1
|
Da YM, Yang XR, Li MJ, Li SS, Gao ZP, Zhang Y, Su JQ, Zhou GW. Promotion of antibiotic-resistant genes dissemination by the micro/nanoplastics in the gut of snail Achatina fulica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176829. [PMID: 39437930 DOI: 10.1016/j.scitotenv.2024.176829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Terrestrial animal intestines are hotspots for the enrichment of micro/nano plastics (M/NPs) and antibiotic-resistant genes (ARGs). However, little is known about the further impact of M/NPs on the spread of ARGs in animal guts. This study investigates the role of M/NPs (polystyrene) with varying particle sizes (0.082, 42, and 182 μm), concentrations (10 and 100 mg/L), and exposure durations (4 and 16 days) in the ARGs dissemination via conjugation in the edible snail (Achatina fulica) gut. Combination of qPCR with 16S rRNA-based sequencing, we found that PS exposure caused intestinal cell impairment and shifts in the gut microbial community of snails. Conjugation rate increased with PS particle sizes in the snail gut. After 4 days of exposure, significantly higher conjugation rates were observed in the gut exposed to 100 mg/L PS compared to 10 mg/L, however, this trend reversed after 16 days. Consistently, the abundances of conjugation relevant genes trfA and trbB shared similar trends to the conjugation ratios in the snail gut after PS exposure. Transconjugant diversity was much lower in 10 mg/L PS groups than in 100 mg/L PS treatments. Therefore, this study suggests that the presence of M/NPs would complicate management of ARG spread. The selection pressure exerted by M/NPs may sustain or even amplify the spread of ARGs in the gut of terrestrial animals even in the absence of antibiotics. It highlights the necessity of avoiding M/NPs intake as a part of comprehensive strategy for cubing ARG dissemination in the gut of animals.
Collapse
Affiliation(s)
- Yan-Mei Da
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Xiao-Ru Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ming-Jun Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Shun-Shun Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Ze-Ping Gao
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Ying Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guo-Wei Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
2
|
Li Z, Song Y, Ling Y, Liu Y, Yi J, Hao L, Zhu J, Kang Q, Huang J, Lu J. Structural characterization of a glycoprotein from white jade snails (Achatina Fulica) and its wound healing activity. Int J Biol Macromol 2024; 263:130161. [PMID: 38367791 DOI: 10.1016/j.ijbiomac.2024.130161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/03/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Snail mucus is rich in proteins and polysaccharides, which has been proved to promote wound healing in mice in our previous research. The aim of this study was to investigate the effective component in snail mucus that can exert the wound healing potential and its structural characterization. Here, the glycoprotein from the snail mucus (SM1S) was obtained by DEAE-Sepharose Fast Flow and Sephacryl S-300 columns. The structural characteristics of SM1S were investigated via chromatographic techniques, periodic acid oxidation, FT-IR spectroscopy and NMR spectroscopy. Results showed that SM1S was a glycoprotein with a molecular weight of 3.8 kDa (83.23 %), consists of mannose, glucuronic acid, glucose, galactose, xylose, arabinose, fucose at a ratio of 13.180:4.875:1043.173:7.552:1:3.501:2.058. In addition, the periodic acid oxidation and NMR analysis showed that SM1S contained 1,6-glycosidic bonds, and might also contain 1 → 4 and 1 → 2 glycosidic or 1 → 3 glycosidic bonds. Furthermore, the migration experiment of human skin fibroblasts in vitro suggested that SM1S had a good effect to accelerate the scratch healing of cells. This study suggested that SM1S may be a prospective candidate as a natural wound dressing for the development of snail mucus products.
Collapse
Affiliation(s)
- Zhipeng Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yiming Song
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yunying Ling
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yingxin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Limin Hao
- Systems Engineering Institute, Academy of Military Sciences PLA China, Beijing 100010, China
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jinyong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
3
|
Moon SK, Jeong EJ, Tonog G, Jin CM, Lee JS, Kim H. Comprehensive workflow encompassing discovery, verification, and quantification of indicator peptide in snail mucin using LC-quadrupole Orbitrap high-resolution tandem mass spectrometry. Food Res Int 2024; 180:114054. [PMID: 38395548 DOI: 10.1016/j.foodres.2024.114054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Peptidomics analysis was conducted using high-resolution tandem mass spectrometry (MS2) to determine the peptide profile of snail-derived mucin extract (SM). The study was also aimed to identify an indicator peptide and validate a quantification method for this peptide. The peptide profiling and identification were conducted using discovery-based peptidomics analysis employing data-dependent acquisition, whereas the selected peptides were verified and quantified using parallel reaction monitoring acquisition. Among the 16 identified peptides, the selected octapeptide (TEAPLNPK) was quantified via precursor ion ionization (m/z 435.2400), followed by quantification of the corresponding quantifier ion fragment (m/z 639.3824) using MS2. The quantification method was optimized and validated in terms of specificity, linearity, accuracy, precision, and limit of detection/quantification. The validated method accurately quantified the TEAPLNPK content in the SM as 7.5 ± 0.2 μg/g. Our study not only identifies an indicator peptide from SM but also introduces a novel validation method, involving precursor ion ionization and quantification of specific fragments. Our findings may serve as a comprehensive workflow for the monitoring, selection, and quantification of indicator peptides from diverse food resources.
