1
|
Tsivileva O, Shaternikov A, Evseeva N. Basidiomycetes Polysaccharides Regulate Growth and Antioxidant Defense System in Wheat. Int J Mol Sci 2024; 25:6877. [PMID: 38999986 PMCID: PMC11241571 DOI: 10.3390/ijms25136877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Higher-fungi xylotrophic basidiomycetes are known to be the reservoirs of bioactive metabolites. Currently, a great deal of attention has been paid to the exploitation of mycelial fungi products as an innovative alternative in crop protection. No data exist on the mechanisms behind the interaction between xylotrophic mushrooms' glycopolymeric substances and plants. In this study, the effects of basidiomycete metabolites on the morphophysiological and biochemical variables of wheat plants have been explored. Wheat (Triticum aestivum L. cv. Saratovskaya 29) seedlings were treated with extracellular polysaccharides (EPSs) isolated from the submerged cultures of twenty basidiomycete strains assigned to 13 species and 8 genera. The EPS solutions at final concentrations of 15, 40, and 80 mg/L were applied to wheat seedlings followed by their growth for 10 days. In the plant samples, the biomass, length of coleoptile, shoot and root, root number, rate of lipid peroxidation by malondialdehyde concentration, content of hydrogen peroxide, and total phenols were measured. The peroxidase and superoxide dismutase activity were defined. Most of the EPS preparations improved biomass yields, as well as the morphological parameters examined. EPS application enhanced the activities of antioxidant enzymes and decreased oxidative damage to lipids. Judging by its overall effect on the growth indices and redox system of wheat plants, an EPS concentration of 40 mg/L has been shown to be the most beneficial compared to other concentrations. This study proves that novel bioformulations based on mushroom EPSs can be developed and are effective for wheat growth and antioxidative response. Phytostimulating properties found for EPSs give grounds to consider extracellular metabolites produced in the xylotrophic basidiomycete cultures as an active component capable of inducing plant responses to stress.
Collapse
Affiliation(s)
- Olga Tsivileva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Andrei Shaternikov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Nina Evseeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| |
Collapse
|
2
|
Spontaneous Transformation of Biomedical Polymeric Silver Salt into a Nanocomposite: Physical-Chemical and Antimicrobial Properties Dramatically Depend on the Initial Preparation State. Int J Mol Sci 2022; 23:ijms231810963. [PMID: 36142870 PMCID: PMC9501147 DOI: 10.3390/ijms231810963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
An antimicrobial polyacrylic silver salt (freshly prepared, stored for one year and model-aged) was studied by physical–chemical techniques for nanoparticle detection. In all cases, this salt represents a composite of radical-enriched macromolecules and silver(0) nanoparticles. As time passed, the initial small spherical nanoparticles were converted into larger non-spherical silver nanoparticles. The initial highly water-soluble antimicrobial solid nanocomposite almost loses its solubility in water and cannot be used as an antimicrobial agent. Unlike insoluble solid silver polyacrylate, its freshly prepared aqueous solution retains a liquid-phase consistency after one year as well as pronounced antimicrobial properties. The mechanism of these spontaneous and model-simulated processes was proposed. These results have attracted attention for officinal biomedicinal silver salts as complex radical-enriched nanocomposite substances; they also indicate contrasting effects of silver polymeric salt storing in solid and solution forms that dramatically influence antimicrobial activity.
Collapse
|
3
|
Efficient extraction of carrageenans from Chondrus crispus for the green synthesis of gold nanoparticles and formulation of printable hydrogels. Int J Biol Macromol 2022; 206:553-566. [PMID: 35245577 DOI: 10.1016/j.ijbiomac.2022.02.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022]
Abstract
The integral utilization of sustainable resources with versatile, efficient and cleaner processes is encouraged. Hydrothermal treatment with subcritical water is a chemical free, tunable and rapid technology providing enhanced yield compared to conventional extraction and was explored for the benign by design extraction and depolymerization of carrageenan from Chondrus crispus. Up to 90% of the seaweed was solubilized operating under nonisothermal regime during heating up to 200 °C and 75.5% crude carrageenan yield was attained at 140 °C. Crude carrageenan could not be precipitated by ethanol from the extracts produced at 180 °C and higher temperatures, but ultrafiltration (100 kDa) of the extract obtained at 160 °C provided comparable recovery yields and similar rheological features to those of the ethanol precipitated product. Operation at 140 °C was preferred based on the higher recovery yield of the biopolymer and the whole extract was suitable for the green synthesis of polycrystalline decahedral quasi-spherical gold nanoparticles with a mean size distribution of 8.4 nm and Z potential value of -40.2 mV. Alternatively, the crude carrageen fraction was used for the formulation of printable biopolymer based gels with suitable mechanical properties, including a relevant gel strength enhancement (about 10-fold) when compared with conventional procedures.
