1
|
Li W, Zhao B, Liu X, He Z, Xie L, Qian Z. Purification, structural characterization, and in vitro immunomodulatory activity of a low-molecular-weight polysaccharide from cultivated Chinese cordyceps. Int J Biol Macromol 2025; 301:140394. [PMID: 39880243 DOI: 10.1016/j.ijbiomac.2025.140394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/10/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Cultivated Chinese cordyceps, an optimal substitute for the endangered wild resource, has recently been produced on a large scale. This work sought to explore the structural features and immunomodulatory activity of a novel low-molecular-weight polysaccharide (CSP1a, 15.7 kDa) isolated from cultivated Chinese cordyceps. CSP1a was prepared with a multi-step process that encompassed hot water extraction, alcohol precipitation, and column chromatographic purification. The monosaccharide composition, infrared spectroscopy, methylation, and nuclear magnetic resonance results revealed that CSP1a was highly branched (with a branching degree of 49.21 %) and primarily constituted of galactose (30.60 %), glucose (12.87 %) and mannose (56.53 %), comprising 13 distinct types of glycosidic linkage fragments. The main chain of CSP1a consisted of different mannose residues, with several exposed β-d-Galf-(1→ residues in various side chains. The results from scanning electron microscopy and Congo red analyses revealed that CSP1a possessed a reticulated porous chain conformation, which enhanced its bioavailability and demonstrated its potential as a carrier. In vitro immunological investigations demonstrated that CSP1a significantly promoted splenic lymphocyte proliferation. Additionally, CSP1a increased RAW264.7 cell proliferation, improved phagocytic capacity, and stimulated the secretion of nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in a dose-dependent manner. Collectively, CSP1a, a novel low-molecular-weight polysaccharide galactoglucomannan with a high branching degree and reticulated porous chain conformation, was isolated for the first time from cultivated Chinese cordyceps and showed promise as a potential immunomodulator or drug carrier. These findings contribute to elucidating the polysaccharide material basis for the immune activity of Chinese cordyceps and promote its industrial development as a functional food product.
Collapse
Affiliation(s)
- Wenqing Li
- Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan, Guangdong 523850, China.
| | - Biaoxi Zhao
- Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan, Guangdong 523850, China
| | - Xiaopeng Liu
- Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan, Guangdong 523850, China
| | - Zhuobin He
- Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan, Guangdong 523850, China
| | - Liqiao Xie
- Qilin Middle School, Nanshan Experimental Education Group, Shenzhen, Guangdong 518000, China
| | - Zhengming Qian
- Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan, Guangdong 523850, China; College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou, Hunan 423000, China.
| |
Collapse
|
2
|
Tan X, Chen P, Xiao L, Gong Z, Qin X, Nie J, Zhu H, Zhong S. Extraction, purification, structural characterization, and anti-inflammatory activity of a polysaccharide from Lespedeza formosa. Int J Biol Macromol 2025; 300:140154. [PMID: 39855506 DOI: 10.1016/j.ijbiomac.2025.140154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
A new acidic polysaccharide was extracted from Lespedeza Formosa (LF) using microwave-assisted extraction. After a progressive purification, Lespedeza Formosa polysaccharide (LFP-1) with 96.14 % purity and moderate molecular weight was obtained. Subsequently, LFP-1's structural analysis and in vitro anti-inflammatory experiments were performed. LFP-1 is composed of nine monosaccharides, mainly including 39.7 % glucose, 29.1 % galactose, and 19.9 % arabinose, with three branched chains of its structure. The diverse monosaccharides and branched chains provided the essential conditions for the anti-inflammatory effects of LFP-1, which diminished the release of nitric oxide (NO) and reactive oxygen species (ROS). And they altered the release of internal inflammatory factors in lipopolysaccharide (LPS)-treated macrophages. LFP-1 exerted intracellularly anti-inflammatory effects through the nuclear factor kappa-B (NF-κB) signal pathway. The discovery of LFP-1 opens up a new possibility for natural anti-inflammatory medicine.
Collapse
Affiliation(s)
- Xiao Tan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ping Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Liuyue Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiangxiang Qin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jing Nie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hua Zhu
- Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China..
| |
Collapse
|
3
|
Jia RB, Wu Y, Zhou Y, Zheng Q, Tan M. Structural characterization of an acidic polysaccharide from scagassum and its effect on shelf life of golden pompano fillets during cold storage. Int J Biol Macromol 2025; 298:140012. [PMID: 39828171 DOI: 10.1016/j.ijbiomac.2025.140012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/25/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
This study investigated the structural characteristics of an acidic polysaccharide (SCP-B) isolated from scagassum and the use of SCP-B coatings to enhance the quality and shelf life of golden pompano fillets. The results indicated that the main glucoside bond structure of SCP-B was →3)-α-Fucp-(1 → 4)-β-ManA-(1 → 3)-α-GulA-(1→, whereas the terminal residues of β-ManA-(1 → and α-Fucp-(1 → linked to O-2 of →2,3)-β-Fucp-(1→, and α-GulA-(1 → linked to O-2 of →2,3)-α-GulA-(1→. When the SCP-B concentration reached 3.13 μg/mL, it exerted a significant antimicrobial effect against Shewanella putrefaciens. This study demonstrated that SCP-B prolonged the shelf life of golden pompano fillets (≥2 d) by inhibiting the proliferation of microorganisms. Furthermore, SCP-B substantially inhibited discoloration, texture deterioration, and water loss, which displayed a concentration dependence. The SCP-B with antimicrobial activity could effectively extend the shelf life of cold stored fillets, which broadens the application of scagassum polysaccharide in the field of aquatic products.
Collapse
Affiliation(s)
- Rui-Bo Jia
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Yunmeng Wu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yingyu Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qianwen Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Mingtang Tan
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.
| |
Collapse
|
4
|
Golovchenko VV, Khlopin VA, Patova OA, Vityazev FV, Dmitrenok AS, Shashkov AS. Structural characterization of arabinogalactan-II and pectin from Urtica cannabina. Carbohydr Polym 2025; 348:122868. [PMID: 39562131 DOI: 10.1016/j.carbpol.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 11/21/2024]
Abstract
Comparative analysis of extracellular and cell wall glycans from Urtica cannabina leaves was performed using chemical methods, GC, GC-MS, 1D, and 2D NMR spectroscopy. The structures of extracellular AG-II and cell wall AG-II are similar. The units are typical for AG-IIs: β-GlcpA-4-OMe-(1→, Rhap-(1 → 4)-β-GlcpA-(1→, attached to β-Galp at O-6, as well as arabinan chains attached to β-Galp at O-3. A single Araf and a trisaccharide formed by 2,5-Araf and two terminal Araf form short arabinan side chains in AG-II. 1,5-arabinan with a backbone substituted by a single Araf at O-3 was identified only in the side chains of cell wall AG-II. The side chains can be attached to O-3 and O-6 of the same β-Galp to form a bifurcated AG side chain. The backbone of AG-II is formed by 1,6- rather than 1,3-linked Galp, although it does include some 1,3-Galp. The high content of 3,6-Galp shows the highly branched nature of the AG carbohydrate chains. From the cell wall, AGP was extracted together with pectin, the simultaneous elution of which from both DEAE-cellulose and Sepharose may indicate a link between them.
Collapse
Affiliation(s)
- Victoria V Golovchenko
- Institute of Physiology of Komi Science Centre of The Urals Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50, Pervomaiskaya str., 167982 Syktyvkar, Russia.
| | - Victor A Khlopin
- Institute of Physiology of Komi Science Centre of The Urals Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50, Pervomaiskaya str., 167982 Syktyvkar, Russia
| | - Olga A Patova
- Institute of Physiology of Komi Science Centre of The Urals Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50, Pervomaiskaya str., 167982 Syktyvkar, Russia
| | - Fedor V Vityazev
- Institute of Physiology of Komi Science Centre of The Urals Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50, Pervomaiskaya str., 167982 Syktyvkar, Russia
| | - Andrey S Dmitrenok
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prospect, Moscow 119991, Russia
| | - Alexander S Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prospect, Moscow 119991, Russia
| |
Collapse
|
5
|
Luo XY, Yu M, Li HJ, Kong XY, Zou ZM, Ye XC. Structural characteristics and potential antidepressant mechanism of a water-insoluble β-1,3-glucan from an edible fungus Wolfiporia cocos. Carbohydr Polym 2025; 348:122779. [PMID: 39562060 DOI: 10.1016/j.carbpol.2024.122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/30/2024] [Accepted: 09/18/2024] [Indexed: 11/21/2024]
Abstract
A water-insoluble β-1,3-glucan (Wβ) with a molecular weight of 8.12 × 104 Da was extracted from an edible fungus Wolfiporia cocos. Its backbone was composed of 1,3-β-linked Glcp branched at the C-2, C-4, and C-6 positions, connecting more 1,3-β-linked Glcp with a triple helical structure. Wβ effectively ameliorated depressive symptoms, abnormality of neurotransmitters and inflammatory factors in chronic unpredictable mild stress (CUMS)-induced rats. Wβ also altered the composition of gut microbiota, especially Romboutsia, norank_f_Muribaculaceae and Ruminococcus. Integration of untargeted and targeted metabolomics and Western blotting analysis suggested that the short-chain fatty acids (SCFAs) and tryptophan metabolites were the most important metabolites involved in Wβ mediation. Wβ significantly modulated the levels of 7 SCFAs and 7 tryptophan metabolites, as well as the protein expression of two related enzymes (indoleamine-2,3-dioxygenase: IDO; kynurenine-3-monooxygenase: KMO). Our results suggest that Wβ exerts its antidepressant effect by influencing neurotransmitters and inflammatory factors through interactions between the gut microbiota, SCFA and tryptophan metabolites. The findings offer new insights into water-insoluble polysaccharides, especially β-glucan in structure analysis and utilization, and provide evidence that Wβ, a novel glucan from the often-discarded water-insoluble part of Wolfiporia cocos, has potential application in antidepressant health products.
Collapse
Affiliation(s)
- Xin-Yao Luo
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meng Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui-Jun Li
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xin-Yu Kong
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhong-Mei Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xiao-Chuan Ye
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
6
|
Li JX, Xu DQ, Cui DX, Fu RJ, Niu ZC, Liu WJ, Tang YP. Exploring the structure-activity relationship of Safflower polysaccharides: From the structural characteristics to biological function and therapeutic applications. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119131. [PMID: 39577676 DOI: 10.1016/j.jep.2024.119131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/19/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Safflower, the florets of Carthamus tinctorius L., is a widely used traditional Chinese medicine for promoting circulation and improving dysmenorrhea. Polysaccharides is one of the principal water-soluble components in Safflower, which recently endowed with a variety of biological activities, thus making them have important research significance in the field of ethnopharmacology. AIM OF THE STUDY This review summarized the latest research progress on the preparation technology, structural characteristics, and pharmacological effects of Safflower polysaccharides. Moreover, by comparing the structural characteristic of Safflower polysaccharides, the potential structure-activity relationship of Safflower polysaccharides was also discussed. MATERIALS AND METHODS This article used keywords including Safflower polysaccharide, Carthamus tinctorius L polysaccharide, Safflower polysaccharide extraction and separation, Safflower polysaccharide structure, and Safflower polysaccharide anti-tumor effects to search for all relevant literature in PubMed, Web of Science, Google Scholar, ScienceDirect, CNKI and other databases from the establishment of the database to July 2024. RESULTS Summarizing current research findings, seventeen homogeneous Safflower polysaccharides have been obtained. Their structural characteristics, including molecular weights, monosaccharide composition, sugar residue types, glycosidic bond configuration, and the linkage sequence, were initially researched. In terms of pharmacological activity, Safflower polysaccharides exhibit a wide range of biological activities, including immune regulation, anti-tumor effects, and antioxidant properties. Furthermore, the structural characteristics of Safflower polysaccharides significantly influence its biological activities, encompassing factors such as molecular weight, monosaccharide composition, and degree of branching. CONCLUSION Safflower polysaccharides have seen significant advancements in recent years regarding preparation methods, structural characterization, and pharmacological studies. These achievements would provide a theoretical basis for the application of Safflower polysaccharide in the field of ethnopharmacology. While Safflower polysaccharides exhibit diverse biological activities and significant potential for development and utilization, further in-depth research is needed to enhance our understanding of their mechanisms of action and optimize their clinical applications.
