1
|
Dong Y, Lan T, Liu Z, Xu Z, Jiang L, Zhang Y, Sui X. Shear, extensional rheology, and tribology of polysaccharide-thickened soy protein-based liquid systems for dysphagia management. Food Chem 2025; 463:141145. [PMID: 39260176 DOI: 10.1016/j.foodchem.2024.141145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Modifying food texture is a valuable approach to enhancing the quality of life for patients with dysphagia. Incorporating thickened soy protein-based liquid systems (SPLS) into their diet not only improves protein intake but also promotes safer swallowing. However, the properties of thickened SPLS are crucial for safe swallowing, may vary depending on the conformation of the thickened polysaccharides used. In this study, SPLS with different levels of thickening were prepared using xanthan gum, pectin and guar gum. The influence of polysaccharide conformation on the rheological (shear and extensional) and tribological properties of thickened SPLS was investigated. The results revealed that xanthan gum-thickened SPLS exhibiting the highest shear viscosity (110.073 Pa.s) and extensional viscosity (7.405 Pa.s), which increased with polysaccharide concentration. Meanwhile, xanthan gum possessed the strongest lubricating properties. These results shed light on the development of plant protein-based solutions for dysphagia management.
Collapse
Affiliation(s)
- Yabo Dong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tian Lan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ziyi Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zejian Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Zhang Y, Kong Y, Yan Y, Gao F, Ma H, Liu C. Influence of hydrocolloids and natural emulsifier in the physical stability of UHT oat beverage. FOOD SCI TECHNOL INT 2024; 30:764-772. [PMID: 37264589 DOI: 10.1177/10820132231176875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study aimed to improve the physical stability of ultra-high temperature (UHT) oat beverage by adding hydrophilic colloids (guar gum [GG] and xanthan gum [XG]) and a natural emulsifier (soluble soybean polysaccharide [SSPS]). The stability of the oat beverage was characterized by particle size, zeta potential, rheological properties, Fourier-transform infrared (FTIR) spectroscopy, backscattered light intensity (ΔBS), and microstructure. The results indicated that XG reduced the average particle size and size distribution of the beverage, indicating that XG could prevent particle aggregation. GG increases the apparent viscosity of the oat beverage without affecting the zeta potential. When SSPS was added to the oat beverage, it increased the absolute value of the zeta potential and the infrared absorption peak intensity, while the average particle size and backscattered light intensity (ΔBS) decreased, resulting in a more uniform microstructure. The zeta potential reached a maximum value of 32.12 when GG, XG, and SSPS were combined, indicating that the physical stability of the oat beverage was effectively improved when all three were present simultaneously. This study may provide some suggestions for the industrial production of low-viscosity cereal beverages with good stability.
Collapse
Affiliation(s)
- Youhui Zhang
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Kong
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yanjun Yan
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Feng Gao
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - He Ma
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Changjin Liu
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
3
|
Zheng Z, Sun Z, Li M, Yang J, Yang Y, Liang H, Xiang H, Meng J, Zhou X, Liu L, Wu Z, Yang S. An update review on biopolymer Xanthan gum: Properties, modifications, nanoagrochemicals, and its versatile applications in sustainable agriculture. Int J Biol Macromol 2024; 281:136562. [PMID: 39423988 DOI: 10.1016/j.ijbiomac.2024.136562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
During the development of green agriculture and pesticide use, "reducing pesticides use and improving control efficiency" is imperative. To date, new pesticide formulations created by nanotechnology can be expected to overcome the difficulties that cannot be solved by the traditional pesticide processes and make pesticide formulations close to the needs of green agricultural production. As natural polysaccharides, Xanthan gum (XG) charactered by a repeated units and side chain of d-glucose, d-mannose, and d-glucuronic acid, and thereby having the unprecedented features in response to wide practice in various fields. This review introduces the properties of the natural polymer XG and its current status of application in agriculture, focusing on the pesticide adjuvant and preparation of novel pesticide and fertilizer delivery systems (such as core-shell and hydrogel), and combined with the applications in mulch film and soil engineering. Furthermore, the properties of Xantho-oligosaccharides suitable for agriculture were discussed. Finally, the potential of XG for the creation of nanopesticides and its future prospects are highlighted. Taken together, XG's excellent performance endows it with a wide range of applications in the agriculture field, and result in strong stimulating the sustainable development of agriculture and evolution of agricultural industry.
Collapse
Affiliation(s)
- Zhicheng Zheng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhaoju Sun
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Mei Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jingsha Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yike Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong Liang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongmei Xiang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Liwei Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Mohamed Yunus R, Parisi D. Scaling Laws in Polysaccharide Rheology: Comparative Analysis of Water and Ionic Liquid Systems. Biomacromolecules 2024; 25:6883-6898. [PMID: 39283883 PMCID: PMC11480991 DOI: 10.1021/acs.biomac.4c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
This study investigates the rheological behavior of two plant-based polysaccharides, with different degrees of hydrophilicity, agar (highly hydrophilic) and guar gum (hydrophilic), in water and 1-ethyl-3-methylimidazolium acetate (EMImAc). The rheological response of these polymers is highly dependent on the solvent's ability to disrupt intermolecular associations. In water, agar forms hydrogels, while guar gum behaves as a viscoelastic liquid with slow modes. The plateau modulus (GN0) scales with polymer concentration (c) as GN0 ∼ c3, consistent with other natural polymers. In EMImAc, both polysaccharides form viscoelastic liquids, exhibiting GN0 ∼ c2.3, as expected for semiflexible polymer solutions. However, the terminal relaxation time, τD, and the specific viscosity, ηsp, scale as τD ∼ c5.3 and ηsp ∼ c7.6, indicative of intermolecular chain-chain associations. Despite the solvent or polysaccharide, the fractional viscosity overshoot and the shear strain at the maximum stress show a terminal Weissenberg number dependence similar to other synthetic polymers.
Collapse
Affiliation(s)
- Roshan
Akdar Mohamed Yunus
- Department of Chemical Engineering,
Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Daniele Parisi
- Department of Chemical Engineering,
Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| |
Collapse
|
5
|
Kongjaroen A, Gamonpilas C, Methacanon P. Effects of dispersing media on the rheological and tribological properties of basil seed mucilage-based thickened liquids. J Texture Stud 2024; 55:e12852. [PMID: 38952166 DOI: 10.1111/jtxs.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 07/03/2024]
Abstract
The development of thickening powders for the management of dysphagia is imperative due to the rapid growth of aging population and prevalence of the dysphagia. One promising thickening agent that can be used to formulate dysphagia diets is basil seed mucilage (BSM). This work investigates the effects of dispersing media, including water, milk, skim milk, and apple juice, on the rheological and tribological properties of the BSM-thickened liquids. Shear rheology results revealed that the thickening ability of BSM in these media in ascending order is milk < skim milk ≈ apple juice < water. On the other hand, extensional rheology demonstrated that the longest filament breakup time was observed when BSM was dissolved in milk, followed by skim milk, water, and apple juice. Furthermore, tribological measurements showed varying lubrication behavior, depending on the BSM concentration and dispersing media. Dissolution of BSM in apple juice resulted in the most superior lubrication property compared with that in other dispersing media. Overall, this study provides insights on BSM's application as a novel gum-based thickening powder in a range of beverages and emphasizes how important it is for consumers to have clear guidance for the use of BSM in dysphagia management.
