1
|
E Y, Chang Z, Su W, Li W, Li P, Lei F, Yao X, Yuan S, Li J, Zhang F, Jiang J, Wang K. Multi-functional Gleditsia sinensis galactomannan-based hydrogel with highly stretchable, adhesive, and antibacterial properties as wound dressing for accelerating wound healing. Int J Biol Macromol 2024; 283:137279. [PMID: 39532166 DOI: 10.1016/j.ijbiomac.2024.137279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Design and development of a multifunctional wound dressing with self-healing, adhesive, and antibacterial properties to attain optimal wound closure efficiency are highly desirable in clinical applications. Nevertheless, conventional hydrogels face significant barriers in their mechanical strength, adhesive performance, and antibacterial properties. Herein, a tough hydrogel based on aldehyde-grafted galactomannan was synthesized through radical copolymerization and Schiff base reaction, incorporating hyaluronic acid, acrylamide, and the zwitterionic monomer to create a multi-crosslinked structure. The multiple crosslink structure pattern consisting of multiple hydrogen bonding, ionic interactions, reversible Schiff bases bonds, and molecular chain entanglement endowed this hydrogel with multiple functionalities, including high tensile strength (25 kPa), tensile strain (2200 %), toughness (391.59 kJ/m3), and Young's modulus (9.77 kPa). The presence of catechol groups and zwitterionic groups endow hydrogels with outstanding adhesion strength (42.21 kPa), which satisfied the adhesive demand for the ample motion of specific areas. The zwitterionic monomer provided long-lasting antibacterial properties and promoted migration and growth of negatively charged cells, capable of establishing efficient antibacterial barriers and serving as wound dressing. The in vivo and vitro experiments manifested that the optimized hydrogel demonstrated an inconspicuous inflammatory response, facilitating rapid healing of full-thickness skin wound in rat models. Therefore, this work provides a promising strategy and an ideal candidate for wound healing dressings in treating infected skin wounds.
Collapse
Affiliation(s)
- Yuyu E
- Department of Chemistry and Chemical Engineering, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing 100083, China
| | - Zeyu Chang
- Department of Chemistry and Chemical Engineering, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing 100083, China
| | - Weiyin Su
- Department of Chemistry and Chemical Engineering, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing 100083, China
| | - Wen Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Pengfei Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Xi Yao
- International Centre for Bamboo and Rattan, Beijing 100020, China.
| | - Shengguang Yuan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jie Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing 100083, China
| | - Kun Wang
- Department of Chemistry and Chemical Engineering, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing 100083, China.
| |
Collapse
|
2
|
Li W, Li L, Hu J, Zhou D, Su H. Design and Applications of Supramolecular Peptide Hydrogel as Artificial Extracellular Matrix. Biomacromolecules 2024; 25:6967-6986. [PMID: 39418328 DOI: 10.1021/acs.biomac.4c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Supramolecular peptide hydrogels (SPHs) consist of peptides containing hydrogelators and functional epitopes, which can first self-assemble into nanofibers and then physically entangle together to form dynamic three-dimensional networks. Their porous structures, excellent bioactivity, and high dynamicity, similar to an extracellular matrix (ECM), have great potential in artificial ECM. The properties of the hydrogel are largely dependent on peptides. The noncovalent interactions among hydrogelators drive the formation of assemblies and further transition into hydrogels, while bioactive epitopes modulate cell-cell and cell-ECM interactions. Therefore, SPHs can support cell growth, making them ideal biomaterials for ECM mimics. This Review outlines the classical molecular design of SPHs from hydrogelators to functional epitopes and summarizes the recent advancements of SPHs as artificial ECMs in nervous system repair, wound healing, bone and cartilage regeneration, and organoid culture. This emerging SPH platform could provide an alternative strategy for developing more effective biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Wenting Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiale Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Bal-Öztürk A, Torkay G, İdil N, Akar RO, Özbaş Z, Özkahraman B. Propolis-loaded photocurable methacrylated pullulan films: Evaluation of mechanical, antibacterial, biocompatibility, wound healing and pro-angiogenic abilities. Int J Biol Macromol 2024; 282:137071. [PMID: 39486734 DOI: 10.1016/j.ijbiomac.2024.137071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
