1
|
Huang YC, Khumsupan D, Lin SP, Santoso SP, Hsu HY, Cheng KC. Production of bacterial cellulose (BC)/nisin composite with enhanced antibacterial and mechanical properties through co-cultivation of Komagataeibacter xylinum and Lactococcus lactis subsp. lactis. Int J Biol Macromol 2024; 258:128977. [PMID: 38154722 DOI: 10.1016/j.ijbiomac.2023.128977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
By employing co-cultivation technique on Komagataeibacter xylinum and Lactococcus lactis subsp. lactis, bacterial cellulose (BC)/nisin films with improved antibacterial activity and mechanical properties were successfully produced. The findings demonstrated that increased nisin production is associated with an upregulation of gene expression. Furthermore, results from Scanning electronic microscopy (SEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), and Thermogravimetric analysis (TG) confirmed the integration of nisin within BC. While being biocompatible with human cells, the BC/nisin composites exhibited antimicrobial activity. Moreover, mechanical property analyses showed a noticeable improvement in Young's modulus, tensile strength, and elongation at break by 161, 271, and 195 %, respectively. Additionally, the nisin content in fermentation broth was improved by 170 % after co-culture, accompanied by an 8 % increase in pH as well as 10 % decrease in lactate concentration. Real-time reverse transcription PCR analysis revealed an upregulation of 11 nisin-related genes after co-cultivation, with the highest increase in nisA (5.76-fold). To our knowledge, this is the first study which demonstrates that an increase in secondary metabolites after co-culturing is modulated by gene expression. This research offers a cost-effective approach for BC composite production and presents a technique to enhance metabolite concentration through the regulation of relevant genes.
Collapse
Affiliation(s)
- Yi-Cheng Huang
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Darin Khumsupan
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, Taipei City 110, Taiwan
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Sustainable and Zero Waste Industries, Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Hsien-Yi Hsu
- Department of Materials Science and Engineering, School of Energy and Environment, City University of Hong Kong, 999077, Hong Kong; Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Kuan-Chen Cheng
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan; Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan; Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung, Taiwan 41354; Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan.
| |
Collapse
|
2
|
Celestino MF, Lima LR, Fontes M, Batista ITS, Mulinari DR, Dametto A, Rattes RA, Amaral AC, Assunção RMN, Ribeiro CA, Castro GR, Barud HS. 3D Filaments Based on Polyhydroxy Butyrate-Micronized Bacterial Cellulose for Tissue Engineering Applications. J Funct Biomater 2023; 14:464. [PMID: 37754878 PMCID: PMC10531805 DOI: 10.3390/jfb14090464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
In this work, scaffolds based on poly(hydroxybutyrate) (PHB) and micronized bacterial cellulose (BC) were produced through 3D printing. Filaments for the printing were obtained by varying the percentage of micronized BC (0.25, 0.50, 1.00, and 2.00%) inserted in relation to the PHB matrix. Despite the varying concentrations of BC, the biocomposite filaments predominantly contained PHB functional groups, as Fourier transform infrared spectroscopy (FTIR) demonstrated. Thermogravimetric analyses (i.e., TG and DTG) of the filaments showed that the peak temperature (Tpeak) of PHB degradation decreased as the concentration of BC increased, with the lowest being 248 °C, referring to the biocomposite filament PHB/2.0% BC, which has the highest concentration of BC. Although there was a variation in the thermal behavior of the filaments, it was not significant enough to make printing impossible, considering that the PHB melting temperature was 170 °C. Biological assays indicated the non-cytotoxicity of scaffolds and the provision of cell anchorage sites. The results obtained in this research open up new paths for the application of this innovation in tissue engineering.
Collapse
Affiliation(s)
- Matheus F. Celestino
- Biopolymers and Biomaterials Group, Postgraduate Program in Biotechnology, University of Araraquara (UNIARA), Araraquara 14801-320, SP, Brazil (I.T.S.B.); (A.C.A.)
| | - Lais R. Lima
- Institute of Chemistry, University of São Paulo (USP), São Carlos 13566-590, SP, Brazil;
| | - Marina Fontes
- Biopolymers and Biomaterials Group, Postgraduate Program in Biotechnology, University of Araraquara (UNIARA), Araraquara 14801-320, SP, Brazil (I.T.S.B.); (A.C.A.)
