1
|
Tao L, Zhang J, Lan W, Liu H, Wu Q, Yang S, Song S, Yu L, Bi Y. Neutral oligosaccharides from ginseng (Panax ginseng) residues vs. neutral ginseng polysaccharides: A comparative study of structure elucidation and biological activity. Food Chem 2024; 464:141674. [PMID: 39426268 DOI: 10.1016/j.foodchem.2024.141674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
This study aimed to compare the structural and biological activities of neutral ginseng residue oligosaccharides (GRO-N) and neutral ginseng polysaccharides (GP-N). Their structures of GRO-N and GP-N were established based on their molecular weight (Mw), monosaccharide composition, Fourier-transform infrared spectroscopy, methylation, and nuclear magnetic resonance analyses. The Mws of GRO-N and GP-N were 1121.0 Da and 12,791.0 Da, respectively. Both had major chain structures comprising α-D-Glcp-(1→, →4)-α-D-Glcp-(1→, and →4)-α/β-D-Glcp, with branch points at →4,6)-α-D-Glcp-(1→. Moreover, the branched chain of GRO-N was α-D-Glcp-(1→ and →6)-α-D-Glcp-(1→. The branched chain of GP-N was α-D-Glcp-(1→ and →4)-α-D-Glcp-(1→. GRO-N, with a lower Mw and more diverse glycosidic bonds, exhibited higher antioxidant, hypoglycemic, and immune activities than GP-N. Cell viability peaked (202.81 ± 4.80 %) at a GRO-N concentration of 200 μg/mL. These findings provide a theoretical basis for further utilization of ginseng residual saccharides.
Collapse
Affiliation(s)
- Li Tao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jingwei Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Wenfei Lan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - He Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Qi Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Shenglong Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Shixin Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Lei Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, China.
| | - Yunfeng Bi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Gutiérrez Rafael BJ, Zaca Moran O, Delgado Macuil RJ, Martínez Gutiérrez H, García Juárez M, Lopez Gayou V. Study of the Incorporation of Gel and Aloe vera Peel Extract in a Polymer Matrix Based on Polyvinylpyrrolidone. Polymers (Basel) 2024; 16:1998. [PMID: 39065315 PMCID: PMC11281014 DOI: 10.3390/polym16141998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The development of dressings based on electrospun membranes with polymers and plant extracts is an interesting approach to skin regeneration, providing elements to prevent contamination and a matrix that accelerates the healing process. We developed a membrane composed of polyvinylpyrrolidone (PVP), gel and Aloe vera peel extract via the electrospinning technique. Additionally, an optimal ratio of PVP/Av gel/Av skin extract was determined to facilitate membrane formation. Electrospun membranes were obtained with fiber diameters of 1403 ± 57.4 nm for the PVP and 189.2 ± 11.4 nm for PVP/Av gel/Av peel extract, confirming that the use of extracts generally reduced the fiber diameter. The incorporation of gel and peel extract of Aloe vera into the electrospun membrane was analyzed via FTIR and UV-Vis spectroscopies. FTIR revealed the presence of functional groups associated with phenolic compounds such as aloin, aloe-emodin, emodin and aloesin, which was confirmed by UV-Vis, revealing absorption bands corresponding to aloin, phenols and carbonyl groups. This finding provides evidence of the effective integration and prevalence of bioactive compounds of a phenolic and polysaccharide nature from the gel and the Av skin extract in the electrospun fibers, resulting in an advanced membrane that could improve and accelerate the healing process and protect the wound from bacterial infections.
Collapse
Affiliation(s)
- Britania Janet Gutiérrez Rafael
- Departamento de Nanobiotecnología y Biosensores, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (IPN-CIBA), Santa Inés Tecuexcomac 90700, Tlaxcala, Mexico; (B.J.G.R.); (O.Z.M.); (R.J.D.M.)
| | - Orlando Zaca Moran
- Departamento de Nanobiotecnología y Biosensores, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (IPN-CIBA), Santa Inés Tecuexcomac 90700, Tlaxcala, Mexico; (B.J.G.R.); (O.Z.M.); (R.J.D.M.)
| | - Raúl Jacobo Delgado Macuil
- Departamento de Nanobiotecnología y Biosensores, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (IPN-CIBA), Santa Inés Tecuexcomac 90700, Tlaxcala, Mexico; (B.J.G.R.); (O.Z.M.); (R.J.D.M.)
| | - Hugo Martínez Gutiérrez
- Centro de Nanociencias y Micro y Nanotecnologías CNMN IPN, Av. Luis Enrique Erro s/n, Nueva Industrial Vallejo, Gustavo A. Madero, Ciudad de México 07738, Mexico;
| | - Marcos García Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Plaza Hidalgo Ote. 9, Cuarto Barrio, Panotla 90140, Tlaxcala, Mexico;
| | - Valentin Lopez Gayou
- Departamento de Nanobiotecnología y Biosensores, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (IPN-CIBA), Santa Inés Tecuexcomac 90700, Tlaxcala, Mexico; (B.J.G.R.); (O.Z.M.); (R.J.D.M.)
| |
Collapse
|
3
|
Catalano A, Ceramella J, Iacopetta D, Marra M, Conforti F, Lupi FR, Gabriele D, Borges F, Sinicropi MS. Aloe vera-An Extensive Review Focused on Recent Studies. Foods 2024; 13:2155. [PMID: 38998660 PMCID: PMC11241682 DOI: 10.3390/foods13132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Since ancient times, Aloe vera L. (AV) has attracted scientific interest because of its multiple cosmetic and medicinal properties, attributable to compounds present in leaves and other parts of the plant. The collected literature data show that AV and its products have a beneficial influence on human health, both by topical and oral use, as juice or an extract. Several scientific studies demonstrated the numerous biological activities of AV, including, for instance, antiviral, antimicrobial, antitumor, and antifungal. Moreover, its important antidepressant activity in relation to several diseases, including skin disorders (psoriasis, acne, and so on) and prediabetes, is a growing field of research. This comprehensive review intends to present the most significant and recent studies regarding the plethora of AV's biological activities and an in-depth analysis exploring the component/s responsible for them. Moreover, its morphology and chemical composition are described, along with some studies regarding the single components of AV available in commerce. Finally, valorization studies and a discussion about the metabolism and toxicological aspects of this "Wonder Plant" are reported.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca R Lupi
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Fernanda Borges
- CIQUP-IMS-Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
4
|
Comas-Serra F, Miró JL, Umaña MM, Minjares-Fuentes R, Femenia A, Mota-Ituarte M, Pedroza-Sandoval A. Role of acemannan and pectic polysaccharides in saline-water stress tolerance of Aloe vera (Aloe barbadensis Miller) plant. Int J Biol Macromol 2024; 268:131601. [PMID: 38626833 DOI: 10.1016/j.ijbiomac.2024.131601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
This study investigates the impact of water and salinity stress on Aloe vera, focusing on the role of Aloe vera polysaccharides in mitigating these stresses. Pectins and acemannan were the most affected polymers. Low soil moisture and high salinity (NaCl 80 mM) increased pectic substances, altering rhamnogalacturonan type I in Aloe vera gel. Aloe vera pectins maintained a consistent 60 % methyl-esterification regardless of conditions. Interestingly, acemannan content rose with salinity, particularly under low moisture, accompanied by 90 to 150 % acetylation increase. These changes improved the functionality of Aloe vera polysaccharides: pectins increased cell wall reinforcement and interactions, while highly acetylated acemannan retained water for sustained plant functions. This study highlights the crucial role of Aloe vera polysaccharides in enhancing plant resilience to water and salinity stress, leading to improved functional properties.
