1
|
Lou Y, Xi J, Jiang S, Chu Y, Deng W, Bian H, Xu Z, Xiao H, Wu W. Nanocellulose-based membranes with pH- and temperature-responsive pore size for selective separation. Int J Biol Macromol 2024; 263:130176. [PMID: 38368977 DOI: 10.1016/j.ijbiomac.2024.130176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Smart gating membranes have drawn much attention due to the controllable pore structure. Herein, a smart gating membrane with dual responsiveness was prepared from bacteria cellulose (BC) grafted with pH- and temperature-responsive polymers. By external stimulation, the average pore size of the membrane can be controlled from 33.75 nm to 144.81 nm, and the pure water flux can be regulated from 342 to 2118 L·m-2·h-1 with remarkable variation in the pH range of 1-11 and temperature range of 20-60 °C. The adjustability of pore size is able to achieve the gradient selective separation of particles and polymers with different sizes. In addition, owing to the underwater superoleophobicity and the nanoscale pore structure, the membrane separation efficiencies of emulsified oils are higher than 99 %. Moreover, the controllable pore size endows the membrane with good self-cleaning performance. This nanocellulose-based smart gating membrane has potential applications in the fields of controllable permeation, selective separation, fluid transport, and drug/chemical controlled release systems.
Collapse
Affiliation(s)
- Yanling Lou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Xi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Shan Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Youlu Chu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Wen Deng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyang Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Weibing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Zhang X, Qiu H, Ismail BB, He Q, Yang Z, Zou Z, Xiao G, Xu Y, Ye X, Liu D, Guo M. Ultrasonically functionalized chitosan-gallic acid films inactivate Staphylococcus aureus through envelope-disruption under UVA light exposure. Int J Biol Macromol 2024; 255:128217. [PMID: 37992932 DOI: 10.1016/j.ijbiomac.2023.128217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
The significant threat of foodborne pathogens contamination has continuously promoted the development of efficient antimicrobial food packaging materials. Here, an antimicrobial film was prepared with gallic acid-grafted-chitosan (CS/GA) that obtained by a two-step ultrasound method. The resultant films exhibited good transparency, improved UV barrier performance, and enhanced mechanical strength. Specifically, with the grafting of 1.2 % GA, the UV blocking ability of CS/GA film at 400 nm was significantly increased by 19.7 % and the tensile strength was nearly two times higher than that of CS film. Moreover, the CS/GA films exhibited an inspiring photoactivated bactericidal ability under 400 nm UVA light irradiation that eradicated almost 99.9 % of Staphylococcus aureus (S. aureus) cells within 60 min. To gain more insights into the antibacterial mechanism, the treated S. aureus cells were further investigated by visualizing bacterial ultrastructure and analyzing membrane properties. The results pointed to the peptidoglycan layer as the primary action target when bacteria come into contact with CS/GA films. Afterward, the intracellular oxidative lesions, disrupted bacterial integrity, and disordered membrane functional properties collectively resulted in eventual cell death. The findings revealed the unique peptidoglycan targeting and membrane disruptive mechanisms of CS/GA films, confirming the application values in controlling foodborne pathogens.
Collapse
Affiliation(s)
- Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Han Qiu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Zhipeng Zou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Gengsheng Xiao
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yujuan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Guo M, Zhang X, Ismail BB, He Q, Yang Z, Xianyu Y, Liu W, Zhou J, Ye X, Liu D. Super Antibacterial Capacity and Cell Envelope-Disruptive Mechanism of Ultrasonically Grafted N-Halamine PBAT/PBF Films against Escherichia coli. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38910-38929. [PMID: 37550824 DOI: 10.1021/acsami.3c05378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Antibacterial materials are urgently needed to combat bacterial contamination, growth, or attachment on contact surfaces, as bacterial infections remain a public health crisis worldwide. Here, a novel ultrasound-assisted method is utilized for the first time to fabricate oxidative chlorine-loaded AH@PBAT/PBF-Cl films with more superior grafting efficiency and rechargeable antibacterial effect than those from conventional techniques. The films remarkably inactivate 99.9999% Escherichia coli and Staphylococcus aureus cells, inducing noticeable cell deformations and mechanical instability. The specific antibacterial mechanism against E. coli used as a model organism is unveiled using several cell envelope structural and functional analyses combined with proteomics, peptidoglycomics, and fluorescence probe techniques. Film treatment partially neutralizes the bacterial surface charge, induces oxidative stress and cytoskeleton deformity, alters membrane properties, and disrupts the expression of key proteins involved in the synthesis and transport of the lipopolysaccharide and peptidoglycan, indicating the cell envelope as the primary target. The films specifically target lipopolysaccharides, resulting in structural impairment of the polysaccharide and lipid A components, and inhibit peptidoglycan precursor synthesis. Together, these lead to metabolic disorders, membrane dysfunction, structural collapse, and eventual death. Given the films' antibacterial effects via the disruption of key cell envelope components, they can potentially combat a wide range of bacteria. These findings lay a theoretical basis for developing efficient antibacterial materials for food safety or biomedical applications.
