1
|
Khafaga DSR, Muteeb G, Elgarawany A, Aatif M, Farhan M, Allam S, Almatar BA, Radwan MG. Green nanobiocatalysts: enhancing enzyme immobilization for industrial and biomedical applications. PeerJ 2024; 12:e17589. [PMID: 38993977 PMCID: PMC11238728 DOI: 10.7717/peerj.17589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Nanobiocatalysts (NBCs), which merge enzymes with nanomaterials, provide a potent method for improving enzyme durability, efficiency, and recyclability. This review highlights the use of eco-friendly synthesis methods to create sustainable nanomaterials for enzyme transport. We investigate different methods of immobilization, such as adsorption, ionic and covalent bonding, entrapment, and cross-linking, examining their pros and cons. The decreased environmental impact of green-synthesized nanomaterials from plants, bacteria, and fungi is emphasized. The review exhibits the various uses of NBCs in food industry, biofuel production, and bioremediation, showing how they can enhance effectiveness and eco-friendliness. Furthermore, we explore the potential impact of NBCs in biomedicine. In general, green nanobiocatalysts are a notable progression in enzyme technology, leading to environmentally-friendly and effective biocatalytic methods that have important impacts on industrial and biomedical fields.
Collapse
Affiliation(s)
- Doaa S. R. Khafaga
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Salma Allam
- Faculty of Medicine, Galala University, Suez, Egypt
| | - Batool Abdulhadi Almatar
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | | |
Collapse
|
2
|
Montazeri AR, Moghimi H, Ghourchian H, Maghami P. Characteristics investigation and synergistic anticancer effects of immobilized L-asparaginase onto iron-gold core-shell combined with cold atmospheric pressure plasma. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Suresh SA, Ethiraj S, Rajnish KN. A systematic review of recent trends in research on therapeutically significant L-asparaginase and acute lymphoblastic leukemia. Mol Biol Rep 2022; 49:11281-11287. [PMID: 35816224 DOI: 10.1007/s11033-022-07688-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
Abstract
L-asparaginases are mostly obtained from bacterial sources for their application in the therapy and food industry. Bacterial L-asparaginases are employed in the treatment of Acute Lymphoblastic Leukemia (ALL) and its subtypes, a type of blood and bone marrow cancer that results in the overproduction of immature blood cells. It also plays a role in the food industry in reducing the acrylamide formed during baking, roasting, and frying starchy foods. This importance of the enzyme makes it to be of constant interest to the researchers to isolate novel sources. Presently L-asparaginases from E. coli native and PEGylated form, Dickeya chrysanthemi (Erwinia chrysanthemi) are in the treatment regime. In therapy, the intrinsic glutaminase activity of the enzyme is a major drawback as the patients in treatment experience side effects like fever, skin rashes, anaphylaxis, pancreatitis, steatosis in the liver, and many complications. Its significance in the food industry in mitigating acrylamide is also a major reason. Acrylamide, a potent carcinogen was formed when treating starchy foods at higher temperatures. Acrylamide content in food was analyzed and pre-treatment was considered a valuable option. Immobilization of the enzyme is an advancing and promising technique in the effective delivery of the enzyme than in free form. The concept of machine learning by employing the Artificial Network and Genetic Algorithm has paved the way to optimize the production of L-asparaginase from its sources. Gene-editing tools are gaining momentum in the study of several diseases and this review focuses on the CRISPR-Cas9 gene-editing tool in ALL.