The ultimate goal of this study was to establish the groundwork for the development of high-mechanical pullulan based films for wound healing applications. For this purpose, pullulan (PUL) was successfully methacrylated with different methacrylic anhydride amounts and used for the fabrication of photocurable wound dressing films (PULMA). The mechanical properties of the films, evaluated by changing the methacrylation degree and polymer concentration for better mechanical performance, indicated the best results in terms of elastic modulus (2.55 ± 0.15 MPa), tensile strength (2.48 ± 0.12 MPa), and elongation at break (848 ± 111 %). Additionally, the incorporation of PRO into wound dressing films has demonstrated strong antibacterial activity against Escherichia coli and Staphylococcus aureus, and it has also improved the release profile. The obtained films have scavenging properties against 2,2-diphenyl-1-picrylhydrazyl (DPPH). The wound dressing films were not cytotoxic to NIH/3T3 cells, a fibroblast cell line, according to the cytotoxicity assay. The in vitro scratch test showed that PRO incorporated films induced cell migration, suggesting that they have the potential to close wounds and promote healing. According to the image analysis conducted following the in ovo chorioallantoic membrane (CAM) test, PRO inclusion boosted different angiogenesis parameters stemming from the films. Clear evidence has been found that PRO loaded into high mechanical performance PUL based films can be suitable for advanced wound dressing applications.
Collapse
Affiliation(s)
- Ayça Bal-Öztürk
- Istinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010 Istanbul, Turkey; Istinye University, Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, 34010 Istanbul, Turkey; Istinye University, Stem Cell and Tissue Engineering Application and Research Center (ISUKOK), 34010 Istanbul, Turkey
| | - Gülşah Torkay
- Istinye University, Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, 34010 Istanbul, Turkey; Istinye University, Stem Cell and Tissue Engineering Application and Research Center (ISUKOK), 34010 Istanbul, Turkey
| | - Neslihan İdil
- Faculty of Science, Department of Biology, Hacettepe University, 06800 Ankara, Turkey
| | - Remzi Okan Akar
- Medical School of Istinye University, Department of Clinical Biochemistry, 34010 Istanbul, Turkey
| | - Zehra Özbaş
- Çankırı Karatekin University, Faculty of Engineering, Chemical Engineering Department, 18100 Çankırı, Turkey
| | - Bengi Özkahraman
- Hitit University, Faculty of Engineering, Polymer Materials Engineering Department, 19030 Corum, Turkey.
| |
Collapse
|
4
|
Ponte ED, de Almeida Ignatowicz A, Volpato GR, Taffarel JV, Takahashi PA, Luiz RM, Silva FEB, Fraga GN, Dragunski DC, Zarpelon-Schutz AC, Alves HJ, Bernardi-Wenzel J. Production and Characterization of Electrospun Chitosan, Nanochitosan and Hyaluronic Acid Membranes for Skin Wound Healing. J Biomed Mater Res B Appl Biomater 2024; 112:e35485. [PMID: 39324392 DOI: 10.1002/jbm.b.35485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024]
Abstract
The development of new wound dressings made from biomaterials, which offer a better cost-benefit ratio and accelerate the healing process, is increasing nowadays. Various biopolymers can be electrospun to form functional membranes for wound healing. Therefore, in this study, chitosan and nanochitosan membranes with or without hyaluronic acid were prepared using the electrospinning technique, characterized and evaluated in the healing of skin wounds in rats. Chitosan and nanochitosan solutions, with or without hyaluronic acid, were prepared at concentrations of 1%-4% using PEO (polyethylene oxide) and subjected to the electrospinning process to obtain membranes characterized by scanning electron microscopy (SEM), mechanical tests, and antimicrobial activity. The healing effect of the membranes was evaluated by monitoring the area of the lesions, contraction of the wounds, histologic analysis, and induction of pro-inflammatory cytokine (IL-1 α and TNF-α) production in rats. The nanochitosan and nanochitosan membranes with hyaluronic acid achieved greater fiber diameter and uniformity, resistance, elasticity, and thermal stability, in addition to good adhesion to the wound bed and permeation capacity. Despite not presenting antimicrobial activity in vitro, they contributed to the production of pro-inflammatory interleukins in the animals tested, provided physical protection, reduced the wound area more markedly until the seventh day of the evaluation, with an acceleration of the healing process and especially when functionalized with hyaluronic acid. These results indicate that the membranes may be promising for accelerating the healing process of chronic wounds in humans.