Collapse
|
4
|
Kumar TSJ, Arumugam M. Optical Properties of Magnetic Nanoalloys and Nanocomposites. HANDBOOK OF MAGNETIC HYBRID NANOALLOYS AND THEIR NANOCOMPOSITES 2022:547-573. [DOI: 10.1007/978-3-030-90948-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
5
|
Kumar TSJ, Arumugam M. Optical Properties of Magnetic Nanoalloys and Nanocomposites. HANDBOOK OF MAGNETIC HYBRID NANOALLOYS AND THEIR NANOCOMPOSITES 2022:1-27. [DOI: 10.1007/978-3-030-34007-0_18-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 06/16/2023]
|
6
|
Khutsishvili SS, Perfileva AI, Nozhkina OA, Ganenko TV, Krutovsky KV. Novel Nanobiocomposites Based on Natural Polysaccharides as Universal Trophic Low-Dose Micronutrients. Int J Mol Sci 2021; 22:ijms222112006. [PMID: 34769436 PMCID: PMC8584298 DOI: 10.3390/ijms222112006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
New promising manganese-containing nanobiocomposites (NCs) based on natural polysaccharides, arabinogalactan (AG), arabinogalactan sulfate (AGS), and κ-carrageenan (κ-CG) were studied to develop novel multi-purpose trophic low-dose organomineral fertilizers. The general toxicological effects of manganese (Mn) on the vegetation of potatoes (Solanum tuberosum L.) was evaluated in this study. The essential physicochemical properties of this trace element in plant tissues, such as its elemental analysis and its spectroscopic parameters in electron paramagnetic resonance (EPR), were determined. Potato plants grown in an NC-containing medium demonstrated better biometric parameters than in the control medium, and no Mn accumulated in plant tissues. In addition, the synthesized NCs demonstrated a pronounced antibacterial effect against the phytopathogenic bacterium Clavibacter sepedonicus (Cms) and were proved to be safe for natural soil microflora.
Collapse
Affiliation(s)
- Spartak S. Khutsishvili
- Department of Physical Organic Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Lavrentiev Av., 630090 Novosibirsk, Russia;
| | - Alla I. Perfileva
- Laboratory of Plant-Microbe Interactions, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.I.P.); (O.A.N.)
| | - Olga A. Nozhkina
- Laboratory of Plant-Microbe Interactions, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.I.P.); (O.A.N.)
| | - Tatjana V. Ganenko
- Laboratory of Functional Nanomaterials, A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia;
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany
- Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Str. 3, 119333 Moscow, Russia
- Genome Research and Education Center, Laboratory of Forest Genomics, Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
- Forestry Faculty, G.F. Morozov Voronezh State University of Forestry and Technologies, 8 Timiryazeva Str., 394036 Voronezh, Russia
- Correspondence: ; Tel.: +49-551-393-3537
| |
Collapse
|
7
|
Khutsishvili SS, Ganenko TV, Sukhov BG. Formation and paramagnetic properties of manganese-containing bionanocomposites based on natural polysaccharide matrices. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.1990314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Spartak S. Khutsishvili
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tat’yana V. Ganenko
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Boris G. Sukhov
- V. V. Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
8
|
Effect of Natural Polysaccharide Matrix-Based Selenium Nanocomposites on Phytophthora cactorum and Rhizospheric Microorganisms. NANOMATERIALS 2021; 11:nano11092274. [PMID: 34578589 PMCID: PMC8466319 DOI: 10.3390/nano11092274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/20/2022]
Abstract