Collapse
Affiliation(s)
- Jia-Xin Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Dong-Xiao Cui
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ze-Chen Niu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Wen-Juan Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
7
|
Ma S, Zhang R, Li L, Wang J, Zheng M, Guo X, Miao S, Quan W, Liu W, Shi X. Structural characterization of an apple polysaccharide and its anti-inflammatory effect through suppressing TLR4/NF-κB signaling. Int J Biol Macromol 2025; 296:139760. [PMID: 39800032 DOI: 10.1016/j.ijbiomac.2025.139760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
The current study isolated a homogeneous polysaccharide (AP) with a molecular weight of 7.9 kDa from the pomace of Fuji apples. AP was found to consists of rhamnose, galactose, arabinose, glucose, and galacturonic acid in a ratio of 4.3:5.2:2.6:1.0:11.9. Ten sugar residues in AP, including T-Araf, 1,5-Araf, 1,2-Rhap, 1,3-Rhap, T-Galp, 1,3,5-Araf, 1,4-Galp, 1,4-GalpA, 1,6-Glcp, and 1,3,6-Glcp were identified using methylation and GC-MS. Combined with 1D and 2D NMR, it was further revealed that AP possesses a backbone of α-Galp-(1 → [3)-α-Rhap-(1 → 2)-α-Rhap-(1]2 → [4)-α-GalpA-(1]10 → 3,6)-β-Glcp-(1 → 6)-β-Glcp-(1 → 4)-β-Galp-(1 → 4)-β-Galp-(1→, with two branches: α-Araf-(1 → 5)-α-Araf-(1 → 5)-α-Araf-(1 → 3,5)-α-Araf-(1 → 6)-β-Glcp-(1→ and →3)-α-Rhap-(1 → 5)-α-Araf-(1 → 3,6)-β-Glcp-(1→ bonded to the C-3 of β-1,3,6-Glcp. AP significantly inhibited the release of cytokines and inflammatory mediators, such as TNF-α, IL-1β, IL-6, reactive oxygen species (ROS) and nitric oxide (NO). Western blotting results indicated that AP treatment markedly downregulated iNOS and NF-κB protein expression in LPS-induced RAW264.7 cells, leading to decreased levels of phosphorylated proteins (p-NF-κB and p-ΙκΒα) and preventing the degradation of ΙκΒα. Furthermore, in LPS-induced RAW264.7 macrophages, AP inhibited the expression of TLR4 protein, which in turn inhibited the activity of the NF-κB pathway. The findings demonstrated that AP exhibits anti-inflammatory properties in vitro by targeting the TLR4/NF-κB signaling pathway, thus impeding the nuclear translocation of NF-κBp65, suppressing the expression of related pro-inflammatory factors.
Collapse
Affiliation(s)
- Shanbo Ma
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China; Innovation Research Institute, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Rui Zhang
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Long Li
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Jin Wang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Meiling Zheng
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 710426, PR China
| | - Xiaodi Guo
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Shan Miao
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Wei Quan
- Department of Pharmacy, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, PR China.
| | - Wenjuan Liu
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 710426, PR China.
| | - Xiaopeng Shi
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China.
| |
Collapse
|
8
|
Olawuyi IF, Heo E, Jeong M, Kim JH, Park JJ, Chae J, Gwon S, Do Lee S, Kim H, Ojulari OV, Song YB, Lee BH, Gu BB, Kim SR, Lee JH, Lee W, Hwang JS, Nam JO, Hahn D, Byun S. Acidic polysaccharide from the edible insect Protaetia brevitarsis seulensis activates antiviral immunity to suppress norovirus infection. Carbohydr Polym 2025; 347:122587. [PMID: 39486915 DOI: 10.1016/j.carbpol.2024.122587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 11/04/2024]
Abstract
Edible insects are gaining attention as potential nutraceutical sources with immunomodulatory properties. This study reports purification and structural characterization of polysaccharides from Protaetia brevitarsis seulensis larvae (PBSL) with antiviral activity against murine norovirus. Four polysaccharide fractions purified from PBSL water extracts exhibited varying molecular weights (458.5-627.3 kDa) and monosaccharide compositions, including glucose (42.4-99.2 %), galactose (5.9-13.9 %), rhamnose (0.7-18.7 %), arabinose (3.8-5.4 %), and glucuronic acid (0-15.3 %). The immunomodulatory activity, assessed by interferon-β (IFN-β) production, positively correlated with higher galactose, mannose, rhamnose, and uronic acid contents. Among the fractions, PBS-P, eluted with 0.5 M NaCl, demonstrated superior in vitro antiviral activity with IFN-β production exceeding 8-fold compared to other fractions and 82-fold higher than PBSL water extract, confirming it as the main antiviral active component. Structural analysis revealed PBS-P backbone consisted of α-(1 → 4)-D-Glcp, α-(1 → 4,6)-D-Glcp, α-(1 → 4)-D-GlcpA, α-(1 → 3)-D-Galp and α-(1 → 4)-D-Manp residues, and branched chains of α-D-Glcp-(1→, and α-L-Arap-(1 → 2)-α-L-Rhap-(1 → residues. PBS-P suppressed norovirus replication by stimulating IFN-β, TNF-α, and activating NF-κB, STAT1/2, and TBK1-IRF3 pathways, and its oral administration reduced viral loads in infected mice intestines. This study provides the first report on the detailed structural feature of polysaccharide from an edible insect and its antiviral mechanism, highlighting its potential as a new antiviral agent.
Collapse
Affiliation(s)
- Ibukunoluwa Fola Olawuyi
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea; School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun Heo
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Minju Jeong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Hwan Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Jin Park
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Jongbeom Chae
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Subin Gwon
- Department of Integrative Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seong Do Lee
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hunseong Kim
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Oyindamola Vivian Ojulari
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young-Bo Song
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Bon Bin Gu
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soo Rin Kim
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea; School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Joon Ha Lee
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55362, Republic of Korea
| | - Wonyoung Lee
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea; School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | | | - Ju-Ock Nam
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea; School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dongyup Hahn
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Integrative Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Sanguine Byun
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
9
|
Yang J, Zhang L, Wang Y, Wang N, Wei H, Zhang S, Ding Q, Sun S, Ding C, Liu W. Dihydromyricetin-loaded oxidized polysaccharide/L-arginine chitosan adhesive hydrogel promotes bone regeneration by regulating PI3K/AKT signaling pathway and MAPK signaling pathway. Carbohydr Polym 2024; 346:122614. [PMID: 39245525 DOI: 10.1016/j.carbpol.2024.122614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Bone defects caused by trauma, infection and congenital diseases still face great challenges. Dihydromyricetin (DHM) is a kind of flavone extracted from Ampelopsis grossedentata, a traditional Chinese medicine. DHM can enhance the osteogenic differentiation of human bone marrow mesenchymal stem cells with the potential to promote bone regeneration. Hydrogel can be used as a carrier of DHM to promote bone regeneration due to its unique biochemical characteristics and three-dimensional structure. In this study, oxidized phellinus igniarius polysaccharides (OP) and L-arginine chitosan (CA) are used to develop hydrogel. The pore size and gel strength of the hydrogel can be changed by adjusting the oxidation degree of oxidized phellinus igniarius polysaccharides. The addition of DHM further reduce the pore size of the hydrogel (213 μm), increase the mechanical properties of the hydrogel, and increase the antioxidant and antibacterial activities of the hydrogel. The scavenging rate of DPPH are 72.30 ± 0.33 %, and the inhibition rate of E.coli and S.aureus are 93.12 ± 0.38 % and 94.49 ± 1.57 %, respectively. In addition, PCAD has good adhesion and biocompatibility, and its extract can effectively promote the osteogenic differentiation of MC3T3-E1 cells. Network pharmacology and molecular docking show that the promoting effect of DHM on osteogenesis may be achieved by activating the PI3K/AKT and MAPK signaling pathways. This is confirmed through in vitro cell experiments and in vivo animal experiments.
Collapse
Affiliation(s)
- Jiali Yang
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Lifeng Zhang
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yue Wang
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Hewei Wei
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
10
|
Wang X, Gan J, Han M, Wu Y, Liu L, Zhao Y, Zhao R. Comparison of structure and the synergistic anti-hepatocellular carcinoma effect of three polysaccharides from vinegar-baked Radix Bupleuri. Int J Biol Macromol 2024; 282:136755. [PMID: 39442850 DOI: 10.1016/j.ijbiomac.2024.136755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/27/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Three polysaccharides from Vinegar-baked Radix Bupleuri (VR) and their combined effects were studied. VRP3-3 was a branched polysaccharide with a molecular weight (Mw) of 16.05 kDa characterized by 1,5 linked-α-Araf, 1,2,4 linked-α-Rhap and 1,4 linked-α-GalpA as main chain with a small amount of esterification and acetylation groups. And side chains were connected to the O-3 of Araf, O-4 of Rhap. VRP2-3 had a Mw of 95.35 kDa, its backbone comprised of 1,2 linked-α-Galp, 1,4 linked-β-GalpA(O-Ac), 1,2,4 linked-α-Rhap and 1,5 linked α-Araf. The residues of 1,4 linked-β-Galp,1,3 linked-β-Galp and 1,6 linked-β-D-Galp were connected at O-4 of α-L-Rhap and O-3 of α-L-Araf as its side chain. VRP2-4 was a pectin polysaccharide with a Mw of 57.90 kDa. Its main chain was constituted of 1,4 linked-α-Galp, 1,4 linked-α-GalpA(OMe), 1,4 linked-α-GalpA and 1,2,4 linked-α-Rhap, with some acetylation. As the major side chain, 1,5 linked-α-Araf was connected to O-4 of α-Rhap, a small amount of t-α-Galp and t-α-Manp were also included. VRP3-3 showed superior synergistic effect in combination with paclitaxel, methotrexate and cisplatin than the other two polysaccharides. The VR polysaccharide with a ~16 kDa molecular weight, a larger polymerization degree of arabinan in the backbone and the triple helix structure are the key structures for activity. Together, our findings clarify the pharmacodynamic basis of VR and provide promising adjuvants for Hepatocellular Carcinoma (HCC) chemotherapy.
Collapse
Affiliation(s)
- Xiaoshuang Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China; The Second Clinical Medical School of Guangzhou University of Chinese Medicine, China
| | - Jianfeng Gan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China; The Second Clinical Medical School of Guangzhou University of Chinese Medicine, China
| | - Minghui Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China; The Second Clinical Medical School of Guangzhou University of Chinese Medicine, China
| | - Yayun Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China
| | - Lijuan Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China; The Second Clinical Medical School of Guangzhou University of Chinese Medicine, China
| | - Ya Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Ruizhi Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, China.
| |
Collapse
|
11
|
Chen P, Sang E, Chen H, Meng Q, Liu H. Effects of different extraction temperatures on the structural characteristics and antioxidant activity of polysaccharides from dandelion leaves. Int J Biol Macromol 2024; 283:137726. [PMID: 39551315 DOI: 10.1016/j.ijbiomac.2024.137726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/26/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Dandelion polysaccharides contribute to a variety of biological activities. This study evaluated the effect of different extraction temperatures (4 °C and 80 °C) on the structural characteristics and antioxidant activity of dandelion leaf polysaccharides (DLP). The findings demonstrated that the extraction efficiency improved at the higher temperature, while molecular weight exist a trend of degradation with increasing extraction temperature. Ion chromatography (IC) analysis indicated that the polysaccharides DLP4 and DLP80 were structurally complex heteropolysaccharides mainly composed of galactose, arabinose, glucose and mannose, with galactose and arabinose dominating. FT-IR and methylation analysis revealed that DLP4 and DLP80 had similar chemical structures and branches. DLP4 contained a higher amount of 6-Galactose. Microstructure analysis showed that heat treatment caused conformational changes in DLP4 and DLP80. Both had excellent free radical scavenging ability including DPPH·, ABTS·+, OH· and reducing power. The Reactive Oxygen Species assay indicated that the protective effect of DLP4 against H2O2-induced oxidative damage in vitro was stronger than that of DLP80. Superoxide dismutase (SOD) and malondialdehyde (MDA) measurements also confirmed that the antioxidant effect of DLP4 was more prominent. Overall, low temperature extracted DLP can be used as an antioxidant in the areas of food, medicine and biomaterials.