Collapse
Affiliation(s)
- Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong 17546, South Korea
| | - Eun-Jin Jeong
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; BK21 FOUR R&E Center for Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Genevieve Tonog
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong 17546, South Korea
| | - Cheng-Min Jin
- Analysis and Research Department, NeuroVIS, Inc., 593-8 Dongtangiheung-ro, Hwaseong 18469, South Korea
| | - Jeong-Seok Lee
- Age at Labs Inc., 55, Digital-ro 32-gil, Guro-gu, Seoul 08379, South Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong 17546, South Korea.
| |
Collapse
|
4
|
Zhu K, Zhang Z, Li G, Sun J, Gu T, Ain NU, Zhang X, Li D. Extraction, structure, pharmacological activities and applications of polysaccharides and proteins isolated from snail mucus. Int J Biol Macromol 2024; 258:128878. [PMID: 38141709 DOI: 10.1016/j.ijbiomac.2023.128878] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/16/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Snail mucus had medical applications for wound healing as early as ancient Greece and the late Han Dynasty (China). A literature search found 165 modern research papers discussing the extraction methods, chemical compositions, pharmacological activities, and applications of snail mucus. Thus, this review summarized the research progress on the extraction, structure, pharmacological activities, and applications of polysaccharides and proteins isolated from snail mucus. The extraction methods of snail mucus include natural secretion and stimulation with blunt force, spray, electricity, un-shelling, ultrasonic-assisted, and ozone-assisted. As a natural product, snail mucus mainly comprises two polysaccharides (glycosaminoglycan, dextran), seven glycoproteins (mucin, lectin), various antibacterial peptides, allantoin, glycolic acid, etc. It has pharmacological activities that encourage cell migration and proliferation, and promote angiogenesis and have antibacterial, anti-oxidative and anticancer properties. The mechanism of snail mucus' chemicals performing antibacterial and wound-healing was proposed. Snail mucus is a promising bioactive product with multiple medical applications and has great potential in the pharmaceutical and healthcare industries. Therefore, this review provides a valuable reference for researching and developing snail mucus.
Collapse
Affiliation(s)
- Kehan Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215021, China
| | - Zhiyi Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215021, China
| | - Guanqiang Li
- Department of Vascular Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Jiangcen Sun
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215021, China
| | - Tianyi Gu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215021, China
| | - Noor Ul Ain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215021, China
| | - Xicheng Zhang
- Department of Vascular Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215000, China.
| | - Duxin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215021, China.
| |
Collapse
|
5
|
Kim H, Jeong EJ, Park C, Lee JS, Kim WJ, Yu KW, Suh HJ, Ahn Y, Moon SK. Modulation of gut microbiota ecosystem by a glucan-rich snail mucin heteropolysaccharide attenuates loperamide-induced constipation. Int J Biol Macromol 2023; 253:126560. [PMID: 37640190 DOI: 10.1016/j.ijbiomac.2023.126560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/10/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
The present study aimed to investigate the effect of oral administration of snail-derived mucin extract (SM) on ameliorating constipation symptoms of loperamide-induced constipated rats (n = 6). The analytical results indicated that SM mainly contains a glucan-rich snail mucin heteropolysaccharide with high molecular weights (108.5-267.9 kDa), comprising primarily of glucose (64.9 %) and galactose (22.4 %) with some deoxyhexoses (5.0 %) and hexosamines (4.9 %). Daily SM administration at doses of 10-40 mg/kg/day to the loperamide-induced constipated rats significantly (p < 0.05) ameliorated the deterioration in fecal parameters, such as numbers and weight of feces, fecal water contents, and gastrointestinal transit ratio. The histomorphometric results showed that the loperamide-induced decreases in the thickness of mucosal and muscularis mucosae layers as well as the distribution of mucin and c-KIT-positive areas were significantly (p < 0.05) improved via SM consumption at all doses tested. SM administration at all doses significantly increased the expression of genes encoding tryptophan hydroxylases (TPH1 and TPH2; p < 0.05), tight junction molecules (OCLN, CLDN1, and TJP1; p < 0.05), and mucin (MUC2 and MUC4; p < 0.05), but significantly decreased the aquaporin-encoding genes (AQP3 and AQP8; p < 0.05). Gut microbial community analysis indicated that SM administration could modulate loperamide-induced dysbiosis by increasing the phyla Actinobacteria (11.72-12.64 % at 10-40 mg/kg doses; p < 0.05) and Firmicutes (79.33 % and 74.24 % at 20 and 40 mg/kg doses; p < 0.05) and decreasing the phyla Bacteroidetes (5.98-12.47 % at 10-40 mg/kg doses; p < 0.05) and Verrucomicrobia (2.21 % and 2.78 % at 20 and 40 mg/kg doses; p < 0.05), suggesting that SM administration is effective in ameliorating constipation by controlling gut microbial communities. These findings can be utilized as fundamental data for developing novel functional materials using SM to prevent or treat constipation.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong 17546, South Korea
| | - Eun-Jin Jeong
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; BK21 FOUR R&E Center for Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Chunwoong Park
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; BK21 FOUR R&E Center for Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Jeong-Seok Lee
- Age at Labs Inc., 55, Digital-ro 32-gil, Guro-gu, Seoul 08379, South Korea
| | - Woo Jung Kim
- Biocenter, Gyeonggido Business and Science Accelerator, Suwon 16229, South Korea
| | - Kwang-Won Yu
- Major in Food & Nutrition, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong 27909, South Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Yejin Ahn
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong 17546, South Korea.