Collapse
Affiliation(s)
- Akapong Kongjaroen
- Advanced Polymer Technology Research Group, National Metal and Materials Technology Center (MTEC), NSTDA, Khlong Luang, Thailand
| | - Chaiwut Gamonpilas
- Advanced Polymer Technology Research Group, National Metal and Materials Technology Center (MTEC), NSTDA, Khlong Luang, Thailand
| | - Pawadee Methacanon
- Advanced Polymer Technology Research Group, National Metal and Materials Technology Center (MTEC), NSTDA, Khlong Luang, Thailand
| |
Collapse
|
6
|
Li L, Zhou TQ, Wang YQ, Zhang Q, Yan JN, Wang C, Lai B, Zhang LC, Wu HT. Rheological characterization of chia seed gum as a thickening agent used for dysphagia management. Int J Biol Macromol 2024; 275:133413. [PMID: 38945723 DOI: 10.1016/j.ijbiomac.2024.133413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/11/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Dysphagia has emerged as a serious health issue facing contemporary society. Consuming thickened liquids is an effective approach for improving the swallowing safety for dysphagia patients. The thickening effect of chia seed gum (CSG), a novel thickener, in different dispersing media (water, orange juice, and skim milk) was investigated. Moreover, the potential application of CSG for dysphagia management was evaluated by comparison with xanthan gum (XG) and guar gum (GG). The thickened liquids prepared with 0.4 %-1.2 % (w/v) CSG, XG, and GG could be classified into levels 1-4, 2-4, and 1-3, respectively, according to the International Dysphagia Diet Standardization Initiative (IDDSI) framework. All the thickened liquids displayed shear-thinning characteristics that facilitated safe swallowing. The viscosities (η50) of CSG dissolved in water (0.202-1.027 Pa·s) were significantly greater than those of CSG dissolved in orange juice (0.070-0.690 Pa·s) and skim milk (0.081-0.739 Pa·s), indicating that CSG had a greater thickening effect in water than in orange juice and skim milk. Compared with those prepared with GG, the thickened liquids prepared with CSG and XG exhibited greater viscoelasticity, better water-holding capacity, and more compact networks. The findings suggested that CSG can be used as a potential thickener for thickening liquid foods to manage dysphagia.
Collapse
Affiliation(s)
- Lin Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tian-Qi Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu-Qiao Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Qian Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jia-Nan Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ce Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bin Lai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Li-Chao Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Hai-Tao Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Naeem A, Yu C, Wang X. Highly swellable, cytocompatible and biodegradeable guar gum-based hydrogel system for controlled release of bioactive components of liquorice (Glycyrrhiza glabra L.): Synthesis and evaluation. Int J Biol Macromol 2024; 273:132825. [PMID: 38852724 DOI: 10.1016/j.ijbiomac.2024.132825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Glycyrrhiza glabra Linn (liquorice) has been widely used for therapeutic purposes to treat digestive disorders, immunomodulatory disorders, inflammatory disorders, diabetes, viral infections, and cancer. Liquorice contains a wide variety of bioactive compounds, including glycyrrhizin, flavonoids, and terpenoids. Several factors compromise their therapeutic efficacy, such as poor pharmacokinetic profiles and physicochemical properties. Therefore, to improve its overall effectiveness, liquorice solid dispersion (LSD) was incorporated into biopolymer-based guar gum-grafted-2-acrylamido-2-methylpropane sulfonic acid (Guar gum-g-AMPS) hydrogels designed for controlled delivery via the oral route and characterized. The qualitative analysis of LSD revealed 51 compounds. Hydrogel structural properties were assessed for their effect on swelling and release. The highest swelling ratio (6413 %) and drug release (84.12 %) occurred at pH 1.2 compared to pH 7.4 (swelling ratio of 2721 % and drug release of 79.36 %) in 48 h. The hydrogels exhibited high porosity (84.23 %) and biodegradation (9.30 % in 7 days). In vitro hemolysis tests have demonstrated the compatibility of the hydrogel with blood. CCK-8 assay confirmed the biocompatibility of the synthesized hydrogel using osteoblasts and RIN-m5f cells. LSD exhibited good anti-inflammatory activity when loaded into hydrogels after being subjected to protein denaturation experiments. Moreover, LSD-loaded hydrogels have good antioxidant and antibacterial properties.
Collapse
Affiliation(s)
- Abid Naeem
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, College of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Chengqun Yu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoli Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, 442000 Shiyan, China.
| |
Collapse
|
8
|
Jiang X, Liu H, Han J, Feng L, Wang J, Li L, Kitazawa H, Wang X, Guo Y, Wang Z. Influence of 3-chloropropyl) triethoxysilane and pH on the properties of modified guar gum film. Int J Biol Macromol 2024; 272:132934. [PMID: 38862320 DOI: 10.1016/j.ijbiomac.2024.132934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Guar gum (GG) as a polymer biopolymer is widely used in the field of bio-based packaging. However, its poor mechanical properties, barrier properties and high viscosity greatly hinder its use as an effective packaging material. Therefore, this study introduced CPTES to improve the mechanical (16.58-27.39 MPa) and tensile properties (26.80 %-30.67 %). The FTIR and XRD results indicated a strong interaction between the biofilm fractions modified by CPTES, CPTES bound to the hydroxyl groups on GG and formed a dense polysiloxane network through adsorption and grafting. OM and AFM reflect a denser and flatter film structure on the surface of the G30 film, which has the best film formation. Based on this, the pH of the solution was further adjusted to reach an alkaline environment, disrupting the intermolecular binding through electrostatic repulsion. The rheological behavior indicates that the viscosity and viscoelasticity of film solution gradually decrease with the increase in pH. OM and AFM results show that the G30/8 film has the best compact properties, while the nonporous compact film structure further improves the mechanical, barrierand and thermodynamic properties of the film. Accordingly, the findings of this study had a certain value for regulating the low viscoelasticity of GG emulsion and enhancing the stability of film formation.
Collapse
Affiliation(s)
- Xin Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Haipeng Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Jiali Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Lei Feng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Jia Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Ling Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China.
| | - Hiroaki Kitazawa
- Department of Food and Nutrition, Japan Women's University, Tokyo 112-8681, Japan
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yanyin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Zongmin Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
9
|
Li ZX, Deng HQ, Jiang J, He ZQ, Li DM, Ye XG, Chen Y, Hu Y, Huang C. Effect of hydrothermal treatment on the rheological properties of xanthan gum. Int J Biol Macromol 2024; 270:132229. [PMID: 38734337 DOI: 10.1016/j.ijbiomac.2024.132229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
In this study, the effect of hydrothermal treatment with different temperatures (120-180 °C) on the rheological properties of xanthan gum was evaluated. When the temperature of hydrothermal treatment was relatively low (120 °C), the rheological properties of the hydrothermally treated xanthan gum was similar to the untreated xanthan gum (pseudoplastic and solid-like/gel-like behavior). However, as the temperature of hydrothermal treatment was higher, the rheological properties of the hydrothermally treated xanthan gum changed greatly (e.g., a wider range of Newtonian plateaus in flow curves, existence of a critical frequency between the storage modulus (G') and the loss modulus (G") in the dynamic viscoelasticity measurement, variation of complex viscosity). Although the hydrothermal treatment showed little influence on the functional groups of xanthan gum, it altered the micromorphology of xanthan gum from uneven and rough lump-like to thinner and smoother flake-like. In addition, higher concentration (2 %) of hydrothermally treated xanthan gum made its viscosity close to that of the untreated xanthan gum (1 %). Besides, hydrothermal treatment also affected the effect of temperature and salt (CaCl2) adding on the rheological properties of xanthan gum. Overall, this study can provide some useful information on the rheological properties of xanthan gum after hydrothermal treatment.