Collapse
Affiliation(s)
- Pei Chen
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China..
| | - Ee Sang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China..
| | - Huanhuan Chen
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China..
| | - Qi Meng
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China..
| | - Huiping Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, PR China.
| |
Collapse
|
12
|
Zhao Z, Wu J, Xu X, He Z, Wang X, Su J, Mayo KH, Sun L, Cui L, Zhou Y. Oligosaccharides from Stellaria dichotoma L. var. lanceolate bind to galectin-3 and ameliorate effects of colitis. Carbohydr Polym 2024; 345:122551. [PMID: 39227094 DOI: 10.1016/j.carbpol.2024.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/14/2024] [Accepted: 07/27/2024] [Indexed: 09/05/2024]
Abstract
Even though Stellaria dichotoma L. var. lanceolate (S. dichotoma) is a well-known medicinal plant in the family Caryophyllaceae, its oligosaccharides remain unexplored in terms of their potential as bioactive agents. Here, we isolated a mixture of oligosaccharides from S. dichotoma (Yield: 12 % w/w), that are primarily non-classical raffinose family oligosaccharides (RFOs). Nine major oligosaccharides were purified and identified from the mixture, including sucrose, raffinose, 1-planteose, lychnose, stellariose, along with four new non-classical RFOs. Two of the four new oligosaccharides are linear hexose pentamers with α-galactosyl extensions on their lychnose moieties, and the other two are branched hexose hexamers with α-galactosyl extensions on their stellariose groups. Their interactions with galectin-3 (Gal-3) revealed significant binding, with the terminal galactose providing enhanced affinity for the lectin. Notably, Gal-3 residues Arg144, His158, Asn160, Arg162, Asn174, Trp181, Glu184 and Arg186 coordinate with the lychnose. In vivo studies using the dextran sulfate sodium (DSS) mouse model for colitis demonstrated the ability of these carbohydrates in mitigating ulcerative colitis (UC). Overall, our study has provided structural information and potential applications of S. dichotoma oligosaccharides, also offers new approaches for the development of medicinal oligosaccharides.
Collapse
Affiliation(s)
- Zihan Zhao
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jing Wu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xuejiao Xu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Zhen He
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiang Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jiyong Su
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, 6-155 Jackson Hall, University of Minnesota, 321 Church Street, Minneapolis, MN 55455, USA
| | - Lin Sun
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Liangnan Cui
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
13
|
Yao L, Zhu L, Chen C, Wang X, Zhang A, Gao S, Wu J, Qin L. A systematic review on polysaccharides from fermented Cordyceps sinensis: Advances in the preparation, structural characterization, bioactivities, structure-activity relationships. Int J Biol Macromol 2024; 282:137275. [PMID: 39510481 DOI: 10.1016/j.ijbiomac.2024.137275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Cordyceps sinensis (Berk.) Sacc. (Ophiocordyceps sinensis) is an edible and medicinal fungus used as a natural superior tonic. It is considered as scarce fungus with a high market demand. Therefore, as an alternative, fermentation technology has been proposed to produce artificial cordyceps (fermented C. sinensis) to address the shortage of cordyceps resources for industrialization and commercial utilization. Numerous studies have proved that polysaccharides are the important bioactive substances in the fermented C. sinensis, but the research data lack systematic review. In this review, current relevant research data regarding the preparation (including extraction, fractionation, and purification), structural characterization (including molecular weight, monosaccharide composition, glycosidic bond type, structural and conformational features), bioactivities, structure-activity relationships (SAR) and applications of polysaccharides from different sources of fermented C. sinensis last decade were analyzed and discussed. The findings highlight that the most commonly employed methods for preparing fermented Cordyceps sinensis polysaccharides (FCSPs) involve water extraction and alcohol precipitation, combing with sophisticated chromatographic techniques such as ion exchange and gel permeation chromatography. From these processes, 34 different polysaccharides were identified including 5 glucans and 7 heteropolysaccharides that were thoroughly characterized. FCSPs exhibited a broad spectrum of biological activities, ranging from antioxidant and renal protective effects to immunomodulatory, antitumor, and hypolipidemic properties. The structure-activity relationships (SAR) demonstrated that key factors, such as molecular weight, monosaccharide composition and glucosidic bond types, play critical roles in determining the bioactivity of FCSPs. Nevertheless, there remain unknown elements that continue to influence SAR, leaving room for further exploration. Furthermore, the limitation of existing studies and some new perspectives for future investigations on FCSPs were proposed.
Collapse
Affiliation(s)
- Lumeng Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Lili Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Changlun Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xingxing Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Anna Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Siqi Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Jianjun Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| |
Collapse
|
14
|
Wei Y, Jiang Y, Tong L, Fu H, Wang M, Bai G, Guo S, Su S, Pan Y, Zhang X, Duan JA, Zhang F. Valorizing Lycii fructus waste residue into polysaccharide-rich extracts: Extraction methodologies, physicochemical characterization, in vitro activities and economic feasibility. Int J Biol Macromol 2024; 279:135204. [PMID: 39218182 DOI: 10.1016/j.ijbiomac.2024.135204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The high polysaccharide content of Lycii fructus agri-food waste should be reclaimed for value liberation from both environmental and economic perspectives. In this study, waste from L. fructus pigment products was valorized on a bench scale by upcycling into active polysaccharide-rich extracts. The methodological feasibility of polysaccharide recovery from L. fructus waste was evaluated using sequential extraction techniques. Three fractions LFP-30, LFP-100, and LFP-121, were obtained under stepwise increases in temperature and pressure. Highly heterogeneous xyloglucan (XG)-pectin macromolecules composed of linear homogalacturonan (HG) and alternating intra-RG-I-linkers, with topological neutral branches and XG participation, were predominant among the L. fructus polysaccharides (LFPs). Antioxidant activities in LFPs were unaffected by waste resources and severe extraction methodology conditions. Additionally, the direct investment potential of polysaccharide recovery was evaluated for full-scale implementation. This study demonstrated the necessity and feasibility of extracting bioactive polysaccharides with potential applications from L. fructus waste, and provided a sustainable strategy for transforming L. fructus waste disposal problems into value-added products using cost-effective methodologies.
Collapse
Affiliation(s)
- Yan Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yinxiu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Limei Tong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Huanzhe Fu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Biological Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Mingxuan Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking 100050, PR China
| | - Gengliang Bai
- School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yang Pan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xia Zhang
- School of Pharmacy, Key Laboratory of Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750021, PR China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Fang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
15
|
Gao M, Zha Y, Sheng N, Cao Y, Yao W, Bao B, Shan M, Cheng F, Yu S, Zhang Y, Geng T, Liu S, Yan H, Chen P, Zhang J, Zhang L. Integrated transcriptomics and lipidomics reveals protective effect in vascular endothelial barrier of a polysaccharide from Typhae Pollen. Int J Biol Macromol 2024; 282:136817. [PMID: 39490477 DOI: 10.1016/j.ijbiomac.2024.136817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Endothelial cell dysfunction caused by inflammation and even vascular leakage are important manifestations of blood stasis syndrome (BSS). Reversible regulation of vascular integrity to cure BSS has attracted considerable interest. Herein, a novel acidic polysaccharide (TPP-4) was purified and characterized from Typhae Pollen, a typical traditional Chinese medicine for treating BSS, especially for bleeding caused by blood stasis. A series of structural characterization methods, including spectroscopic methods (FT-IR and UV), chromatographic methods (HPGPC, HPAEC-PDA and GC-MS) and NMR, have been used to reveal the fine structure of TPP-4. TPP-4 was a homogeneous heteropolysaccharide comprised with RG-I backbone. TPP-4 showed fantastic activities in vascular integrity regulation both in vitro (HUVECs) and in vivo (zebrafish). Transcriptomics revealed that SOX7 and lipid metabolism were the potential targets. Lipidomics showed that TPP-4 could regulate lipid metabolism disorders caused by vascular inflammation, particularly affecting LPE levels. The above regulatory effects were furtherly demonstrated to be related with VEGFA/PI3K/mTOR signaling pathway through various molecular biological experiments.
Collapse
Affiliation(s)
- Mingliang Gao
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yuling Zha
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nian Sheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yudan Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Beihua Bao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Fangfang Cheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Sheng Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yi Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ting Geng
- Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China.
| | - Shengjin Liu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Peidong Chen
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Juanjuan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
16
|
Cao L, Liu W, Jing H, Yasen A, Wang J, Wang Y, Yang Z, Yili A, Nuerxiati R, Weng Z. Ultrasound-assisted low-temperature extraction of polysaccharides from Lavandula angustifolia Mill.: optimization, structure characterization, and anti-inflammatory activity. Int J Biol Macromol 2024; 282:136764. [PMID: 39442834 DOI: 10.1016/j.ijbiomac.2024.136764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/27/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Lavandula angustifolia Mill. is a traditional Chinese medicinal herb with high economic and pharmacological value. In this study, we optimized the conditions for low-temperature ultrasound-assisted extraction of L. angustifolia Mill. polysaccharides using response surface methodology (RSM), and two homopolysaccharides LAPW1 (33.6 kDa) and LAPS1 (95.9 kDa) were obtained after isolation and purification by DEAE-650 M and Superdex™ 200 chromatography. The primary structure of LAPS1 was determined using "partial acid hydrolysis, methylation, two-dimensional (2D NMR) spectroscopy" as the core method. The results revealed that LAPS1 is a heteropolysaccharide whose main chain consists of [-1)-β-Galp-(6→1)-α-Araf-(5→]3-1-α-Araf-(3→1)-α-Araf-(5→[1)-β-Galp-(6→1)-α-Araf-(5→]3-1-α-Araf-(5→1)-α-Araf-(5→[-1)-β-Galp-(6→1)-α-Araf-(5→]3. In vitro experiments revealed that LAPW1 and LAPS1 significantly reduced the production of the inflammatory cytokines Interleukin-1β (IL-1β), Interleukin-6 (IL-6), and Tumor Necrosis Factor (TNF), as well as the expression of Nitric Oxide Synthase 2 (NOS2) and release of nitric oxide (.NO) free radical in the inflammatory model established by lipopolysaccharide (LPS) stimulated RAW264.7. Besides, the zebrafish inflammatory model, stimulated by CuSO4, was employed to assess the impact of polysaccharides on neutrophil migration, indicating a notable decrease in zebrafish neutrophils and confirming their potential anti-inflammatory activity. These results indicate that polysaccharides from L. angustifolia Mill. be used in the development of functional foods and pharmaceutical products.
Collapse
Affiliation(s)
- Lei Cao
- Key Lab of Natural Product Chemistry and Application, School of Chemistry and Chermical Engineering, Yili Normal University, Yining 835000, China
| | - Wei Liu
- Key Lab of Natural Product Chemistry and Application, School of Chemistry and Chermical Engineering, Yili Normal University, Yining 835000, China
| | - Ha Jing
- Xinjiang eprhan Spice Co., Ltd. No, Kekedala 835219, China
| | - Ayzukram Yasen
- Key Lab of Natural Product Chemistry and Application, School of Chemistry and Chermical Engineering, Yili Normal University, Yining 835000, China
| | - Junlong Wang
- Key Lab of Natural Product Chemistry and Application, School of Chemistry and Chermical Engineering, Yili Normal University, Yining 835000, China
| | - Yufan Wang
- Key Lab of Natural Product Chemistry and Application, School of Chemistry and Chermical Engineering, Yili Normal University, Yining 835000, China
| | - Zhiyan Yang
- Key Lab of Natural Product Chemistry and Application, School of Chemistry and Chermical Engineering, Yili Normal University, Yining 835000, China
| | - Abulimiti Yili
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Rehebati Nuerxiati
- Key Lab of Natural Product Chemistry and Application, School of Chemistry and Chermical Engineering, Yili Normal University, Yining 835000, China.
| | - Zebin Weng
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
17
|
Amin MNG, Mischnick P, Rosenau T, Böhmdorfer S. Refined linkage analysis of the sulphated marine polysaccharide fucoidan of Cladosiphon okamuranus with a focus on fucose. Carbohydr Polym 2024; 342:122302. [PMID: 39048211 DOI: 10.1016/j.carbpol.2024.122302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 07/27/2024]
Abstract
Methylation followed by depolymerization and gas chromatography (GC) is an effective methodology for the linkage analysis of polysaccharides, including fucoidan, a sulphated algal polysaccharide. However, this sample material demands attention to experimental details to prevent aberrations in the analytical result. The use of deficient bases for methylation, the presence of water, analyte degradation during hydrolysis, and coelution of the target analytes during gas chromatography create doubts about published results. We therefore investigated critical parameters of the method and carefully optimized the steps of the protocol to ensure the integrity of the results for the fucose monomers. Fucoidan from Cladosiphon okamuranus was used as reference sample to determine the glycosidic bonds, and sulphate positions in the monomer. Fucoidan in protonated form was methylated in a strictly water-free environment using lithium dimsyl as base and methyl iodide for methylation. The methylated polymer was isolated by solid phase extraction, which was crucial to recover also the highly sulfated fraction. Hydrolysis was conducted with trifluoroacetic acid. To separate all target analytes in GC-FID/MS, a stationary phase with high cyanopropyl content (HP-88) was required, as the commonly employed phenyl siloxane phases result in co-elution, which distorts the result severely.