| |
Collapse
|
6
|
Kodchakorn K, Chokepaichitkool T, Kongtawelert P. Purification and characterisation of heparin-like sulfated polysaccharides with potent anti-SARS-CoV-2 activity from snail mucus of Achatina fulica. Carbohydr Res 2023; 529:108832. [PMID: 37192581 DOI: 10.1016/j.carres.2023.108832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
Heparin-like sulfated polysaccharide, acharan sulfate, was purified from the mucus of an African giant snail with unique sulfated glycosaminoglycans (GAGs). This study reported on finding novel and safe heparin resources from Achatina fulica for further use as well as easy isolation and purification of the active fraction from the initial raw material. Its structure was characterised by a strong-anion exchange combined with high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopy. The results indicated that the potential acharan sulfate fraction is a glycosaminoglycan composed of several repeating disaccharide units, namely, of →4)-α-IdoA(2S)(1→4)-α-GlcNAc/GlcNAc(6S)/GlcNSO3(6S)(1→, and hence, presents heterogeneity regarding negative net charge density. Furthermore, the heparinase digests inhibit the binding of SARS-CoV-2 spike protein to the ACE2 receptor. In summary, the acharan sulfate presented in this work has shown its great potential for application in the preparation of sulfated polysaccharides as an alternative to heparin with important biological activity.
Collapse
Affiliation(s)
- Kanchanok Kodchakorn
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Tawan Chokepaichitkool
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
7
|
Deng T, Gao D, Song X, Zhou Z, Zhou L, Tao M, Jiang Z, Yang L, Luo L, Zhou A, Hu L, Qin H, Wu M. A natural biological adhesive from snail mucus for wound repair. Nat Commun 2023; 14:396. [PMID: 36693849 PMCID: PMC9873654 DOI: 10.1038/s41467-023-35907-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
The discovery of natural adhesion phenomena and mechanisms has advanced the development of a new generation of tissue adhesives in recent decades. In this study, we develop a natural biological adhesive from snail mucus gel, which consists a network of positively charged protein and polyanionic glycosaminoglycan. The malleable bulk adhesive matrix can adhere to wet tissue through multiple interactions. The biomaterial exhibits excellent haemostatic activity, biocompatibility and biodegradability, and it is effective in accelerating the healing of full-thickness skin wounds in both normal and diabetic male rats. Further mechanistic study shows it effectively promotes the polarization of macrophages towards the anti-inflammatory phenotype, alleviates inflammation in chronic wounds, and significantly improves epithelial regeneration and angiogenesis. Its abundant heparin-like glycosaminoglycan component is the main active ingredient. These findings provide theoretical and material insights into bio-inspired tissue adhesives and bioengineered scaffold designs.
Collapse
Affiliation(s)
- Tuo Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dongxiu Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China.,Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education of China, Yunnan Minzu University, 650031, Kunming, China
| | - Xuemei Song
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhipeng Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Lixiao Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China.,Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education of China, Yunnan Minzu University, 650031, Kunming, China
| | - Maixian Tao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zexiu Jiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Lan Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Ankun Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Lin Hu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education of China, Yunnan Minzu University, 650031, Kunming, China
| | - Hongbo Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China.,Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education of China, Yunnan Minzu University, 650031, Kunming, China
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
8
|
Urbi Z, Azmi NS, Ming LC, Hossain MS. A Concise Review of Extraction and Characterization of Chondroitin Sulphate from Fish and Fish Wastes for Pharmacological Application. Curr Issues Mol Biol 2022; 44:3905-3922. [PMID: 36135180 PMCID: PMC9497668 DOI: 10.3390/cimb44090268] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Chondroitin sulphate (CS) is one of the most predominant glycosaminoglycans (GAGs) available in the extracellular matrix of tissues. It has many health benefits, including relief from osteoarthritis, antiviral properties, tissue engineering applications, and use in skin care, which have increased its commercial demand in recent years. The quest for CS sources exponentially increased due to several shortcomings of porcine, bovine, and other animal sources. Fish and fish wastes (i.e., fins, scales, skeleton, bone, and cartilage) are suitable sources of CS as they are low cost, easy to handle, and readily available. However, the lack of a standard isolation and characterization technique makes CS production challenging, particularly concerning the yield of pure GAGs. Many studies imply that enzyme-based extraction is more effective than chemical extraction. Critical evaluation of the existing extraction, isolation, and characterization techniques is crucial for establishing an optimized protocol of CS production from fish sources. The current techniques depend on tissue hydrolysis, protein removal, and purification. Therefore, this study critically evaluated and discussed the extraction, isolation, and characterization methods of CS from fish or fish wastes. Biosynthesis and pharmacological applications of CS were also critically reviewed and discussed. Our assessment suggests that CS could be a potential drug candidate; however, clinical studies should be conducted to warrant its effectiveness.
Collapse
Affiliation(s)
- Zannat Urbi
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
| | - Nina Suhaity Azmi
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
- Correspondence: (N.S.A.); (M.S.H.); Tel.: +60-12798-0497 (N.S.A.); +60-116960-9649 (M.S.H.)