Collapse
Affiliation(s)
- Francesca Comas-Serra
- Department of Chemistry, University of the Balearic Islands. Ctra. Valldemossa km 7.5, Palma de Mallorca C.P. 07122, Spain
| | - José Luis Miró
- Department of Chemistry, University of the Balearic Islands. Ctra. Valldemossa km 7.5, Palma de Mallorca C.P. 07122, Spain
| | - Mónica M Umaña
- Department of Chemistry, University of the Balearic Islands. Ctra. Valldemossa km 7.5, Palma de Mallorca C.P. 07122, Spain
| | - Rafael Minjares-Fuentes
- Department of Chemistry, University of the Balearic Islands. Ctra. Valldemossa km 7.5, Palma de Mallorca C.P. 07122, Spain; Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 s/n, Fracc. Filadelfia, Gómez Palacio, Durango, C.P. 35010, México.
| | - Antoni Femenia
- Department of Chemistry, University of the Balearic Islands. Ctra. Valldemossa km 7.5, Palma de Mallorca C.P. 07122, Spain
| | - María Mota-Ituarte
- Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, Carretera Gómez Palacio-Chihuahua km 38, Bermejillo, Durango C.P. 35230, México
| | - Aurelio Pedroza-Sandoval
- Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, Carretera Gómez Palacio-Chihuahua km 38, Bermejillo, Durango C.P. 35230, México
| |
Collapse
|
5
|
Trusinska M, Rybak K, Drudi F, Tylewicz U, Nowacka M. Combined effect of ultrasound and vacuum impregnation for the modification of apple tissue enriched with aloe vera juice. ULTRASONICS SONOCHEMISTRY 2024; 104:106812. [PMID: 38394825 PMCID: PMC10906508 DOI: 10.1016/j.ultsonch.2024.106812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
The aim of the work was to investigate how ultrasonic (US) treatment impacts on the physical and chemical properties of vacuum-impregnated apples. Apple slices were subjected to vacuum impregnation (VI) in an Aloe vera juice solution without additional treatments, serving as the reference material. Alternatively, ultrasound (US) treatments, at frequencies of 25 or 45 kHz, and durations of 10, 20, or 30 min, were employed as a pre-treatments before the VI process. The use of US processing enabled a significant increase in the efficiency of VI, without influencing in a significant way the color of the VI samples. The VI process led to a reduction in the content of bioactive compounds, in particular vitamin C and TPC decreased by 34 and 32 %, respectively. The use of US as a pre-treatment, in particular at 45 kHz for 20 or 30 min, led to a better preservation of these compounds (unchanged values for vitamin C and decrease by 23-26 % for TPC in comparison to the fresh samples). Through cluster analysis encompassing all assessed properties, it was evident that US treatment was beneficial for the processing, however the application of appropriate parameters of US treatment (frequency and time) had an impact on achieving similar quality to VI samples. The ultrasound treatment before vacuum impregnation may be suitable, however, the specific processing parameters should be defined for the obtained high quality of the final product.
Collapse
Affiliation(s)
- Magdalena Trusinska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences- SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences- SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland
| | - Federico Drudi
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, Cesena 47521, Italy
| | - Urszula Tylewicz
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, Cesena 47521, Italy; Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, Cesena 47521, Italy
| | - Malgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences- SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland.
| |
Collapse
|
6
|
Elgegren M, Nakamatsu J, Galarreta B, Kim S. Three-Dimensional Membranes of Natural Polymer Complex Nanoparticle for Potential Medical Applications. Gels 2023; 9:847. [PMID: 37998937 PMCID: PMC10671065 DOI: 10.3390/gels9110847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Skin wound healing is a complex biological process of tissue regeneration in which the wound dressing is crucial for rapid healing; it must protect the wound keep an adequate level of moisture and prevent infections. Alginate (AL), a polysaccharide from brown algae, has been extensively studied for wound treatment, and aloe vera gels (AVGs) have also been used in the treatment of skin. The AVG main bioactive polysaccharide was combined with AL for the preparation of membranes. Two-dimensional membranes were prepared by casting and, for comparison, transparent nanoparticle 3D membranes were produced by high-intensity ultrasonication followed by ionotropic crosslinking. The effects of the amount of AVG, ionotropic gelation, and the structure (2D or 3D) of the AL-AVG membranes were compared. Scanning electron microscopy (SEM) showed higher surface roughness on 3D membranes. Three-dimensional membranes showed a higher swelling ratio, and swelling increased with AVG content and decreased with higher calcium concentration and longer gelation times. The degradation of the membranes was evaluated with and without a lysozyme at pH 5.5, 7.5, and 8.5, to simulate different skin conditions; the results evidence that pH had a higher effect than the enzyme. The cytotoxicity of the membranes was evaluated with ATCC CCL 163 and ATCC CCL 81 cells, and an excellent biocompatibility of both cell types (>90% of cell viability after 48 h incubation) was observed for all AL-AVG membranes.
Collapse
Affiliation(s)
- Mariela Elgegren
- Department of Science, Chemistry Division, Pontificia Universidad Catolica del Peru PUCP, Av. Universitaria 1801, Lima 32, Peru; (M.E.); (J.N.); (B.G.)
| | - Javier Nakamatsu
- Department of Science, Chemistry Division, Pontificia Universidad Catolica del Peru PUCP, Av. Universitaria 1801, Lima 32, Peru; (M.E.); (J.N.); (B.G.)
| | - Betty Galarreta
- Department of Science, Chemistry Division, Pontificia Universidad Catolica del Peru PUCP, Av. Universitaria 1801, Lima 32, Peru; (M.E.); (J.N.); (B.G.)
| | - Suyeon Kim
- Department of Engineering, Pontificia Universidad Catolica del Peru PUCP, Av. Universitaria 1801, Lima 32, Peru
| |
Collapse
|
7
|
Guo H, Liu HY, Li H, Wu DT, Zhong LLD, Gan RY, Gao H. Recent advances in the influences of drying technologies on physicochemical properties and biological activities of plant polysaccharides. Crit Rev Food Sci Nutr 2023:1-21. [PMID: 37778371 DOI: 10.1080/10408398.2023.2259983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Plant polysaccharides, as significant functional macromolecules with diverse biological properties, are currently receiving increasing attention. Drying technologies play a pivotal role in the research, development, and application of various foods and plant polysaccharides. The chemical composition, structure, and function of extracted polysaccharides are significantly influenced by different drying technologies (e.g., microwave, infrared, and radio frequency) and conditions (e.g., temperature). This study discusses and compares the principles, advantages, disadvantages, and effects of different drying processes on the chemical composition as well as structural and biological properties of plant polysaccharides. In most plant-based raw materials, molecular degradation, molecular aggregation phenomena along with intermolecular interactions occurring within cell wall components and cell contents during drying represent primary mechanisms leading to variations in chemical composition and structures of polysaccharides. These differences further impact their biological properties. The biological properties of polysaccharides are determined by a combination of multiple relevant factors rather than a single factor alone. This review not only provides insights into selecting appropriate drying processes to obtaining highly bioactive plant polysaccharides but also offers a fundamental theoretical basis for the structure-function relationship of these compounds.
