- Department
of Materials Science and Engineering, National
University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
- Singapore
Eye Research Institute (SERI), 11 Third Hospital Avenue, Singapore 168751, Singapore
| |
Collapse
|
20
|
Martínez-Sanz M, Pettolino F, Flanagan B, Gidley MJ, Gilbert EP. Structure of cellulose microfibrils in mature cotton fibres. Carbohydr Polym 2017; 175:450-463. [DOI: 10.1016/j.carbpol.2017.07.090] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/19/2017] [Accepted: 07/30/2017] [Indexed: 12/16/2022]
|
21
|
Johnson KL, Gidley MJ, Bacic A, Doblin MS. Cell wall biomechanics: a tractable challenge in manipulating plant cell walls 'fit for purpose'! Curr Opin Biotechnol 2017; 49:163-171. [PMID: 28915438 DOI: 10.1016/j.copbio.2017.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/26/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022]
Abstract
The complexity and recalcitrance of plant cell walls has contributed to the success of plants colonising land. Conversely, these attributes have also impeded progress in understanding the roles of walls in controlling and directing developmental processes during plant growth and also in unlocking their potential for biotechnological innovation. Recent technological advances have enabled the probing of how primary wall structures and molecular interactions of polysaccharides define their biomechanical (and hence functional) properties. The outputs have led to a new paradigm that places greater emphasis on understanding how the wall, as a biomechanical construct and cell surface sensor, modulates both plant growth and material properties. Armed with this knowledge, we are gaining the capacity to design walls 'fit for (biotechnological) purpose'!
Collapse
Affiliation(s)
- Kim L Johnson
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Michael J Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - Monika S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| |
Collapse
|
22
|
Phyo P, Wang T, Xiao C, Anderson CT, Hong M. Effects of Pectin Molecular Weight Changes on the Structure, Dynamics, and Polysaccharide Interactions of Primary Cell Walls of Arabidopsis thaliana: Insights from Solid-State NMR. Biomacromolecules 2017; 18:2937-2950. [DOI: 10.1021/acs.biomac.7b00888] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pyae Phyo
- Department
of Chemistry, Massachusetts Institute of Technology, 170 Albany
Street, Cambridge, Massachusetts 02139, United States
| | - Tuo Wang
- Department
of Chemistry, Massachusetts Institute of Technology, 170 Albany
Street, Cambridge, Massachusetts 02139, United States
| | - Chaowen Xiao
- Department
of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Charles T. Anderson
- Department
of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mei Hong
- Department
of Chemistry, Massachusetts Institute of Technology, 170 Albany
Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
Martínez-Sanz M, Mikkelsen D, Flanagan BM, Gidley MJ, Gilbert EP. Multi-scale characterisation of deuterated cellulose composite hydrogels reveals evidence for different interaction mechanisms with arabinoxylan, mixed-linkage glucan and xyloglucan. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.07.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Cellulose-pectin composite hydrogels: Intermolecular interactions and material properties depend on order of assembly. Carbohydr Polym 2017; 162:71-81. [DOI: 10.1016/j.carbpol.2017.01.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/27/2016] [Accepted: 01/13/2017] [Indexed: 11/21/2022]
|