Collapse
Affiliation(s)
- Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jianwei Zhou
- School of Mechatronics and Energy Engineering, NingboTech University, Ningbo 315100, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
4
|
He H, Teng H, An F, Wang Y, Qiu R, Chen L, Song H. Nanocelluloses review: Preparation, biological properties, safety, and applications in the food field. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Hong He
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch Fuzhou Fujian China
| | - Hui Teng
- College of Food Science and Technology Guangdong Ocean University Zhanjiang China
| | - Fengping An
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch Fuzhou Fujian China
| | - Yiwei Wang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian China
| | - Renhui Qiu
- College of Material Engineering Fujian Agriculture and Forestry University Fuzhou China
| | - Lei Chen
- College of Food Science and Technology Guangdong Ocean University Zhanjiang China
| | - Hongbo Song
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch Fuzhou Fujian China
| |
Collapse
|
5
|
Polysaccharide gum based network hydrogels for controlled drug delivery of ceftriaxone: Synthesis, Characterization and biomedical evaluations. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
Ishak KA, Safian NAM, Kamal SAA, Velayutham TS, Annuar MSM. Free-radical copolymerization of biological medium-chain-length poly-3-hydroxyalkanoate with poly-methyl acrylate under ultrasonication. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Miao Y, Peng W, Wang W, Cao Y, Li H, Chang L, Huang Y, Fan G, Yi H, Zhao Y, Zhang T. 3D-printed montmorillonite nanosheets based hydrogel with biocompatible polymers as excellent adsorbent for Pb(Ⅱ) removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Influence of TEMPO oxidation on the properties of ethylene glycol methyl ether acrylate grafted cellulose sponges. Carbohydr Polym 2021; 272:118458. [PMID: 34420718 DOI: 10.1016/j.carbpol.2021.118458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/25/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022]
Abstract
In this study, cellulose nanofibers (CNF) obtained via high-pressure microfluidization were 2,6,6-tetra-methylpiperidine-1-oxyl (TEMPO) oxidized (TOCNF) in order to facilitate the grafting of ethylene glycol methyl ether acrylate (EGA). FTIR and XPS analyses revealed a more efficient grafting of EGA oligomers on the surface of TOCNF as compared to the original CNF. As a result, a consistent covering of the TOCNF fibers with EGA oligomers, an increased hydrophobicity and a reduction in porosity were noticed for TOCNF-EGA. However, the swelling ratio of TOCNF-EGA was similar to that of original CNF grafted with EGA and higher than that of TOCNF, because the higher amount of grafted EGA onto oxidized cellulose and the looser structure reduced the contacts between the fibrils and increased the absorption of water. All these results corroborated with a good cytocompatibility and compression strength recommend TOCNF-EGA for applications in regenerative medicine.
Collapse
|
9
|
Promising grafting strategies on cellulosic backbone through radical polymerization processes – A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Kelly PV, Cheng P, Gardner DJ, Gramlich WM. Aqueous Polymer Modification of Cellulose Nanofibrils by Grafting-Through a Reactive Methacrylate Group. Macromol Rapid Commun 2020; 42:e2000531. [PMID: 33205506 DOI: 10.1002/marc.202000531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/14/2020] [Indexed: 12/21/2022]
Abstract
Modifying the surface of cellulose nanofibrils (CNFs) produced by mechanical refinement with a variety of polymer functional groups in an entirely water-based system is challenging because only surface hydroxyl groups are accessible. To address this limitation, an entirely water-based, polymer modification scheme is developed. CNFs are functionalized with a reactive methacrylate functional group followed by subsequent grafting-through polymerization. This modification worked with a variety of water-soluble and water-insoluble (meth)acrylates and (meth)acrylamides, grafting up to 45 wt% polymer on to the CNFs. The reaction conditions introducing the methacrylate functional group are adjusted to vary the degree of functionality. Soxhlet extraction of modified samples demonstrates that the reactive methacrylate group is necessary to facilitate polymer grafting. The degree of functionalization of the polymers is studied via quantitative transmission IR spectroscopy and the morphology of the resulting cellulose nanofibrils is studied via a combination of optical, scanning electron, and atomic force microscopy. High levels of polymer modification do not significantly affect the micrometer-scale fibril morphology.