Collapse
Affiliation(s)
- Huan Guo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu, China
| | - Hang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Linda L D Zhong
- Biomedical Sciences and Chinese Medicine, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Sharma M, Bains A, Sridhar K, Chawla P, Sharma M. Process optimization for spray dried Aegle marmelos fruit nanomucilage: Characterization, functional properties, and in vitro antibiofilm activity against food pathogenic microorganisms. Int J Biol Macromol 2023; 249:126050. [PMID: 37517760 DOI: 10.1016/j.ijbiomac.2023.126050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Recently, mucilage extraction from plant sources has been remarkably explored due to its potential applications. Several underutilized fruits such as Aegle marmelos are the potential source of mucilage that can be utilized for agri-food-pharma applications. Therefore, in this study, we explored vital functional and antimicrobial properties of Aegle marmelos nanomucilage. Spray drying conditions such as inlet temperature, feed flow, and atomization speed were optimized to assess the influence on yield and moisture content using response surface methodology. In addition, during the optimized spray drying conditions, the maximum mucilage yield was 16.23 % (w/w). The particle size (178.4 ± 5.06 nm) at the nanoscale, polydispersity index (0.432), and zeta potential (-16.4 ± 1.14 mV) confirmed the stability of the nanomucilage. Moreover, the spray-dried nanomucilage powder exhibited high thermal stability (55.70 J) and excellent industrially important techno-functional properties with water-holding capacity (8.01 ± 0.04 g/g), oil-holding capacity (3.43 ± 0.7 g/g), emulsifying capacity (91.50 ± 0.78 %), emulsifying stability (92.65 ± 0.46 %), solubility (89.36 ± 1.69 %), and foaming capacity (16.13 ± 0.41 %). Moreover, the powder showed strong antibiofilm activity against food-pathogenic bacteria, including Escherichia coli (73.52 ± 1.14 %) and Staphylococcus aureus (79.57 ± 1.23 %), with minimum inhibitory concentrations of 3.125 mg/mL and 1.562 mg/mL respectively. Overall, based on the above findings the spray-dried powder of Aegle marmelos fruit nanomucilage could be utilized as a potential functional ingredient in various food products formulations.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India.
| |
Collapse
|
9
|
Bai Y, Niu Y, Qin S, Ma G. A New Biomaterial Derived from Aloe vera-Acemannan from Basic Studies to Clinical Application. Pharmaceutics 2023; 15:1913. [PMID: 37514099 PMCID: PMC10385217 DOI: 10.3390/pharmaceutics15071913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Aloe vera is a kind of herb rich in polysaccharides. Acemannan (AC) is considered to be a natural polysaccharide with good biodegradability and biocompatibility extracted from Aloe vera and has a wide range of applications in the biomedical field due to excellent immunomodulatory, antiviral, antitumor, and tissue regeneration effects. In recent years, clinical case reports on the application of AC as a novel biomedical material in tissue regenerative medicine have emerged; it is mainly used in bone tissue engineering, pulp-dentin complex regeneration engineering, and soft tissue repair, among other operations. In addition, multiple studies have proved that the new composite products formed by the combination of AC and other compounds have excellent biological and physical properties and have broader research prospects. This paper introduces the preparation process, surface structure, and application forms of AC; summarizes the influence of acetyl functional group content in AC on its functions; and provides a detailed review of the functional properties, laboratory studies, clinical cutting-edge applications, and combined applications of AC. Finally, the current application status of AC from basic research to clinical treatment is analyzed and its prospects are discussed.
Collapse
Affiliation(s)
- Yingjie Bai
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
| | - Yimeng Niu
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
| | - Shengao Qin
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
- Department of Stomatology, Stomatological Hospital Affiliated School, Stomatology of Dalian Medical University, NO. 397 Huangpu Road, Shahekou District, Dalian 116086, China
| |
Collapse
|
10
|
Comas-Serra F, Estrada P, Minjares-Fuentes R, Femenia A. Evaluation of Acemannan in Different Commercial Beverages Containing Aloe Vera ( Aloe barbadensis Miller) Gel. Gels 2023; 9:552. [PMID: 37504431 PMCID: PMC10379354 DOI: 10.3390/gels9070552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Aloe vera (Aloe barbadensis Miller) gel is a frequently used ingredient in many food pro-ducts, particularly beverages, due to its reported health benefits. Studies have identified acemannan, a polysaccharide rich in mannose units which are partially or fully acetylated, as the primary bioactive compound in Aloe vera gel. The acemannan content and its degree of acetylation (DA) were measured in 15 different commercial beverages containing Aloe vera at varying concentrations (from 30% to 99.8%) as listed on the label. Other biopolymers such as pectins, hemicelluloses, and cellulose were also evaluated. Flavoured beverages (seven samples labelled as containing from 30% to 77% Aloe vera) presented low levels of acemannan (<30 mg/100 g of fresh sample) and were fully deacetylated in most cases. These samples had high levels of other polymers such as pectins, hemicelluloses, and cellulose, likely due to the addition of fruit juices for flavour. Unflavoured beverages (eight samples, with Aloe vera concentrations above 99% according to their labels) had variable levels of acemannan, with only three containing more than 160 mg/100 g of fresh sample. In fact, four samples had less than 35 mg acemannan/100 g of fresh sample. DA levels in all but one sample were lower than 35%, possibly due to processing techniques such as pasteurization causing degradation and deacetylation of the acemannan polymer. Legislation regarding Aloe vera products is limited, and manufacturers are not required to disclose the presence or quality of bioactive compounds in their products, leaving consumers uncertain about the true properties of the products they purchase.
Collapse
Affiliation(s)
- Francesca Comas-Serra
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa km 7.5, C.P. 07122 Palma de Mallorca, Spain
| | - Paula Estrada
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa km 7.5, C.P. 07122 Palma de Mallorca, Spain
| | - Rafael Minjares-Fuentes
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa km 7.5, C.P. 07122 Palma de Mallorca, Spain
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 s/n, Fracc. Filadelfia, Gómez Palacio 35010, Durango, Mexico
| | - Antoni Femenia
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa km 7.5, C.P. 07122 Palma de Mallorca, Spain
| |
Collapse
|
11
|
A New Functional Food Ingredient Obtained from Aloe ferox by Spray Drying. Foods 2023; 12:foods12040850. [PMID: 36832926 PMCID: PMC9956236 DOI: 10.3390/foods12040850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Aloe mucilages of Aloe ferox (A. ferox) and Aloe vera (A. vera) were spray-dried (SD) at 150, 160 and 170 °C. Polysaccharide composition, total phenolic compounds (TPC), antioxidant capacity and functional properties (FP) were determined. A. ferox polysaccharides were comprised mainly of mannose, accounting for >70% of SD aloe mucilages; similar results were observed for A. vera. Further, an acetylated mannan with a degree of acetylation >90% was detected in A. ferox by 1H NMR and FTIR. SD increased the TPC as well as the antioxidant capacity of A. ferox measured by both ABTS and DPPH methods, in particular by ~30%, ~28% and ~35%, respectively, whereas in A. vera, the antioxidant capacity measured by ABTS was reduced (>20%) as a consequence of SD. Further, FP, such as swelling, increased around 25% when A. ferox was spray-dried at 160 °C, while water retention and fat adsorption capacities exhibited lower values when the drying temperature increased. The occurrence of an acetylated mannan with a high degree of acetylation, together with the enhanced antioxidant capacity, suggests that SD A. ferox could be a valuable alternative raw material for the development of new functional food ingredients based on Aloe plants.
Collapse
|
12
|
Gao Z, Wu C, Wu J, Zhu L, Gao M, Wang Z, Li Z, Zhan X. Antioxidant and anti-inflammatory properties of an aminoglycan-rich exopolysaccharide from the submerged fermentation of Bacillus thuringiensis. Int J Biol Macromol 2022; 220:1010-1020. [PMID: 36030974 DOI: 10.1016/j.ijbiomac.2022.08.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/05/2022]
Abstract
Proteins from Bacillus thuringiensis are widely used as biopesticides but little is known about its exopolysaccharides. The exopolysaccharide BPS-2 was extracted from B. thuringiensis IX-01 after high-cell-density fermentation. BPS-2 is a heteropolysaccharide (molecular weight 29.36 kDa) composed of D-galactosamine, arabinose, glucosamine, glucose, and mannose in molar ratios 5.53: 1.77:4.74:3.24:1. In vitro upper gastrointestinal simulations showed that BPS-2 has strong anti-digestive capacity, with scavenging of DPPH, hydroxyl, ABTS, and superoxide anions radicals of 31.34 ± 1.67 %, 32.43 ± 3.01 %, 34.31 ± 2.12 %, and 48.53 ± 3.55 %, respectively, after BPS-2 entered the colon. It significantly inhibited production of lipopolysaccharide-induced nitric oxide and multiple pro-inflammatory cytokines and had proliferative effects on RAW 264.7 cells. BPS-2 inhibited malondialdehyde secretion and elevated activities of glutathione peroxidase, superoxide dismutase, and total antioxidants, significantly improving the antioxidant status of inflammation model cells. This first report of the in vitro anti-inflammation and antioxidant properties of BPS-2 from B. thuringiensis provides a basis for biopharmaceutical applications.