Collapse
Affiliation(s)
- Edimar Dal Ponte
- Postgraduate Program in Biotechnology, Universidade Federal do Paraná, Setor Palotina, Brazil
| | | | | | | | | | | | - Felipe Eduardo Bueno Silva
- Laboratório de Materiais e Energias Renováveis (LABMATER), Universidade Federal do Paraná, Setor Palotina, Brazil
| | - Gabriel Nardi Fraga
- Center for Engineering and Exact Sciences, Universidade Estadual do Oeste do Paraná-Campus Toledo, Toledo, Brazil
| | - Douglas Cardoso Dragunski
- Center for Engineering and Exact Sciences, Universidade Estadual do Oeste do Paraná-Campus Toledo, Toledo, Brazil
| | - Ana Carla Zarpelon-Schutz
- Postgraduate Program in Biotechnology, Universidade Federal do Paraná, Setor Palotina, Brazil
- Medical School-Universidade Federal do Paraná-Campus Toledo, Toledo, Brazil
| | - Helton José Alves
- Laboratório de Materiais e Energias Renováveis (LABMATER), Universidade Federal do Paraná, Setor Palotina, Brazil
| | - Juliana Bernardi-Wenzel
- Postgraduate Program in Biotechnology, Universidade Federal do Paraná, Setor Palotina, Brazil
- Medical School-Universidade Federal do Paraná-Campus Toledo, Toledo, Brazil
| |
Collapse
|
5
|
Al-Zahrani M, Bauthman NM, Alzahrani YA, Almohaimeed HM, Alsolami K, Al-Sarraj F, Hakeem GH, Alahmari MA, Azher ZA, Makhlof RTM. Transplantation of hyaluronic acid and menstrual blood-derived stem cells accelerated wound healing in a diabetic rat model. Tissue Cell 2024; 89:102442. [PMID: 38908224 DOI: 10.1016/j.tice.2024.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Diabetic wounds require a multifactorial approach because several factors are involved in its occurrence. Herein we investigated whether transplantation of hyaluronic acid (HA) in combination with menstrual blood derived stem cells (MenSCs) could promote healing in diabetic rats. Thirty days after induction of diabetes, sixty animals were randomly planned into four equal groups: the untreated group, HA group, MenSC group, and HA+MenSC group. Sampling was done for histological, molecular, and tensiometrical assessments. Our results indicated that the wound contraction rate, volumes of new epidermis and dermis, collagen density, as well as tensiometrical parameter were considerably increased in the treatment groups compared to the untreated group and these changes were more obvious in the HA+MenSC ones. In addition, the expression levels of TGF-β and VEGF genes were significantly upregulated in treatment groups in comparison with the untreated group and were greater in the HA+MenSC group. This is while expression levels of TNF-α and IL-1β genes were more considerably downregulated in the HA+MenSC group than the other groups. We concluded that the combined use of HA and MenSCs has more effects on diabetic wound healing.