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Md. Sanower Hossain
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Malaysia
- Faculty of Science, Sristy College of Tangail, Tangail 1900, Bangladesh
- Correspondence: (N.S.A.); (M.S.H.); Tel.: +60-12798-0497 (N.S.A.); +60-116960-9649 (M.S.H.)
| |
Collapse
|
9
|
Wang D, Wang J, Liu H, Liu M, Yang Y, Zhong S. The Main Structural Unit Elucidation and Immunomodulatory Activity In Vitro of a Selenium-Enriched Polysaccharide Produced by Pleurotus ostreatus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082591. [PMID: 35458788 PMCID: PMC9027278 DOI: 10.3390/molecules27082591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
In recent years, the structure of selenium-enriched polysaccharides and their application in immunomodulation have attracted much attention. In previous studies, we extracted and purified a novel selenium-enriched Pleurotus ostreatus polysaccharide called Se-POP-21, but its structure and immunomodulatory activity were still unclear. In this study, the main structural unit formula of Se-POP-21 was characterized by methylation analysis and an NMR experiment. The results showed that the backbone of Se-POP-21 was →[2,6)-α-D-Galp-(1→6)-α-D-Galp-(1]4→2,4)-β-L-Arap-(1→[2,6)-α-D-Galp-(1→6)-α-D-Galp-(1]4→, branched chain of β-D-Manp-(1→ and β-D-Manp-(1→4)-β-L-Arap-(1→ connected with →2,6)-α-D-Galp-(1→ and →2,4)-β-L-Arap-(1→,respectively, through the O-2 bond. In vitro cell experiments indicated that Se-POP-21 could significantly enhance the proliferation and phagocytosis of RAW264.7 cells, upregulate the expression of costimulatory molecules CD80/CD86, and promote RAW264.7 cells to secrete NO, ROS, TNF-α, IL-1β, and IL-6 by activating the NF-κB protein. The results of this study indicate that Se-POP-21 can effectively activate RAW264.7 cells. Thus, it has the potential to be used in immunomodulatory drugs or functional foods.
Collapse
|
10
|
Balbinot-Alfaro E, Novello CR, Düsman E, Alfaro AT, Barddal HP, Almeida IV, Vicentini VE, Martins VG. Bioactive properties of glycosaminoglycans extracted from Turkey (Meleagris gallopavo) by-products. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Zhang Y, Zhang Z, Liu H, Wang D, Wang J, Liu M, Yang Y, Zhong S. A natural selenium polysaccharide from Pleurotus ostreatus: Structural elucidation, anti-gastric cancer and anti-colon cancer activity in vitro. Int J Biol Macromol 2022; 201:630-640. [PMID: 35066027 DOI: 10.1016/j.ijbiomac.2022.01.101] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/15/2021] [Accepted: 01/15/2022] [Indexed: 11/05/2022]
Abstract
The development and application of new natural selenium polysaccharides with relatively clear structure and excellent activity have become hot and difficult issues. This study used GC-MS and 2D NMR to characterize the detailed chain structure information of selenium polysaccharide (Se-POP-3) from Selenium-enriched Pleurotus ostreatus, and then explored its anti-gastric cancer and anti-colon cancer effects in vitro. Results showed that the main chain of Se-POP-3 was →[3)-β-D-Glcp-(1]2 → 6)-β-D-Glcp-(1 → 3,6)-β-D-Glcp-(1 → 3)-β-D-Glcp-(1→, and the branch was α-D-Glcp-(1 → [4)-α-D-Glcp-(1]4→, which was connected to the main chain through the O-3 bond of →3,6)-β-D-Glcp-(1 → glycosidic bond. In addition, Se-POP-3 could reduce viability, induce apoptosis, inhibit migration and invasion, destroy the Bax/Bcl-2 ratio, and inhibit the epithelial-to-mesenchymal transition of MGC-803 and HCT-116 cells in vitro. Moreover, this study also showed that within the concentration range set in this study, Se-POP-3 had no significant effect on the growth of normal cells (NCM460 cells). This study can provide a theoretical basis for the potential application of Se-POP-3 as an anti-gastrointestinal cancer drug or functional food.
Collapse
Affiliation(s)
- Yunshan Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhuomin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - De Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jiahui Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Meng Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
12
|
de Moura HC, Novello CR, Balbinot-Alfaro E, Düsman E, Barddal HPO, Almeida IV, Vicentini VEP, Prentice-Hernández C, Alfaro AT. Obtaining glycosaminoglycans from tilapia (oreochromis niloticus) scales and evaluation of its anticoagulant and cytotoxic activities: Glycosaminoglycans from tilapia scales: anticoagulant and cytotoxic activities. Food Res Int 2021; 140:110012. [PMID: 33648244 DOI: 10.1016/j.foodres.2020.110012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 11/24/2022]
Abstract
Large amounts of by-products are generated during fish processing. The study aimed to assess whether tilapia scales are a potential source for obtaining glycosaminoglycans, as well as to determine their anticoagulant and cytotoxic/antiproliferative activities, against different tumor lines. The glycosaminoglycans were extracted, purified, and fractionated. The fractions that indicated the presence of uronic acid and sulfated GAGs were characterized by electrophoresis, NMR, and degree of sulfation (DS). The extraction process using the papain enzyme had a yield of 0.86%. Fraction V (FV) revealed the presence of chondroitin sulfate chains CS-A and CS-C, with DS of 0.146. FV demonstrated anticoagulant potential, as it was able to increase aPTT time. FV showed a cytotoxic effect for HTC metabolizing cells at 24, 48, and 72 h. However, it did not show activity for neuroblastoma cells in any of the evaluated times. The results indicate that the tilapia scales are a possible source for obtaining chondroitin sulfate, with potential use as anticoagulant and cytotoxic/antitumor.