- Biosmart Nanotechnology LTDA, Araraquara 14808-162, SP, Brazil
| | - Igor T. S. Batista
- Biopolymers and Biomaterials Group, Postgraduate Program in Biotechnology, University of Araraquara (UNIARA), Araraquara 14801-320, SP, Brazil (I.T.S.B.); (A.C.A.)
| | - Daniella R. Mulinari
- Department of Mechanics and Energy, State University of Rio de Janeiro (UEJR), Rio de Janeiro 20550-900, RJ, Brazil
| | | | - Raphael A. Rattes
- Biopolymers and Biomaterials Group, Postgraduate Program in Biotechnology, University of Araraquara (UNIARA), Araraquara 14801-320, SP, Brazil (I.T.S.B.); (A.C.A.)
| | - André C. Amaral
- Biopolymers and Biomaterials Group, Postgraduate Program in Biotechnology, University of Araraquara (UNIARA), Araraquara 14801-320, SP, Brazil (I.T.S.B.); (A.C.A.)
| | - Rosana M. N. Assunção
- Faculty of Integrated Sciences of Pontal (FACIP), Federal University of Uberlandia (UFU), Pontal Campus, Ituiutaba 38304-402, MG, Brazil
| | - Clovis A. Ribeiro
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-900, SP, Brazil
| | - Guillermo R. Castro
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
| | - Hernane S. Barud
- Biopolymers and Biomaterials Group, Postgraduate Program in Biotechnology, University of Araraquara (UNIARA), Araraquara 14801-320, SP, Brazil (I.T.S.B.); (A.C.A.)
| |
Collapse
|
3
|
Konopacki M, Grygorcewicz B, Kordas M, Ossowicz-Rupniewska P, Nowak A, Perużyńska M, Rakoczy R. Intensification of bacterial cellulose production process with sequential electromagnetic field exposure aided by dynamic modelling. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
4
|
Żywicka A, Ciecholewska-Juśko D, Drozd R, Rakoczy R, Konopacki M, Kordas M, Junka A, Migdał P, Fijałkowski K. Preparation of Komagataeibacter xylinus Inoculum for Bacterial Cellulose Biosynthesis Using Magnetically Assisted External-Loop Airlift Bioreactor. Polymers (Basel) 2021; 13:polym13223950. [PMID: 34833249 PMCID: PMC8623894 DOI: 10.3390/polym13223950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 01/26/2023] Open
Abstract
The aim of this study was to demonstrate the applicability of a novel magnetically assisted external-loop airlift bioreactor (EL-ALB), equipped with rotating magnetic field (RMF) generators for the preparation of Komagataeibacterxylinus inoculum during three-cycle repeated fed-batch cultures, further used for bacterial cellulose (BC) production. The fermentation carried out in the RMF-assisted EL-ALB allowed to obtain an inoculum of more than 200× higher cellular density compared to classical methods of inoculum preparation. The inoculum obtained in the RMF-assisted EL-ALB was characterized by a high and stable metabolic activity during repeated batch fermentation process. The application of the RMF-assisted EL-ALB for K. xylinus inoculum production did not induce the formation of cellulose-deficient mutants. It was also confirmed that the ability of K. xylinus to produce BC was at the same level (7.26 g/L of dry mass), regardless of inoculum age. Additionally, the BC obtained from the inoculum produced in the RMF-assisted EL-ALB was characterized by reproducible water-related properties, mechanical strength, nano-fibrillar structure and total crystallinity index. The lack of any negative impact of inoculum preparation method using RMF-assisted EL-ALB on BC properties is of paramount value for its future applications, including use as a biomaterial in tissue engineering, wound healing, and drug delivery, where especially BC liquid capacity, nanostructure, crystallinity, and mechanical properties play essential roles.
Collapse
Affiliation(s)
- Anna Żywicka
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, 70-311 Szczecin, Poland; (D.C.-J.); (R.D.)
- Correspondence: (A.Ż.); (K.F.); Tel.: +48-91-449-6709 (A.Ż.); +48-91-449-6714 (K.F.)
| | - Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, 70-311 Szczecin, Poland; (D.C.-J.); (R.D.)
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, 70-311 Szczecin, Poland; (D.C.-J.); (R.D.)
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (R.R.); (M.K.); (M.K.)
| | - Maciej Konopacki
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (R.R.); (M.K.); (M.K.)
| | - Marian Kordas
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (R.R.); (M.K.); (M.K.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Wroclaw, Borowska 211a, 50-534 Wrocław, Poland;
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland;
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, 70-311 Szczecin, Poland; (D.C.-J.); (R.D.)