Collapse
Affiliation(s)
- Zexin Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Chuanchao Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Li Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; A & F Biotech. Ltd., Burnaby, BC V5A3P6, Canada
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
13
|
Structural characterization and in vitro evaluation of the prebiotic potential of an exopolysaccharide produced by Bacillus thuringiensis during fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Aloe arborescens: In Vitro Screening of Genotoxicity, Effective Inhibition of Enzyme Characteristics for Disease Etiology, and Microbiological Activity. Molecules 2022; 27:molecules27072323. [PMID: 35408722 PMCID: PMC9000289 DOI: 10.3390/molecules27072323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/22/2023] Open
Abstract
The present study assessed the genotoxicity, the possibility of inhibiting selected enzymes, and the microbial activity of lyophilisate from 3-year-old A. arborescens leaves obtained from controlled crops. The lyophilisate from 3-year-old A. arborescens leaves was standardized for aloin A and aloenin A content. Moreover, concentrations of polyphenolic compounds and phenolic acids were determined. The first stage of the research was to determine genotoxicity using the comet test, which confirmed the safety of A. arborescens. Assays of enzymatic inhibition were performed for hyaluronidase (IC50 = 713.24 ± 41.79 µg/mL), α-glucosidase (IC50 = 598.35 ± 12.58 µg/mL), acetylcholinesterase and butyrylcholinesterase (1.16 vs. 0.34 µM of eserine/g d.m., respectively). The next stage of the research was to determine the ability of the healing properties using the scratch test, which showed a positive response using the extract. Microbial activity was evaluated and obtained against Gram-negative and Gram-positive bacteria and yeasts. We concluded that A. arborescens leaf gel meets the important conditions for plant raw materials to obtain semi-solid forms of herbal medicinal products.
Collapse
|
15
|
López Z, Salazar Zúñiga MN, Femenia A, Acevedo-Hernández GJ, Godínez Flores JA, Cano ME, Knauth P. Dry but Not Humid Thermal Processing of Aloe vera Gel Promotes Cytotoxicity on Human Intestinal Cells HT-29. Foods 2022; 11:foods11050745. [PMID: 35267378 PMCID: PMC8909460 DOI: 10.3390/foods11050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Aloe vera products, both in food and cosmetics, are becoming increasingly popular due to their claimed beneficial effects, which are mainly attributed to the active compound acemannan. Usually, these end products are based on powdered starting materials. High temperatures during the drying process to obtain the starting materials have several advantages, like shortening the drying time, eliminating toxic aloin and reducing bacterial contamination. Nevertheless, there are two major drawbacks: first, at temperatures of 80 °C or higher, structural changes in acemannan, especially its deacetylation (>46%), are triggered, which does not happen at lower temperatures (14% at 60 °C); secondly, a toxic principle is formed at higher temperatures, resulting in a higher cytotoxicity. Thus, two temperature-dependent but opposing effects cause with a median cytotoxic concentration of CC50 = 0.4× a peak of cytotoxicity at 80 °C; at 60 °C this cytotoxic substance is not formed and at 100 °C aloin is more readily eliminated, resulting in a CC50 = 1.1× and CC50 = 1.4×, respectively. The cytotoxic substance generated by dry heat at 80 °C is not a modified polysaccharide because its polysaccharide-enriched alcohol-insoluble fraction is with CC50 = 0.9× less cytotoxic. Moreover, this substance is polar enough to be washed away with ethanol. Additionally, when Aloe gel is heated at 80 °C under humid conditions (pasteurization), the cytotoxicity does not increase (CC50 = 1.6×). Finally, to produce powdered starting materials from Aloe gel, it is recommended to use temperatures of around 60 °C in order to preserve the acemannan structure (and thus biological activity) and the low cytotoxicity.
Collapse
Affiliation(s)
- Zaira López
- Cell Biology Laboratory, Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega (CUCI), Universidad de Guadalajara (UdG), Avenida Universidad 1115, Ocotlan 47810, Jalisco, Mexico; (Z.L.); (M.N.S.Z.); (J.A.G.F.)
| | - Michelle N. Salazar Zúñiga
- Cell Biology Laboratory, Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega (CUCI), Universidad de Guadalajara (UdG), Avenida Universidad 1115, Ocotlan 47810, Jalisco, Mexico; (Z.L.); (M.N.S.Z.); (J.A.G.F.)
| | - Antoni Femenia
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma de Mallorca, Spain;
| | - Gustavo J. Acevedo-Hernández
- Laboratorio de Biología Molecular Vegetal, Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega (CUCI), Universidad de Guadalajara (UdG), Avenida Universidad 1115, Ocotlan 47810, Jalisco, Mexico;
| | - Jaime A. Godínez Flores
- Cell Biology Laboratory, Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega (CUCI), Universidad de Guadalajara (UdG), Avenida Universidad 1115, Ocotlan 47810, Jalisco, Mexico; (Z.L.); (M.N.S.Z.); (J.A.G.F.)
| | - M. Eduardo Cano
- Laboratorio de Biofísica, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega (CUCI), Universidad de Guadalajara (UdG), Avenida Universidad 1115, Ocotlan 47810, Jalisco, Mexico;
| | - Peter Knauth
- Cell Biology Laboratory, Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega (CUCI), Universidad de Guadalajara (UdG), Avenida Universidad 1115, Ocotlan 47810, Jalisco, Mexico; (Z.L.); (M.N.S.Z.); (J.A.G.F.)
- Correspondence: ; Tel.: +52-(392)-9259400-48354
| |
Collapse
|
16
|
Facile Synthesis of Bio-Antimicrobials with "Smart" Triiodides. Molecules 2021; 26:molecules26123553. [PMID: 34200814 PMCID: PMC8230494 DOI: 10.3390/molecules26123553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022] Open
Abstract
Multi-drug resistant pathogens are a rising danger for the future of mankind. Iodine (I2) is a centuries-old microbicide, but leads to skin discoloration, irritation, and uncontrolled iodine release. Plants rich in phytochemicals have a long history in basic health care. Aloe Vera Barbadensis Miller (AV) and Salvia officinalis L. (Sage) are effectively utilized against different ailments. Previously, we investigated the antimicrobial activities of smart triiodides and iodinated AV hybrids. In this work, we combined iodine with Sage extracts and pure AV gel with polyvinylpyrrolidone (PVP) as an encapsulating and stabilizing agent. Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible spectroscopy (UV-Vis), Surface-Enhanced Raman Spectroscopy (SERS), microstructural analysis by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-Ray-Diffraction (XRD) analysis verified the composition of AV-PVP-Sage-I2. Antimicrobial properties were investigated by disc diffusion method against 10 reference microbial strains in comparison to gentamicin and nystatin. We impregnated surgical sutures with our biohybrid and tested their inhibitory effects. AV-PVP-Sage-I2 showed excellent to intermediate antimicrobial activity in discs and sutures. The iodine within the polymeric biomaterial AV-PVP-Sage-I2 and the synergistic action of the two plant extracts enhanced the microbial inhibition. Our compound has potential for use as an antifungal agent, disinfectant and coating material on sutures to prevent surgical site infections.