Collapse
Affiliation(s)
- Muhamad Nur Ghoyatul Amin
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria; Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia.
| | - Petra Mischnick
- Institute of Food Chemistry, Faculty of Life Science, Technische Universität Braunschweig, Schleinitzstr. 20, 38106 Braunschweig, Germany.
| | - Thomas Rosenau
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Stefan Böhmdorfer
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| |
Collapse
|
18
|
Chen M, Li D, Zhang T, Sun Y, Liu R, Sun T. A mini-review of isolation, purification, structural characteristics and bioactivities of polysaccharides from Aralia elata (Miq.) Seem. Int J Biol Macromol 2024; 277:134572. [PMID: 39122067 DOI: 10.1016/j.ijbiomac.2024.134572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/20/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
In recent years, the isolation, purification, structural characterization of plant polysaccharides from natural resources have arrested widespread attention. Aralia elata (Miq.) Seem (A. elata) belongs to the Aralia genus of the Araliaceae family, which is one of the most popular edible mountain vegetables in East Asia. A. elata has been widely distributed in China, particularly in Liaoning, Jilin, and Heilongjiang provinces in northeast China, in which it has been used as a traditional herbal medicine for thousands of years to treat various diseases, such as hepatitis and rheumatoid arthritis. A. elata polysaccharides (AEPs) are one of the major active ingredients of A. elata, the monosaccharide composition of which consist primarily of Gal, Glc, Man, Ara, and Rha, with molecular weights ranging from 1.56 × 104 Da to 1.12 × 105 Da. AEPs have attracted worldwide attention owing to their various biological activities, including antioxidant activity, antitumor activity and hepatoprotection. The present review aims to comprehensively summarize the research advances on the polysaccharides isolated from A. elata, including the extraction, separation, physical-chemical properties, structural characteristics, and bioactivities over the past few decades. This review would establish a solid foundation for further development and application in the field of AEPs.
Collapse
Affiliation(s)
- Mengjie Chen
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin, 150076, PR China
| | - Dan Li
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin, 150076, PR China
| | - Ting Zhang
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin, 150076, PR China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin, 150076, PR China.
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin, 150076, PR China.
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
19
|
Li MY, Deng HT, Ye MZ, Lu LL, Chen HY, Rui W. Structural characterisation of a novel polysaccharide from pseudostellaria heterophylla fibrous root and its anti-inflammatory and antioxidant activities in vitro. Nat Prod Res 2024:1-8. [PMID: 39246010 DOI: 10.1080/14786419.2024.2398203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024]
Abstract
A novel water-soluble polysaccharide, named PF90-1, with a molecular weight of 1.8 kDa, was isolated and purified from the fibrous root of Pseudostellaria heterophylla. PF90-1 is composed of Gal, Glc and Man in a molar ratio of 73.61: 19.11: 7.28. Methylation analysis revealed that PF90-1 comprises of T-Galp, 1,4-Galp, 1,3,4-Galp, 1,2,3,4-Galp, T-Glcp and 1,3-Manp in a molar ratio of 37.89: 9.37: 17.01: 12.01: 15.88: 7.83. Bioactivity experiments showed that PF90-1 significantly improved lipopolysaccharide (LPS)-induced inflammatory damage in RAW264.7 cells by inhibiting nitric oxide (NO) production and reducing the levels of pro-inflammatory factors (IL-1β and TNF-α). In addition, PF90-1 exhibited strong antioxidant effects, protecting PC12 cells from H2O2-induced oxidative damage. This findings suggest that PF90-1 holds potential therapeutic value for the treatment of inflammatory and oxidative injuries.
Collapse
Affiliation(s)
- Meng-Yu Li
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Hai-Tian Deng
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Ming-Zhu Ye
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Li-Li Lu
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Hong-Yuan Chen
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, P. R. China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, P.R. China
- Guangdong Cosmetics Engineering & Technology Research Center, Guangzhou, P.R. China
| | - Wen Rui
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, P.R. China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| |
Collapse
|
20
|
Wang X, Lu Y, Li M, Xia X, Jin C, Ding K, Chen D. Structural characterization and Bacteroides proliferation promotion activity of a novel homogeneous arabinoglucuronoxylan from Commelina communis L. Bioorg Chem 2024; 153:107790. [PMID: 39241582 DOI: 10.1016/j.bioorg.2024.107790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Commelina communis L., a functional food and herbal plant in Asia, has been used against obesity, diabetes, and infections for centuries. A growing body of studies has demonstrated that indigestible polysaccharides are significant in obesity management. However, the structures and bioactivities of homogeneous polysaccharides from C. communis remain unclear. This study presented the structural characterization, simulated digestion, and human gut Bacteroides proliferation promotion activity of a novel homogeneous polysaccharide (CCB-3) from C. communis. The results showed that CCB-3 was an arabinoglucuronoxylan, primarily composed of arabinose, galactose, xylose, glucuronic acid (GlcA), and 4-O-methyl GlcA with a molecular weight (Mw) of 58.8 kDa. Following a 6-hour exposure to simulated gastrointestinal fluid, the Mw of CCB-3 remained unchanged, revealing that CCB-3 was an indigestible polysaccharide. Notably, CCB-3 could promote the proliferation of B. thetaiotaomicron, B. ovatus, and B. cellulosilyticus and produce short-chain fatty acids (SCFAs) and 1,2-propanediol. These findings might shed light on the discovery of polysaccharide-based leading compounds from C. communis against obesity.
Collapse
Affiliation(s)
- Xiaojiang Wang
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhang Heng Road, Shanghai 201203, China; Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhang Heng Road, Shanghai 201203, China.
| | - Meixia Li
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| | - Xiao Xia
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhang Heng Road, Shanghai 201203, China.
| | - Can Jin
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| | - Kan Ding
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhang Heng Road, Shanghai 201203, China.
| |
Collapse
|
21
|
Gao JN, Li Y, Liang J, Xiao L, Kuang HX, Xia YG. A Reverse Thinking Based on Partially Methylated Aldononitrile Acetates to Analyze Glycoside Linkages of Polysaccharides Using Liquid Chromatography-Multiple Reaction Monitoring Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39036888 DOI: 10.1021/acs.jafc.4c04160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Glycoside linkage analyses of medicine and food homologous plant polysaccharides have always been a key point and a difficulty of structural characterization. The gas chromatography-mass spectrometry (GC-MS) method is one of the commonly used traditional techniques to determine glycoside linkages via partially methylated alditol acetates and aldononitrile acetates (PMAAs and PMANs). Due to the simplicity of derivatization and the highly structural asymmetry of PMANs, reverse thinking is proposed using liquid chromatography-electrospray ionization-multiple reaction monitoring mass spectrometry (LC-ESI-MRM-MS) for the first time to directly determine the neutral and acidic glycosyl linkages of polysaccharides. The complete characterization of glycoside linkages deduced from PMANs was achieved using a combination of tR values, characteristic MRM ion pairs, diagnostic ESI+-MS/MS fragmentation ions (DFIs), and optimal collision energy (OCE). The DFI and OCE parameters were confirmed to be effective for the auxiliary discrimination of some isomers of the PMANs. The practicality of LC-ESI+-MRM-MS was further verified by analyzing the glycoside linkages of polysaccharides in five medicine and food homologous plants. This method can serve as an alternative to GC-MS for the simultaneous determination of neutral and acidic glycosyl linkages in polysaccharides.
Collapse
Affiliation(s)
- Jia-Ning Gao
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, PR China
| | - Ye Li
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, PR China
| | - Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, PR China
| | - Li Xiao
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, PR China
| |
Collapse
|
22
|
Ye Q, Gong X, Li A, Shao S, Ji B. A typical acidic extracellular polysaccharide alludes to algae-bacteria-collaboration in microalgal-bacterial symbiosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172545. [PMID: 38636868 DOI: 10.1016/j.scitotenv.2024.172545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Microalgal-bacterial symbioses are prevalent in aquatic ecosystems and play a pivotal role in carbon sequestration, significantly contributing to global carbon cycling. The understanding of the contribution of exopolysaccharides (EPSs), a crucial carbon-based component, to the structural integrity of microalgal-bacterial symbioses remains insufficiently elucidated. To address this gap, our study aims to enhance our comprehension of the composition and primary structure of EPSs within a specific type of granular microalgal-bacterial symbiosis named microalgal-bacterial granular sludge (MBGS). Our investigation reveals that the acidic EPSs characteristic of this symbiosis have molecular weights ranging from several hundred thousand to over one million Daltons, including components like glucopyranose, galactopyranose, mannose, and rhamnose. Our elucidation of the backbone linkage of a representative exopolysaccharide revealed a →3)-β-D-Galp-(1→4)-β-D-Glcp-(1→ glycosidic linkage. This linear structure closely resembles bacterial xanthan, while the branched chain structure bears similarities to algal EPSs. Our findings highlight the collaborative synthesis of acidic EPSs by both microalgae and bacteria, emphasizing their joint contribution in the production of macromolecules within microalgal-bacterial symbiosis. This collaborative synthesis underscores the intricate molecular interactions contributing to the stability and function of these symbiotic relationships.
Collapse
Affiliation(s)
- Qinyi Ye
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiping Gong
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
23
|
Wang K, Zhou Y, Li M, Chen Z, Wu Z, Ji W, Wang J, Zhang Y. Structural elucidation and immunomodulatory activities in vitro of type I and II arabinogalactans from different origins of Astragalus membranaceus. Carbohydr Polym 2024; 333:121974. [PMID: 38494227 DOI: 10.1016/j.carbpol.2024.121974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Astragalus membranaceus polysaccharide (APS) possesses excellent immunomodulatory activity. However, there are several studies on the structural characterization of APS. Here, we aimed to elucidate the repeating units of polysaccharides (APS1, 106.5 kDa; APS2, 114.5 kDa) obtained from different Astragalus membranaceus origins and further investigated their immunomodulatory activities. Based on structural analysis, types of the two polysaccharides were identified as arabinogalactan-I (AG-I) and arabinogalactan-II (AG-II), and co-elution of arabinogalactans (AGs) and α-glucan was observed. The backbone of AG-I was 1,4-linked β-Galp occasionally substituted by α-Araf at O-2 and/or O-3. AG-II was a highly branched polysaccharide with long branches of α-Araf, which were attached to the O-3 of 1,6-linked β-Galp of the backbone. The presence of AGs in A. membranaceus was confirmed for the first time. The two polysaccharides could promote the expression of IL-6, IL-1β and TNF-α in RAW264.7 cells via MAPKs and NF-κB signaling pathways. The constants for APS1 and APS2 binding to Toll-like receptor 4 (TLR4) were 1.83 × 10-5 and 2.08 × 10-6, respectively. Notably, APS2 showed better immunomodulatory activity than APS1, possibly because APS2 contained more AGs. Hence, the results suggested that AGs were the vital components of APS in the immunomodulatory effect.
Collapse
Affiliation(s)
- Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Yinxing Zhou
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Mengqing Li
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Zehong Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Zhijing Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Wenting Ji
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| |
Collapse
|
24
|
Yuan Q, Liang R, Lv K, Shi X, Leng J, Liu Y, Xiao J, Zhang L, Zhao L. Structural characterization of a Chlorella heteropolysaccharide by analyzing its depolymerized product and finding an inducer of human dendritic cell maturation. Carbohydr Polym 2024; 333:122000. [PMID: 38494209 DOI: 10.1016/j.carbpol.2024.122000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
Chlorella polysaccharides have been gaining increasing attention because of their high yield from dried Chlorella powder and their remarkable immunomodulatory activity. In this study, the major polysaccharide fraction, CPP-3a, in Chlorella pyrenoidosa, was isolated, and its detailed structure was investigated by analyzing the low-molecular-weight product prepared via free radical depolymerization. The results indicated that CPP-3a with a molecular weight of 195.2 kDa was formed by →2)-α-L-Araf-(1→, →2)-α-D-Rhap-(1→, →5)-α-L-Araf-(1→, →3)-β-D-Glcp-(1→, →4)-α-D-Glcp-(1→, →4)-α-D-GlcpA-(1→, →2,3)-α-D-Manp-(1→, →3,4)-α-D-Manp-(1→, →3,4)-β-D-Galp-(1→, →3,6)-β-D-Galp-(1→, and →2,3,6)-α-D-Galp-(1→ residues, branched at C2, C3, C4, or C6 of α/β-D-Galp and α-D-Manp, and terminated by α/β-L-Araf, α-L-Arap, α-D-Galp, and β-D-Glcp. Biological assays showed that CPP-3a significantly altered the dendritic morphology of immature dendritic cells (DCs). Enhanced CD80, CD86, and MHC I expression on the cell surface and decreased phagocytic ability indicated that CPP-3a could induce the maturation of DCs. Furthermore, CPP-3a-stimulated DCs not only stimulated the proliferation of allogeneic naïve CD4+ T cells and the secretion of IFN-γ, but also directly stimulated the activation and proliferation of CD8+ T cells through cross-antigen presentation. These findings indicate that CPP-3a can promote human DC maturation and T-cell stimulation and may be a novel DC maturation inducer with potential developmental value in DC immunotherapy.