- Correspondence: (A.Ż.); (K.F.); Tel.: +48-91-449-6709 (A.Ż.); +48-91-449-6714 (K.F.)
| |
Collapse
|
5
|
Drozd R, Szymańska M, Przygrodzka K, Hoppe J, Leniec G, Kowalska U. The Simple Method of Preparation of Highly Carboxylated Bacterial Cellulose with Ni- and Mg-Ferrite-Based Versatile Magnetic Carrier for Enzyme Immobilization. Int J Mol Sci 2021; 22:ijms22168563. [PMID: 34445267 PMCID: PMC8395317 DOI: 10.3390/ijms22168563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/19/2023] Open
Abstract
The bacterial cellulose (BC) is a versatile biopolymer of microbial origin characterized by high purity and unusual water and material properties. However, the native BC contains a low number of functional groups, which significantly limits its further application. The main goal of its effective modification is to use methods that allow the unusual properties of BC to be retained and the desired functional group to be efficiently introduced. In the present study, the new magnetic carrier based on functionalized citric acid (CA) bacterial cellulose was developed and tested to support critical industrial enzymes such as lipase B from Candida antarctica and phospholipase A from Aspergillus oryzae. The applied method allowed BC to be effectively modified by citric acid and a sufficient number of carboxylic groups to be introduced, up to 3.6 mmol of COOH per gram of dry mass of the prepared carrier. The DSC and TGA analyses revealed carrier stability at operational temperatures in the range of 20 °C to 100 °C and substantially influenced the amount of the introduced carboxyl groups on carrier properties. Both enzymes’ immobilization significantly improves their thermal stability at 60 °C without a significant thermal and pH optima effect. The analyzed enzymes showed good operational stability with a significant residual activity after ten cycles of repeated uses. The new magnetic carrier based on highly carboxylated bacterial cellulose has a high application capability as matrix for immobilization the various enzymes of industrial interest.
Collapse
Affiliation(s)
- Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 45 Piastów Avenue, 71-311 Szczecin, Poland; (M.S.); (K.P.)
- Correspondence: ; Tel.: +48-517-456-798
| | - Magdalena Szymańska
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 45 Piastów Avenue, 71-311 Szczecin, Poland; (M.S.); (K.P.)
| | - Katarzyna Przygrodzka
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 45 Piastów Avenue, 71-311 Szczecin, Poland; (M.S.); (K.P.)
| | - Jakub Hoppe
- Faculty of Chemistry, Adam Mickiewicz University, UL. Umultowska 89b, 61-614 Poznań, Poland;
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46 Str., 61-612 Poznan, Poland
| | - Grzegorz Leniec
- Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, 48 Piastów Avenue, 70-311 Szczecin, Poland;
| | - Urszula Kowalska
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Science and Fisheries, West Pomeranian University of Technology in Szczecin, 35 Klemensa Janickiego Str., 71-270 Szczecin, Poland;
| |
Collapse
|
6
|
Drozd R, Szymańska M, Żywicka A, Kowalska U, Rakoczy R, Kordas M, Konopacki M, Junka AF, Fijałkowski K. Exposure to non-continuous rotating magnetic field induces metabolic strain-specific response of Komagataeibacter xylinus. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Ciecholewska-Juśko D, Żywicka A, Junka A, Drozd R, Sobolewski P, Migdał P, Kowalska U, Toporkiewicz M, Fijałkowski K. Superabsorbent crosslinked bacterial cellulose biomaterials for chronic wound dressings. Carbohydr Polym 2020; 253:117247. [PMID: 33279002 DOI: 10.1016/j.carbpol.2020.117247] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/31/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
In this work, we present a novel ex situ modification of bacterial cellulose (BC) polymer, that significantly improves its ability to absorb water after drying. The method involves a single inexpensive and easy-to-perform process of BC crosslinking, using citric acid along with catalysts, such as disodium phosphate, sodium bicarbonate, ammonium bicarbonate or their mixtures. In particular, the mixture of disodium phosphate and sodium bicarbonate was the most promising, yielding significantly greater water capacity (over 5 times higher as compared to the unmodified BC) and slower water release (over 6 times as compared to the unmodified BC). Further, our optimized crosslinked BC had over 1.5x higher water capacity than modern commercial dressings dedicated to highly exuding wounds, while exhibiting no cytotoxic effects against fibroblast cell line L929 in vitro. Therefore, our novel BC biomaterial may find application in super-absorbent dressings, designed for chronic wounds with imbalanced moisture level.