We studied the effects of new chemically synthesized selenium (Se) nanocomposites (NCs) based on natural polysaccharide matrices arabinogalactan (AG), starch (ST), and kappa-carrageenan (CAR) on the viability of phytopathogen Phytophthora cactorum, rhizospheric bacteria, and potato productivity in the field experiment. Using transmission electron microscopy (TEM), it was shown that the nanocomposites contained nanoparticles varying from 20 to 180 nm in size depending on the type of NC. All three investigated NCs had a fungicidal effect even at the lowest tested concentrations of 50 µg/mL for Se/AG NC (3 µg/mL Se), 35 µg/mL for Se/ST NC (0.5 µg/mL Se), and 39 µg/mL for Se/CAR NC (1.4 µg/mL Se), including concentration of 0.000625% Se (6.25 µg/mL) in the final suspension, which was used to study Se NC effects on bacterial growth of the three common rhizospheric bacteria Acinetobacter guillouiae, Rhodococcus erythropolis and Pseudomonas oryzihabitans isolated from the rhizosphere of plants growing in the Irkutsk Region, Russia. The AG-based Se NC (Se/AG NC) and CAR-based Se NC (Se/CAR NC) exhibited the greatest inhibition of fungal growth up to 60% (at 300 µg/mL) and 49% (at 234 µg/mL), respectively. The safe use of Se NCs against phytopathogens requires them to be environmentally friendly without negative effects on rhizospheric microorganisms. The same concentration of 0.000625% Se (6.25 µg/mL) in the final suspension of all three Se NCs (which corresponds to 105.57 µg/mL for Se/AG NC, 428.08 µg/mL for Se/ST NC and 170.30 µg/mL for Se/CAR NC) was used to study their effect on bacterial growth (bactericidal, bacteriostatic, and biofilm formation effects) of the three rhizospheric bacteria. Based on our earlier studies this concentration had an antibacterial effect against the phytopathogenic bacterium Clavibacter sepedonicus that causes diseases of potato ring rot, but did not negatively affect the viability of potato plants at this concentration. In this study, using this concentration no bacteriostatic and bactericidal activity of all three Se NCs were found against Rhodococcus erythropolis based on the optical density of a bacterial suspension, agar diffusion, and intensity of biofilm formation, but Se/CAR and Se/AG NCs inhibited the growth of Pseudomonas oryzihabitans. The cell growth was decrease by 15–30% during the entire observation period, but the stimulation of biofilm formation by this bacterium was observed for Se/CAR NC. Se/AG NC also had bacteriostatic and antibiofilm effects on the rhizospheric bacterium Acinetobacter guillouiae. There was a 2.5-fold decrease in bacterial growth and a 30% decrease in biofilm formation, but Se/CAR NC stimulated the growth of A. guillouiae. According to the results of the preliminary field test, an increase in potato productivity by an average of 30% was revealed after the pre-planting treatment of tubers by spraying them with Se/AG and Se/CAR NCs with the same concentration of Se of 0.000625% (6.25 µg/mL) in a final suspension. The obtained and previously published results on the positive effect of natural matrix-based Se NCs on plants open up prospects for further investigation of their effects on rhizosphere bacteria and resistance of cultivated plants to stress factors.
Collapse
|
9
|
Zhong H, Zhao B, Deng J. Chiral magnetic hybrid materials constructed from macromolecules and their chiral applications. NANOSCALE 2021; 13:11765-11780. [PMID: 34231630 DOI: 10.1039/d1nr01939b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chirality is a fundamental and ubiquitous feature of living organisms in nature. Magnetic materials, in particular magnetic nanoparticles (MNPs), show some interesting properties such as large specific surface area, easy surface modification, magnetic responsivity and separation ability. Integrating MNPs with chirality in a single material will undoubtedly create a large number of advanced multi-functional materials. Despite the great advancements made in this area, there have been no review articles to summarize the relevant studies. The present work reviews the major progress recently made in constructing chiral magnetic hybrid materials (CMHMs) using macromolecules, which are classified based on the primary chiral macromolecular organic components, namely, biological polymers and synthetic polymers, and the applications of the resulting chiral hybrids in chiral research fields, including asymmetric catalysis, enzymatic resolution, chromatographic separation, enantioselective crystallization and enantioselective adsorption, are also summarized. The challenges and prospects of related research fields are proposed in the last section.