Collapse
Affiliation(s)
- Zhi-Xuan Li
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Hui-Qiong Deng
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Jie Jiang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Zi-Qing He
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Dong-Mei Li
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Xi-Guang Ye
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yun Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| | - Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| |
Collapse
|
10
|
Zhao X, Ye F, Wu Z, Zhou Y, Lei L, Zhou S, Zhao G. Sucrose and Ca 2+ synergistically regulate the rheological properties of apple high-methoxyl pectin. Int J Biol Macromol 2024; 271:132397. [PMID: 38821787 DOI: 10.1016/j.ijbiomac.2024.132397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/18/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
The thickening and gelling mechanism of high-methoxyl pectins (HMPs) with different degree of esterification (DE) values (60.6 %, 66.1 %, and 72.4 %) synergistically affected by calcium ion (Ca2+) and sucrose was investigated using several technical methods. Rheological measurements, including steady-shear flow, thixotropy and dynamic viscoelasticity tests, texture analysis, water-holding capacity (WHC), thermal analyses (TG), and microstructure observation (TEM), were all systemically conducted. The results showed that the main thickening and gelling mechanism of Ca2+ on different HMPs was complex and the presence of sucrose had a synergistic effect on structure formation in HMP systems. Ca2+ was not always conducive to structure formation, and excessive Ca2+ addition may hinder structure formation. HMP systems with lower DE values had higher gel strengths due to the presence of more binding domains. The results of the texture properties, WHC, and thermal characteristics coincided with those obtained from the rheological measurements, which reflect the variations in HMPs affected by Ca2+ and DE. All of these results showed that Ca2+ addition at an appropriate concentration in the presence of sucrose favors HMP gelation even in the absence of acid. The results obtained here are expected to broaden the application of HMPs in acid-free gel food products.
Collapse
Affiliation(s)
- Xiaowan Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; College of Light Industry and Materials, Chengdu Textile College, Chengdu 611731, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Zhen Wu
- Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, People's Republic of China
| | - Yun Zhou
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Siyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
11
|
T V, George A, Kesav S R, M S S, Kothakota A. Plant-based hydrocolloids for efficient clarification of cane juices: rheological analysis and solidification studies. Food Funct 2024; 15:1977-1993. [PMID: 38277180 DOI: 10.1039/d3fo05029g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The present study is designed to study the efficiency of plant-based hydrocolloids for the efficient clarification of sugarcane juice and subsequent production of non-centrifugal sugars (NCSs). NCSs are generally produced with lime or other inorganic solids as a clarification agent, often leading to products with a bland taste and dark color. This work is a first of its kind, where plant-based hydrocolloids such as starch, xanthan gum, and guar gum are used for clarification studies. Clarification efficiency was evaluated in terms of separation efficiency, turbidity removal, sucrose content, color transmittance, and rheology studies. Preliminary studies revealed that starch showed a better separation efficiency of 78% compared to other hydrocolloids, and further rheology studies of starch-clarified juice showed a favourable shear-thickening (dilatant, n = 1.382) behaviour, whereas the other two hydrocolloids showed an unfavourable shear-thinning (pseudo plastic, n < 0.9) behaviour. Eventually, starch was found to be a better clarification agent and is proposed as an alternative to lime-based clarification. Solidification studies were performed with starch at various concentrations (0.02-0.04%), pH (6.8-7.2), and temperature (80 °C-100 °C), and it was found that NCSs produced via starch clarification showed superior properties compared with traditional lime-based clarification processes.
Collapse
Affiliation(s)
- Venkatesh T
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 001, India.
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Alphonsa George
- Department of Food Science Technology, St George's College, Aruvithura, 686 112, India
| | - Rishi Kesav S
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620 015, India
| | - Sajeev M S
- Division of Crop Protection, ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, 695 017, India
| | - Anjineyulu Kothakota
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
12
|
Alam M, Malakar S, Pant K, Dar BN, Nanda V. Comparative studies on the rheological characteristics, functional attributes, and baking stability of xanthan and guar gum formulated honey gel matrix. FOOD SCI TECHNOL INT 2023:10820132231219715. [PMID: 38099822 DOI: 10.1177/10820132231219715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The research aims to enhance the characteristics of honey by incorporating xanthan gum (XG) and guar gum (GG) at various concentrations (0.5-2.0% w/w) and preparing a honey gel matrix (HGM) through high-shear homogenization. This approach serves as a substitute for fat-based filling materials commonly used in bakery products. The study encompassed an investigation of the rheological characteristics (steady and dynamic), total phenolic content (TPC), antioxidant activity, and baking stability of the HGMs. The concentration of the gums used significantly influenced the transformation of honey into the HGM and its stability. Notably, the XG-HGM demonstrated greater shear thinning behavior and higher consistency compared to the GG-HGM. Herschel Bulkley and power law models were found to be the best-fitted models for XG-HGM and GG-HGM, respectively. Furthermore, both XG-HGM and GG-HGM exhibited a higher viscous component (G″) than an elastic component (G') at low concentrations, up to 1% (w/w) for XG-HGM and 1.5% (w/w) for GG-HGM; however, this behavior reversed beyond those concentrations (G' > G″). The XG-HGM exhibited lower temperature sensitivity compared to GG-HGM, indicating better stability under varying heat conditions. Moreover, both TPC and antioxidant activity decreased with increasing concentrations of both gums. The XG-HGM achieved the highest baking stability index, reaching 95.23% at a 2% concentration. This modified HGM formulated with XG demonstrated superior consistency, color retention, and exceptional baking stability, making it a promising candidate for application as a filling material in the bakery sector. Its improved stability and quality can facilitate the development of a wide range of baking products in the food industry.