Collapse
Affiliation(s)
- Heloisa C de Moura
- Department of Food Technology, Federal University of Technology - Paraná, Francisco Beltrão, PR, Brazil
| | - Claudio R Novello
- Department of Food Technology, Federal University of Technology - Paraná, Francisco Beltrão, PR, Brazil
| | | | - Elisângela Düsman
- Department of Food Technology, Federal University of Technology - Paraná, Francisco Beltrão, PR, Brazil
| | - Helyn P O Barddal
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Igor V Almeida
- Federal Rural University of Amazonia, Capitão Poço, PA, Brazil
| | | | | | - Alexandre T Alfaro
- Department of Food Technology, Federal University of Technology - Paraná, Francisco Beltrão, PR, Brazil.
| |
Collapse
|
13
|
Burmistrova NA, Diehl BWK, Soboleva PM, Rubtsova E, Legin EA, Legin AV, Kirsanov DO, Monakhova YB. Quality Control of Heparin Injections: Comparison of Four Established Methods. ANAL SCI 2020; 36:1467-1471. [PMID: 32801287 DOI: 10.2116/analsci.20p214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/31/2020] [Indexed: 08/09/2023]
Abstract
Heparin is an anticoagulant medication that is usually injected subcutaneously. The quality of a set of commercial heparin injections from different producers was examined by NMR, IR, UV-Vis spectroscopies and potentiometric multisensor system. The type of raw material regarding heparin animal origin and producer, heparin molecular weight and activity values were derived based on the non-targeted analysis of 1H NMR fingerprints. DOSY NMR spectroscopy was additionally used to study homogeneity and additives profile. UV-Vis and IR, being cheaper than NMR, combined with multivariate statistics were successfully applied to study excipients composition as well as semi-estimation of activity values. Potentiometric multisensor measurements were found to be an important additional source of information about inorganic composition of finished heparin formulations. All investigated instrumental techniques are useful for finished heparin injections and should be selected according to availability as well as the information and confidence required for a specific sample.
Collapse
Affiliation(s)
- Natalia A Burmistrova
- Institute of Chemistry, Saratov State University, 83 Astrakhanskaya Street, Saratov, 410012, Russia
| | - Bernd W K Diehl
- Spectral Service AG, Emil-Hoffmann-Strate 33, 50996, Köln, Germany
| | - Polina M Soboleva
- Institute of Chemistry, Saratov State University, 83 Astrakhanskaya Street, Saratov, 410012, Russia
| | - Ekaterina Rubtsova
- Institute of Chemistry, Saratov State University, 83 Astrakhanskaya Street, Saratov, 410012, Russia
- Saratov State Medical University, Bolshaya Kazachia st., 112, Saratov, 410012, Russia
| | - Eugene A Legin
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospect, Petergof, St. Petersburg, 198504, Russia
| | - Andrey V Legin
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospect, Petergof, St. Petersburg, 198504, Russia
| | - Dmitry O Kirsanov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospect, Petergof, St. Petersburg, 198504, Russia
| | - Yulia B Monakhova
- Institute of Chemistry, Saratov State University, 83 Astrakhanskaya Street, Saratov, 410012, Russia.
- Spectral Service AG, Emil-Hoffmann-Strate 33, 50996, Köln, Germany.
| |
Collapse
|
14
|
Metabolic engineering for production of functional polysaccharides. Curr Opin Biotechnol 2020; 66:44-51. [DOI: 10.1016/j.copbio.2020.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/07/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023]
|
15
|
Purification, characterisation and antioxidant activities of chondroitin sulphate extracted from Raja porosa cartilage. Carbohydr Polym 2020; 241:116306. [DOI: 10.1016/j.carbpol.2020.116306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 11/16/2022]
|
16
|
A non-anticoagulant heparin-like snail glycosaminoglycan promotes healing of diabetic wound. Carbohydr Polym 2020; 247:116682. [PMID: 32829810 DOI: 10.1016/j.carbpol.2020.116682] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/13/2023]
Abstract
Diabetic foot ulcer (DFU) is a common high-risk complication in patients with diabetes mellitus, but current drugs and therapies in management of this disease cannot meet the urgent clinical needs. In this study, a snail glycosaminoglycan (SGAG) from the cultured China white jade snail was purified and structurally clarified. This snail glycosaminoglycan is a regular sulfated polysaccharide, composed of iduronic acid (IdoA) and N-acetyl-glucosamine (GlcNAc) with the repeating sequence of →4)-α-GlcNAc (1→4)-α-IdoA2S (1→. The biological assays showed that SGAG had no anticoagulant activity for lacking specific heparin pentasaccharide sequence. The pharmacological experiments suggested that SGAG markedly accelerated the healing of full-thickness wounds in diabetic mice skin. Histologic and immunohistochemical analysis revealed that SGAG treatment alleviated the inflammation and dermal edema, and promoted angiogenesis. This is the first report applying the snail glycosaminoglycan to favor diabetic wound healing.
Collapse
|
17
|
Dhahri M, Sioud S, Dridi R, Hassine M, Boughattas NA, Almulhim F, Al Talla Z, Jaremko M, Emwas AHM. Extraction, Characterization, and Anticoagulant Activity of a Sulfated Polysaccharide from Bursatella leachii Viscera. ACS OMEGA 2020; 5:14786-14795. [PMID: 32596616 PMCID: PMC7315596 DOI: 10.1021/acsomega.0c01724] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/27/2020] [Indexed: 05/31/2023]
Abstract
Bioactive compounds for drug discovery are increasingly extracted and purified from natural sources including marine organisms. Heparin is a therapeutic agent that has been used for several decades as an anticoagulant. However, heparin is known to cause many undesirable complications such as thrombocytopenia and risk of hemorrhage. Hence, there is a need to find alternatives to current widely used anticoagulant drugs. Here, we extract a sulfated polysaccharide from sea hare, that is, Bursatella leachii viscera, by enzymatic digestion. Several analytical approaches including elemental analysis, Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and high-performance liquid chromatography-mass spectrometry analysis show that B. leachii polysaccharides have chemical structures similar to glycosaminoglycans. We explore the anticoagulant activity of the B. leachii extract using the activated partial thromboplastin time and the thrombin time. Our results demonstrate that the extracted sulfated polysaccharide has heparin-like anticoagulant activity, thus showing great promise as an alternative anticoagulant therapy.