Collapse
Affiliation(s)
| | | | - K N Rajnish
- SRM Institute of Science and Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
4
|
Aslam S, Akhtar A, Nirmal N, Khalid N, Maqsood S. Recent Developments in Starch-Based Delivery Systems of Bioactive Compounds: Formulations and Applications. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09311-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Hafızosmanoğlu G, Ulu A, Köytepe S, Ateş B. Fabrication of Oleic Acid Grafted Starch‐based Hybrid Carriers for
l
‐Asparaginase Encapsulation. STARCH-STARKE 2021. [DOI: 10.1002/star.202100152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gülşah Hafızosmanoğlu
- Biochemistry and Biomaterials Research Laboratory Department of Chemistry, Faculty of Arts and Science İnönü University Malatya 44280 Turkey
| | - Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory Department of Chemistry, Faculty of Arts and Science İnönü University Malatya 44280 Turkey
| | - Süleyman Köytepe
- Department of Chemistry, Faculty of Arts and Science İnönü University Malatya 44280 Turkey
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory Department of Chemistry, Faculty of Arts and Science İnönü University Malatya 44280 Turkey
| |
Collapse
|
6
|
Nanocarriers-based immobilization of enzymes for industrial application. 3 Biotech 2021; 11:427. [PMID: 34603907 DOI: 10.1007/s13205-021-02953-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022] Open
Abstract
Nanocarriers-based immobilization strategies are a novel concept in the enhancement of enzyme stability, shelf life and efficiency. A wide range of natural and artificial supports have been assessed for their efficacy in enzyme immobilization. Nanomaterials epitomize unique and fascinating matrices for enzyme immobilization. These structures include carbon nanotubes, superparamagnetic nanoparticles and nanofibers. These nano-based supports offer stable attachment of enzymes, thus ensuring their reusability in diverse industrial applications. This review attempts to encompass recent developments in the critical role played by nanotechnology towards the improvement of the practical applicability of microbial enzymes. Nanoparticles are increasingly being used in combination with various polymers to facilitate enzyme immobilization. These endeavors are proving to be conducive for enzyme-catalyzed industrial operations. In recent years the diversity of nanomaterials has grown tremendously, thus offering endless opportunities in the form of novel combinations for various biotransformation experimentations. These nanocarriers are advantageous for both free enzymes and whole-cell immobilization, thus demonstrating to be relatively effective in several fermentation procedures.
Collapse
|
7
|
Ulu A, Ateş B. Tailor-made shape memory stents for therapeutic enzymes: A novel approach to enhance enzyme performance. Int J Biol Macromol 2021; 185:966-982. [PMID: 34237367 DOI: 10.1016/j.ijbiomac.2021.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022]
Abstract
Herein, our suggestion is to immobilize enzymes in-situ on absorbable shape-memory stents instead of injecting therapeutic enzymes into the blood. Chitosan (CHI)-based stents were tailored as novel support and the enzyme-immobilizing ability was elucidated using L-asparaginase (L-ASNase). For developing shape-memory stents, CHI-glycerol (GLY) solution was prepared and further blended with different ratios of polyethylene glycol (PEG), and polyvinyl alcohol (PVA). Afterward, the blends were modified by ionic crosslinking with sodium tripolyphosphate to obtain a shape-memory character. L-ASNase was included in the blends by using in-situ method before ionic crosslinking. The prepared stents, with or without L-ASNase, were comprehensively characterized by using several techniques. Collectively, immobilized L-ASNase exhibited much better performance in immobilization parameters than free one, thanks to its improved stability and reusability. For instance, CHI/GLY/PEG-3@L-ASNase retained about 70% of the initial activity after storage at 30 °C for 2 weeks, whereas the free form lost half of its initial activity. Besides, it retained 73.4% residual activity after 15 consecutive cycles. Most importantly, stent formulations exhibited ~60% activity in the bioreactor system after 4 weeks of incubation. Given the above results, shape-memory stents can be a promising candidate as a new platform for immobilization, especially in the blood circulation system.
Collapse
Affiliation(s)
- Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Turkey
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Turkey.