Collapse
Affiliation(s)
- Masud Alam
- Department of Food Engineering and Technology, Sant Longwal Institute of Engineering and Technology, Sangrur, Punjab, India
| | - Santanu Malakar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana, India
| | - Kirty Pant
- Department of Food Engineering and Technology, Sant Longwal Institute of Engineering and Technology, Sangrur, Punjab, India
| | - B N Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Vikas Nanda
- Department of Food Engineering and Technology, Sant Longwal Institute of Engineering and Technology, Sangrur, Punjab, India
| |
Collapse
|
13
|
Kaimal AM, Singhal RS. A bigel based formulation protects lutein better in the gastric environment with controlled release and antioxidant profile than other gel based systems. Food Chem 2023; 423:136304. [PMID: 37159969 DOI: 10.1016/j.foodchem.2023.136304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Gel based formulations offer an opportunity to fortify bioactives in food. However, a comparative evaluation of gel systems is scantly available. Thus, this study intended to evaluate the impact of various gel formulations (hydrogel, oleogel, emulsion gel, bigels of different compositions) on the delivery and antioxidant activity of lutein. Ethyl cellulose (EC,15 %w/w) and guar-xanthan gum mixture (1:1,1.5 %w/w) was used as oleogelator and hydrogelator, respectively. The microscopic evaluation indicated an oil-based continuous-phase for bigel with 75% oleogel. An increase in oleogel content enhanced textural and rheological properties. An increase in hydrogel composition (25%-75%) of bigel improved the lutein release (70.4%-83.2%). The highest release of lutein was recorded for emulsion gel (84.9%) and bigel with 25% oleogel (83.2%). The antioxidant activity was comparatively lower in gastric medium than simulated intestinal fluid. It could be inferred that the gel matrix significantly affected the lutein release, antioxidant profile, physiochemical and mechanical characteristics.
Collapse
Affiliation(s)
- Admajith M Kaimal
- Department of Food Engineering and Technology, Institute of Chemical Technology, ICT-IOC Campus, Bhubaneswar 751013, India.
| | - Rekha S Singhal
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga (E), Mumbai 400 019, India
| |
Collapse
|
14
|
Kalaivendan RGT, Eazhumalai G, Annapure US. Impact of pin‐to‐plate cold plasma depolymerization on the gelation and functional attributes of guar galactomannan. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
| | - Gunaseelan Eazhumalai
- Department of Food Engineering Technology Institute of Chemical Technology Mumbai Maharashtra India
| | - Uday S. Annapure
- Department of Food Engineering Technology Institute of Chemical Technology Mumbai Maharashtra India
- Institute of Chemical Technology Marathwada Campus Jalna Maharashtra India
| |
Collapse
|
15
|
Alpers T, Becker T, Jekle M. Strain-dependent assessment of dough's polymer structure and functionality during the baking process. PLoS One 2023; 18:e0282670. [PMID: 36881603 PMCID: PMC9990920 DOI: 10.1371/journal.pone.0282670] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/19/2023] [Indexed: 03/08/2023] Open
Abstract
During the baking process, the functionality of the heterogeneous dough matrix changes as the composing polymers experience conformational transition processes. The thermally induced structural changes affect the involvement and functionality of the polymers in the dough matrix. With the main hypothesis being that different types and magnitudes of strain exerted during the measurement would provide information on different structural levels and interactions, SAOS rheology in multiwave mode and large deformation extensional rheometry were applied to two microstructurally different systems. The functionality of the two systems, a highly connected standard wheat dough (φ ≈ 1.1) and an aerated, yeasted wheat dough (φ ≈ 2.3), depicting limited connectivity and strength of interactions, was accessed under different deformations and types of strains. Applying SAOS rheology, starch functionality prevailed on the behavior of the dough matrix. In contrast, gluten functionality prevailed the large deformation behavior. Using an inline fermentation and baking LSF technique, the heat-induced gluten polymerization was shown to increase strain hardening behavior above 70°C. In the aerated system, the strain hardening effect became already evident under small deformation testing, as the expansion of gas cells caused a pre-expansion of the gluten strands. The expanded dough matrix of yeasted dough was further shown to be substantially subjected to degradation once the network reached beyond its maximal gas holding capacity. Using this approach, the combined impact of yeast fermentation and thermal treatment on the strain hardening behavior of wheat dough was revealed for the first time by LSF. Furthermore, the rheological properties were successfully linked to oven rise behavior: a decreasing connectivity combined with the initiation of strain hardening by fast extension processes occurring in the yeasted dough matrix during the final baking phase was linked to limited oven rise functionality prematurely around 60°C.
Collapse
Affiliation(s)
- Thekla Alpers
- Research Group Cereal Technology and Process Engineering, Chair of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany
| | - Thomas Becker
- Research Group Cereal Technology and Process Engineering, Chair of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany
| | - Mario Jekle
- Department of Plant-Based Foods, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
16
|
Gamonpilas C, Kongjaroen A, Methacanon P. The importance of shear and extensional rheology and tribology as the design tools for developing food thickeners for dysphagia management. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
17
|
Valente ÉC, Polêto MD, de Oliveira TV, Soares LDS, dos Reis Coimbra JS, Guimarães AP, de Oliveira EB. Effects of the Cations Li+, Na+, K+, Mg2+, or Ca2+ on Physicochemical Properties of Xanthan Gum in Aqueous Medium – A view from Computational Molecular Dynamics Calculations. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Soluble corn arabinoxylan has desirable material properties for high incorporation in expanded cereal extrudates. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Environmental parameters-dependent rheological behaviors of whey protein fibril dispersions: Shear and extensional flow behaviors. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Li ZX, Chen JY, Wu Y, Huang ZY, Wu ST, Chen Y, Gao J, Hu Y, Huang C. Effect of downstream processing on the structure and rheological properties of xanthan gum generated by fermentation of Melaleuca alternifolia residue hydrolysate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Ganesapillai M, Mondal B, Sarkar I, Sinha A, Ray SS, Kwon YN, Nakamura K, Govardhan K. The face behind the Covid-19 mask - A comprehensive review. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2022; 28:102837. [PMID: 35879973 PMCID: PMC9299984 DOI: 10.1016/j.eti.2022.102837] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 05/07/2023]
Abstract
The threat of epidemic outbreaks like SARS-CoV-2 is growing owing to the exponential growth of the global population and the continual increase in human mobility. Personal protection against viral infections was enforced using ambient air filters, face masks, and other respiratory protective equipment. Available facemasks feature considerable variation in efficacy, materials usage and characteristic properties. Despite their widespread use and importance, face masks pose major potential threats due to the uncontrolled manufacture and disposal techniques. Improper solid waste management enables viral propagation and increases the volume of associated biomedical waste at an alarming rate. Polymers used in single-use face masks include a spectrum of chemical constituents: plasticisers and flame retardants leading to health-related issues over time. Despite ample research in this field, the efficacy of personal protective equipment and its impact post-disposal is yet to be explored satisfactorily. The following review assimilates information on the different forms of personal protective equipment currently in use. Proper waste management techniques pertaining to such special wastes have also been discussed. The study features a holistic overview of innovations made in face masks and their corresponding impact on human health and environment. Strategies with SDG3 and SDG12, outlining safe and proper disposal of solid waste, have also been discussed. Furthermore, employing the CFD paradigm, a 3D model of a face mask was created based on fluid flow during breathing techniques. Lastly, the review concludes with possible future advancements and promising research avenues in personal protective equipment.