Collapse
Affiliation(s)
- Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Anna Żywicka
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland.
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Peter Sobolewski
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland.
| | - Urszula Kowalska
- Centre of Bioimmobilization and Innovative Packaging Materials, West Pomeranian University of Technology, Szczecin, Janickiego 35, 71-270 Szczecin, Poland.
| | - Monika Toporkiewicz
- Laboratory of Confocal Microscopy, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland.
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| |
Collapse
|
8
|
Szymańska M, Karakulska J, Sobolewski P, Kowalska U, Grygorcewicz B, Böttcher D, Bornscheuer UT, Drozd R. Glycoside hydrolase (PelA h) immobilization prevents Pseudomonas aeruginosa biofilm formation on cellulose-based wound dressing. Carbohydr Polym 2020; 246:116625. [PMID: 32747262 DOI: 10.1016/j.carbpol.2020.116625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/30/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Bacterial cellulose (BC) is recognized as a wound dressing material well-suited for chronic wounds; however, it has no intrinsic antimicrobial activity. Further, the formation of biofilms can limit the effectiveness of the pre-saturation of BC with antimicrobial agents. Here, to hinder biofilm formation by P. aeruginosa, we immobilized the hydrolytic domain of PelA (a glycohydrolase involved in the synthesis of biofilm polysaccharide Pel) on the surface of BC. The immobilization of 32.35 ± 1.05 mg PelAh per g BC membrane resulted in an eight-fold higher P. aeruginosa cell detachment from BC membrane, indicating reduced biofilm matrix stability. Further, 1D and 2D infrared spectroscopy analysis indicated systematic reduction of polysaccharide biofilm elements, confirming the specificity of immobilized PelAh. Importantly, BC-PelAh was not cytotoxic towards L929 fibroblast cells. Thus, we conclude that PelAh can be used in BC wound dressings for safe and specific protection against biofilm formation by P. aeruginosa.
Collapse
Affiliation(s)
- Magdalena Szymańska
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 45 Piastow Avenue, 71-311, Szczecin, Poland
| | - Jolanta Karakulska
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 45 Piastow Avenue, 71-311, Szczecin, Poland
| | - Peter Sobolewski
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 45 Piastów Avenue, 71-311, Szczecin, Poland
| | - Urszula Kowalska
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Science and Fisheries, West Pomeranian University of Technology in Szczecin, 35 Klemensa Janickiego Str., 71-270, Szczecin, Poland
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 72 Powstańców Wielkopolskich Str., 70-111, Szczecin, Poland
| | - Dominique Böttcher
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487, Greifswald, Germany
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 45 Piastow Avenue, 71-311, Szczecin, Poland.
| |
Collapse
|
9
|
|
10
|
Functionalized Magnetic Bacterial Cellulose Beads as Carrier for Lecitase® Ultra Immobilization. Appl Biochem Biotechnol 2018; 187:176-193. [PMID: 29911267 PMCID: PMC6326999 DOI: 10.1007/s12010-018-2816-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/07/2018] [Indexed: 11/27/2022]
Abstract
Bacterial cellulose spheres subjected to amination and inlaid modification with superparamagnetic molecules were analyzed with regard to possibility of their application as an immobilization carrier of Lecitase® Ultra (LU) enzyme. The starting point to obtain the carrier was synthesis of bacterial cellulose spheres performed in shaking cultures of Komagataeibacter xylinus. These spheres were subsequently subjected to a multi-stage modification to increase the efficiency of the immobilization process and to separate product from the reaction medium. Maximal yield of Lecitase® Ultra immobilization equaled 70%. It was also found that immobilization process did not affect the pH and LU temperature optimum. Moreover, immobilized enzyme exhibited similar temperature stability profile as its native form. The immobilization process did not significantly affect the enzyme KM value. The immobilized enzyme retained over 70% of its initial activity after 8 cycles of use. The immobilized enzyme displayed good storage stability and retained 80% of its initial activity after 4 weeks at 4 °C. The potential application of such modified cellulose-based carrier may be correlated with lower costs of process thanks to higher enzyme’s reusability in comparison to unbound enzyme. Moreover, data presented in the current study may serve as proof of a concept of cellulose-based carrier utilization for immobilization of enzymes other than LU and of high industrial importance.
Collapse
|