Collapse
Affiliation(s)
- Peter V Kelly
- Department of Chemistry, University of Maine, Orono, ME, 04469, USA
| | - Peng Cheng
- Department of Chemistry, University of Maine, Orono, ME, 04469, USA
| | - Douglas J Gardner
- School of Forest Resources, University of Maine, Orono, ME, 04469, USA.,Advanced Structures and Composites Center, University of Maine, Orono, ME, 04469, USA
| | - William M Gramlich
- Department of Chemistry, University of Maine, Orono, ME, 04469, USA.,Advanced Structures and Composites Center, University of Maine, Orono, ME, 04469, USA
| |
Collapse
|
11
|
Hasan I, Khan RA, Alharbi W, Alharbi KH, Alsalme A. In Situ Copolymerized Polyacrylamide Cellulose Supported Fe 3O 4 Magnetic Nanocomposites for Adsorptive Removal of Pb(II): Artificial Neural Network Modeling and Experimental Studies. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1687. [PMID: 31775334 PMCID: PMC6955854 DOI: 10.3390/nano9121687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 11/17/2022]
Abstract
The inimical effects associated with heavy metals are serious concerns, particularly with respect to global health-related issues, because of their non-ecological characteristics and high toxicity. Current research in this area is focused on the synthesis of poly(acrylamide) grafted Cell@Fe3O4 nanocomposites via oxidative free radical copolymerization of the acrylamide monomer and its application for the removal of Pb(II). The hybrid material was analyzed using different analytical techniques, including thermogravimetric analysis (TGA), Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) analysis. The efficacious impact of variable parameters, including contact time, pH, material dose, initial Pb(II) concentration, and the temperature, was investigated and optimized using both batch and artificial neural networks (ANN). Surface digestion of metal ions is exceedingly pH-dependent, and higher adsorption efficiencies and adsorption capacities of Pb(II) were acquired at a pH value of 5. The acquired equilibrium data were analyzed using different isotherm models, including Langmuir, Freundlich, Temkin, and Redlich-Peterson models. In this investigation, the best performance was obtained using the Langmuir model. The maximum adsorption capacity of the material investigated via monolayer formation was determined to be 314.47 mg g-1 at 323 K, 239.74 mg g-1 at 313 K, and 100.79 mg g-1 at 303 K.
Collapse
Affiliation(s)
- Imran Hasan
- The Environmental Research Laboratory, Department of Chemistry, Chandigarh University, Mohali 140301, India
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Walaa Alharbi
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004 Abha, Saudi Arabia
| | - Khadijah H. Alharbi
- Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah 21911, Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
12
|
Mahmud S, Long Y, Abu Taher M, Xiong Z, Zhang R, Zhu J. Toughening polylactide by direct blending of cellulose nanocrystals and epoxidized soybean oil. J Appl Polym Sci 2019. [DOI: 10.1002/app.48221] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Sakil Mahmud
- Key Laboratory of Bio‐based Polymeric Materials Technology and Application of Zhejiang ProvinceNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo Zhejiang 315201 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yu Long
- Key Laboratory of Bio‐based Polymeric Materials Technology and Application of Zhejiang ProvinceNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo Zhejiang 315201 People's Republic of China
| | - Muhammad Abu Taher
- Key Laboratory of Bio‐based Polymeric Materials Technology and Application of Zhejiang ProvinceNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo Zhejiang 315201 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Zhu Xiong
- Key Laboratory of Bio‐based Polymeric Materials Technology and Application of Zhejiang ProvinceNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo Zhejiang 315201 People's Republic of China
| | - Ruoyu Zhang
- Key Laboratory of Bio‐based Polymeric Materials Technology and Application of Zhejiang ProvinceNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo Zhejiang 315201 People's Republic of China
| | - Jin Zhu
- Key Laboratory of Bio‐based Polymeric Materials Technology and Application of Zhejiang ProvinceNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo Zhejiang 315201 People's Republic of China
| |
Collapse
|
13
|
McKenzie TG, Karimi F, Ashokkumar M, Qiao GG. Ultrasound and Sonochemistry for Radical Polymerization: Sound Synthesis. Chemistry 2019; 25:5372-5388. [DOI: 10.1002/chem.201803771] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/22/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Thomas G. McKenzie
- Polymer Science Group, Department of Chemical and Biomolecular Engineering The University of Melbourne Melbourne 3010 Australia
| | - Fatemeh Karimi
- Polymer Science Group, Department of Chemical and Biomolecular Engineering The University of Melbourne Melbourne 3010 Australia
| | | | - Greg G. Qiao
- Polymer Science Group, Department of Chemical and Biomolecular Engineering The University of Melbourne Melbourne 3010 Australia
| |
Collapse
|
14
|
Li X, Hu Y. Luminescent films functionalized with cellulose nanofibrils/CdTe quantum dots for anti-counterfeiting applications. Carbohydr Polym 2019; 203:167-175. [DOI: 10.1016/j.carbpol.2018.09.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022]