Collapse
|
17
|
Mahanti NK, Chakraborty SK, Sudhakar A, Verma DK, Shankar S, Thakur M, Singh S, Tripathy S, Gupta AK, Srivastav PP. Refractance WindowTM-Drying vs. other drying methods and effect of different process parameters on quality of foods: A comprehensive review of trends and technological developments. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Liu C, Du P, Guo Y, Xie Y, Yu H, Yao W, Cheng Y, Qian H. Extraction, characterization of aloe polysaccharides and the in-depth analysis of its prebiotic effects on mice gut microbiota. Carbohydr Polym 2021; 261:117874. [DOI: 10.1016/j.carbpol.2021.117874] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
|
19
|
Jales STL, Barbosa RDM, Silva GR, Severino P, Lima Moura TFA. Natural Polysaccharides From
Aloe vera
L. Gel (
Aloe barbadensis
Miller): Processing Techniques and Analytical Methods. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
20
|
The effect of process variables on the physical properties and microstructure of HOPO nanoemulsion flakes obtained by refractance window. Sci Rep 2021; 11:9359. [PMID: 33931665 PMCID: PMC8087804 DOI: 10.1038/s41598-021-88381-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/08/2021] [Indexed: 11/09/2022] Open
Abstract
Refractance window (RW) drying is considered an emerging technique in the food field due to its scalability, energy efficiency, cost and end-product quality. It can be used for obtaining flakes from high-oleic palm oil (HOPO) nanoemulsions containing a high concentration of temperature-sensitive active compounds. This work was thus aimed at studying the effect of temperature, thickness of the film drying, nanoemulsion process conditions, and emulsion formulation on the flakes’ physical properties and microstructure. The results showed that HOPO flakes had good physical characteristics: 1.4% to 5.6% moisture content and 0.26 to 0.58 aw. Regarding microstructure, lower fractal dimension (FDt) was obtained when RW drying temperature increased, which is related to more regular surfaces. The results indicated that flakes with optimal physical properties can be obtained by RW drying of HOPO nanoemulsions.
Collapse
|
21
|
Waghmare R. Refractance window drying: A cohort review on quality characteristics. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Gan T, Feng C, Lan H, Yang R, Zhang J, Li C, Li W. Comparison of the structure and immunomodulatory activity of polysaccharides from fresh and dried longan. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104323] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
23
|
Hernández‐Carrión M, Moyano M, Quintanilla‐Carvajal MX. Design of high‐oleic palm oil nanoemulsions suitable for drying in refractance window™. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Miguel Moyano
- Facultad de Ingeniería Universidad de la Sabana Bogotá Colombia
| | | |
Collapse
|
24
|
Edis Z, Bloukh SH. Facile Synthesis of Antimicrobial Aloe Vera-"Smart" Triiodide-PVP Biomaterials. Biomimetics (Basel) 2020; 5:E45. [PMID: 32957469 PMCID: PMC7558393 DOI: 10.3390/biomimetics5030045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022] Open
Abstract
Antibiotic resistance is an eminent threat for the survival of mankind. Nosocomial infections caused by multidrug resistant microorganisms are a reason for morbidity and mortality worldwide. Plant-based antimicrobial agents are based on synergistic mechanisms which prevent resistance and have been used for centuries against ailments. We suggest the use of cost-effective, eco-friendly Aloe Vera Barbadensis Miller (AV)-iodine biomaterials as a new generation of antimicrobial agents. In a facile, one-pot synthesis, we encapsulated fresh AV gel with polyvinylpyrrolidone (PVP) as a stabilizing agent and incorporated iodine moieties in the form of iodine (I2) and sodium iodide (NaI) into the polymer matrix. Ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), x-ray diffraction (XRD), microstructural analysis by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) verified the composition of AV-PVP-I2, AV-PVP-I2-NaI. AV, AV-PVP, AV-PVP-I2, AV-PVP-I2-NaI, and AV-PVP-NaI were tested in-vitro by disc diffusion assay and dip-coated on polyglycolic acid (PGA) sutures against ten microbial reference strains. All the tested pathogens were more susceptible towards AV-PVP-I2 due to the inclusion of "smart" triiodides with halogen bonding in vitro and on dip-coated sutures. The biocomplexes AV-PVP-I2, AV-PVP-I2-NaI showed remarkable antimicrobial properties. "Smart" biohybrids with triiodide inclusions have excellent antifungal and promising antimicrobial activities, with potential use against surgical site infections (SSI) and as disinfecting agents.
Collapse
Affiliation(s)
- Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, UAE
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman PO Box 346, UAE;
| |
Collapse
|
25
|
Tong X, Prasanna G, Zhang N, Jing P. Spectroscopic and molecular docking studies on the interaction of phycocyanobilin with peptide moieties of C-phycocyanin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118316. [PMID: 32344374 DOI: 10.1016/j.saa.2020.118316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The binding of C-phycocyanin (CPC), a light harvesting pigment with phycocyanobilin (PCB), a chromophore is instrumental for the coloration and bioactivity. In this study, structure-mediated color changes of CPC from Spirulina platensis during various enzymatic hydrolysis was investigated based on UV-visible, circular dichroism, infra-red, fluorescence, mass spectrometry, and molecular docking. CPC was hydrolyzed using 7.09 U/mg protein of each enzyme at their optimal hydrolytic conditions for 3 h as follows: papain (pH 6.6, 60 °C), dispase (pH 6.6, 50 °C), and trypsin (pH 7.8, 37 °C). The degree of hydrolysis was in the order of papain (28.4%) > dispase (20.8%) > trypsin (7.3%). The sequence of color degradation rate and total color difference (ΔE) are dispase (82.9% and 40.37), papain (72.4% and 24.70), and trypsin (58.7% and 25.43). The hydrolyzed peptides were of diverse sequence length ranging from 8 to 9 residues (papain), 7-12 residues (dispase), and 9-63 residues (trypsin). Molecular docking studies showed that key amino acid residues in the peptides interacting with chromophore. Amino acid residues such as Arg86, Asp87, Tyr97, Asp152, Phe164, Ala167, and Val171 are crucial in hydrogen bonding interaction. These results indicate that the color properties of CPC might associate with chromopeptide sequences and their non-covalent interactions.
Collapse
Affiliation(s)
- Xueyu Tong
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Govindarajan Prasanna
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Zhang
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
26
|
Influences of different drying methods on the structural characteristics and prebiotic activity of polysaccharides from bamboo shoot (Chimonobambusa quadrangularis) residues. Int J Biol Macromol 2020; 155:674-684. [DOI: 10.1016/j.ijbiomac.2020.03.223] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022]
|
27
|
Ekambaram R, Dharmalingam S. Fabrication and evaluation of electrospun biomimetic sulphonated PEEK nanofibrous scaffold for human skin cell proliferation and wound regeneration potential. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111150. [PMID: 32600734 DOI: 10.1016/j.msec.2020.111150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022]
Abstract
Regeneration of skin wound is a challenging process since functional and architectural restoration of the damaged skin tissue is an arduous task. The use of springing up biomaterials with nano-topographic and bio-mimicking characteristics resembling natural skin's extra cellular matrix (ECM) would be a favorable approach to regenerate such an injured skin tissue. In this study an attempt has been carried out to design and develop sulphonated polyether ether ketone (SPEEK) nanofibrous scaffold to explore its role on skin cell proliferation potential. 2 h-SPEEK portrayed the highest proliferative potential for HaCaT keratinocytes and fibroblasts. It was aimed for the tailored release of bio-actives from the spatiotemporally designed Aloe vera incorporated 2 h-SPEEK nanoscaffold to accelerate the skin wound regeneration. FTIR, EDX and XRD analyses revealed the effective incorporation of Aloe vera in the electrospun nanofibers. SEM analysis revealed the nano-topographical morphology with highly porous, dense and interconnected fibrous structures mimicking the skin ECM. The regulated delivery of Aloe vera demonstrated the biocompatibility of the nanofibrous scaffold in skin keratinocytes (HaCaT) and fibroblasts (3T3) cells through in vitro analysis proving its non-toxic properties. Further, the fabricated nanoscaffolds exhibited excellent anti-microbial efficacy towards the tested human skin pathogenic microbes. The results of in vivo studies in Wistar rat model exhibited scar-less wound healing with complete wound closure. Thus, this nanofiber based drug delivery system implicitly acts as a skin like ECM, bio-mimicking the topographical and chemical cues of the natural skin tissues paving way for a complete regeneration and integration of the injured area strengthening the functional restoration of insulted cells around the wound area.