Collapse
Affiliation(s)
- Hai Zhong
- State Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | | | | |
Collapse
|
10
|
Tsivileva O, Pozdnyakov A, Ivanova A. Polymer Nanocomposites of Selenium Biofabricated Using Fungi. Molecules 2021; 26:3657. [PMID: 34203966 PMCID: PMC8232642 DOI: 10.3390/molecules26123657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
Nanoparticle-reinforced polymer-based materials effectively combine the functional properties of polymers and unique characteristic features of NPs. Biopolymers have attained great attention, with perspective multifunctional and high-performance nanocomposites exhibiting a low environmental impact with unique properties, being abundantly available, renewable, and eco-friendly. Nanocomposites of biopolymers are termed green biocomposites. Different biocomposites are reported with numerous inorganic nanofillers, which include selenium. Selenium is a micronutrient that can potentially be used in the prevention and treatment of diseases and has been extensively studied for its biological activity. SeNPs have attracted increasing attention due to their high bioavailability, low toxicity, and novel therapeutic properties. One of the best routes to take advantage of SeNPs' properties is by mixing these NPs with polymers to obtain nanocomposites with functionalities associated with the NPs together with the main characteristics of the polymer matrix. These nanocomposite materials have markedly improved properties achieved at low SeNP concentrations. Composites based on polysaccharides, including fungal beta-glucans, are bioactive, biocompatible, biodegradable, and have exhibited an innovative potential. Mushrooms meet certain obvious requirements for the green entity applied to the SeNP manufacturing. Fungal-matrixed selenium nanoparticles are a new promising biocomposite material. This review aims to give a summary of what is known by now about the mycosynthesized selenium polymeric nanocomposites with the impact on fungal-assisted manufactured ones, the mechanisms of the involved processes at the chemical reaction level, and problems and challenges posed in this area.
Collapse
Affiliation(s)
- Olga Tsivileva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Alexander Pozdnyakov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia; (A.P.); (A.I.)
| | - Anastasiya Ivanova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia; (A.P.); (A.I.)
| |
Collapse
|
11
|
González-Ballesteros N, Torres MD, Flórez-Fernández N, Diego-González L, Simón-Vázquez R, Rodríguez-Argüelles MC, Domínguez H. Eco-friendly extraction of Mastocarpus stellatus carrageenan for the synthesis of gold nanoparticles with improved biological activity. Int J Biol Macromol 2021; 183:1436-1449. [PMID: 34023369 DOI: 10.1016/j.ijbiomac.2021.05.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022]
Abstract
Carrageenan was extracted from Mastocarpus stellatus using hot water extraction under atmospheric and pressurized conditions. The influence of heating temperature during a non-isothermal heating profile up to temperatures in the range 70-190 °C was studied to evaluate the extraction yields and properties of the carrageenan fraction. Under the selected conditions (130 °C), extracted carrageenan (CMs) was used for the green synthesis of gold nanoparticles (AuNPs). After the optimization of the reaction conditions, the synthesized gold nanoparticles (Au@CMs) were characterized by UV-Vis spectroscopy, Z potential measurements, electron microscopy, and X-ray diffraction analysis, which confirmed the formation of spherical, polycrystalline, and negatively charged nanoparticles with a mean diameter of 14.3 ± 2.1 nm. The study conducted by scanning transmission electron microscopy, energy dispersive X-ray analysis and mapping confirmed the presence of carrageenan stabilizing AuNPs. Finally, Fourier transformed infrared spectroscopy was performed to analyze the functional groups of CMs involved in the reduction and stabilization of AuNPs. The selective cytotoxicity and the antioxidant activity of the Au@CMs were evaluated in different cell lines and compared to the CMs. Au@CMs showed an improved antioxidant capacity in cells under oxidative stress and the induction of apoptosis in a monocytic cell line, while no antitumor effect was observed in a lung endothelial cell line.
Collapse
Affiliation(s)
| | - M D Torres
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain
| | - N Flórez-Fernández
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain
| | - L Diego-González
- CINBIO, Universidade de Vigo, Inmunología, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - R Simón-Vázquez
- CINBIO, Universidade de Vigo, Inmunología, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | | | - H Domínguez
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain
| |
Collapse
|
12
|
Tikhonov NI, Khutsishvili SS, Vakul’skaya TI, Kuznetsova NP, Emel’yanov AI, Pozdnyakov AS. Formation of Silver-Containing Nanocomposites during Thermolysis of Polyacrylonitrile Salt: EPR Study. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Effect of high dose of selenium nanoparticles on antioxidant system and biochemical profile of rats in correction of carbon tetrachloride-induced toxic damage of liver. Colloids Surf B Biointerfaces 2021; 197:111381. [DOI: 10.1016/j.colsurfb.2020.111381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/14/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023]