Collapse
Affiliation(s)
- Manel Dhahri
- Biology Department,
Faculty of Science Yanbu, Taibah University, 46423 Yanbu El-Bahr, Saudi Arabia
| | - Salim Sioud
- Analytical Core Lab, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi
| | - Rihab Dridi
- Laboratory of Pharmacology,
Faculty of Medicine of Monastir, University
of Monastir, 5000 Monastir, Tunisia
| | - Mohsen Hassine
- Hematology Department, Fattouma Bourguiba University Hospital, 5000 Monastir, Tunisia
| | - Naceur A. Boughattas
- Laboratory of Pharmacology,
Faculty of Medicine of Monastir, University
of Monastir, 5000 Monastir, Tunisia
| | - Fatimah Almulhim
- Biological and Environmental Science and
Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Zeyad Al Talla
- ANPERC, King Abdullah University
of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi
| | - Mariusz Jaremko
- Biological and Environmental Science and
Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Abdul-Hamid M. Emwas
- Core Labs, King
Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi
| |
Collapse
|
18
|
Nuryana CT, Haryana SM, Wirohadidjojo YW, Arfian N. Achatina fulica mucous improves cell viability and increases collagen deposition in UVB-irradiated human fibroblast culture. J Stem Cells Regen Med 2020; 16:26-31. [PMID: 32536768 DOI: 10.46582/jsrm.1601005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/23/2020] [Indexed: 11/19/2022]
Abstract
Introduction: Ultraviolet radiation induces skin photoaging by increasing matrix metalloproteinase-1 (MMP-1). MMP-1 degrades type I and III collagen that comprise the dermal connective tissue. Achatina fulica mucous (AFM) is a natural remedy that has protective effects on fibroblasts and collagen. Objective: To investigate the effects of AFM on cell viability and collagen deposition in UVB-irradiated human fibroblast culture. Methods: The mucous was extracted from 50 Achatina fulica snails that were stimulated by a 5-10 Volt electricity shock for 30-60 seconds and converted into powder by the freeze-drying process. The human dermal fibroblast culture was divided into six groups: group 1 were normal fibroblasts without UVB irradiation as normal control, groups 2-5 consisted of 100 mJ/cm2 UVB-irradiated fibroblasts. Group 2 had no treatment as negative control, group 3 was treated by PRP 10% as positive control group and groups 4-6 were treated by various concentrations of AFM (3.9; 15.625 and 62.5 μg/mL). At the end of the experiment, the proliferation was assessed with MTT assay, furthermore collagen deposition was measured by Sirius red assay. Real Time-PCR (RT-PCR) was performed to quantify Coll I, Coll III and MMP-1 mRNA expression, then to measured COL 1/COL III ratio. Results: UVB induced significant lower viability, upregulated MMP-1 and downregulated COL I and COL III mRNA expressions. Meanwhile AFM treated groups demonstrated higher cell viability with downregulation of MMP-1 and upregulation of COL I and COL III mRNA expressions. The ratio of COL I/ III expression was significantly (p<0.05) lower in the AFM treated groups compared to the UVB group. Among AFM treated groups, administration of 62.5 μg/mL AFM represented the best result. Conclusion: AFM may ameliorate viability of UVB-irradiated human fibroblast culture which associates with downregulating MMP-1, upregulating COL I and Col III, and reducing COL I/III ratio.
Collapse
Affiliation(s)
- Ch Tri Nuryana
- Doctoral program of Medicine and Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sofia Mubarika Haryana
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yohanes Widodo Wirohadidjojo
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nur Arfian
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
19
|
Kozuka M, Yamane T, Imai M, Handa S, Takenaka S, Sakamoto T, Ishida T, Inui H, Yamamoto Y, Nakagaki T, Nakano Y. Isolation of HMG-CoA reductase inhibitors from aronia juice. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Two different fucosylated chondroitin sulfates: Structural elucidation, stimulating hematopoiesis and immune-enhancing effects. Carbohydr Polym 2019; 230:115698. [PMID: 31887892 DOI: 10.1016/j.carbpol.2019.115698] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 01/14/2023]
Abstract
Two fucosylated chondroitin sulfates FCShp and FCSht were isolated from the sea cucumber Holothuria polii and Holothuria tubulosa, respectively. The NMR spectroscopy and HILIC-FTMS methods were applied for their detailed structural characterization. Chemical analysis indicated that the two FCSs all contained a chondroitin sulfate backbone chondroitin sulfate-like core and fucosyl branches of α-L-Fuc2,4S, α-L-Fuc4S or α-L-Fuc3,4S linked to O-3 of glucuronic acid residues. The main branches of FCShp and FCSht were monofucose, and the small amounts of di-, tri- and tetrafucose with α-1,3-linkage type were also detected. Finally, we investigated the immunomodulatory function of FCShp and FCSht in cyclophosphamide (CTX)-induced immunosuppressed mouse models. The results showed that FCShp and FCSht had beneficial effects on hematopoietic function recovery in CTX-induced bone marrow suppression mice. Notably, the α-L-Fuc2,4S was more important to the activity than α-L-Fuc3,4S. These results provided basis for developing the drugs to reduce side effects of chemotherapy.