| |
Collapse
|
8
|
Doğan D, Ulu A, Sel E, Köytepe S, Ateş B. α‐Amylase Immobilization on P(HEMA‐co‐PEGMA) Hydrogels: Preparation, Characterization, and Catalytic Investigation. STARCH-STARKE 2021. [DOI: 10.1002/star.202000217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Demet Doğan
- Faculty of Arts and Science Department of Chemistry, İnönü University Malatya 44280 Turkey
- Faculty of Arts and Science Department of Biology İnönü University Malatya 44280 Turkey
| | - Ahmet Ulu
- Faculty of Arts and Science Department of Chemistry, İnönü University Malatya 44280 Turkey
| | - Evren Sel
- Faculty of Arts and Science Department of Chemistry, İnönü University Malatya 44280 Turkey
| | - Süleyman Köytepe
- Faculty of Arts and Science Department of Chemistry, İnönü University Malatya 44280 Turkey
| | - Burhan Ateş
- Faculty of Arts and Science Department of Chemistry, İnönü University Malatya 44280 Turkey
| |
Collapse
|
9
|
El-Naggar ME, Abdel-Aty AM, Wassel AR, Elaraby NM, Mohamed SA. Immobilization of horseradish peroxidase on cationic microporous starch: Physico-bio-chemical characterization and removal of phenolic compounds. Int J Biol Macromol 2021; 181:734-742. [PMID: 33811934 DOI: 10.1016/j.ijbiomac.2021.03.171] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/19/2022]
Abstract
In the present study, two different modified starches; microporous starch (MPS) and cationic microporous starch (CMPS) were synthesized. The granules of MPS that distributed regularly were destroyed after the etherification reaction. The data depicted that the immobilization of horseradish peroxidase (HRP) on CMPS revealed highest immobilization efficiency (86%) at 100 mg of CMPS at pH = 6.0 and 100 units of enzyme. After 10 reuses of the CMPS-HRP, it retained 66% of initial activity. The soluble HRP showed broad pH optimum of 6.0-7.0, which changed to sharp pH = 6.0 for CMPS-HRP. Soluble-HRP and CMPS-HRP showed temperature optima at 30 °C and 40 °C, respectively. The CMPS-HRP showed high thermal stability up to 50 °C compared to the soluble HRP (40 °C). The Km values of soluble HRP and CMPS-HRP were 6.6 and 10.8 mM for H2O2 and 34 and 41.6 mM for guaiacol, respectively. CMPS-HRP showed higher affinity toward various substrates than the soluble-HRP. CMPS-HRP showed more resistance against heavy metals, urea, isopropanol, Triton X-100 and trypsin than soluble enzyme. The CMPS-HRP showed higher ability to remove phenol and p-chlorophenol compared to soluble-HRP.
Collapse
Affiliation(s)
- Mehrez E El-Naggar
- Textile Research Division, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt.
| | - Azza M Abdel-Aty
- Molecular Biology Department, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| | - Ahmed R Wassel
- Electron Microscope and Thin Films Department, Physics Research Division, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| | - Nesma M Elaraby
- Medical Molecular Genetics Department, Human Genetics & Genome Research Division, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| | - Saleh A Mohamed
- Molecular Biology Department, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
10
|
Aggarwal S, Chakravarty A, Ikram S. A comprehensive review on incredible renewable carriers as promising platforms for enzyme immobilization & thereof strategies. Int J Biol Macromol 2020; 167:962-986. [PMID: 33186644 DOI: 10.1016/j.ijbiomac.2020.11.052] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/07/2020] [Accepted: 11/08/2020] [Indexed: 02/05/2023]
Abstract
Enzymes are the highly versatile bio-catalysts having the potential for being employed in biotechnological and industrial sectors to catalyze biosynthetic reactions over a commercial point of view. Immobilization of enzymes has improved catalytic properties, retention activities, thermal and storage stabilities as well as reusabilities of enzymes in synthetic environments that have enthralled significant attention over the past few years. Dreadful efforts have been emphasized on the renewable and synthetic supports/composite materials to reserve their inherent characteristics such as biocompatibility, non-toxicity, accessibility of numerous reactive sites for profitable immobilization of biological molecules that often serve diverse applications in the pharmaceutical, environmental, and energy sectors. Supports should be endowed with unique physicochemical properties including high specific surface area, hydrophobicity, hydrophilicity, enantioselectivities, multivalent functionalization which professed them as competent carriers for enzyme immobilization. Organic, inorganic, and nano-based platforms are more potent, stable, highly recovered even after used for continuous catalytic processes, broadly renders the enzymes to get efficiently immobilized to develop an inherent bio-catalytic system that displays higher activities as compared to free-counter parts. This review highlights the recent advances or developments on renewable and synthetic matrices that are utilized for the immobilization of enzymes to deliver emerging applications around the globe.