|
14
|
Aleksandrova G, Lesnichaya M, Dolmaa G, Sukhov B, Regdel D. The effect of organic matter humification (aromaticity and oxidation degree) on structural and nanomorphological characteristics of humic nanocomposites of metallic platinum. ENVIRONMENTAL RESEARCH 2020; 190:109878. [PMID: 32739625 DOI: 10.1016/j.envres.2020.109878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/25/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND It has been previously found that humic substances (HSs) can serve as the environmentally benign non-toxic agent for the preparation of magnetic and noble metals nanoparticles that are increasingly used in biomedicine. The structure of HSs and, hence, their synthetic potential depend on the source of their origin. Thus, humification character, determined by conditions and duration of complex transformation of organic remains in HSs can evidence their structure, in particular their aromaticity and oxidation degree. The incorporation of platinum nanoparticles in a shell of HSs allows obtaining aggregate-stable nanomaterials with directly controlled structural and nanomorphological characteristics, which combine the properties of platinum nanoparticles (selective cytotoxicity, anti-inflammatory activity, etc. And a complex of biological properties of HSs (antioxidant, immunomodulatory and anti-inflammatory activity. At the same time, the expression of valuable properties of platinum nanoparticles can be varied directly by changing their nanomorphological characteristics that strongly depend on the conditions of synthesis, in particular on the HSs type which is used for the synthesis. AIM To study the effect of humification (aromaticity and oxidation degree) of three types of humic substances extracted from natural Mongolia sources (therapeutic muds of Gurvan Nuur Lake, brown coal of Baganuur coal deposit and shale of Shine Hudag deposit) on structural and nanomorphological characteristics of Pt0-containing nanocomposites produced on their basis. METHODS Nanocomposites with Pt0 content 1.2-6.5% were synthesized by reduction of hydrogen hexachloroplatinate with HSs in an aqueous-alkaline medium upon heating (90 °C). The yield of nanocomposites varied depending on type of HSs in the range 75-96%. The structure, composition and morphology of obtained nanocomposites were characterized by complex of modern physical and chemical methods (elemental analysis, XRD, SEM, TEM, IR- and optical-spectroscopy, DLS). RESULTS The platinum-containing nanocomposites have been synthesized using the reduction and stabilizing potentials of HSs with different degrees of humification (aromaticity and oxidation degree) and isolated from three natural Mongolian sources. The effect of functional composition, including oxidation and aromaticity degrees of HSs on the yield, quantitative and nanomorphological characteristics of produced platinum nanocomposites has been found. It is established that under the same reaction conditions platinum nanoparticles with face-centered cubic lattice and the smallest average size (9-15 nm) are formed from humic substances extracted from coal, while HSs derived from mud and shale afford the nanoparticles of larger size (18-28 and 16-26 nm respectively). The increase of platinum content in nanocomposites enlarges their average size, decreases their aggregate stability, as well as augments oxidation degree of HSs macromolecules. The reduction of platinum from precursor to the zero-valent state occurs due to oxidation of the phenolic and alcoholic hydroxyl groups, which are major components of HSs, as well as carbonyl groups. At the same time, HSs cover individual platinum nanoparticles, making them water soluble and preventing their aggregation. CONCLUSION Thus, we have synthesized a series Pt0-containing nanocomposites containing 1.2-6.5% with use as reducing and stabilizing matrix of natural available HSs with different humification characteristics (aromaticity and oxidation degree) and isolated from three natural Mongolia sources It is found that obtained nanocomposites are formed in form of platinum nanoparticles mainly of spherical shape and size of 3-42 nm distributed in a matrix of HSs. Polyfunctional composition of HSs is determined by conditions of their transformation and degree of humification, which provides their reducing and stabilizing properties during the synthesis of platinum metallic nanocomposites. It is established that Pt0 nanoparticles with the smallest average size and the highest aggregate stability are generated from HSs-coal with the lowest oxidation degree. These data contribute significantly to understanding of possible control of the nanomaterials synthesis and prediction of their properties.
Collapse
Affiliation(s)
- Galina Aleksandrova
- A.E. Favorsky Irkutsk Institute of Chemistry of Siberian Branch of Russian Academy of Sciences, 664033, Irkutsk, Favorsky Street, 1, Russia.