Collapse
|
21
|
Cai Y, Yang W, Li X, Zhou L, Wang Z, Lin L, Chen D, Zhao L, Li Z, Liu S, Yin R, Zuo Z, Gao N, Zhao J. Precise structures and anti-intrinsic tenase complex activity of three fucosylated glycosaminoglycans and their fragments. Carbohydr Polym 2019; 224:115146. [DOI: 10.1016/j.carbpol.2019.115146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
|
22
|
Pan Q, Zhang C, Wu X, Chen Y. Identification of a heparosan heptasaccharide as an effective anti-inflammatory agent by partial desulfation of low molecular weight heparin. Carbohydr Polym 2019; 227:115312. [PMID: 31590876 DOI: 10.1016/j.carbpol.2019.115312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/01/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022]
Abstract
Low molecular weight heparin (LMWH) possesses a dual function of anticoagulation and anti-inflammation. While the structures and mechanisms on its anticoagulation have been widely studied, the structural features responsible for the anti-inflammatory activity of LMWH remain to be explored. In the present study, guided by an anti-inflammation assay, a non-anticoagulant species was generated from partial desulfation of LMWH to fully retain the anti-inflammatory activity, from which five fractions were further separated and three of them were characterized by enzymatic degradation, hydrophobic labeling, C18-based HPLC and LC-MS/MS analyses. The structure-activity relationship revealed that the sulfate groups in LMWH are critical to distinguish and separate the activities of anticoagulation and anti-inflammation, leading to the identification of a synthetic heparosan-type heptasaccharide as a potent anti-inflammatory agent. The present strategy enables the simplification of complex polysaccharides to bioactive synthetic oligosaccharides for therapeutic utility.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Chengchang Zhang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xuri Wu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
23
|
He Z, Zhou L, Lin L, Yin R, Zhao J. Structure and heparanase inhibitory activity of a new glycosaminoglycan from the slug Limacus flavus. Carbohydr Polym 2019; 220:176-184. [PMID: 31196538 DOI: 10.1016/j.carbpol.2019.05.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 01/28/2023]
Abstract
A new glycosaminoglycan (LF-GAG) was purified from the slug Limacus flavus. Its unique chemical structure and heparanase inhibitory activity were studied in this work. The native LF-GAG was composed of L-iduronic acid (L-IdoA) and N-acetyl-D-glucosamine (D-GlcNAc), with a Mw of 22,700 Da. To elucidate the precise structure and structure-activity relationship, its deacetylation-deaminative depolymerized product (dLF-GAG) was prepared, and from which four oligosaccharides were purified. Combining the NMR spectral analysis of LF-GAG and its derived oligosaccharides, the structure of LF-GAG was deduced to be -4)-L-IdoA2R-(α1,4)-D-GlcNAc-(α1-, in which R was -OH (˜80%) or -OSO3- (˜20%). Bioactivity assays showed that LF-GAG could potently inhibit human heparanase (IC50, 0.10 μM). dLF-GAG and LF-3 were less potent but also active for heparanase inhibition. Structure-activity relationship analysis indicated that the chain length and sulfate substitution of LF-GAG are essential for its heparanase inhibitory activity.
Collapse
Affiliation(s)
- Zhicheng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lutan Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ronghua Yin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
24
|
Bougatef H, Krichen F, Capitani F, Amor IB, Gargouri J, Maccari F, Mantovani V, Galeotti F, Volpi N, Bougatef A, Sila A. Purification, compositional analysis, and anticoagulant capacity of chondroitin sulfate/dermatan sulfate from bone of corb (Sciaena umbra). Int J Biol Macromol 2019; 134:405-412. [PMID: 31071403 DOI: 10.1016/j.ijbiomac.2019.05.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 02/08/2023]
Abstract
Chondroitin sulfate/dermatan sulfate (CS/DS) were isolated and purified for the first time from the bone of corb (Sciaena umbra) (CBG) and their chemical composition and anticoagulant activity were assessed. Infrared spectrum and agarose-gel electrophoresis for extracted CS/DS were also investigated. The results showed that the purified CS/DS obtained at a yield of 10% contains about 31.28% sulfate and an average molecular mass of 23.35 kDa. Disaccharide analysis indicated that CBG was composed of monosulfated disaccharides in positions 6 and 4 of the N-acetylgalactosamine (8.6% and 40.0%, respectively) and disulfated disaccharides in different percentages. The charge density was 1.4 and the ratio of 4:6 sulfated residues was equal to 4.64. Chondroitinase AC showed that the purified CS/DS contained mainly 74% CS and 26% DS. Moreover, the new CS/DS extracted from bone of corb showed a strong anticoagulant effect through activated partial thrombosis time (aPTT), thrombin time (TT) and prothrombin time (PT). In fact, CBG prolonged significantly (p < 0.05), aPTT and PT about 2.62 and 1.26 fold, respectively, greater than that of the negative control at a concentration of 1000 μg/mL. However, TT assay of CBG was prolonged 3.53 fold compared with the control at 100 μg/mL. The purified CS/DS displayed a promising anticoagulant potential, which may be used as a novel and soothing drug.