Collapse
Affiliation(s)
- Mahesh Ganesapillai
- Mass Transfer Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Bidisha Mondal
- Mass Transfer Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ishita Sarkar
- Mass Transfer Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Aritro Sinha
- Mass Transfer Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Saikat Sinha Ray
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Republic of Korea
| | - Young-Nam Kwon
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Republic of Korea
| | - Kazuho Nakamura
- Faculty of Engineering, Division of Material Science and Chemical Engineering, Yokohama National University, Tokiwadai, Yokohama, Kanagawa 240-8501, Japan
| | - K Govardhan
- Department of Micro and Nano-Electronics, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
22
|
Jimenez LN, Martínez Narváez CDV, Sharma V. Solvent Properties Influence the Rheology and Pinching Dynamics of Polyelectrolyte Solutions: Thickening the Pot with Glycerol and Cellulose Gum. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Leidy Nallely Jimenez
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | | | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
23
|
Liu Y, Wang K, Zhou P. Microscopic structure, viscoelastic behaviour and 3D printing potential of milk protein concentrate‐hydrocolloid complex coacervates. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yaowei Liu
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi China
| | - Keyu Wang
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi China
| |
Collapse
|
24
|
Buoso S, Belletti G, Ragno D, Castelvetro V, Bertoldo M. Rheological Response of Polylactic Acid Dispersions in Water with Xanthan Gum. ACS OMEGA 2022; 7:12536-12548. [PMID: 35474836 PMCID: PMC9026014 DOI: 10.1021/acsomega.1c05382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
In this work, the rheological behavior of stable poly(lactic acid) (PLA) dispersions in water, intended for coating applications, was investigated. The newly prepared dispersion consists of PLA particles with an average diameter of 222 ± 2 nm based on dynamic light scattering (DLS) and scanning electron microscopy (SEM) analyses, at concentrations varying in the 5-22 wt % range. Xanthan gum (XG), a bacterial polysaccharide, was used as a thickening agent to modulate the viscosity of the formulations. The rheological properties of the PLA dispersions with different XG and PLA contents were studied in steady shear, amplitude sweep, and frequency sweep experiments. Under steady shear conditions, the viscosity of all the formulations showed a shear-thinning behavior similar to XG solutions in the whole investigated 1-1000 s-1 range, with values dependent on both PLA particles and XG concentrations. Amplitude and frequency sweep data revealed a weak-gel behavior except in the case of the most diluted sample, with moduli dependent on both PLA and XG contents. A unified scaling parameter was identified in the volume fraction (ϕ) of the PLA particles, calculated by considering the dependence of the continuous phase density on the XG concentration. Accordingly, a master curve at different volume fractions was built using the time-concentration-superposition approach. The master curve describes the rheological response of the system over a wider frequency window than the experimentally accessible one and reveals the presence of a superimposed β relaxation process in the high-frequency region.
Collapse
Affiliation(s)
- Sara Buoso
- Institute
of Organic Synthesis and Photoreactivity−Italian National Research
Council, via P. Gobetti,
101, Bologna 40129, Italy
| | - Giada Belletti
- Institute
of Organic Synthesis and Photoreactivity−Italian National Research
Council, via P. Gobetti,
101, Bologna 40129, Italy
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via. L. Borsari, 46, Ferrara 44121, Italy
| | - Daniele Ragno
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via. L. Borsari, 46, Ferrara 44121, Italy
| | - Valter Castelvetro
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via G. Moruzzi,
2, Pisa 56124, Italy
| | - Monica Bertoldo
- Institute
of Organic Synthesis and Photoreactivity−Italian National Research
Council, via P. Gobetti,
101, Bologna 40129, Italy
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via. L. Borsari, 46, Ferrara 44121, Italy
| |
Collapse
|
25
|
On the assessment of shear and extensional rheology of thickened liquids from commercial gum-based thickeners used in dysphagia management. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110820] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Geoenvironmental Application of Novel Persian Gum Biopolymer in Sandy Soil Stabilization. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
27
|
Shalaby MA, Anwar MM, Saeed H. Nanomaterials for application in wound Healing: current state-of-the-art and future perspectives. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-021-02870-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractNanoparticles are the gateway to the new era in drug delivery of biocompatible agents. Several products have emerged from nanomaterials in quest of developing practical wound healing dressings that are nonantigenic, antishear stress, and gas-exchange permeable. Numerous studies have isolated and characterised various wound healing nanomaterials and nanoproducts. The electrospinning of natural and synthetic materials produces fine products that can be mixed with other wound healing medications and herbs. Various produced nanomaterials are highly influential in wound healing experimental models and can be used commercially as well. This article reviewed the current state-of-the-art and briefly specified the future concerns regarding the different systems of nanomaterials in wound healing (i.e., inorganic nanomaterials, organic and hybrid nanomaterials, and nanofibers). This review may be a comprehensive guidance to help health care professionals identify the proper wound healing materials to avoid the usual wound complications.
Collapse
|
28
|
Pinto MIS, Campos Guerra JM, Meira HM, Sarubbo LA, de Luna JM. A Biosurfactant from Candida bombicola: Its Synthesis, Characterization, and its Application as a Food Emulsions. Foods 2022; 11:foods11040561. [PMID: 35206039 PMCID: PMC8871145 DOI: 10.3390/foods11040561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
The present study aimed to produce a biosurfactant from Candida yeast cultivated in a low-cost medium made of sugar-cane molasses (5%), frying oil waste (5%), and corn steep liquor (5%). Initially, the production at the flask-scale was investigated and then scaled up in bioreactors to 1.2, 3.0, and 50 L to simulate a real production scale. The products obtained an excellent reduction in surface tensions from 70 to 29 mN·m−1 in the flask-scale, comparable to 33 mN·m−1 in the 1.2-L reactor, to 31 mN·m−1 in the 3-L reactor, and to 30 mN·m−1 in the 50-L reactor. Regarding the yield, it was observed that the isolation by liquid-to-liquid extraction aided biosurfactant production up to 221.9 g·L−1 with a critical micellar concentration of 0.5%. The isolated biosurfactant did not exhibit an inhibitory effect on the germination of vegetable seeds and presented no significant acute toxicity in assays with Artemia salina and Allium cepa. Among the different formulations of mayonnaise-like sauces, the most stable formula was observed with the addition of the biosurfactant at a concentration of 0.5% and the greatest results were associated with the guar and carboxymethyl cellulose gums. Thus, the biosurfactant from C. bombicola represents a promising alternative as a food additive in emulsions.
Collapse
Affiliation(s)
- Maria Isabel Silveira Pinto
- Escola Icam Tech, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, Brazil; (M.I.S.P.); (H.M.M.); (L.A.S.)
| | - Jenyffer Medeiros Campos Guerra
- Departamento de Engenharia Química, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, s/n, Recife 50670-901, Brazil;
| | - Hugo Morais Meira
- Escola Icam Tech, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, Brazil; (M.I.S.P.); (H.M.M.); (L.A.S.)
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil
| | - Leonie Asfora Sarubbo
- Escola Icam Tech, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, Brazil; (M.I.S.P.); (H.M.M.); (L.A.S.)