Collapse
Affiliation(s)
- Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Rongyi Liang
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Kunling Lv
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaohuo Shi
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, China
| | - Jing Leng
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jian Xiao
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Lifeng Zhang
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
25
|
Cui H, Li X, Que J, Li S, Shi X, Yuan T. A water-soluble arabinoxylan from Chinese liquor distillers' grains: Structural characterization and anti-colitic properties. Int J Biol Macromol 2024; 266:131186. [PMID: 38554909 DOI: 10.1016/j.ijbiomac.2024.131186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Chinese liquor distillers' grain (CLDG) is a valuable and abundant by-product from traditional Chinese baijiu production, containing a diverse array of bioactive components that have attracted significant interest. Herein, a water-soluble polysaccharide, DGPS-2B, with a weight-average molecular weight of 37.3 kDa, was isolated from the alkali-extract fraction of CLDG. Methylation and NMR analysis identified that the primary constituents of DGPS-2B are arabinoxylans, with an arabinose-to-xylose ratio of 0.66. In an animal model of colitis, DGPS-2B treatment significantly altered the gut microbiota composition by increasing the SCFA-producing bacteria (e.g., Butyricicoccus) and reducing the mucin-degrading bacteria such as Muribaculaceae. This microbial shift resulted in elevated production of butyrate, acetate, and propionate, which subsequently suppressed NF-κB signaling, decreased the levels of IL-1β, IL-6, and TNFα, and potentially inactivated Notch signaling. These multifaceted effects stimulated mucin 2 production, reduced inflammation and apoptosis in the gut epithelium, and ultimately alleviated colitis symptoms. Collectively, this study not only elucidates the purification and characterization of DGPS-2B from CLDG but also illuminates its anti-colitic properties and the underlying molecular mechanisms. These findings underscore the potential of DGPS-2B as a therapeutic intervention for managing inflammatory bowel disease and emphasize CLDG as a promising source for developing value-added products.
Collapse
Affiliation(s)
- Hao Cui
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xia Li
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Jiayi Que
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Shuyue Li
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaodan Shi
- School of Health, Jiangxi Normal University, Nanchang 330022, China.
| | - Tao Yuan
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China; School of Health, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
26
|
Ding M, Yang Y, Zhang Z, Liu H, Dai Y, Wang Z, Ma S, Liu Y, Wang Q. Structural characterization of the polysaccharide from the black crystal region of Inonotus obliquus and its effect on AsPC-1 and SW1990 pancreatic cancer cell apoptosis. Int J Biol Macromol 2024; 268:131891. [PMID: 38677687 DOI: 10.1016/j.ijbiomac.2024.131891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
In this study, one water soluble polysaccharide (IOP1-1) with a weight average molecular weight of 6886 Da was obtained from the black crystal region of Inonotus obliquus by hot water extraction, DEAE-52 cellulose extraction and Sephadex-100 column chromatography purification. Structural analysis indicated that IOP1-1 was a glucan with a main chain composed of α-Glcp-(1 → 4)-α-Glcp-(1 → 4)-β-Glcp-(1 → 4)-β-Glcp-(1 → 4)-α-Glcp-(1 → 6)-β-Glcp-(1 → 4)-α-Glcp-(1 → 3)-β-Glcp-(1→. The CCK-8 assay results showed that IOP1-1 inhibited AsPC-1 and SW1990 pancreatic cancer cell proliferation in a concentration-dependent manner. Flow cytometric analysis revealed that IOP1-1 induced cell cycle arrest in AsPC-1 and SW1990 cells. Hoechst 33342 staining and Annexin V-FITC/PI double staining analysis showed that IOP1-1 could induce apoptosis in AsPC-1 and SW1990 cells. Furthermore, western blot analysis confirmed that IOP1-1 could induce apoptosis in AsPC-1 and SW1990 pancreatic cancer cells through three pathways: the mitochondrial pathway, the death receptor pathway, and endoplasmic reticulum stress. According to these research data, IOP1-1 may be utilized as an adjuvant treatment to anticancer medications, opening up new application prospects and opportunities.
Collapse
Affiliation(s)
- Miao Ding
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yu Yang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Ziyang Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Hongxiang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yingdi Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Zixuan Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Sijia Ma
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
27
|
Wang Z, Zhang M, Hao L, Jiao X, Wu C. Two novel polysaccharides from Huangshui: Purification, structure, and bioactivities. Int J Biol Macromol 2024; 267:131396. [PMID: 38582468 DOI: 10.1016/j.ijbiomac.2024.131396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
In this study, the novel polysaccharides named HSP-0 M and HSP-0.1 M were successfully purified from Huangshui (HS), and their structural properties and bioactivities were investigated. Structural analysis revealed that HSP-0 M had a molecular weight of 493.87 kDa and was composed of arabinose, galactose, glucose, xylose, and mannose in a molar ratio of 1.48:1.09:26.52:1.33:1.00. On the other hand, HSP-0.1 M was made up of fructose, arabinose, galactose, glucose, xylose, mannose, ribose, galacturonic acid and glucuronic acid in a ratio of 2.67:26.00:29.10:36.83:16.22:30.53:1.00:1.43:3.64 with a molecular weight of 157.6 kDa. Methylated and 2D NMR analyses indicated that T-Glcp-(1 → 4)-Glcp-(1 → 2)-Glcp-(1 → 3)-Glcp was the primary chain of HSP-0 M, and the backbone of HSP-0.1 M was made up of →3)-Galp-(1 → 6)-Manp-(1 → 3)-Glcp-(1 → 6)-Glcp-(1 → 2)-Manp-(1 → 6)-Glcp-(1 → 3)-Galp. Morphological research showed that both polysaccharides were homogeneous as well as exhibit a web-like structure and an irregular lamellar structure. Furthermore, HSP-0 M demonstrated the capacity to safeguard Lactococcus lactis from damage caused by low temperatures and freeze-drying, while HSP-0.1 M exhibited noteworthy antioxidant activity. These results established a theoretical foundation for the applications of HSPs in food products, cosmetics, and medicines.
Collapse
Affiliation(s)
- Zihao Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Min Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xue Jiao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
28
|
Zhao K, Qian C, Qi L, Li Q, Zhao C, Zhang J, Han G, Xia L, El-Bahy ZM, Gu J, Helal MH, Yan Z, Guo Z, Shi Z. Modified acid polysaccharide derived from Salvia przewalskii with excellent wound healing and enhanced bioactivity. Int J Biol Macromol 2024; 263:129803. [PMID: 38296147 DOI: 10.1016/j.ijbiomac.2024.129803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
Acid polysaccharide was extracted from Salvia przewalskii root powders (PSP), purified by diethylaminoethyl cellulose column (DEAE-52) and molecular sieve (PSP2). PSPm1 was obtained by modifying PSP2 with nitrite and phosphoric acid. The chemical structure of PSP2 and PSPm1 exhibited notable distinctions, primarily due to the absence of arabinose and promotion of glucuronic acid (GlcA). The structure of PSPm1 was deduced through the utilization of 1H, 13C, and 2-D NMR. The main chain was linked by α-D-Galp(1 → 3)-α-Glcp-(1 → fragments and →6)-β-D-Galp fragments, with the presence of →4)-α-D-GlcpA-(1 → 6)-β-D-Galp-(1 → , → 4)-α-D-GalAp-(1 → 2,4)-α-D-Rhap-(1 → fragments and →6)-α-Glcp-(1 → 2,4)-β-D-Manp-(1 → fragments. PSPm1 exhibited different immunoregulatory bioactivity in vitro, including haemostatic effects indicated by activated clotting time of 55.5 % reduction by the activated clotting time (ACT) test and wound healing function in vivo. PSPm1 also displayed better anti-tumor biological effects than unmodified. The structure-activity dissimilarity between PSP2 and PSPm1 primarily stems from variations in molecular weight (Mw), monosaccharide composition, and branching patterns. The modification of polysaccharides from the extract residues of Chinese medicinal materials may be a new form of drug supplements.
Collapse
Affiliation(s)
- Kui Zhao
- College of Material Science and Chemical Engineering, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Cheng Qian
- College of Material Science and Chemical Engineering, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Luming Qi
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qing Li
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, Yunnan 651100, China
| | - Can Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Jing Zhang
- College of Chemcial Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024, China
| | - Guiqi Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Lina Xia
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Mohamed H Helal
- Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, Saudi Arabia
| | - Zhuyun Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - Zhanhu Guo
- Department of Mechanical and Civil Engineering, Northumbria University, Newcastle NE1 8ST, UK.
| | - Zhengjun Shi
- College of Material Science and Chemical Engineering, Southwest Forestry University, Kunming, Yunnan 650224, China.
| |
Collapse
|
29
|
Li Y, Ren M, Yan H, Luo L, Fang X, He L, Kang W, Wu M, Liu H. Purification, structural characterization, and immunomodulatory activity of two polysaccharides from Portulaca oleracea L. Int J Biol Macromol 2024; 264:130508. [PMID: 38428780 DOI: 10.1016/j.ijbiomac.2024.130508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/24/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
In present study, two water-soluble polysaccharides designated as POL-1 and POL-2 were purified from purslane and their structural characteristics as well as immunomodulatory activity were investigated. The weight-average molecular weight (Mw) of POL-1 and POL-2 were determined to be 64,100 Da and 21,000 Da, respectively. Comprehensive techniques including UV, IR, GC-MS, and NMR were applied to deduced that POL-1 was a pectin polysaccharide homogalacturonan (HG) consisting of →4)-α-GalpA-(1→ with methyl ester degree of 9.71 % and acetylation degree of 0.34 %, while POL-2 was composed of a 1, 4-linked β-Galp backbone substituted by short side chain →4)-α-Glcp-(1→ and →6)-α-Glcp-(1→. The →4)-α-Glcp-(1→ was attached at the O-6 position of →4)-β-Galp-(1→. TEM further revealed that POL-1 was non-branched single chains, while POL-2 was entangled microstructure with side chains. Moreover, POL-2 significantly promoted macrophage phagocytosis as well as the secretion of NO and cytokines (TNF-α, IL-6) through activating NF-κB signaling pathway, thus demonstrating potential immunomodulatory activity. These findings suggested that purslane may be exploited as a potential adjuvant and dietary supplement with immunostimulatory purpose.
Collapse
Affiliation(s)
- Yanxi Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjie Ren
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Huan Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lan Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xin Fang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Li He
- Skin Health Research Center, Yunnan Characteristic Plant Extraction Laboratory, Kunming 650000, China; Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China.
| |
Collapse
|
30
|
Chi Y, Li Y, Ding C, Liu X, Luo M, Wang Z, Bi Y, Luo S. Structural and biofunctional diversity of sulfated polysaccharides from the genus Codium (Bryopsidales, Chlorophyta): A review. Int J Biol Macromol 2024; 263:130364. [PMID: 38401579 DOI: 10.1016/j.ijbiomac.2024.130364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/14/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
It is believed that polysaccharides will become a focal point for future production of food, pharmaceuticals, and materials due to their ubiquitous and renewable nature, as well as their exceptional properties that have been extensively validated in the fields of nutrition, healthcare, and materials. Sulfated polysaccharides derived from seaweed sources have attracted considerable attention owing to their distinctive structures and properties. The genus Codium, represented by the species C. fragile, holds significance as a vital economic green seaweed and serves as a traditional Chinese medicinal herb. To date, the cell walls of the genus Codium have been found to contain at least four types of sulfated polysaccharides, specifically pyruvylated β-d-galactan sulfates, sulfated arabinogalactans, sulfated β-l-arabinans, and sulfated β-d-mannans. These sulfated polysaccharides exhibit diverse biofunctions, including anticoagulant, immune-enhancing, anticancer, antioxidant activities, and drug-carrying capacity. This review explores the structural and biofunctional diversity of sulfated polysaccharides derived from the genus Codium. Additionally, in addressing the impending challenges within the industrialization of these polysaccharides, encompassing concerns regarding scale-up production and quality control, we outline potential strategies to address these challenges from the perspectives of raw materials, extraction processes, purification technologies, and methods for quality control.