Collapse
Affiliation(s)
- Shalu Aggarwal
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Archana Chakravarty
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Saiqa Ikram
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
11
|
Li R, Zhang Z, Pei X, Xia X. Covalent Immobilization of L-Asparaginase and Optimization of Its Enzyme Reactor for Reducing Acrylamide Formation in a Heated Food Model System. Front Bioeng Biotechnol 2020; 8:584758. [PMID: 33178677 PMCID: PMC7593842 DOI: 10.3389/fbioe.2020.584758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Acrylamide is a potent carcinogen and neurotoxin that is mainly formed by the Maillard reaction of asparagine with starch at high temperatures. In this work, a food safety immobilization system for L-asparaginase (L-ASNase) consisting of food-grade agarose (Aga) spheres and N-hydroxysuccinimide esters was developed to decrease the formation of acrylamide in a fluid food model system. L-asparaginase was successfully immobilized with a maximum immobilization efficiency of 68.43%. The immobilized enzymes exhibited superior storage stability and reusability with 93.21 and 72.25% of the initial activity retained after six consecutive cycles and storage for 28 days, indicating its high industrial application potential. Meanwhile, a simplified mathematical model of the enzyme reactor was developed and verified with experiments, which demonstrated its auxiliary role in the design and optimization of reactors. In addition, simulated fluidized food components were continuously catalyzed in the designed packed bed reactor, achieving a reduction rate of nearly 89%.
Collapse
Affiliation(s)
| | | | | | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Maximizing the direct recovery and stabilization of cellulolytic enzymes from Trichoderma harzanium BPGF1 fermented broth using carboxymethyl inulin nanoparticles. Int J Biol Macromol 2020; 160:964-970. [DOI: 10.1016/j.ijbiomac.2020.05.185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022]
|
13
|
Ates B, Koytepe S, Ulu A, Gurses C, Thakur VK. Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources. Chem Rev 2020; 120:9304-9362. [PMID: 32786427 DOI: 10.1021/acs.chemrev.9b00553] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Researchers have recently focused on the advancement of new materials from biorenewable and sustainable sources because of great concerns about the environment, waste accumulation and destruction, and the inevitable depletion of fossil resources. Biorenewable materials have been extensively used as a matrix or reinforcement in many applications. In the development of innovative methods and materials, composites offer important advantages because of their excellent properties such as ease of fabrication, higher mechanical properties, high thermal stability, and many more. Especially, nanocomposites (obtained by using biorenewable sources) have significant advantages when compared to conventional composites. Nanocomposites have been utilized in many applications including food, biomedical, electroanalysis, energy storage, wastewater treatment, automotive, etc. This comprehensive review provides chemistry, structures, advanced applications, and recent developments about nanocomposites obtained from biorenewable sources.
Collapse
Affiliation(s)
- Burhan Ates
- Inonu University, Department of Chemistry, 44280 Malatya, Turkey
| | - Suleyman Koytepe
- Inonu University, Department of Chemistry, 44280 Malatya, Turkey
| | - Ahmet Ulu
- Inonu University, Department of Chemistry, 44280 Malatya, Turkey
| | - Canbolat Gurses
- Inonu University, Department of Molecular Biology and Genetics, 44280 Malatya, Turkey
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.,Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, U.K.,Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
14
|
Immobilization of L-Asparaginase on Magnetic Nanoparticles for Cancer Treatment. Appl Biochem Biotechnol 2020; 191:1432-1443. [DOI: 10.1007/s12010-020-03276-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/13/2020] [Indexed: 01/17/2023]
|
15
|
Noma SAA, Ulu A, Acet Ö, Sanz R, Sanz-Pérez ES, Odabaşı M, Ateş B. Comparative study of ASNase immobilization on tannic acid-modified magnetic Fe3O4/SBA-15 nanoparticles to enhance stability and reusability. NEW J CHEM 2020. [DOI: 10.1039/d0nj00127a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein, we report the preparation of tannic acid-modified magnetic Fe3O4/SBA-15 nanoparticles and their application as a carrier matrix for immobilization of ASNase, an anticancer enzyme-drug.