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil
| | - Juliana Moura de Luna
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil
- Escola de Saúde e Ciências da Vida, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, Brazil
- Correspondence: ; Tel.: +55-81-2119-4084
| |
Collapse
|
29
|
Ribes S, Grau R, Talens P. Use of chia seed mucilage as a texturing agent: Effect on instrumental and sensory properties of texture-modified soups. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Comparing rheological, tribological and sensory properties of microfibrillated cellulose dispersions and xanthan gum solutions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Polysaccharide Structures and Their Hypocholesterolemic Potential. Molecules 2021; 26:molecules26154559. [PMID: 34361718 PMCID: PMC8348680 DOI: 10.3390/molecules26154559] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Several classes of polysaccharides have been described to have hypocholesterolemic potential, namely cholesterol bioaccessibility and bioavailability. This review will highlight the main mechanisms by which polysaccharides are known to affect cholesterol homeostasis at the intestine, namely the effect (i) of polysaccharide viscosity and its influence on cholesterol bioaccessibility; (ii) on bile salt sequestration and its dependence on the structural diversity of polysaccharides; (iii) of bio-transformations of polysaccharides and bile salts by the gut microbiota. Different quantitative structure–hypocholesterolemic activity relationships have been explored depending on the mechanism involved, and these were based on polysaccharide physicochemical properties, such as sugar composition and ramification degree, linkage type, size/molecular weight, and charge. The information gathered will support the rationalization of polysaccharides’ effect on cholesterol homeostasis and highlight predictive rules towards the development of customized hypocholesterolemic functional food.
Collapse
|
32
|
Effect of xanthan gum co-extruded with OSA starch on its solubility and rheological properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111588] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Self-assembly and rheological behavior of chloramphenicol-based poly(ester ether)urethanes. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02545-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Ahmed J. Effect of pressure, concentration and temperature on the oscillatory rheology of guar gum dispersions: Response surface methodology approach. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Mofradi M, Karimi H, Dashtian K, Ghaedi M. Processing Guar Gum into polyester fabric based promising mixed matrix membrane for water treatment. Carbohydr Polym 2021; 254:116806. [PMID: 33357837 DOI: 10.1016/j.carbpol.2020.116806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
A reactive and mechano-chemically stable support was prepared from Ag-nanoparticles decorated polyester fabric which was subsequently coated by a casting solution containing polyvinylidene fluoride matrix, guar gum (GG) exo-polysaccharide hydrophilic agent, and UiO-66 filler. FE-SEM, XRD, FT-IR, water contact angle technique, and mechanical stability tests were applied to characterize the prepared membranes. The water contact angle measurements indicated the hydrophilicity of the prepared membrane which can be attributed to the nature of bio-GG and UiO-66. The prepared membrane was employed for purifying contaminated waters containing N-cetyl-N,N,N-trimethylammonium bromide (CTAB) and congo-red (CR) dye through a cross-module set-up. The central composite design was also exploited to study the effect of operational parameters such as CTAB and CR concentration, pH solution, and pressure on the removal efficiency. Particularly, the bio-based GG/UiO-66 dispersion showed excellent self-healing properties, which enabled an effective pollutant separation ability and facilitated the recyclability/sustainability of the as-prepared membrane.
Collapse
Affiliation(s)
- Marziyeh Mofradi
- Chemical Engineering Department, Yasouj University, Yasouj, Iran
| | - Hajir Karimi
- Chemical Engineering Department, Yasouj University, Yasouj, Iran.
| | | | | |
Collapse
|
36
|
Yuan C, Zhan W, Cui B, Yu B, Liu P, Wu Z. Influence of two functional dextrins on the gel properties of kappa-carrageenan. Food Res Int 2020; 138:109666. [PMID: 33292956 DOI: 10.1016/j.foodres.2020.109666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/14/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
The physicochemical properties of κ-carrageenan (KC) can be improved by incorporation with small-molecule cosolvents. The texture and rheological properties, micromorphology, and crystallinity of KC incorporating indigestible dextrin (IDD) and beta-limit dextrin (BLD) were investigated. The rheological properties and sol-gel transition temperatures of the gels were slightly improved and the hardness of KC gels was significantly increased after the two dextrins were mixed in. Fourier transform infrared spectroscopy results indicated hydrogen-bonding interactions were strengthened in the presence of the dextrins. Confocal laser scanning microscope images revealed that a more homogenous structure was formed of the KC gel after the addition of dextrins. Moreover, X-ray diffraction patterns indicated the crystallinity of KC gel decreased upon dextrin addition. At the same dextrin content, IDD exerted a greater influence than BLD. IDD contents exceeding 3% (w/w) led to undesirable effects, whereas up to 5% (w/w) of BLD could be added. The two dextrins affected the rearrangement of the KC random coils in the sol state, and facilitated aggregation of the KC chains during cooling to form gel network structures after gelation. Therefore, the appropriate addition of these two dextrins can improve the texture and stability of KC gels and expand their application in functional foods.
Collapse
Affiliation(s)
- Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Wei Zhan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
37
|
Potier M, Tea L, Benyahia L, Nicolai T, Renou F. Viscosity of Aqueous Polysaccharide Solutions and Selected Homogeneous Binary Mixtures. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mathieu Potier
- Le Mans Université, IMMM UMR-CNRS 6283, 72085 Le Mans Cedex 9, France
| | - Lingsam Tea
- Le Mans Université, IMMM UMR-CNRS 6283, 72085 Le Mans Cedex 9, France
| | - Lazhar Benyahia
- Le Mans Université, IMMM UMR-CNRS 6283, 72085 Le Mans Cedex 9, France
| | - Taco Nicolai
- Le Mans Université, IMMM UMR-CNRS 6283, 72085 Le Mans Cedex 9, France
| | - Frederic Renou
- Le Mans Université, IMMM UMR-CNRS 6283, 72085 Le Mans Cedex 9, France
| |
Collapse
|
38
|
Lin YJ, Horner J, Illie B, Lynch ML, Furst EM, Wagner NJ. Molecular engineering of thixotropic, sprayable fluids with yield stress using associating polysaccharides. J Colloid Interface Sci 2020; 580:264-274. [PMID: 32688119 DOI: 10.1016/j.jcis.2020.06.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 11/19/2022]
Abstract
HYPOTHESIS Molecular engineering facilitates the development of a complex fluid with contradictory requirements of yield stress and sprayability, while minimizing the amount of structuring material (<0.05 wt%). This unique system can be achieved by a biopolymer hydrogel with tunable inter- and intra-molecular interactions for microstructural robustness and molecular extensibility by the variation of chemical conformations that microstructure breaks up under shear followed by a low molecularly extensible response. EXPERIMENTS Blends of xanthan and konjac glucomannan containing 99.95 wt% water are demonstrated to satisfy these contradictory requirements and formulated as a function of KCl concentrations. A systematic study was performed using shear and extensional rheology and compared to a reference solution of polyethylene oxide (PEO), a well-known, Boger fluid, highlights the role of molecular elasticity in controlling critical rheological properties. Static light scattering (SLS) and simultaneous rheology and small-angle neutron scattering (RheoSANS) are also used to elucidate the equilibrium structure and flow dynamics. FINDINGS The blends exhibit a lower yield stress and extensional resistance with added KCl, which leads to good spray characteristics in contrast to strain-hardening PEO. The results suggest that the inter-molecular attractions between the two gums leading to network formation with appropriate stiffness, that break up readily under shear, and low molecular elasticity are critical molecular design parameters necessary to achieve sprayable, yields stress fluids.