Collapse
Affiliation(s)
- Majid Al-Zahrani
- Department of Biological Science, College of Science and Art, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Nuha M Bauthman
- Department of Obstetrician and Gynecologist, Prince Sultan Medical City (Psmmc), Riyadh, Saudi Arabia
| | | | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Khadeejah Alsolami
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Faisal Al-Sarraj
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghadeer H Hakeem
- Department of Consultant OBGYN, Quality Specialist, Prince Sultan Medical City (Psmmc), Riyadh, Saudi Arabia
| | - Maha Ali Alahmari
- Department of Consultant OBGYN, Quality Specialist, Prince Sultan Medical City (Psmmc), Riyadh, Saudi Arabia
| | - Zohor A Azher
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Raafat T M Makhlof
- Department of Parasitology, Faculty of Medicine, Umm Al Qura University, Makkah 21955, Saudi Arabia; Department of Parasitology, Faculty of Medicine, Minia University, Minia 61511, Egypt
| |
Collapse
|
6
|
Zhang H, Li Y, Fu Y, Jiao H, Wang X, Wang Q, Zhou M, Yong YC, Liu J. A structure-functionality insight into the bioactivity of microbial polysaccharides toward biomedical applications: A review. Carbohydr Polym 2024; 335:122078. [PMID: 38616098 DOI: 10.1016/j.carbpol.2024.122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Microbial polysaccharides (MPs) are biopolymers secreted by microorganisms such as bacteria and fungi during their metabolic processes. Compared to polysaccharides derived from plants and animals, MPs have advantages such as wide sources, high production efficiency, and less susceptibility to natural environmental influences. The most attractive feature of MPs lies in their diverse biological activities, such as antioxidative, anti-tumor, antibacterial, and immunomodulatory activities, which have demonstrated immense potential for applications in functional foods, cosmetics, and biomedicine. These bioactivities are precisely regulated by their sophisticated molecular structure. However, the mechanisms underlying this precise regulation are not yet fully understood and continue to evolve. This article presents a comprehensive review of the most representative species of MPs, including their fermentation and purification processes and their biomedical applications in recent years. In particular, this work presents an in-depth analysis into the structure-activity relationships of MPs across multiple molecular levels. Additionally, this review discusses the challenges and prospects of investigating the structure-activity relationships, providing valuable insights into the broad and high-value utilization of MPs.
Collapse
Affiliation(s)
- Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyu Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Mengbo Zhou
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
7
|
Sufiyan M, Kushwaha P, Ahmad M, Mandal P, Vishwakarma KK. Scaffold-Mediated Drug Delivery for Enhanced Wound Healing: A Review. AAPS PharmSciTech 2024; 25:137. [PMID: 38877197 DOI: 10.1208/s12249-024-02855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
Wound healing is a complex physiological process involving coordinated cellular and molecular events aimed at restoring tissue integrity. Acute wounds typically progress through the sequential phases of hemostasis, inflammation, proliferation, and remodeling, while chronic wounds, such as venous leg ulcers and diabetic foot ulcers, often exhibit prolonged inflammation and impaired healing. Traditional wound dressings, while widely used, have limitations such poor moisture retention and biocompatibility. To address these challenges and improve patient outcomes, scaffold-mediated delivery systems have emerged as innovative approaches. They offer advantages in creating a conducive environment for wound healing by facilitating controlled and localized drug delivery. The manuscript explores scaffold-mediated delivery systems for wound healing applications, detailing the use of natural and synthetic polymers in scaffold fabrication. Additionally, various fabrication techniques are discussed for their potential in creating scaffolds with controlled drug release kinetics. Through a synthesis of experimental findings and current literature, this manuscript elucidates the promising potential of scaffold-mediated drug delivery in improving therapeutic outcomes and advancing wound care practices.
Collapse
Affiliation(s)
- Mohd Sufiyan
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | - Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India.