Collapse
|
28
|
Ceja‐Medina LI, Ortiz‐Basurto RI, Medina‐Torres L, Calderas F, Bernad‐Bernad MJ, González‐Laredo RF, Ragazzo‐Sánchez JA, Calderón‐Santoyo M, González‐ávila M, Andrade‐González I, Manero O. Microencapsulation of
Lactobacillus plantarum
by spray drying with mixtures of
Aloe vera
mucilage and agave fructans as wall materials. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Luis Isaac Ceja‐Medina
- Laboratorio Integral de Investigación en Alimentos, Departamento de Estudios de Posgrado e InvestigaciónTecNM / Instituto Tecnológico de Tepic Tepic Nayarit Mexico
| | - Rosa Isela Ortiz‐Basurto
- Laboratorio Integral de Investigación en Alimentos, Departamento de Estudios de Posgrado e InvestigaciónTecNM / Instituto Tecnológico de Tepic Tepic Nayarit Mexico
| | - Luis Medina‐Torres
- Facultad de QuímicaUniversidad Nacional Autónoma de México Mexico city Mexico
| | - Fausto Calderas
- Laboratorio de Reología y Fenómenos de Transporte L7‐PP Unidad Multidisciplinaria de Investigación Experimental (UMIEZ)Facultad de Estudios Superiores‐Zaragoza, Universidad Nacional Autónoma de México Iztapalapa Ciudad de México Mexico
| | | | | | - Juan Arturo Ragazzo‐Sánchez
- Laboratorio Integral de Investigación en Alimentos, Departamento de Estudios de Posgrado e InvestigaciónTecNM / Instituto Tecnológico de Tepic Tepic Nayarit Mexico
| | - Montserrat Calderón‐Santoyo
- Laboratorio Integral de Investigación en Alimentos, Departamento de Estudios de Posgrado e InvestigaciónTecNM / Instituto Tecnológico de Tepic Tepic Nayarit Mexico
| | - Marisela González‐ávila
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco Guadalajara Jalisco Mexico
| | - Isaac Andrade‐González
- Departamento de Estudios de Posgrado e InvestigaciónTecNM / Instituto Tecnológico de Tlajomulco Tlajomulco de Zúñiga Jalisco Mexico
| | - Octavio Manero
- Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de México Mexico city Mexico
| |
Collapse
|
29
|
Svitina H, Swanepoel R, Rossouw J, Netshimbupfe H, Gouws C, Hamman J. Treatment of Skin Disorders with Aloe Materials. Curr Pharm Des 2020; 25:2208-2240. [PMID: 31269881 DOI: 10.2174/1381612825666190703154244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 01/09/2023]
Abstract
The skin is the largest organ and functions as a barrier to protect the underlying tissues against the elements and pathogens, while also fulfilling many physiological roles and biochemical functions such as preventing excessive water loss. Skin disorders vary greatly in terms of origin, severity, symptoms and affect persons of all ages. Many plants have been used for medicinal purposes since ancient times including the treatment of skin disorders and diseases. Aloe represents one of the earliest medicinal plant species mentioned in antique scriptures and even in rock art dating back thousands of years. Different Aloe species and materials have been used in the prevention and treatment of skin related disorders. Aloe vera is the most commonly used Aloe species for medicinal purposes. Some of the most prominent skin related applications and disorders that Aloe materials have been investigated for are discussed in this paper, which include cosmetic, radiation, cancer, wound and antimicrobial applications. Both in vitro and in vivo studies are included in the discussions of this paper and comprehensive summaries of all these studies are given in tables in each section. Although some contradictory results were obtained among studies, certain Aloe materials have shown excellent efficacy and exhibited potential for the treatment of skin related disorders and cosmetic applications.
Collapse
Affiliation(s)
- Hanna Svitina
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Roan Swanepoel
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Jacques Rossouw
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Happiness Netshimbupfe
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Josias Hamman
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
30
|
Natural polysaccharides experience physiochemical and functional changes during preparation: A review. Carbohydr Polym 2020; 234:115896. [DOI: 10.1016/j.carbpol.2020.115896] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/19/2020] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
|
31
|
Liu H, Xie M, Nie S. Recent trends and applications of polysaccharides for microencapsulation of probiotics. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.11] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Huan Liu
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| |
Collapse
|
32
|
NASCIMENTO CDS, RODRIGUES AMDC, SILVA LHMD. Development of a dehydrated product with edible film characteristics from mammee apple (Mammea americana L.) using Refractance Window drying. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.36218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Fu Y, Feng KL, Wei SY, Xiang XR, Ding Y, Li HY, Zhao L, Qin W, Gan RY, Wu DT. Comparison of structural characteristics and bioactivities of polysaccharides from loquat leaves prepared by different drying techniques. Int J Biol Macromol 2019; 145:611-619. [PMID: 31887373 DOI: 10.1016/j.ijbiomac.2019.12.226] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 01/02/2023]
Abstract
In the present study, freeze drying, hot-air drying, vacuum drying, and microwave drying at the microwave powers of 400, 600, and 800 W, respectively, were utilized to dry loquat leaves for evaluating the effects of different drying techniques on the physicochemical structures and bioactivities of polysaccharides extracted from loquat leaves (LLPs). Results demonstrated that the physicochemical structures and bioactivities of LLPs significantly affected by different drying techniques. The degrees of esterification, molar ratios of constituent monosaccharides, contents of uronic acids, apparent viscosities, and molecular weights of LLPs were varied by different drying techniques. Additionally, LLPs, particularly LLP-M4 which extracted from loquat leaves prepared by microwave drying at the power of 400 W, exerted remarkable in vitro binding capacities, strong inhibitory effects on α-amylase and α-glucosidase, and obvious antioxidant activities. Results indicated that the microwave drying could be an efficient drying technique before extraction of bioactive LLPs, and LLPs had great potential applications in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yuan Fu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Kang-Lin Feng
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Si-Yu Wei
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Xian-Rong Xiang
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Ye Ding
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Hua-Yu Li
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Li Zhao
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Wen Qin
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| |
Collapse
|
34
|
Alvarado-Morales G, Minjares-Fuentes R, Contreras-Esquivel JC, Montañez J, Meza-Velázquez JA, Femenia A. Application of thermosonication for Aloe vera (Aloe barbadensis Miller) juice processing: Impact on the functional properties and the main bioactive polysaccharides. ULTRASONICS SONOCHEMISTRY 2019; 56:125-133. [PMID: 31101246 DOI: 10.1016/j.ultsonch.2019.03.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 05/06/2023]
Abstract
The impact of thermosonication on the functional properties and the main polysaccharides from Aloe vera was investigated. Thermal processing was used for comparison purposes. Acemannan was the predominant polysaccharide in Aloe vera juice followed by pectins. Interestingly, thermosonication promoted a minor degradation of the acetylated mannose from acemannan than thermal processing. On the other hand, the degree of methylesterification of pectins was slightly reduced as a consequence of thermosonication. Further, swelling and fat adsorption capacities were improved by thermosonication. Thus, the highest values for swelling (>150 mL/g AIR) and for fat adsorption capacity (∼120 g oil/g AIR) were observed when thermosonication was performed at 50 °C for 6 min. Moreover, high inactivation of L. plantarum (∼75%) was observed when thermosonication was carried out at 50 °C for 9 min. Interestingly, thermosonication promoted a similar color change (ΔE = 7.7) to the modification observed during pasteurization carried out at 75 °C for 15 min (ΔE = 8.2 ± 0.9). Overall, these results suggested that thermosonication could be a good alternative to thermal procedures of Aloe vera juice, since not only caused minor degradation of bioactive polysaccharides but was also able to improve functional properties.