| | - Marina Lesnichaya
- A.E. Favorsky Irkutsk Institute of Chemistry of Siberian Branch of Russian Academy of Sciences, 664033, Irkutsk, Favorsky Street, 1, Russia
| | - Gania Dolmaa
- Institute of Chemistry аnd Chemical Technology of Mongolian Academy of Sciences, 13330, Ulaan-Baatar, Mongolia
| | - Boris Sukhov
- A.E. Favorsky Irkutsk Institute of Chemistry of Siberian Branch of Russian Academy of Sciences, 664033, Irkutsk, Favorsky Street, 1, Russia
| | - Duger Regdel
- Institute of Chemistry аnd Chemical Technology of Mongolian Academy of Sciences, 13330, Ulaan-Baatar, Mongolia
| |
Collapse
|
15
|
Structural Surface Features of Paramagnetic Multifunctional Nanohybrids Based on Silver Oleic Acid. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01904-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Lesnichaya M, Shendrik R, Titov E, Sukhov B. Synthesis and comparative assessment of antiradical activity, toxicity, and biodistribution of κ-carrageenan-capped selenium nanoparticles of different size: in vivo and in vitro study. IET Nanobiotechnol 2020; 14:519-526. [PMID: 32755962 DOI: 10.1049/iet-nbt.2020.0023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the present study, water-soluble hybrid selenium-containing nanocomposites have been synthesised via soft oxidation of selenide-anions, preliminarily generated from elemental bulk-selenium in the base-reduction system 'N2H4-NaOH'. The nanocomposites obtained consist of Se0NPs (4.6-24.5 nm) stabilised by κ-carrageenan biocompatible polysaccharide. The structure of these composite nanomaterials has been proven using complementary physical-chemical methods: X-ray diffraction analysis, transmission electron microscopy, optical spectroscopy, and dynamic light scattering. Optical ranges of 'emission/excitation' of aqueous solutions of nanocomposites with Se0NPs of different sizes are established and the most important parameters of their luminescence are determined. For the obtained nanocomposites, the expressed antiradical activity against free radicals 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid has been found, the value of which depends on the size of selenium nanoparticles. It is experimentally revealed that all obtained nanocomposites are low toxic (LD50 >2000 mg/kg). It is also found that small selenium nanoparticles (6.8 nm), in contrast to larger nanoparticles (24.5 nm), are accumulated in organisms to significantly increase the level of selenium in the liver, kidneys, and brain (in lesser amounts) of rats.
Collapse
Affiliation(s)
- Marina Lesnichaya
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033, Irkutsk, Russia.
| | - Roman Shendrik
- A.P. Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, 1a, Favorsky Str., 664033, Irkutsk, Russia
| | - Evgeniy Titov
- East-Siberian Institute of Medical and Ecological Research, Bldg. 3, Microdistric 12a, P.O. Box 1170, 665827, Angarsk, Russia
| | - Boris Sukhov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033, Irkutsk, Russia
| |
Collapse
|
17
|
Molecular characteristics of kappa-selenocarrageenan and application in green synthesis of silver nanoparticles. Int J Biol Macromol 2019; 141:529-537. [DOI: 10.1016/j.ijbiomac.2019.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
|
18
|
Gasilova ER, Aleksandrova GP, Volchek BZ, Vlasova EN, Baigildin VA. Smart colloids containing ensembles of gold nanoparticles conjugated with κ-carrageenan. Int J Biol Macromol 2019; 137:358-365. [DOI: 10.1016/j.ijbiomac.2019.06.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/13/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
|
19
|
Aleksandrova G, Sukhov B, Trofimov B. Formation of Water-Soluble Au-Nanobiocomposite with Dielectric Matrix. INTERNATIONAL JOURNAL OF NANOSCIENCE 2019. [DOI: 10.1142/s0219581x19400556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Water-soluble potentially biocompatible Au-containing nanocomposites based on the natural polysaccharide arabinogalactan were prepared. They were investigated by electronic and infrared spectroscopies, X-ray diffraction analysis and transmission electron microscopy. Stable zero-valence Au nanoparticles with an average particle size of 5–8[Formula: see text]nm are formed in the natural macromolecular matrix. The nanocomposites obtained are aggregatively stable and of interest for applications in medicine.
Collapse
Affiliation(s)
- G. Aleksandrova
- A. E. Favorsky Irkutsk Institute of Chemistry SB RAS, Favorsky Str. 1, 664033 Irkutsk, Russia
| | - B. Sukhov
- A. E. Favorsky Irkutsk Institute of Chemistry SB RAS, Favorsky Str. 1, 664033 Irkutsk, Russia
| | - B. Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry SB RAS, Favorsky Str. 1, 664033 Irkutsk, Russia
| |
Collapse
|
20
|
Sun L, Pu S, Li J, Cai J, Zhou B, Ren G, Ma Q, Zhong L. Size controllable one step synthesis of gold nanoparticles using carboxymethyl chitosan. Int J Biol Macromol 2019; 122:770-783. [DOI: 10.1016/j.ijbiomac.2018.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 01/04/2023]
|
21
|
Association of κ-carrageenan subjected to deep alkaline hydrolysis. Biopolymers 2018; 109:e23236. [DOI: 10.1002/bip.23236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 11/07/2022]
|