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | - Purba Mandal
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | | |
Collapse
|
8
|
Arezomand Z, Mashjoor S, Makhmalzadeh BS, Shushizadeh MR, Khorsandi L. Citrus flavonoids-loaded chitosan derivatives-route nanofilm as drug delivery systems for cutaneous wound healing. Int J Biol Macromol 2024; 271:132670. [PMID: 38806083 DOI: 10.1016/j.ijbiomac.2024.132670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
This study focuses on creating new forms of biomimetic nanofiber composites by combining copolymerizing and electrospinning approaches in the field of nanomedicine. The process involved utilizing the melt polymerization of proline (Pr) and hydroxyl proline (Hyp) to synthesize polymers based on Pr (PPE) and Hyp (PHPE). These polymers were then used in a grafting copolymerization process with chitosan (CS) to produce PHPC (1560 ± 81.08 KDa). A novel electrospun nanofiber scaffold was then produced using PHPC and/or CS, hyaluronic acid, polyvinyl alcohol, and naringenin (NR) as a loading drug. Finally, Mouse Dermal Fibroblast (MDF) cells were introduced to the wound dressing and assessed their therapeutic potential for wound healing in rats. The scaffolds were characterized by FTIR, NMR, DSC, and SEM analysis, which confirmed the amino acid grafting, loading drug, and porous and nanofibrous structures (>225 nm). The results showed that the PHPC-based scaffolds were more effective for swelling/absorption of wound secretions, had more elasticity/elongation, faster drug release, more MDF-cytocompatibility, and antibacterial activity against multidrug-resistant S. aureus compared to CS-based scaffolds. The in vivo studies showed that NR in combination with MDF can accelerate cell migration/proliferation, and remodeling phases of wound healing in both PHPC/CS-based scaffolds. Moreover, PHPC-based scaffolds promote collagen content, and better wound contraction, epithelialization, and neovascularization than CS-based, showing potential as wound-dressing.
Collapse
Affiliation(s)
- Zeinab Arezomand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sakineh Mashjoor
- Department of Marine Pharmacognosy, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Behzad Sharif Makhmalzadeh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad Reza Shushizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, Faculty of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Zhao Q, Leng C, Lau M, Choi K, Wang R, Zeng Y, Chen T, Zhang C, Li Z. Precise healing of oral and maxillofacial wounds: tissue engineering strategies and their associated mechanisms. Front Bioeng Biotechnol 2024; 12:1375784. [PMID: 38699431 PMCID: PMC11063293 DOI: 10.3389/fbioe.2024.1375784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Precise healing of wounds in the oral and maxillofacial regions is usually achieved by targeting the entire healing process. The rich blood circulation in the oral and maxillofacial regions promotes the rapid healing of wounds through the action of various growth factors. Correspondingly, their tissue engineering can aid in preventing wound infections, accelerate angiogenesis, and enhance the proliferation and migration of tissue cells during wound healing. Recent years, have witnessed an increase in the number of researchers focusing on tissue engineering, particularly for precise wound healing. In this context, hydrogels, which possess a soft viscoelastic nature and demonstrate exceptional biocompatibility and biodegradability, have emerged as the current research hotspot. Additionally, nanofibers, films, and foam sponges have been explored as some of the most viable materials for wound healing, with noted advantages and drawbacks. Accordingly, future research is highly likely to explore the application of these materials harboring enhanced mechanical properties, reduced susceptibility to external mechanical disturbances, and commendable water absorption and non-expansion attributes, for superior wound healing.