Collapse
Affiliation(s)
- Guadalupe Alvarado-Morales
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n República Oriente, Saltillo, Coahuila, Mexico
| | - Rafael Minjares-Fuentes
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Articulo 123 s/n Fracc. Filadelfia, 35010 Gómez Palacio, Durango, Mexico.
| | - Juan Carlos Contreras-Esquivel
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n República Oriente, Saltillo, Coahuila, Mexico
| | - Julio Montañez
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n República Oriente, Saltillo, Coahuila, Mexico
| | - Jorge Armando Meza-Velázquez
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Articulo 123 s/n Fracc. Filadelfia, 35010 Gómez Palacio, Durango, Mexico
| | - Antoni Femenia
- Department of Chemistry, University of the Balearic Islands, Ctra Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| |
Collapse
|
35
|
Characterization of physicochemical properties and antioxidant activity of polysaccharides from shoot residues of bamboo (Chimonobambusa quadrangularis): Effect of drying procedures. Food Chem 2019; 292:281-293. [DOI: 10.1016/j.foodchem.2019.04.060] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/25/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022]
|
36
|
Rodríguez-Rodríguez MZ, Meléndez-Pizarro CO, Espinoza-Hicks JC, Quintero-Ramos A, Sánchez-Madrigal MÁ, Meza-Velázquez JA, Jiménez-Castro JA. Effects of UV-C irradiation and traditional thermal processing on acemannan contained in Aloe vera gel blends. Carbohydr Polym 2019; 222:114998. [PMID: 31320065 DOI: 10.1016/j.carbpol.2019.114998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 11/18/2022]
Abstract
The effects of pH (3.5, 4.5, and 5.5) and UV-C irradiation dose (12.8, 24.2, 35.8, and 54.6 mJ/cm2) on the physicochemical properties changes in 10% Aloe vera gel blends; in addition, the acemannan concentration and structural changes in the precipitated polysaccharides were evaluated. A thermal treatment (TT; 45 s at 90 °C) was used for comparison. In contrast to TT, a dose of 24.2 mJ/cm2 did not induce significant changes of free sugar content. Moreover, TT and UV-C irradiation did not significantly affect the content of mannose but increased those of galactose, fructose, and glucose. 1H NMR analysis revealed minimal changes in the isolated fractions of acemannan, indicating that compared to the unprocessed control sample, the acemannan deacetylation was more pronounced by TT (27%) than by UV-C irradiation (11% at 54.6 mJ/cm2), without any significant difference between the two. UV-C irradiation of Aloe vera gel blends at pH 3.5 and 24.2 mJ/cm2 was an alternative to TT and efficiently preserve the characteristics of acemannan.
Collapse
Affiliation(s)
- Maylem Z Rodríguez-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito universitario s/n, Campus Universitario # 2 31125, Chihuahua, Mexico
| | - Carmen O Meléndez-Pizarro
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito universitario s/n, Campus Universitario # 2 31125, Chihuahua, Mexico
| | - José C Espinoza-Hicks
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito universitario s/n, Campus Universitario # 2 31125, Chihuahua, Mexico
| | - Armando Quintero-Ramos
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito universitario s/n, Campus Universitario # 2 31125, Chihuahua, Mexico.
| | - Miguel Á Sánchez-Madrigal
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito universitario s/n, Campus Universitario # 2 31125, Chihuahua, Mexico
| | - Jorge A Meza-Velázquez
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Artículo 123 s/n, Fracc. Filadelfia 35010, Gómez Palacio, Dgo., Mexico
| | - Jorge A Jiménez-Castro
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito universitario s/n, Campus Universitario # 2 31125, Chihuahua, Mexico
| |
Collapse
|
37
|
Liu C, Cui Y, Pi F, Cheng Y, Guo Y, Qian H. Extraction, Purification, Structural Characteristics, Biological Activities and Pharmacological Applications of Acemannan, a Polysaccharide from Aloe vera: A Review. Molecules 2019; 24:molecules24081554. [PMID: 31010204 PMCID: PMC6515206 DOI: 10.3390/molecules24081554] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022] Open
Abstract
Aloe vera is a medicinal plant species of the genus Aloe with a long history of usage around the world. Acemannan, considered one of the main bioactive polysaccharides of Aloe vera, possesses immunoregulation, anti-cancer, anti-oxidation, wound healing and bone proliferation promotion, neuroprotection, and intestinal health promotion activities, among others. In this review, recent advancements in the extraction, purification, structural characteristics and biological activities of acemannan from Aloe vera were summarized. Among these advancements, the structural characteristics of purified polysaccharides were reviewed in detail. Meanwhile, the biological activities of acemannan from Aloe vera determined by in vivo, in vitro and clinical experiments are summarized, and possible mechanisms of these bioactivities were discussed. Moreover, the latest research progress on the use of acemannan in dentistry and wound healing was also summarized in details. The structure-activity relationships of acemannan and its medical applications were discussed. Finally, new perspectives for future research work on acemannan were proposed. In conclusion, this review summarizes the extraction, purification, structural characteristics, biological activities and pharmacological applications of acemannan, and provides information for the industrial production and possible applications in dentistry and wound healing in the future.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- Synergetic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| | - Yan Cui
- Institute of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China.
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- Synergetic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- Synergetic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- Synergetic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| | - He Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- Synergetic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
38
|
In Vitro Immunomodulatory Effect of Food Supplement from Aloe vera. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5961742. [PMID: 30941196 PMCID: PMC6420980 DOI: 10.1155/2019/5961742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 01/14/2023]
Abstract
Food industries typically use Aloe vera as concentrated (100× to 200×) and dried powders in their final products. These powders are obtained by extrusion of Aloe inner leaf gel (ILG) or Aloe whole leaf (WLP); the juice is filtered through diatomaceous earth and activated carbon before spray drying at temperatures below 70 °C. In another process, Aloe inner leaf gel was dried at ~80 °C and mashed to a powder rich in high molecular weight fibres and soluble polysaccharides (ILF). In contrast to ILG and WLP, the ILF sample was cytotoxic for the human intestinal cell line Caco-2 (CC50 = 1 g/l), even at concentrations below the recommended dose for human consumption. At lower concentrations (250 mg/l) with LPS challenged macrophage-like THP-1 cells decreased by 40% the release of the anti-inflammatory cytokine IL-10, whereas the release of the proinflammatory cytokine IL-1β increased by 35% (compared to untreated but challenged macrophage-like THP-1 cells). Unexpectedly, under the same conditions, the less cytotoxic ILG and WLP, both samples with a lower fibre content, significantly increased (up to 2.4 times) the release of IL-10, while the concentration of IL-1β remained unaltered and of TNFα decreased by 35%. Even more interesting is that a treatment of the ILF sample with activated carbon reduced its cytotoxicity and increased the IL-10 release (3.1 times). Based on these results, we suggest applying an activated carbon treatment on Aloe-starting products, which have high fibre content and have received high temperature treatment, in order to reduce their cytotoxicity and improve their immunomodulatory properties.