Collapse
Affiliation(s)
- Yongzhou Chi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China.
| | - Yang Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Chengcheng Ding
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Xiao Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Meilin Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Yanhong Bi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Si Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| |
Collapse
|
31
|
Chen D, Wang A, Lv J, Tang C, Jin CH, Liu J, Zeng X, Wang L. Structural and digestive characters of a heteropolysaccharide fraction from tea ( Camellia sinensis L.) flower. Food Chem X 2024; 21:101058. [PMID: 38178927 PMCID: PMC10765012 DOI: 10.1016/j.fochx.2023.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Tea (Camellia sinensis L.) flower polysaccharides (TFPS) have various health-promoting functions. In the present work, the structure of a purified TFPS fraction, namely TFPS-1-3p, and its in vitro digestive properties were investigated. The results demonstrated that TFPS-1-3p was a typical heteropolysaccharide consisting of rhamnose (Rha), arabinose (Ara), galactose (Gal) and galacturonic acid (GalA) with a molecular weight of 47.77 kDa. The backbone of TFPS-1-3p contained → 4)-α-d-GalpA(-6-OMe)-(1 → 4)-α-GalpA-(1 → and → 4)-α-d-GalpA(-6-OMe)-(1 → 2,4)-α-l-Rhap-(1 → linkages. The branch linkages in TFPS-1-3p contained → 6)-β-d-Galp-(1→, →3,6)-β-d-Galp-(1→, →5)-α-l-Araf-(1 → and → 3,5)-α-l-Araf-(1 →. Subsequently, TFPS-1-3p could not be degraded under simulated human gastrointestinal conditions but could be of use to human fecal microbes, thereby lowering the pH and increasing the production of short-chain fatty acids (SCFAs) of the gut microenvironment and altering the composition of the gut microbiota. The relative abundance of Fusobacterium_mortiferum Megasphaera_elsdenii_DSM_20460, Bacteroides thetaiotaomicron, Bacteroides plebeius and Collinsella aerofaciens increased significantly, potentially contributing to the degradation of TFPS-1-3p.
Collapse
Affiliation(s)
- Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Ao Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jialiang Lv
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chang-hai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Li Wang
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
32
|
Zhang Y, Wang H, Zheng Y, Wu Z, Liu J, Cheng F, Wang K. Degradation of Angelica sinensis polysaccharide: Structures and protective activities against ethanol-induced acute liver injury. Carbohydr Polym 2024; 328:121745. [PMID: 38220331 DOI: 10.1016/j.carbpol.2023.121745] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Angelica sinensis polysaccharide (ASP) possesses diverse bioactivities; however, its metabolic fate following oral administration remains poorly understood. To intuitively determine its intestinal digestion behavior after oral administration, ASP was labeled with fluorescein, and it was found to accumulate and be degraded in the cecum and colon. Therefore, we investigated the in vitro enzymatic degradation behavior and identified the products. The results showed that ASP could be degraded into fragments with molecular weights similar to those of the fragments observed in vivo. Structural characterization revealed that ASP is a highly branched acid heteropolysaccharide with AG type II domains, and its backbone is predominantly composed of 1,3-Galp, →3,6)-Galp-(1→6)-Galp-(1→, 1,4-Manp, 1,4-Rhap, 1,3-Glcp, 1,2,3,4-Galp, 1,3,4,6-Galp, 1,3,4-GalAp and 1,4-GlcAp, with branches of Araf, Glcp and Galp. In addition, the high molecular weight enzymatic degradation products (ASP H) maintained a backbone structure almost identical to that of ASP, but exhibited only partial branch changes. Then, the results of ethanol-induced acute liver injury experiments revealed that ASP and ASP H reduced the expression of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and malondialdehyde (MDA) and increased the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) levels, thereby relieving ethanol-induced acute liver injury.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Haoyu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Yuheng Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Zhijing Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Junxi Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China.
| |
Collapse
|
33
|
Liu W, Zhang L, Wei X, Xu Y, Fang Q, Qi S, Chen J, Wang C, Wang S, Qin L, Liu P, Wu J. Structural characterization of an inulin neoseries-type fructan from Ophiopogonis Radix and the therapeutic effect on liver fibrosis in vivo. Carbohydr Polym 2024; 327:121659. [PMID: 38171656 DOI: 10.1016/j.carbpol.2023.121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Ophiopogonis Radix is a well-known Traditional Chinese Medicine and functional food that is rich in polysaccharides and has fructan as a characteristic component. In this study, an inulin neoseries-type fructan designated as OJP-W2 was obtained and characterized from Ophiopogonis Radix, and its potential therapeutic effect on liver fibrosis in vivo were investigated. Structural studies revealed that OJP-W2 had a molecular weight of 5.76 kDa and was composed of glucose and fructose with a molar ratio of 1.00:30.87. Further analysis revealed OJP-W2 has a predominantly lineal (1-2)-linked β-D-fructosyl units linked to the glucose moiety of the sucrose molecule with (2-6)-linked β-D-fructosyl side chains. Pharmacological studies revealed that OJP-W2 exerted a marked hepatoprotective effect against liver fibrosis, the mechanism of action was involved in regulating collagen deposition (α-SMA, COL1A1 and liver Hyp contents) and TGF-β/Smads signaling pathway, alleviating liver inflammation (IL-1β, IL-6, CCL5 and F4/80) and MAPK signaling pathway, and inhibiting hepatic apoptosis (Bax, Bcl-2, ATF4 and Caspase 3). These data provide evidence for expanding Ophiopogonis Radix-acquired fructan types and advancing our understanding of the specific role of inulin neoseries-type fructan in liver fibrosis therapy.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Linzhang Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xia Wei
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongbin Xu
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Qinqin Fang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Shenglan Qi
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiamei Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Shunchun Wang
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Luping Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of pharmacy, Institude of Liver Diseases, The NATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jianjun Wu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
34
|
Li XJ, Yin Y, Xiao SJ, Chen J, Zhang R, Yang T, Zhou TY, Zhang SY, Hu P, Zhang X. Extraction, structural characterization and immunoactivity of glucomannan type polysaccahrides from Lilium brownii var. viridulum Baker. Carbohydr Res 2024; 536:109046. [PMID: 38335805 DOI: 10.1016/j.carres.2024.109046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Homogeneous polysaccharide (LBP) was extracted and purified from the bulblets of Lilium brownii var. viridulum Baker with a molecular weight of 312 kDa. The monosaccharides are composed of mannose and glucose, and the corresponding molar ratios are 0.582 and 0.418, respectively. FT-IR, LC-MS, NMR, GC-MS and HPAEC were used to analyze the functional groups, glycosidic linkages and chemical structure of LBP, which was a 1-4-linked glucomannan and contained a dodecasaccharide repeating units of →4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Glcp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Glcp-(1 → 4)-α-D-Glcp-(1 → 4)-β-D-Glcp-(1 → 4)-β-D-Glcp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → . In vitro experimental results showed that LBP had noble biocompatibility, and a low dose of 5 μg/mL LBP significantly up-regulated the mRNA expression of TNF-α, iNOS, IL-6, IL-1β and Toll-like receptors family (TLRs) in RAW 264.7 cells. In conclusion, LBP played an important role in immunomodulation, and further studies on the specific immunomodulatory mechanisms of LBP on RAW 264.7 cells are still needed.
Collapse
Affiliation(s)
- Xiao-Jun Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Yuan Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Shi-Jun Xiao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Jiang Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Rui Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Tong Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Tong-Yu Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Si-Yan Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Pei Hu
- Jiangzhong Pharmaceutical Co., Ltd., No.1899 Meiling Road, Nanchang, 330103, PR China.
| | - Xue Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.
| |
Collapse
|
35
|
Kyselová L, Řezanka T. Analysis of glycosylated cardiolipins from thermophilic bacteria using GC-MS and LC-ESI-MS/MS methods. J Pharm Biomed Anal 2024; 238:115800. [PMID: 37871419 DOI: 10.1016/j.jpba.2023.115800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
Unusual glucose-substituted cardiolipins (Glcx-CLs) in three genera of thermophilic bacteria, having more than one glycosidically linked glucose to the hydroxyl of the central glycerol of Glcx-CLs were identified for the first time in thermophilic bacteria of the genera Geobacillus, Meiothermus, and Thermus. The number of glucoses reached up to five units. The structure of glycosidically linked oligosaccharides was determined based on shotgun analysis MS (electrospray high-resolution tandem mass spectrometry), partially methylated alditol acetates were identified by GC-MS, both electron ionization (EI) and positive chemical ionization (PCI), hydrophilic interaction liquid chromatography (HILIC) separation and identification of CLs glycosides by high resolution MS-ESI, and digestion by specific glycosidases.
Collapse
Affiliation(s)
- Lucie Kyselová
- Research Institute of Brewing and Malting, Lípová 511, Prague 12044, Czech Republic
| | - Tomáš Řezanka
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, Prague 14200, Czech Republic.
| |
Collapse
|
36
|
Zong X, Wang Z, Chen S, Li S, Xie M, Nie S, Yin J. Optimized acid hydrolysis conditions for better characterization the structure of inulin-type fructan from Polygonatum sibiricum. Int J Biol Macromol 2024; 256:128030. [PMID: 37981289 DOI: 10.1016/j.ijbiomac.2023.128030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/02/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Polygonatum sibiricum is an edible plant species in China known for its abundant polysaccharides. However, correlations between its analytical methods and fine structure have not been established. This is usually due to incomplete cleavage of the glycosidic linkages and instability of hydrolysis. In this study, a new optimal acid hydrolysis method for monosaccharide composition (2 M H2SO4 for 1 h) and methylation analysis (2 mol TFA hydrolysis at 100 °C for 1 h) was developed for characterization of inulin-type fructans, resulting in significantly improved monosaccharide recovery and providing more reliable methylation data. The effectiveness of this method was demonstrated through its application to the study of polysaccharide from P. sibiricum (IPS-70S). The results showed that IPS-70S with a molecular weight of 3.6 kDa is an inulin-type fructans consisting of fructose and glucose in a molar ratio of 27:1. Methylation and NMR analysis indicated that IPS-70S contains →2)-Fruf-(6 → or →2)-Fruf-(1 → with branching →1,6)-Fruf-(2 → and terminates in Glcp-(1 → or Fruf-(2→. In conclusion, optimal acid hydrolysis applicable to the specific polysaccharides contribute to its structurally characterized. The newly optimized acid hydrolysis method for monosaccharide composition and methylation analysis offers a reliable and effective approach to the structural characterization of inulin-type fructans from P. sibiricum. Providing reliable basis for the overall work of NMR analysis and structural analysis, which have potential significance in the field of polysaccharides structural characterization.
Collapse
Affiliation(s)
- Xinyan Zong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province, 330047, China
| | - Zhe Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province, 330047, China
| | - Shikang Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province, 330047, China
| | - Si Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province, 330047, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province, 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province, 330047, China
| | - Junyi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province, 330047, China.
| |
Collapse
|
37
|
Sun K, Li Z, Lian M, Li Q, Wang R, Gu Y, Lei P, He H, Xu H, Sha F, Sun L. Characterization of a novel exopolysaccharide from Acinetobacter rhizosphaerae with ability to enhance the salt stress resistance of rice seedlings. Int J Biol Macromol 2024; 256:128438. [PMID: 38042318 DOI: 10.1016/j.ijbiomac.2023.128438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
We here describe the isolation of a novel exopolysaccharide from Acinetobacter rhizosphaerae, named ArEPS. The structure of ArEPS was characterized by analysis of the monosaccharide composition, molecular weight, infrared spectrum, methylation, and nuclear magnetic resonance spectrum. ArEPS was found to be an acidic heteropolysaccharide composed of glucose, galactose, galacturonic acid, glucuronic acid, mannose, and glucosamine; the molecular weight was 1533 kDa. Structural analysis showed that the main-chain structure of ArEPS predominantly comprised 1,3,6-β-Glcp, 1,3,4-α-Galp, 1,2-β-Glcp, 1,4-β-GlcpA, 1,4-β-GalpA, and the side-chain structure comprised 1,6-β-Glcp, 1,3-β-Galp, 1-α-Glcp, 1-β-Galp, 1-α-Manp, 1,4,6-α-Glcp, 1,2,4-β-Glcp, 1,2,3-β-Glcp, and 1,3-β-GlcpN. ArEPS significantly enhanced the tolerance of rice seedlings to salt stress. Specifically, plant height, fresh weight, chlorophyll content, and the K+/Na+ ratio increased by 51 %, 63 %, 29 %, and 162 %, respectively, and the malondialdehyde content was reduced by 45 % after treatment with 100 mg/kg ArEPS compared to treatment with 100 mM NaCl. Finally, based on the quadratic regression between fresh weight and ArEPS addition, the optimal ArEPS addition level was estimated to be 135.12 mg/kg. These results indicate the prospects of ArEPS application in agriculture.