Collapse
Affiliation(s)
| | - Ahmet Ulu
- Department of Chemistry
- Faculty of Arts and Science
- İnönü University
- Malatya
- Turkey
| | - Ömür Acet
- Aksaray University
- Faculty of Arts and Science
- Chemistry Department
- Aksaray
- Turkey
| | - Raúl Sanz
- Department of Chemical and Environmental Technology
- ESCET
- Universidad Rey Juan Carlos
- 28933 Móstoles
- Spain
| | - Eloy S. Sanz-Pérez
- Department of Chemical, Energy, and Mechanical Technology
- ESCET
- Universidad Rey Juan Carlos
- 28933 Móstoles
- Spain
| | - Mehmet Odabaşı
- Aksaray University
- Faculty of Arts and Science
- Chemistry Department
- Aksaray
- Turkey
| | - Burhan Ateş
- Department of Chemistry
- Faculty of Arts and Science
- İnönü University
- Malatya
- Turkey
| |
Collapse
|
16
|
Tarhan T, Ulu A, Sariçam M, Çulha M, Ates B. Maltose functionalized magnetic core/shell Fe3O4@Au nanoparticles for an efficient l-asparaginase immobilization. Int J Biol Macromol 2020; 142:443-451. [DOI: 10.1016/j.ijbiomac.2019.09.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 11/24/2022]
|
17
|
Sharma D, Singh K, Singh K, Mishra A. Insights into the Microbial L-Asparaginases: from Production to Practical Applications. Curr Protein Pept Sci 2019; 20:452-464. [PMID: 30426897 DOI: 10.2174/1389203720666181114111035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 01/10/2023]
Abstract
L-asparaginase is a valuable protein therapeutic drug utilized for the treatment of leukemia and lymphomas. Administration of asparaginase leads to asparagine starvation causing inhibition of protein synthesis, growth, and proliferation of tumor cells. Besides its clinical significance, the enzyme also finds application in the food sector for mitigation of a cancer-causing agent acrylamide. The numerous applications ensue huge market demands and create a continued interest in the production of costeffective, more specific, less immunogenic and stable formulations which can cater both the clinical and food processing requirements. The current review article approaches the process parameters of submerged and solid-state fermentation strategies for the microbial production of the L-asparaginase from diverse sources, genetic engineering approaches used for the production of L-asparaginase enzyme and major applications in clinical and food sectors. The review also addresses the immunological issues associated with the L-asparaginase usage and the immobilization strategies, drug delivery systems employed to circumvent the toxicity complications are also discussed. The future prospects for microbial Lasparaginase production are discussed at the end of the review article.
Collapse
Affiliation(s)
- Deepankar Sharma
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Kushagri Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Kavita Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi-221005, India
| |
Collapse
|
18
|
Tamaddon F, Arab D, Ahmadi-AhmadAbadi E. Urease immobilization on magnetic micro/nano-cellulose dialdehydes: Urease inhibitory of Biginelli product in Hantzsch reaction by urea. Carbohydr Polym 2019; 229:115471. [PMID: 31826427 DOI: 10.1016/j.carbpol.2019.115471] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 01/30/2023]
Abstract
Micro/nano celluloses (MC)/NC) were magnetized by nanoγ-Fe2O3 into the nanoγ-Fe2O3@MC (NMMC) and nanoγ-Fe2O3@NC (NMMC) which oxidized to NMMCD and NMNCD dialdehydes for Schiff-base immobilization of urease as NMMCD/urease and NMMCD/urease. The relative enzyme-activity of the immobilized ureases were comparable with the free-urease, although 75%-80% of the enzyme activity preserved for NMMCD/urease and NMNCD/urease after six cycles. The compared catalytic activities of the NMMCD/urease and NMMCD/urease in Biginelli/Hantzsch reactions in water at 60 °C surprised us by 100% selectivity for the Biginelli product 3,4-dihydropyrimidin-2(1H)-one (DHPM1). With the superiority of NMNCD/urease, this high selectivity using immobilized ureases is owing to the admirable urease inhibitory of the formed Biginelli product DHPM1 by urea condensation instead of urea hydrolysis. The robust enzyme inhibitory of the DHPM1 for free urease was also confirmed by phenol red test to show the deactivation of enzyme for enzymatic hydrolysis of urea and ammonia production in water.