Collapse
Affiliation(s)
- Yu-Jiun Lin
- Center for Research in Soft Matter and Polymers, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jeffrey Horner
- Center for Research in Soft Matter and Polymers, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Brandon Illie
- The Procter & Gamble Company, Cincinnati, OH 45224, USA
| | | | - Eric M Furst
- Center for Research in Soft Matter and Polymers, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Norman J Wagner
- Center for Research in Soft Matter and Polymers, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
39
|
Iacob AT, Drăgan M, Ionescu OM, Profire L, Ficai A, Andronescu E, Confederat LG, Lupașcu D. An Overview of Biopolymeric Electrospun Nanofibers Based on Polysaccharides for Wound Healing Management. Pharmaceutics 2020; 12:E983. [PMID: 33080849 PMCID: PMC7589858 DOI: 10.3390/pharmaceutics12100983] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Currently, despite the thoroughgoing scientific research carried out in the area of wound healing management, the treatment of skin injuries, regardless of etiology remains a big provocation for health care professionals. An optimal wound dressing should be nontoxic, non-adherent, non-allergenic, should also maintain a humid medium at the wound interfacing, and be easily removed without trauma. For the development of functional and bioactive dressings, they must meet different conditions such as: The ability to remove excess exudates, to allow gaseous interchange, to behave as a barrier to microbes and to external physical or chemical aggressions, and at the same time to have the capacity of promoting the process of healing by stimulating other intricate processes such as differentiation, cell adhesion, and proliferation. Over the past several years, various types of wound dressings including hydrogels, hydrocolloids, films, foams, sponges, and micro/nanofibers have been formulated, and among them, the electrospun nanofibrous mats received an increased interest from researchers due to the numerous advantages and their intrinsic properties. The drug-embedded nanofibers are the potential candidates for wound dressing application by virtue of: Superior surface area-to volume ratio, enormous porosity (can allow oxy-permeability) or reticular nano-porosity (can inhibit the microorganisms'adhesion), structural similitude to the skin extracellular matrix, and progressive electrospinning methodology, which promotes a prolonged drug release. The reason that we chose to review the formulation of electrospun nanofibers based on polysaccharides as dressings useful in wound healing was based on the ever-growing research in this field, research that highlighted many advantages of the nanofibrillary network, but also a marked versatility in terms of numerous active substances that can be incorporated for rapid and infection-free tissue regeneration. In this review, we have extensively discussed the recent advancements performed on electrospun nanofibers (eNFs) formulation methodology as wound dressings, and we focused as well on the entrapment of different active biomolecules that have been incorporated on polysaccharides-based nanofibers, highlighting those bioagents capable of improving the healing process. In addition, in vivo tests performed to support their increased efficacy were also listed, and the advantages of the polysaccharide nanofiber-based wound dressings compared to the traditional ones were emphasized.
Collapse
Affiliation(s)
- Andreea-Teodora Iacob
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Maria Drăgan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Oana-Maria Ionescu
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Lenuța Profire
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucuresti, Romania;
- Academy of Romanian Scientists, Ilfov st 3, 050085 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucuresti, Romania;
- Academy of Romanian Scientists, Ilfov st 3, 050085 Bucharest, Romania
| | - Luminița Georgeta Confederat
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania;
| | - Dan Lupașcu
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| |
Collapse
|
40
|
Zhao X, Zhou Y, Liu J, Chen J, Ye F, Zhao G. Effects of sucrose on the structure formation in high-methoxyl apple pectin systems without acidifier. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Electrospun fibers based on carbohydrate gum polymers and their multifaceted applications. Carbohydr Polym 2020; 247:116705. [PMID: 32829833 DOI: 10.1016/j.carbpol.2020.116705] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 12/29/2022]
Abstract
Electrospinning has garnered significant attention in view of its many advantages such as feasibility for various polymers, scalability required for mass production, and ease of processing. Extensive studies have been devoted to the use of electrospinning to fabricate various electrospun nanofibers derived from carbohydrate gum polymers in combination with synthetic polymers and/or additives of inorganic or organic materials with gums. In view of the versatility and the widespread choice of precursors that can be deployed for electrospinning, various gums from both, the plants and microbial-based gum carbohydrates are holistically and/or partially included in the electrospinning solution for the preparation of functional composite nanofibers. Moreover, our strategy encompasses a combination of natural gums with other polymers/inorganic or nanoparticles to ensue distinct properties. This early established milestone in functional carbohydrate gum polymer-based composite nanofibers may be deployed by specialized researchers in the field of nanoscience and technology, and especially for exploiting electrospinning of natural gums composites for diverse applications.
Collapse
|
42
|
Affiliation(s)
- Vasiliki Evageliou
- Food Science and Human Nutrition Agricultural University of Athens 75 Iera Odos 11855 Athens Greece
| |
Collapse
|
43
|
Cao H, Ai L, Yang Z, Zhu Y. Application of Xanthan Gum as a Pre-Treatment and Sharpness Evaluation for Inkjet Printing on Polyester. Polymers (Basel) 2019; 11:polym11091504. [PMID: 31527439 PMCID: PMC6780517 DOI: 10.3390/polym11091504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022] Open
Abstract
Inkjet printing on polyester fabric displays versatile environmental advantages. One of the significant benefits of inkjet printing is a dramatic enhancement of the printing quality. In this study, xanthan gum-a bio-based thickening agent accompanied by several salts-was adopted for the pretreatment of polyester fabric aiming at improving the sharpness and color depth of inkjet printed patterns. The influences of four metal salts (NaCl, KCl, CaCl2 and MgCl2) on inkjet printing performance were studied. More importantly, a quantitative method for evaluating the sharpness of an inkjet printed pattern was established according to the characteristics of anisotropy and isotropy of diffusion and adsorption of ink droplets on a fiber surface. Results showed that xanthan gum along with a low dosage of bivalent salts can significantly improve the color depth (K/S value) and sharpness of the printed polyester fabrics. It is feasible to evaluate the sharpness of inkjet printed polyester fabrics using a five-stage system, selecting the inkjet ellipse coefficient (T) and inkjet ellipse area (S), which can provide a quantitative and rapid evaluation method for defining inkjet printing.
Collapse
Affiliation(s)
- Hongmei Cao
- College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China.