Collapse
Affiliation(s)
- Hajer Bougatef
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia
| | - Fatma Krichen
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia
| | - Federica Capitani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ikram Ben Amor
- Regional Centre for Blood Transfusion Sfax, El-Ain Road Km 0.5, P.C. 3003 Sfax, Tunisia
| | - Jalel Gargouri
- Regional Centre for Blood Transfusion Sfax, El-Ain Road Km 0.5, P.C. 3003 Sfax, Tunisia
| | - Francesca Maccari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Veronica Mantovani
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Galeotti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ali Bougatef
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia
| | - Assaâd Sila
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia; Department of Life Sciences, Faculty of Sciences of Gafsa, University of Gafsa, 2100 Gafsa, Tunisia.
| |
Collapse
|
25
|
Cho YJ, Getachew AT, Saravana PS, Chun BS. Optimization and characterization of polysaccharides extraction from Giant African snail (Achatina fulica) using pressurized hot water extraction (PHWE). ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.bcdf.2019.100179] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Zheng W, Zhou L, Lin L, Cai Y, Sun H, Zhao L, Gao N, Yin R, Zhao J. Physicochemical Characteristics and Anticoagulant Activities of the Polysaccharides from Sea Cucumber Pattalus mollis. Mar Drugs 2019; 17:E198. [PMID: 30934819 PMCID: PMC6521006 DOI: 10.3390/md17040198] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/31/2022] Open
Abstract
Sulfated polysaccharides from sea cucumbers possess distinct chemical structure and various biological activities. Herein, three types of polysaccharides were isolated and purified from Pattalus mollis, and their structures and bioactivities were analyzed. The fucosylated glycosaminoglycan (PmFG) had a CS-like backbone composed of the repeating units of {-4-d-GlcA-β-1,3-d-GalNAc4S6S-β-1-}, and branches of a sulfated α-l-Fuc (including Fuc2S4S, Fuc3S4S and Fuc4S with a molar ratio of 2:2.5:1) linked to O-3 of each d-GlcA. The fucan sulfate (PmFS) had a backbone consisting of a repetitively linked unit {-4-l-Fuc2S-α-1-}, and interestingly, every trisaccharide unit in its backbone was branched with a sulfated α-l-Fuc (Fuc4S or Fuc3S with a molar ratio of 4:1). Apart from the sulfated polysaccharides, two neutral glycans (PmNG-1 & -2) differing in molecular weight were also obtained and their structures were similar to animal glycogen. Anticoagulant assays indicated that PmFG and PmFS possessed strong APTT prolonging and intrinsic factor Xase inhibition activities, and the sulfated α-l-Fuc branches might contribute to the anticoagulant and anti-FXase activities of both PmFG and PmFS.
Collapse
Affiliation(s)
- Wenqi Zheng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Lutan Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ying Cai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huifang Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Longyan Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Ronghua Yin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
27
|
Structural analysis and anticoagulant activities of three highly regular fucan sulfates as novel intrinsic factor Xase inhibitors. Carbohydr Polym 2018; 195:257-266. [DOI: 10.1016/j.carbpol.2018.04.117] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/31/2018] [Accepted: 04/27/2018] [Indexed: 11/20/2022]
|
28
|
Studies on European eel skin sulfated glycosaminoglycans: Recovery, structural characterization and anticoagulant activity. Int J Biol Macromol 2018; 115:891-899. [DOI: 10.1016/j.ijbiomac.2018.04.125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022]
|
29
|
Yang W, Cai Y, Yin R, Lin L, Li Z, Wu M, Zhao J. Structural analysis and anticoagulant activities of two sulfated polysaccharides from the sea cucumber Holothuria coluber. Int J Biol Macromol 2018; 115:1055-1062. [DOI: 10.1016/j.ijbiomac.2018.04.175] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/25/2018] [Accepted: 04/30/2018] [Indexed: 12/20/2022]
|
30
|
Cai Y, Yang W, Yin R, Zhou L, Li Z, Wu M, Zhao J. An anticoagulant fucan sulfate with hexasaccharide repeating units from the sea cucumber Holothuria albiventer. Carbohydr Res 2018; 464:12-18. [DOI: 10.1016/j.carres.2018.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/16/2022]
|
31
|
Structural characterization and in vitro antioxidant activities of chondroitin sulfate purified from Andrias davidianus cartilage. Carbohydr Polym 2018; 196:398-404. [PMID: 29891311 DOI: 10.1016/j.carbpol.2018.05.047] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/12/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022]
Abstract
Origin and manufacturing process are key factors affecting the biological activities of chondroitin sulfate (CS), which can be utilized as a nutraceutical in dietary supplements. Herein, we extracted and purified CS from the cartilage of artificially breeding Andrias davidianus (ADCS), i.e., Chinese giant salamander (CGS), one of the prospective functional food source materials in China. Low molecular weight CS (LMWADCS) was then prepared by free radical depolymerization of ADCS. High-performance gel permeation chromatography (HPGPC) analysis showed that the average molecular weight (Mw) of ADCS was 49.2 kDa, while the Mw of LMWADCS was 6.4 kDa. After the eliminative degradation of ADCS by chondroitinase ABC, strong anion-exchange high-performance liquid chromatography (SAX-HPLC) analysis showed that the disaccharide composition of ADCS was 14.6% ΔDi0S, 60.9% ΔDi6S and 24.5% ΔDi4S. Then, in vitro antioxidant assays were performed with ADCS, LMWADCS and CS from a commercial source. Our results showed that LMWADCS exerted the highest total antioxidant activity out of the total antioxidant capacity, including the capacity of scavenging DPPH radicals, hydroxyl radicals and superoxide anion radicals. From the results of this study, we can conclude that the Mw and composition of ADCS are different from those reported for bovine and shark CS, and LMWADCS can be utilized as a valuable and potential nutraceutical for the functional food industry.
Collapse
|