Collapse
Affiliation(s)
- Fatemeh Tamaddon
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran.
| | - Davood Arab
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran.
| | | |
Collapse
|
19
|
Rostamabadi H, Falsafi SR, Jafari SM. Starch-based nanocarriers as cutting-edge natural cargos for nutraceutical delivery. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.04.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Bamburowicz-Klimkowska M, Poplawska M, Grudzinski IP. Nanocomposites as biomolecules delivery agents in nanomedicine. J Nanobiotechnology 2019; 17:48. [PMID: 30943985 PMCID: PMC6448271 DOI: 10.1186/s12951-019-0479-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 02/08/2023] Open
Abstract
Nanoparticles (NPs) are atomic clusters of crystalline or amorphous structure that possess unique physical and chemical properties associated with a size range of between 1 and 100 nm. Their nano-sized dimensions, which are in the same range as those of vital biomolecules, such as antibodies, membrane receptors, nucleic acids, and proteins, allow them to interact with different structures within living organisms. Because of these features, numerous nanoparticles are used in medicine as delivery agents for biomolecules. However, off-target drug delivery can cause serious side effects to normal tissues and organs. Considering this issue, it is essential to develop bioengineering strategies to significantly reduce systemic toxicity and improve therapeutic effect. In contrast to passive delivery, nanosystems enable to obtain enhanced therapeutic efficacy, decrease the possibility of drug resistance, and reduce side effects of "conventional" therapy in cancers. The present review provides an overview of the most recent (mostly last 3 years) achievements related to different biomolecules used to enable targeting capabilities of highly diverse nanoparticles. These include monoclonal antibodies, receptor-specific peptides or proteins, deoxyribonucleic acids, ribonucleic acids, [DNA/RNA] aptamers, and small molecules such as folates, and even vitamins or carbohydrates.
Collapse
Affiliation(s)
| | - Magdalena Poplawska
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Str, 00-664, Warsaw, Poland
| | - Ireneusz P Grudzinski
- Department of Applied Toxicology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str, 02-097, Warsaw, Poland.
| |
Collapse
|
21
|
Abstract
The substitution of petroleum-based synthetic polymers in latex formulations with sustainable and/or bio-based sources has increasingly been a focus of both academic and industrial research. Emulsion polymerization already provides a more sustainable way to produce polymers for coatings and adhesives, because it is a water-based process. It can be made even more attractive as a green alternative with the addition of starch, a renewable material that has proven to be extremely useful as a filler, stabilizer, property modifier and macromer. This work provides a critical review of attempts to modify and incorporate various types of starch in emulsion polymerizations. This review focusses on the method of initiation, grafting mechanisms, starch feeding strategies and the characterization methods. It provides a needed guide for those looking to modify starch in an emulsion polymerization to achieve a target grafting performance or to incorporate starch in latex formulations for the replacement of synthetic polymers.
Collapse
|
22
|
Agrawal S, Sharma I, Prajapati BP, Suryawanshi RK, Kango N. Catalytic characteristics and application of l-asparaginase immobilized on aluminum oxide pellets. Int J Biol Macromol 2018; 114:504-511. [DOI: 10.1016/j.ijbiomac.2018.03.081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
|
23
|
Ulu A, Noma SAA, Koytepe S, Ates B. Magnetic Fe3O4@MCM-41 core–shell nanoparticles functionalized with thiol silane for efficient l-asparaginase immobilization. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1035-1045. [DOI: 10.1080/21691401.2018.1478422] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ahmet Ulu
- Department of Chemistry, Faculty of Science & Arts, Inonu University, Malatya, Turkey
| | - Samir Abbas Ali Noma
- Department of Chemistry, Faculty of Science & Arts, Inonu University, Malatya, Turkey
| | - Suleyman Koytepe
- Department of Chemistry, Faculty of Science & Arts, Inonu University, Malatya, Turkey
| | - Burhan Ates
- Department of Chemistry, Faculty of Science & Arts, Inonu University, Malatya, Turkey
| |
Collapse
|
24
|
Ulu A, Ozcan I, Koytepe S, Ates B. Design of epoxy-functionalized Fe 3O 4@MCM-41 core-shell nanoparticles for enzyme immobilization. Int J Biol Macromol 2018; 115:1122-1130. [PMID: 29727644 DOI: 10.1016/j.ijbiomac.2018.04.157] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/24/2018] [Accepted: 04/28/2018] [Indexed: 12/18/2022]
Abstract
The scope of our research was to prepare the organosilane-modified Fe3O4@MCM-41 core-shell magnetic nanoparticles, used for L-ASNase immobilization and explored screening of immobilization conditions such as pH, temperature, thermal stability, kinetic parameters, reusability and storage stability. In this content, Fe3O4 core-shell magnetic nanoparticles were prepared via co-precipitation method and coated with MCM-41. Then, Fe3O4@MCM-41 magnetic nanoparticles were functionalized by (3-glycidyloxypropyl) trimethoxysilane (GPTMS) as an organosilane compound. Subsequently, L-ASNase was covalently immobilized on epoxy-functionalized Fe3O4@MCM-41 magnetic nanoparticles. The immobilized L-ASNase had greater activity at high pH and temperature values. It also maintained >92% of the initial activity after incubation at 55 °C for 3 h. Regarding kinetic values, immobilized L-ASNase showed a higher Vmax and lower Km compared to native L-ASNase. In addition, it displayed excellent reusability for 12 successive cycles. After 30 days of storage at 4 °C and 25 °C, immobilized L-ASNase retained 54% and 26% of its initial activities while native L-ASNase lost about 68% and 84% of its initial activity, respectively. As a result, the immobilization of L-ASNase onto magnetic nanoparticles may provide an advantage in terms of removal of L-ASNase from reaction media.