Collapse
Affiliation(s)
- Ke Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Suzhou Cornigs Polyols CO., LTD., Suzhou 215000, China
| | - Zhen Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Mengyu Lian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Quan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yian Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hongjie He
- Westa College, Southwest University, Chongqing 400715, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Feng Sha
- Suzhou Cornigs Polyols CO., LTD., Suzhou 215000, China; School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Liang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
38
|
Liang X, Liu M, Wei Y, Tong L, Guo S, Kang H, Zhang W, Yu Z, Zhang F, Duan JA. Structural characteristics and structure-activity relationship of four polysaccharides from Lycii fructus. Int J Biol Macromol 2023; 253:127256. [PMID: 37802446 DOI: 10.1016/j.ijbiomac.2023.127256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
At present, the structure-activity relationship of polysaccharides is a common and important focus in the fields of glycobiology and carbohydrate chemistry. To better understand the effect of specific polysaccharide structures on bioactive orientation, four homogeneous polysaccharides from Lycii fructus, one neutral along with three acidic polysaccharides, were purified, structurally characterized and comparatively evaluated on the antioxidative and anti-aging activities. The GC-MS-based monosaccharide composition analysis and methylation results showed that the LFPs had similar glycosyl types but varied proportions. Nuclear magnetic resonance (NMR) spectroscopy showed that LFPs consisted of arabinogalactan, rhamnogalacturonan and homogalacturonan structural domains. The results of the structure-activity relationship indicated that the antioxidative activity was positively correlated with the galacturonic acid (GalA) content, while the neutral multi-branched chains might be responsible for the anti-aging activity. This study is the first time to compare the principal structures and multiple biological activities of LFPs, which provided a reference for the industrial development and deep excavation of the health value of LFPs.
Collapse
Affiliation(s)
- Xiaofei Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Mengqiu Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yan Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Limei Tong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hongjie Kang
- Ningxia Innovation Center of Goji R & D, Yinchuan 750002, PR China
| | - Wenhua Zhang
- Bairuiyuan Gouqi Co., Ltd., Yinchuan 750200, PR China
| | - Zhexiong Yu
- Tianren Ningxia Wolfberry Biotechnology Co., Ltd., Zhongning 755100, PR China
| | - Fang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
39
|
Wan P, Liu H, Ding M, Zhang K, Shang Z, Wang Y, Ma Y. Physicochemical characterization, digestion profile and gut microbiota regulation activity of intracellular polysaccharides from Chlorella zofingiensis. Int J Biol Macromol 2023; 253:126881. [PMID: 37709223 DOI: 10.1016/j.ijbiomac.2023.126881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
A number of studies have shown that the polysaccharides from microalgae exhibit diverse biological activities, however, little is known about their digestibility and impact on human gut microbiota. In this study, a simulating digestion and fermentation system were established to investigate the digestibility and fermentation of intracellular polysaccharides from Chlorella zofingiensis (CZIP-S3). The results indicated that CZIP-S3 is a macromolecular polysaccharide composed of mannose, glucose, galactose and rhamnose, consisting of a main chain and two branched repeating units. CZIP-S3 could not be digested in the upper gastrointestinal tract. However, CZIP-S3 could be metabolized into smaller molecules by the gut microbiota. The pH values continuously decrease during fermentation, whereas, the amount of short-chain fatty acids steadily increase. Furthermore, CZIP-S3 could modulate the composition of gut microbiota, via lowering the ratio of Firmicutes/Bacteroidetes and increasing the relative abundance of Bacteroides, Bifidobacterium and Akkermansia. The data suggested that CZIP-S3 could potentially be used as an ingredient for functional foods or prebiotics to improve human health by promoting the relative abundances of beneficial bacteria.
Collapse
Affiliation(s)
- Peng Wan
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China.
| | - Han Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Mengyan Ding
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China
| | - Kailu Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China
| | - Zhen Shang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China
| | - Yuanli Wang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China
| | - Yanli Ma
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China
| |
Collapse
|
40
|
Patra M, Das D, Dey S, Koschella A, Heinze T. Structural and chemical insights into the prebiotic property of hemicellulosic polysaccharide from Santalum album L. Carbohydr Polym 2023; 321:121291. [PMID: 37739501 DOI: 10.1016/j.carbpol.2023.121291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 09/24/2023]
Abstract
Hemicellulose was extracted by alkali treatment of de-pectinated cell wall material of Santalum album L. (sandalwood) suspension culture cells. The physicochemical properties and prebiotic activities of a purified major fraction of Hemicellulose-B, termed as HB-I, were investigated. GC analysis of hydrolyzed and derivatized HB-I showed the presence of arabinose (~64 %), galactose (~16 %) and glucose (~16 %) as major monosaccharide units along with minor amount of rhamnose. Methylation and NMR studies on the purified polysaccharide revealed the presence of 6-β-d-Glcp, β-d-Galp, 3,5-α-l-Araf, α-l-Araf, 5-α-l-Araf, 2,3-α-l-Araf and, α-l-Rhap residues, from which a proposed structure of repeating units was established. The growth of probiotic Lactobacillus spp. strains L. acidophilus, L. casei, L. plantarum and L. rhamnosus was promoted while that of Escherichia coli was suppressed significantly in presence of HB-I. Our results highlight valorization of sandalwood biomass and explore the role of mixed α, β-linked heteroglycan as a potential prebiotic molecule thus indicating the possibility of development of low-cost bioprocesses for production of functional food ingredients.
Collapse
Affiliation(s)
- Moumita Patra
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Debsankar Das
- Department of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur 721404, West Bengal, India.
| | - Satyahari Dey
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Andreas Koschella
- Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743 Jena, Germany.
| | - Thomas Heinze
- Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743 Jena, Germany.
| |
Collapse
|
41
|
Hong Z, Zhou LS, Zhao ZZ, Yuan GQ, Wang XJ, Lu Y, Chen DF. Structural Characterization and Anticomplement Activity of an Acidic Heteropolysaccharide from Lysimachia christinae Hance. PLANTA MEDICA 2023; 89:1457-1467. [PMID: 37541436 DOI: 10.1055/a-2148-7163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
A novel acidic heteropolysaccharide (LCP-90-1) was isolated and purified from a traditional "heat-clearing" Chinese medicine, Lysimachia christinae Hance. LCP-90-1 (Mw, 20.65 kDa) was composed of Man, Rha, GlcA, Glc, Gal, and Ara, with relative molar ratios of 1.00: 3.00: 11.62: 1.31: 1.64: 5.24. The backbone consisted of 1,4-α-D-GlcpA, 1,4-α-D-Glcp, 1,4-β-L-Rhap, and 1,3,5-α-L-Araf, with three branches of β-D-Galp-(1 → 4)-β-L-Rhap-(1→, α-L-Araf-(1→ and α-D-Manp-(1→ attached to the C-5 position of 1,3,5-α-L-Araf. LCP-90-1 exhibited potent anticomplement activity (CH50: 135.01 ± 0.68 µg/mL) in vitro, which was significantly enhanced with increased glucuronic acid (GlcA) content in its degradation production (LCP-90-1-A, CH50: 28.26 ± 0.39 µg/mL). However, both LCP-90-1 and LCP90-1-A were inactivated after reduction or complete acid hydrolysis. These observations indicated the important role of GlcA in LCP-90-1 and associated derivatives with respect to anticomplement activity. Similarly, compared with LCP-90-1, the antioxidant activity of LCP-90-1-A was also enhanced. Thus, polysaccharides with a high content of GlcA might be important and effective substances of L. christinae.
Collapse
Affiliation(s)
- Zhou Hong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Li-Shuang Zhou
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhi-Zhi Zhao
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Guo-Qi Yuan
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xiao-Jiang Wang
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yan Lu
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Dao-Feng Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Yang XM, Wang SQ, Chen LS, Zhu ZY. Isolation and structural characterization of exopolysaccharide from the Cordyceps cicadae and the immunomodulatory activity on RAW264.7 cells. Biotechnol Appl Biochem 2023; 70:1925-1940. [PMID: 37455564 DOI: 10.1002/bab.2500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
A new exopolysaccharide component named as PC-EPS was isolated from Cordyceps cicadae, and its structure was determined. PC-EPS was identified to be constituted of mannose, glucose, and galactose (28.84:1:19.42), with an average molecular weight of 3.72 × 106 Da, according to the results of monosaccharide composition, Fourier transform infrared, nuclear magnetic resonance, periodate oxidation and Smith degradation, and methylation studies. According to structural characterization, PC-EPS's connection type was made up of →6) -α-d-Manp (1→, →2) -β-d-Manp (1→, →4) -α-d-Manp (1→, →2) -α-d-Galf (1→, and →4) -α-d-Galp (1→. PC-EPS may significantly increase phagocytosis and RAW264.7 cell proliferation. Additionally, by boosting intracellular lysozyme, cellular acid phosphatase, and cellular superoxide dismutase enzyme concentrations, as well as by promoting the generation of cellular NO, it is the potential to regulate the immunological activity of RAW264.7 cells. Additionally, the effects of PC-EPS on RAW264.7 cells increased their capacities to create tumor necrosis factor-α and interleukin 6 cytokines, all of which suggested that PC-EPS had the potential to improve immunomodulatory activity.
Collapse
Affiliation(s)
- Xi-Mei Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, Peoples Republic of China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, Peoples Republic of China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, Peoples Republic of China
| | - Si-Qiang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, Peoples Republic of China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, Peoples Republic of China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, Peoples Republic of China
| | - Li-Sha Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, Peoples Republic of China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, Peoples Republic of China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, Peoples Republic of China
| | - Zhen-Yuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, Peoples Republic of China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, Peoples Republic of China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, Peoples Republic of China
| |
Collapse
|
43
|
Sun L, Jiang J, Jing T, Hu D, Zhu J, Zeng Y, Pang Y, Huang D, Cheng S, Cao C. A polysaccharide NAP-3 from Naematelia aurantialba: Structural characterization and adjunctive hypoglycemic activity. Carbohydr Polym 2023; 318:121124. [PMID: 37479455 DOI: 10.1016/j.carbpol.2023.121124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 07/23/2023]
Abstract
A novel polysaccharide (NAP-3) was isolated and purified from Naematelia aurantialba after water extraction. The structure of NAP-3, which was determined by FT-IR, HPLC, GC-MS, and NMR, indicated that NAP-3 was a homogeneous polysaccharide with the molecular weight of 428 kDa, mainly consisted of β-1, 3-D-Manp, β-1, 2, 3-D-Manp, β-D-Xylp, β-1, 4-D-Glcp, β-1, 4-D-Rhap in a molar ratio of 6.49: 1.11: 2.4: 0.13: 0.83. In vitro α-glucosidase and α-amylase inhibitory assay showed that NAP-3 had a low IC50 value, which exhibited similar enzyme inhibitory activity as acarbose. NAP-3 was evaluated as an adjuvant with metformin for antidiabetic therapy in HFD/STZ-induced diabetic mice and insulin resistance HepG2 cells. The combination of NAP-3 and metformin in diabetic mice exhibited significant hypoglycemic activity, reducing body weight, serum insulin levels, glucose tolerance, insulin tolerance, and increasing antioxidant levels compared to metformin alone. The combination of NAP-3 and metformin improved oxidative stress by increasing ROS clearance, thereby enhancing glucose uptake in HepG2 cells. This study provided new data for the study of Naematelia aurantialba polysaccharides and offers a new adjuvant therapy for the treatment of diabetes.
Collapse
Affiliation(s)
- Lu Sun
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jiang Jiang
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Tao Jing
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dejun Hu
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Zhu
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Zeng
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yalun Pang
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dechun Huang
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shujie Cheng
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Chongjiang Cao
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
44
|
Falshaw R, Furneaux RH, Sims IM, Hinkley SFR, Kidgell JT, Bell TJ. Novel 4-O-β-d-xylopyranosyl-3,6-anhydro-l-galactopyranosyl disaccharide units in a polysaccharide from the red alga Pyrophyllon subtumens. Carbohydr Polym 2023; 318:121066. [PMID: 37479460 DOI: 10.1016/j.carbpol.2023.121066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 07/23/2023]
Abstract
Thalli of the endemic epiphytic New Zealand red seaweed Pyrophyllon subtumens are known to contain a high level of xylose and a notable amount of arabinose but the extracted polysaccharide has not been characterised. The linkage/substitution of individual sugars within the water-soluble polysaccharide extract and various derivatives were determined by chemical and spectroscopic methods. No 3-linked sugars nor any d-galactose were found, which excluded agar-, carrageenan- or mixed 3-linked/4-linked β-d-xylan-type polysaccharides found in many other red macroalgae. Instead, the polysaccharide backbone contained predominantly 4-linked β-d-xylopyranosyl, 4-linked 3,6-anhydro-l-galactopyranosyl and 4-linked l-galactopyranosyl units. Some of each type of sugar were sulfated at various positions. Some xylosyl units were substituted at the 2- or 3-position with l-arabinosyl units. The polysaccharide is complex and likely contains a range of structures. However, partial sequencing was successfully used to recover and identify a novel disaccharide 4-O-d-xylopyranosyl-3,6-anhdydro-l-galactopyranose, which indicates a unique →4)-β-d-Xylp-(1 → 4)-3,6-anhydro-l-Galp-(1 → repeat unit in the polysaccharide.