Collapse
Affiliation(s)
- Qingtong Zhao
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Stomatology, The Sixth Affiliated Hospital of Jinan University, Dongguan, China
| | - Changyun Leng
- School of stomatology, Jinan University, Guangzhou, China
| | - Manting Lau
- Department of Stomatology, Baoan Central Hospital of Shenzhen, Shenzhen, China
| | - Kawai Choi
- School of stomatology, Jinan University, Guangzhou, China
| | - Ruimin Wang
- School of stomatology, Jinan University, Guangzhou, China
| | - Yuyu Zeng
- School of stomatology, Jinan University, Guangzhou, China
| | - Taiying Chen
- School of stomatology, Jinan University, Guangzhou, China
| | - Canyu Zhang
- School of stomatology, Jinan University, Guangzhou, China
| | - Zejian Li
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- School of stomatology, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Ansari M, Darvishi A. A review of the current state of natural biomaterials in wound healing applications. Front Bioeng Biotechnol 2024; 12:1309541. [PMID: 38600945 PMCID: PMC11004490 DOI: 10.3389/fbioe.2024.1309541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Skin, the largest biological organ, consists of three main parts: the epidermis, dermis, and subcutaneous tissue. Wounds are abnormal wounds in various forms, such as lacerations, burns, chronic wounds, diabetic wounds, acute wounds, and fractures. The wound healing process is dynamic, complex, and lengthy in four stages involving cells, macrophages, and growth factors. Wound dressing refers to a substance that covers the surface of a wound to prevent infection and secondary damage. Biomaterials applied in wound management have advanced significantly. Natural biomaterials are increasingly used due to their advantages including biomimicry of ECM, convenient accessibility, and involvement in native wound healing. However, there are still limitations such as low mechanical properties and expensive extraction methods. Therefore, their combination with synthetic biomaterials and/or adding bioactive agents has become an option for researchers in this field. In the present study, the stages of natural wound healing and the effect of biomaterials on its direction, type, and level will be investigated. Then, different types of polysaccharides and proteins were selected as desirable natural biomaterials, polymers as synthetic biomaterials with variable and suitable properties, and bioactive agents as effective additives. In the following, the structure of selected biomaterials, their extraction and production methods, their participation in wound healing, and quality control techniques of biomaterials-based wound dressings will be discussed.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | |
Collapse
|
11
|
Priya S, Choudhari M, Tomar Y, Desai VM, Innani S, Dubey SK, Singhvi G. Exploring polysaccharide-based bio-adhesive topical film as a potential platform for wound dressing application: A review. Carbohydr Polym 2024; 327:121655. [PMID: 38171676 DOI: 10.1016/j.carbpol.2023.121655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Wound dressings act as a physical barrier between the wound site and the external environment, preventing additional harm; choosing suitable wound dressings is essential for the healing process. Polysaccharide biopolymers have demonstrated encouraging findings and therapeutic prospects in recent decades about wound therapy. Additionally, polysaccharides have bioactive qualities like anti-inflammatory, antibacterial, and antioxidant capabilities that can help the process of healing. Due to their excellent tissue adhesion, swelling, water absorption, bactericidal, and immune-regulating properties, polysaccharide-based bio-adhesive films have recently been investigated as intriguing alternatives in wound management. These films also mimic the structure of the skin and stimulate the regeneration of the skin. This review presented several design standards and functions of suitable bio-adhesive films for the healing of wounds. Additionally, the most recent developments in the use of bio-adhesive films as wound dressings based on polysaccharides, including hyaluronic acid, chondroitin sulfate, dextran, alginate, chitosan, cellulose, konjac glucomannan, gellan gum, xanthan gum, pectin, guar gum, heparin, arabinogalactans, carrageen, and tragacanth gum, are thoroughly discussed. Lastly, to create a road map for the function of polysaccharide-based bio-adhesive films in advanced wound care, their clinical performances and future challenges in making bio-adhesive films by three-dimensional bioprinting are summarized.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Manisha Choudhari
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Yashika Tomar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Srinath Innani
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | | | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
12
|
Zheng W, Yang W, Wei W, Liu Z, Tremblay PL, Zhang T. An Electroconductive and Antibacterial Adhesive Nanocomposite Hydrogel for High-Performance Skin Wound Healing. Adv Healthc Mater 2024; 13:e2303138. [PMID: 37903562 DOI: 10.1002/adhm.202303138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Indexed: 11/01/2023]
Abstract
Multifunctional hydrogel adhesives inhibiting infections and enabling the electrical stimulation (ES) of tissue reparation are highly desirable for the healing of surgical wounds and other skin injuries. Herein, a therapeutic nanocomposite hydrogel is designed by integrating β-cyclodextrin-embedded Ag nanoparticles (CDAgNPs) in a polyvinyl alcohol (PVA) matrix enhanced with free β-cyclodextrin (CD) and an atypical macromolecule made of β-glucan grafted with hyaluronic acid (HAG). The main objective is to develop a biocompatible dressing combining the electroconductivity and antibacterial activity of CDAgNPs with the cohesiveness and porosity of PVA and the anti-inflammatory, moisturizing, and cell proliferation-promoting properties of HAG. The last component, CD, is added to strengthen the network structure of the hydrogel. PVA/CD/HAG/CDAgNP exhibited excellent adhesion strength, biocompatibility, electroconductivity, and antimicrobial activity against a wide range of bacteria. In addition, the nanocomposite hydrogel has a swelling ratio and water retention capacity suitable to serve as a wound dressing. PVA/CD/HAG/CDAgNP promoted the proliferation of fibroblast in vitro, accelerated the healing of skin wounds in an animal model, and is hemostatic. Upon ES, the PVA/CD/HAG/CDAgNP nanocomposite hydrogel became more efficient both in vitro and in vivo further speeding up the skin healing process thus demonstrating its potential as a next-generation electroconductive wound dressing.