- Changzhou Vocational Institute of Textile and Garment, ChangZhou Key Laboratory of Eco-Textile Technology, Changzhou 213164, China.
| | - Li Ai
- College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Zhenming Yang
- College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Yawei Zhu
- College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China.
| |
Collapse
|
44
|
Surber G, Jaros D, Rohm H. Shear and extensional rheology of acid milk gel suspensions with varying ropiness. J Texture Stud 2019; 51:111-119. [PMID: 31226221 DOI: 10.1111/jtxs.12458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/05/2019] [Accepted: 06/16/2019] [Indexed: 11/28/2022]
Abstract
Exopolysaccharides (EPS) synthesized by lactic acid bacteria during fermentation significantly affect the rheology of set-style acid milk gels and that of acid gel suspensions, produced from the gels by stirring. In this study, shear and uniaxial extensional flow of acid gel suspensions made with seven single strains of Streptococcus thermophilus or Lactococcus lactis was investigated. Six strains produced ropy EPS, and maximum filament length determined by using a continuous stretching method was up to four times higher than filament length of an EPS-negative control strain. The systems containing ropy EPS showed a different response to shear and extensional deformation. In shear rheology, higher apparent viscosities and an enhanced structural breakdown was observed for acid gel suspensions with more pronounced ropiness. Breakup time and extensional viscosity, determined by using a Capillary Breakup Extensional Rheometer (CaBER™), significantly increased with increasing ropiness. The increase of extensional viscosity with increasing ropiness was, however, much higher than the effects of ropiness on shear viscosity. As relaxation times also depended on ropiness, it is concluded that ropiness is caused by EPS-EPS interactions that can be better discriminated in extensional rheology. PRACTICAL APPLICATIONS: To improve the texture of fermented milk, lactic acid bacteria that are able to produce ropy exopolysaccharides (EPS) are increasingly used in the dairy industry. The EPS exhibit a significant influence on processing properties and sensory characteristics of the resulting products, which can be estimated by means of shear and extensional rheology. The current work provides information on these respective properties of acid gel suspensions, which facilitate product design by supporting the selection of appropriate starter cultures.
Collapse
Affiliation(s)
- Georg Surber
- Chair of Food Engineering, Technische Universität Dresden, Dresden, Germany
| | - Doris Jaros
- Chair of Food Engineering, Technische Universität Dresden, Dresden, Germany
| | - Harald Rohm
- Chair of Food Engineering, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
45
|
A review of the approaches to predict the ease of swallowing and post-swallow residues. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Shao H, Zhang H, Tian Y, Song Z, Lai PFH, Ai L. Composition and Rheological Properties of Polysaccharide Extracted from Tamarind ( Tamarindus indica L.) Seed. Molecules 2019; 24:molecules24071218. [PMID: 30925745 PMCID: PMC6480175 DOI: 10.3390/molecules24071218] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 11/23/2022] Open
Abstract
A polysaccharide was extracted in high yield from tamarind (Tamarindus indica L.) seed (TSP) by acidic hot water extraction and ethanol precipitation. It was composed of 86.2% neutral polysaccharide, 5.4% uronic acid and 1.3% protein. The molecular weight of TSP was estimated to be about 1735 kDa, with glucose, xylose, and galactose in a molar ratio of 2.9:1.8:1.0 as the major monosaccharides. The steady shear and viscoelastic properties of TSP aqueous solutions were investigated by dynamic rheometry. Results revealed that TSP aqueous solution at a concentration above 0.5% (w/v) exhibited non-Newtonian shear-thinning behavior. Dynamic oscillatory analysis revealed that 10% (w/v) TSP showed as a “weak gel” structure. Apparent viscosities and viscoelastic parameters of TSP solutions decreased drastically in an alkaline solution of pH > 10, but slightly influenced by acidic solution, high temperature and the presence of salt ions and sucrose. These results indicated that TSP possessed excellent pH-resistance and thermo-stability, which might be suitable for applications in acidic beverages and high-temperature processed foodstuffs.
Collapse
Affiliation(s)
- Huimin Shao
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yanjun Tian
- Shandong Food Ferment Industry Research & Design Institute, Jinan 250013, China.
| | - Zibo Song
- Yunnan Maodouli Group Food Co., Ltd., Yuxi 653100, China.
| | - Phoency F H Lai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
47
|
Tapia‐Hernández JA, Del‐Toro‐Sánchez CL, Cinco‐Moroyoqui FJ, Ruiz‐Cruz S, Juárez J, Castro‐Enríquez DD, Barreras‐Urbina CG, López‐Ahumada GA, Rodríguez‐Félix F. Gallic Acid‐Loaded Zein Nanoparticles by Electrospraying Process. J Food Sci 2019; 84:818-831. [DOI: 10.1111/1750-3841.14486] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022]
Affiliation(s)
- José Agustín Tapia‐Hernández
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Carmen Lizette Del‐Toro‐Sánchez
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Francisco Javier Cinco‐Moroyoqui
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Saúl Ruiz‐Cruz
- Dept. of Biotechnology and Food ScienceInst. Technol. of Sonora 5 de febrero #818 sur, Colonia Centro 85000 Ciudad Obregón Sonora Mexico
| | - Josué Juárez
- Dept. of PhysicsUniv. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Daniela Denisse Castro‐Enríquez
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Carlos Gregorio Barreras‐Urbina
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Guadalupe Amanda López‐Ahumada
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Francisco Rodríguez‐Félix
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| |
Collapse
|
48
|
Yang W, Zhang M, Li X, Jiang J, Sousa AMM, Zhao Q, Pontious S, Liu L. Incorporation of Tannic Acid in Food-Grade Guar Gum Fibrous Mats by Electrospinning Technique. Polymers (Basel) 2019; 11:E141. [PMID: 30960126 PMCID: PMC6402038 DOI: 10.3390/polym11010141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/05/2019] [Accepted: 01/10/2019] [Indexed: 01/20/2023] Open
Abstract
The use of polysaccharides to produce functional micro- or nanoscale fibrous mats has attracted growing interest for their food-grade applications. In this study, the characterization and electro-spinnability of guar gum (GG) solutions loaded with tannic acid (TA) was demonstrated. Food-grade antioxidant materials were successfully produced by electrospinning while incorporating different loads of TA into GG fibers. Bead-free GG-TA fibers could be fabricated from GG solution (2 wt %) with 10 wt % TA. Increasing the amount of TA led to fibers with defects and larger diameter sizes. Fourier Transformed Infrared Spectroscopy and X-ray Diffraction of neat GG and TA loaded GG fibrous mats suggested that inclusion of TA interrupted the hydrogen bonding and that a higher density of the ordered junction zones formed with the increased TA. The high TA incorporation efficiency and retained antioxidant activity of the fibrous mats afford a potential application in active edible film or drug delivery system.
Collapse
Affiliation(s)
- Weiqiao Yang
- State Key Laboratory of Food Nutrition and Safety, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
- Tianjin Jiesheng Donghui Fresh-keeping Technology Co., Ltd, Tianjin 300403, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jianan Jiang
- State Key Laboratory of Food Nutrition and Safety, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ana M M Sousa
- Dairy and Functional Foods Research Unit, United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Sherri Pontious
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| |
Collapse
|
49
|
Jiang H, Zheng L, Zou Y, Tong Z, Han S, Wang S. 3D food printing: main components selection by considering rheological properties. Crit Rev Food Sci Nutr 2018; 59:2335-2347. [DOI: 10.1080/10408398.2018.1514363] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hao Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Luyao Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanhui Zou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhaobin Tong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shiyao Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
50
|
Viana VR, Silva MB, Azero EG, Silva KGH, Andrade CT. Assessing the stabilizing effect of xanthan gum on vitamin D-enriched pecan oil in oil-in-water emulsions. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.07.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|