Collapse
|
39
|
Salinas P, Salinas C, Contreras RA, Zuñiga GE, Dupree P, Cardemil L. Water deficit and abscisic acid treatments increase the expression of a glucomannan mannosyltransferase gene (GMMT) in Aloe vera Burm. F. PHYTOCHEMISTRY 2019; 159:90-101. [PMID: 30605853 DOI: 10.1016/j.phytochem.2018.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
The main polysaccharide of the gel present in the leaves of or Aloe vera Burm.F., (Aloe barbadensis Miller) a xerophytic crassulacean acid metabolism (CAM) plant, is an acetylated glucomannan named acemannan. This polysaccharide is responsible for the succulence of the plant, helping it to retain water. In this study we determined using polysaccharide analysis by carbohydrate gel electrophoresis (PACE) that the acemannan is a glucomannan without galactose side branches. We also investigated the expression of the gene responsible for acemannan backbone synthesis, encoding a glucomannan mannosyltransferase (GMMT, EC 2.4.1.32), since there are no previous reports on GMMT expression under water stress in general and specifically in Aloe vera. It was found by in silico analyses that the GMMT gene belongs to the cellulose synthase-like A type-9 (CSLA9) subfamily. Using RT-qPCR it was found that the expression of GMMT increased significantly in Aloe vera plants subjected to water stress. This expression correlates with an increase of endogenous ABA levels, suggesting that the gene expression could be regulated by ABA. To corroborate this hypothesis, exogenous ABA was applied to non-water-stressed plants, resulting in a significant increase of GMMT expression after 48 h of ABA treatment.
Collapse
Affiliation(s)
- Pamela Salinas
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| | - Carlos Salinas
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| | - Rodrigo A Contreras
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Gustavo E Zuñiga
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, UK
| | - Liliana Cardemil
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile.
| |
Collapse
|
40
|
Shi XD, Yin JY, Zhang LJ, Li OY, Huang XJ, Nie SP. Studies on polysaccharides from leaf skin of Aloe barbadensis Miller: Part II. Structural characteristics and molecular properties of two lower molecular weight fractions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.01.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Medina‐Torres L, Núñez‐Ramírez DM, Calderas F, Bernad‐Bernad MJ, Gracia‐Mora J, Rodríguez‐Ramírez J, González‐Laredo RF, Gallegos‐Infante JA, Manero O. Curcumin encapsulation by spray drying using
Aloe vera
mucilage as encapsulating agent. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- L. Medina‐Torres
- Departamento de Ingeniería Química, Facultad de QuímicaUniversidad Nacional Autónoma de México, Ciudad de México Mexico
| | - D. M. Núñez‐Ramírez
- Laboratorio de Biotecnología, Facultad de Ciencias QuímicasUniversidad Juárez del Estado de Durango (UJED) Durango, Dgo. Mexico
| | - F. Calderas
- Laboratorio de Reología y fenómenos de transporte, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ), Facultad de Estudios Superiores‐ZaragozaUniversidad Nacional Autónoma de México Ciudad de México Mexico
| | - M. J. Bernad‐Bernad
- Departamento de Farmacía, Facultad de QuímicaUniversidad Nacional Autónoma de México Ciudad de México México
| | - J. Gracia‐Mora
- Departamento de Química Inorgánica y Nuclear, Facultad de QuímicaUniversidad Nacional Autónoma de México Ciudad de México México
| | | | - R. F. González‐Laredo
- Departamento de Ing. Química y BioquímicaInstituto Tecnológico de Durango Durango, Dgo. Mexico
| | - J. A. Gallegos‐Infante
- Departamento de Ing. Química y BioquímicaInstituto Tecnológico de Durango Durango, Dgo. Mexico
| | - O. Manero
- Departamento de Reología y Mecánica de MaterialesInstituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México México Mexico
| |
Collapse
|
42
|
Shi XD, Yin JY, Huang XJ, Que ZQ, Nie SP. Structural and conformational characterization of linear O-acetyl-glucomannan purified from gel of Aloe barbadensis Miller. Int J Biol Macromol 2018; 120:2373-2380. [DOI: 10.1016/j.ijbiomac.2018.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/14/2018] [Accepted: 09/02/2018] [Indexed: 11/29/2022]
|
43
|
Aghamohamadi N, Sanjani NS, Majidi RF, Nasrollahi SA. Preparation and characterization of Aloe vera acetate and electrospinning fibers as promising antibacterial properties materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:445-452. [PMID: 30423728 DOI: 10.1016/j.msec.2018.09.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 08/04/2018] [Accepted: 09/21/2018] [Indexed: 11/20/2022]
Abstract
In this work, the anti-bacterial effect of Aloe vera derivate fibers produced by the electrospinning method was reported. Aloe vera Polyvinylpyrrolidone (Av/PVP) and Aloe vera acetate-Polyvinylpyrrolidone (AvAc/PVP) electrospun fibers were prepared with different concentrations and their microstructure and mechanical properties were studied. Various methods such as differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), water contact angle (CA) tests, Fourier-Transform Nuclear Magnetic Resonance (FT-NMR), scanning electron microscope (SEM), X-ray diffraction (XRD), CHNSO and Fourier-Transform Infrared Spectroscopy (FT-IR) were used to characterize prepared samples. (Av/PVP) electrospun fibers were prepared with different concentrations (6-10 wt%) of PVP and 0.2 wt% Av blended and tested in medicinal herb for wound healing, antibacterial and anti-inflammatory properties. For further study, the effect of AvAc film on the properties of composite film was studied. AvAc increased the thermal stability and crystallite size percentage of samples. Antibacterial and antiviral test studies on the scaffold displayed no bacterial and viral growth. These results suggest that AvAc/PVP scaffolds could be promising candidates for wound healing applications.
Collapse
Affiliation(s)
| | | | - Reza Faridi Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Iran
| | - Saman Ahmad Nasrollahi
- Center for Research & Training in Skin Diseases and Leprosy (CRTSDL), Tehran University Medical of Science, P.O. Box 1416613675, Tehran, Iran
| |
Collapse
|
44
|
|
45
|
Habtemariam S. Could We Really Use Aloe vera Food Supplements to Treat Diabetes? Quality Control Issues. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:4856412. [PMID: 29511381 PMCID: PMC5736930 DOI: 10.1155/2017/4856412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/05/2017] [Indexed: 01/05/2023]
Abstract
Diabetes UK has recently listed a number of herbs and spices that have been clinically shown to improve blood glucose control in type-2 diabetes patients and the diabetes high-risk group. With Aloe vera being top in this list, its health benefit along with health and beauty/food retailers supplying it was illustrated in detail. Previous article from this laboratory scrutinised the merit of using A. vera as an alternative therapy to prescription antidiabetic drugs and the risk of using food supplements in the market which do not qualify as drug preparations. In continuation of this discussion, the present study assesses three Aloe Pura brands and one Holland and Barret brand of A. vera juice supplements in the UK market through chromatographic and spectroscopic analysis. While the polysaccharide active ingredient, acemannan, appears to be within the recommended limit, it was found that Aloe Pura (one of the best-selling brands for A. vera supplement) products have benzoate additive that does not appear in the supplement levels. Moreover, two of the Aloe Pura brand juices contain methanol, suggesting that the International Aloe Science Council (IASC) certification does not guarantee the medicinal quality of these products. The therapeutic fitness of such supplements is discussed.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK
| |
Collapse
|
46
|
Effect of drying procedures on the physicochemical properties and antioxidant activities of polysaccharides from Crassostrea gigas. PLoS One 2017; 12:e0188536. [PMID: 29176846 PMCID: PMC5703540 DOI: 10.1371/journal.pone.0188536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/08/2017] [Indexed: 11/29/2022] Open
Abstract
Crassostrea gigas polysaccharides (CGP) were obtained by different drying methods: freeze-drying (FD), spray-drying (SD) or rotary evaporation-drying (RED). The physicochemical properties of CGP were evaluated on the basis of polysaccharide content, protein content, color characteristics, FT-IR spectroscopy, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Antioxidant activities were researched three different free radicals, including DPPH free radicals, ABTS free radicals and reducing power. The results demonstrated that FDCGP, SDCGP and REDCGP have different physicochemical properties and antioxidant activities. Contrasted with FDCGP and REDCGP, SDCGP exhibited stronger antioxidant abilities. Therefore, considering the polysaccharides appearances and antioxidant activities, the spray drying method is a decent selection for the preparation of such polysaccharides, and it should be selected for application in the food industry.
Collapse
|