|
15
|
Zhang NN, Bigdeli F, Miao Q, Hu ML, Morsali A. Ultrasonic-assisted synthesis, characterization and DNA binding studies of Ru(II) complexes with the chelating N-donor ligand and preparing of RuO2 nanoparticles by the easy method of calcination. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Sharma G, Kumar A, Naushad M, García-Peñas A, Al-Muhtaseb AH, Ghfar AA, Sharma V, Ahamad T, Stadler FJ. Fabrication and characterization of Gum arabic-cl-poly(acrylamide) nanohydrogel for effective adsorption of crystal violet dye. Carbohydr Polym 2018; 202:444-453. [DOI: 10.1016/j.carbpol.2018.09.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/26/2018] [Accepted: 09/03/2018] [Indexed: 01/07/2023]
|
17
|
Wang D, Li H, Liu Z, Tang Z, Liang G, Mo F, Yang Q, Ma L, Zhi C. A Nanofibrillated Cellulose/Polyacrylamide Electrolyte-Based Flexible and Sewable High-Performance Zn-MnO 2 Battery with Superior Shear Resistance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803978. [PMID: 30444576 DOI: 10.1002/smll.201803978] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/02/2018] [Indexed: 05/06/2023]
Abstract
There is a growing demand for flexible and wearable energy devices. How to enhance their tolerance to various mechanical stresses is a key issue. Bending, stretching, or twisting of flexible batteries has been widely researched. However, shear force is inevitably applied on the batteries during stretching, bending, and twisting. Unfortunately, thus far, research on analyzing shear resistance of solid batteries or even enhancing the shear tolerance has never been reported. Herein, a sewable Zn-MnO2 battery based on a nanofibrillated cellulose (NFC)/ployacrylamide (PAM) hydrogel, electrodeposited Zn nanoplates anode, and carbon nanotube (CNT)/α-MnO2 cathode is reported. The designed NFC/PAM hydrogel exhibits a relatively high mechanical strength with a large stretchability; the preformed NFC bone network stabilizes the large pores as channels for electrolyte diffusion. Furthermore, the effect of sewing on enhancing the shear resistance of the solid batteries is analyzed. The sewed Zn-MnO2 battery retains 88.5% of its capacity after 120 stitches, and withstands a large shear force of 43 N. The sewable and safe Zn-MnO2 is also able to be designed into a skirt and put on a toy as an energy source to power a red light emitting diode.
Collapse
Affiliation(s)
- Donghong Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Hongfei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zhuoxin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zijie Tang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Guojin Liang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Funian Mo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Qi Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Longtao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Chengdu Research Institute, City University of Hong Kong, Chengdu, 610000, P. R. China
| |
Collapse
|
18
|
Liu B, Zheng H, Wang Y, Chen X, Zhao C, An Y, Tang X. A novel carboxyl-rich chitosan-based polymer and its application for clay flocculation and cationic dye removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:107-115. [PMID: 29859427 DOI: 10.1016/j.scitotenv.2018.05.309] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Due to the complexity of contaminants, the effectiveness of traditional flocculants toward water purification is insufficient. To break the limitation, a novel polymer flocculant [chitosan grafted poly (acrylamide-itaconic acid), CS-g-P(AM-IA)] was synthesized via ultraviolet-initiated graft copolymerization reaction. Characterization results revealed that the graft copolymers were successfully synthesized and with rougher surface structure. The solubility of CS-g-P(AM-IA) and chitosan grafted polyacrylamide (CS-g-PAM) were greatly improved and they can dissolve in the wide pH range of 2.0-12.0. CaCl2 was used as a source of cation bridge to enhance the flocculation of kaolin particles, and its optimum dosage was 150 mg·L-1. At dosage of 30 mg·L-1 and pH of 5.0, the turbidity removal efficiency of CS-g-P(AM-IA) reached the maximum of 93.8%, whereas those of CS-g-PAM and CS were 96.7% and 76.9%, respectively. The patchwise adsorption of ionic groups embedded in the molecular chain on Ca2+-clay complexes took effect to generate flocs with larger particle size. Besides, the decolorization ability of cationic dyes by CS-g-P(AM-IA) was greatly enhanced due to the role of abundant carboxyl groups. In the crystal violet (CV) adsorption experiment, the maximum CV dye removal efficiency for CS-g-P(AM-IA) reached the maximum of 81.6% at dosage of 0.7 mg·mL-1 and pH of 9.0, while those for CS-g-PAM and CS were 51.7% and 36.5%, respectively.
Collapse
Affiliation(s)
- Bingzhi Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Huaili Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Yili Wang
- College of Environmental Science and Engineering, Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Xin Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Chuanliang Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yanyan An
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xiaomin Tang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China; Chongqing Key laboratory of Catalysis and Environmental New Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| |
Collapse
|