Collapse
Affiliation(s)
- Ahmet Ulu
- Department of Chemistry, Faculty of Science & Arts, Inonu University, Malatya 44280, Turkey
| | - Imren Ozcan
- Department of Chemistry, Faculty of Science & Arts, Inonu University, Malatya 44280, Turkey
| | - Suleyman Koytepe
- Department of Chemistry, Faculty of Science & Arts, Inonu University, Malatya 44280, Turkey
| | - Burhan Ates
- Department of Chemistry, Faculty of Science & Arts, Inonu University, Malatya 44280, Turkey.
| |
Collapse
|
25
|
Synthesis of stimuli–responsive chitosan–based hydrogels by Diels–Alder cross–linking `click´ reaction as potential carriers for drug administration. Carbohydr Polym 2018; 183:278-286. [DOI: 10.1016/j.carbpol.2017.12.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 01/08/2023]
|
26
|
Ulu A, Ates B. Immobilization of l-Asparaginase on Carrier Materials: A Comprehensive Review. Bioconjug Chem 2017; 28:1598-1610. [DOI: 10.1021/acs.bioconjchem.7b00217] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ahmet Ulu
- Department of Chemistry, Faculty of Science & Arts, Inonu University, Malatya, 44280, Turkey
| | - Burhan Ates
- Department of Chemistry, Faculty of Science & Arts, Inonu University, Malatya, 44280, Turkey
| |
Collapse
|
27
|
Chen J, Leng J, Yang X, Liao L, Liu L, Xiao A. Enhanced Performance of Magnetic Graphene Oxide-Immobilized Laccase and Its Application for the Decolorization of Dyes. Molecules 2017; 22:molecules22020221. [PMID: 28157159 PMCID: PMC6155931 DOI: 10.3390/molecules22020221] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/27/2017] [Indexed: 12/31/2022] Open
Abstract
In this study, magnetic graphene oxide (MGO) nanomaterials were synthesized based on covalent binding of amino Fe3O4 nanoparticles onto the graphene oxide (GO), and the prepared MGO was successfully applied as support for the immobilization of laccase. The MGO-laccase was characterized by transmission electron microscopy (TEM) and a vibrating sample magnetometer (VSM). Compared with free laccase, the MGO-laccase exhibited better pH and thermal stabilities. The optimum pH and temperature were confirmed as pH 3.0 and 35 °C. Moreover, the MGO-laccase exhibited sufficient magnetic response and satisfied reusability after being retained by magnetic separation. The MGO-laccase maintained 59.8% activity after ten uses. MGO-laccase were finally utilized in the decolorization of dye solutions and the decolorization rate of crystal violet (CV), malachite green (MG), and brilliant green (BG) reached 94.7% of CV, 95.6% of MG, and 91.4% of BG respectively. The experimental results indicated the MGO-laccase nanomaterials had a good catalysis ability to decolorize dyes in aqueous solution. Compared with the free enzyme, the employment of MGO as enzyme immobilization support could efficiently enhance the availability and facilitate the application of laccase.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Juan Leng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Xiai Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Liping Liao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Aiping Xiao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|