Collapse
Affiliation(s)
- Ruth Falshaw
- Ferrier Research Institute, Victoria University of Wellington, PO Box 33-436, Petone 5046, New Zealand.
| | - Richard H Furneaux
- Ferrier Research Institute, Victoria University of Wellington, PO Box 33-436, Petone 5046, New Zealand.
| | - Ian M Sims
- Ferrier Research Institute, Victoria University of Wellington, PO Box 33-436, Petone 5046, New Zealand.
| | - Simon F R Hinkley
- Ferrier Research Institute, Victoria University of Wellington, PO Box 33-436, Petone 5046, New Zealand.
| | - Joel T Kidgell
- Ferrier Research Institute, Victoria University of Wellington, PO Box 33-436, Petone 5046, New Zealand.
| | - Tracey J Bell
- Ferrier Research Institute, Victoria University of Wellington, PO Box 33-436, Petone 5046, New Zealand.
| |
Collapse
|
45
|
Chi Y, Jiang Y, Wang Z, Nie X, Luo S. Preparation, structures, and biological functions of rhamnan sulfate from green seaweed of the genus Monostroma: A review. Int J Biol Macromol 2023; 249:125964. [PMID: 37487994 DOI: 10.1016/j.ijbiomac.2023.125964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/29/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Rhamnan sulfate, a rhamnose-rich sulfated polysaccharide, is present in the cell walls of green seaweed belonging to the genus Monostroma. This macromolecule demonstrates promising therapeutic properties, including anti-coagulant, thrombolytic, anti-viral, anti-obesity, and anti-inflammatory activities, which hold potential applications in food and medical industries. However, rhamnan sulfate has not garnered as much attention from researchers as other seaweed polysaccharides, including alginate, carrageenan, and fucoidan. This review discusses the extraction and purification techniques of rhamnan sulfate, delves into its chemical structures and related elucidation approaches, and provides an overview of its biological functions. Future research should focus on the structure-activity relationship of rhamnan sulfate and the industrial preparation of rhamnan sulfate with a specific homogeneous structure to facilitate its practical applications.
Collapse
Affiliation(s)
- Yongzhou Chi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China.
| | - Yanhui Jiang
- Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Xiaobao Nie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Si Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| |
Collapse
|
46
|
Zhao Y, Wang Z, Fu R, Xie R, Wang B, Li Q. Structural characterization and antioxidant activity of processed polysaccharides PCP-F1 from Polygonatum cyrtonema Hua. Front Nutr 2023; 10:1272977. [PMID: 37731400 PMCID: PMC10508638 DOI: 10.3389/fnut.2023.1272977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Polygonatum cyrtonema Hua. (PC) is a traditional Chinese herb with a history of use in both food and medicine. For clinical use, processed PC pieces are most commonly used, while present research has focused on crude PC polysaccharides (PCPs). Methods In this study, a new polysaccharide, PCP-F1, with a molecular weight of 37.46 kDa, was separated from four-time processed PCPs by column chromatography and evaluated by antioxidant activity. It was composed of glucose, mannose, galactose, rhamnose, and galacturonic acid with a molar ratio of 3.5: 2.5: 1.3: 1.8: 0.8. Results and Discussion The methylation analysis and two-dimensional NMR measurement revealed that the configuration of PCP-F1 contained nine residues in the primary structural unit by the chain of →3)-α-D-Glcp, →2)-α-D-Glcp (6→, →1)-ꞵ-D-Glcp (2→, →2)-α-D-GalAp (3,4→, →1) -ꞵ-D-Manp (3→, →2)-α-D-Glcp (3→, branched for →3)-α-D-Glcp, →2)-ꞵ-D-Galp (4→, →1)-ꞵ-D-Glcp (2→, →2,4)-α-D-Manp (6→, →3)-α-L-Rhap (4→. Radical scavenging assays indicated that PCP-F1 could scavenge radicals with a high scavenging rate, suggesting PCP-F1 possesses good antioxidant activity. The study confirms the importance of processed PC and offers the potential for exploiting it as a functional food.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Zhen Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Ranze Fu
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Ruonan Xie
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Bin Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutical Chemistry, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
47
|
Liang J, Rao ZH, Jiang SL, Wang S, Kuang HX, Xia YG. Structure of an unprecedent glucuronoxylogalactoglucomannan from fruit bodies of Auricularia auricula-judae (black woody ear). Carbohydr Polym 2023; 315:120968. [PMID: 37230634 DOI: 10.1016/j.carbpol.2023.120968] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
An unprecedent glucuronoxylogalactoglucomannan (GXG'G″M), ME-2 (Mw, 2.60 × 105 g/mol; O-acetyl % = 16.7 %), was isolated and purified from water extracts of Auricularia auricula-judae (black woody ear). Firstly, due to much higher O-acetyl contents, we prepared its fully deacetylated products (dME-2; Mw, 2.13 × 105 g/mol) for convenient structure survey. The repeating structure-unit of dME-2 was readily proposed based on Mw determination, monosaccharide compositions, methylation analysis, free-radical degradation and 1/2D NMR spectroscopy. The dME-2 was identified as a highly branched polysaccharide with an average of 10 branches per 10 sugar backbone units. The backbone was only repeating →3)-α-Manp-(1→ residues, substituted at the C-2, C-6 and C-2,6 positions. The side chains included β-GlcAp-(1→, β-Xylp-(1→, α-Manp-(1→, α-Galp-(1→ and β-Glcp-(1→. Secondly, the complex substituted positions of O-acetyl groups in ME-2 were determined to be at C-2, C-4, C-6 and C-4,6 in the backbone and at C-2 and C-2,3 in some side chains. Finally, the anti-inflammatory activity of ME-2 was preliminarily explored on LPS-stimulated THP-1 cells. The above date not only provided the first example for structural studies of GXG'G″M type polysaccharides, but also facilitated development and application of black woody ear polysaccharides as medicinal agents or functional dietary supplements.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Zi-Hao Rao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Si-Liang Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Shu Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| |
Collapse
|
48
|
Liu P, Hu J, Wang Q, Tan J, Wei J, Yang H, Tang S, Huang H, Zou Y, Huang Z. Physicochemical characterization and cosmetic application of kelp blanching water polysaccharides. Int J Biol Macromol 2023; 248:125981. [PMID: 37499725 DOI: 10.1016/j.ijbiomac.2023.125981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/18/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Seaweeds account for half of global mariculture and have become a key player in bio-based industries. Seaweed process typically starts with hot water blanching that helps reduce postharvest quality deterioration but also generates large amounts of hydrothermal waste. This study aims to explore the feasibility of isolating water-soluble biopolymers from seaweed hydrothermal waste and their potential applications. Using Saccharina japonica (formerly Laminaria japonica) blanching water as example, 2.9 g/L of polymeric substances were efficiently isolated by ultrafiltration, implying biopolymer coproduction potential of ~5.8 kt from blanching wastewater of current kelp industry. Physicochemical characterizations revealed polysaccharidic nature of the biopolymers, with high contents of fucose, uronic acids and sulfate, showing distinct but also overlapping structural features with hot water-extracted kelp polysaccharides. The main fraction of the blanching water polymers after anion exchange chromatography was acidic polysaccharide, the major backbone residues of which were (1-4) linked mannopyranose, (1-4) linked gulopyranose and (1-2) linked fucopyranose while the branched residues were primarily 1,3,4-, 1,2,4- and 1,4,6-linked hexoses but also 1,3,4-fucopyranose. Furthermore, the polysaccharides were found to have a good compatibility in cosmetic creams with added cohesiveness and freshness, demonstrating the application potential of such natural biopolymers from currently underexplored seaweed blanching water.
Collapse
Affiliation(s)
- Peihua Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Province Key Laboratory for Biocosmetics, Guangzhou 510641, China
| | - Jingjing Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Province Key Laboratory for Biocosmetics, Guangzhou 510641, China
| | - Qiangqiang Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Province Key Laboratory for Biocosmetics, Guangzhou 510641, China
| | - Jianhua Tan
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou 510641, China; Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China
| | - Jian Wei
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou 510641, China; Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China
| | - Hongbo Yang
- Instrumental Analysis Center, Shenzhen University, Shenzhen 518055, China
| | - Shuping Tang
- Guangzhou Siyan Biotechnology Co., Ltd., Guangzhou 510006, China
| | - Hongliang Huang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongdong Zou
- Instrumental Analysis Center, Shenzhen University, Shenzhen 518055, China.
| | - Zebo Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Province Key Laboratory for Biocosmetics, Guangzhou 510641, China.
| |
Collapse
|
49
|
Black IM, Ndukwe IE, Vlach J, Backe J, Urbanowicz BR, Heiss C, Azadi P. Acetylation in Ionic Liquids Dramatically Increases Yield in the Glycosyl Composition and Linkage Analysis of Insoluble and Acidic Polysaccharides. Anal Chem 2023; 95:12851-12858. [PMID: 37595025 PMCID: PMC10469378 DOI: 10.1021/acs.analchem.3c02056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
Glycosyl composition and linkage analyses are important first steps toward understanding the structural diversity and biological importance of polysaccharides. Failure to fully solubilize samples prior to analysis results in the generation of incomplete and poor-quality composition and linkage data by gas chromatography-mass spectrometry (GC-MS). Acidic polysaccharides also do not give accurate linkage results, because they are poorly soluble in DMSO and tend to undergo β-elimination during permethylation. Ionic liquids can solubilize polysaccharides, improving their derivatization and extraction for analysis. We show that water-insoluble polysaccharides become much more amenable to chemical analysis by first acetylating them in an ionic liquid. Once acetylated, these polysaccharides, having been deprived of their intermolecular hydrogen bonds, are hydrolyzed more readily for glycosyl composition analysis or methylated more efficiently for glycosyl linkage analysis. Acetylation in an ionic liquid greatly improves composition analysis of insoluble polysaccharides when compared to analysis without acetylation, enabling complete composition determination of normally recalcitrant polysaccharides. We also present a protocol for uronic acid linkage analysis that incorporates this preacetylation step. This protocol produces partially methylated alditol acetate derivatives in high yield with minimal β-elimination and gives sensitive linkage results for acidic polysaccharides that more accurately reflect the structures being analyzed. We use important plant polysaccharides to show that the preacetylation step leads to superior results compared to traditional methodologies.
Collapse
Affiliation(s)
- Ian M. Black
- Complex Carbohydrate Research
Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | | | - Jiri Vlach
- Complex Carbohydrate Research
Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Jason Backe
- Complex Carbohydrate Research
Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Breeanna R. Urbanowicz
- Complex Carbohydrate Research
Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Christian Heiss
- Complex Carbohydrate Research
Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research
Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
50
|
Tang H, Huang J, Yuan Q, Lv K, Ma H, Li T, Liu Y, Mi S, Zhao L. A regular Chlorella mannogalactan and its sulfated derivative as a promising anticoagulant: Structural characterization and anticoagulant activity. Carbohydr Polym 2023; 314:120956. [PMID: 37173047 DOI: 10.1016/j.carbpol.2023.120956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Chlorella is one of the most widely cultivated species of microalgae and has been consumed as a "green healthy food". In this study, a novel polysaccharide (CPP-1) was isolated from Chlorella pyrenoidosa, structurally analyzed, and sulfated as a promising anticoagulant. Structural analyses by chemical and instrumental methods such as monosaccharide composition, methylation-GC-MS and 1D/2D NMR spectroscopy analysis revealed that CPP-1 had a molecular weight of ~13.6 kDa, and mainly consisted of d-mannopyranose (d-Manp), 3-O-methylated d-Manp (3-O-Me-d-Manp), and d-galactopyranose (d-Galp). The molar ratio of d-Manp and d-Galp was 1.0:2.3. CPP-1 consisted of a (1→6)-linked β-d-Galp backbone substituted at C-3 by the d-Manp and 3-O-Me-d-Manp residues in a molar ratio of 1:1, which was a regular mannogalactan. The sulfated Chlorella mannogalactan (SCM) with sulfated group content of 40.2 % equivalent to that of unfractionated heparin was prepared and analyzed. NMR analysis confirmed its structure, indicating that most free hydroxyl groups in the side chains and partial hydroxyl groups in the backbone were sulfated. Anticoagulant activity assays indicated that SCM exhibited strong anticoagulant activity by inhibiting intrinsic tenase (FXase) with IC50 of 13.65 ng/mL, which may be a safer anticoagulant as an alternative to heparin-like drugs.
Collapse
Affiliation(s)
- Hao Tang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jinwen Huang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Kunling Lv
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Haiqiong Ma
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Tingting Li
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Shunli Mi
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|