Collapse
Affiliation(s)
- Wen Zheng
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wenyue Yang
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wenlong Wei
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ziru Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, P. R. China
| | - Tian Zhang
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, P. R. China
| |
Collapse
|
13
|
Teng F, Wang W, Wang ZQ, Wang GX. Analysis of bioprinting strategies for skin diseases and injuries through structural and temporal dynamics: historical perspectives, research hotspots, and emerging trends. Biofabrication 2024; 16:025019. [PMID: 38350130 DOI: 10.1088/1758-5090/ad28f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/13/2024] [Indexed: 02/15/2024]
Abstract
This study endeavors to investigate the progression, research focal points, and budding trends in the realm of skin bioprinting over the past decade from a structural and temporal dynamics standpoint. Scholarly articles on skin bioprinting were obtained from WoSCC. A series of bibliometric tools comprising R software, CiteSpace, HistCite, and an alluvial generator were employed to discern historical characteristics, evolution of active topics, and upcoming tendencies in the area of skin bioprinting. Over the past decade, there has been a consistent rise in research interest in skin bioprinting, accompanied by an extensive array of meaningful scientific collaborations. Concurrently, diverse dynamic topics have emerged during various periods, as substantiated by an aggregate of 22 disciplines, 74 keywords, and 187 references demonstrating citation bursts. Four burgeoning research subfields were discerned through keyword clustering-namely, #3 'in situbioprinting', #6 'vascular', #7 'xanthan gum', and #8 'collagen hydrogels'. The keyword alluvial map reveals that Module 1, including 'transplantation' etc, has primarily dominated the research module over the previous decade, maintaining enduring relevance despite annual shifts in keyword focus. Additionally, we mapped out the top six key modules from 2023 being 'silk fibroin nanofiber', 'system', 'ionic liquid', 'mechanism', and 'foot ulcer'. Three recent research subdivisions were identified via timeline visualization of references, particularly Clusters #0 'wound healing', #4 'situ mineralization', and #5 '3D bioprinter'. Insights derived from bibliometric analyses illustrate present conditions and trends in skin bioprinting research, potentially aiding researchers in pinpointing central themes and pioneering novel investigative approaches in this field.
Collapse
Affiliation(s)
- Fei Teng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Wei Wang
- Department of Ultrasound, University-Town Hospital of Chongqing Medical University, Chongqing 400042, People's Republic of China
| | - Zhi-Qiang Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Gui-Xue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center at Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| |
Collapse
|
14
|
Valachová K, Hassan ME, Šoltés L. Hyaluronan: Sources, Structure, Features and Applications. Molecules 2024; 29:739. [PMID: 38338483 PMCID: PMC10856924 DOI: 10.3390/molecules29030739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Hyaluronan (HA) is a non-sulfated glycosaminoglycan that is present in a variety of body tissues and organs. Hyaluronan has a wide range of biological activities that are frequently influenced by molar mass; however, they also depend greatly on the source, purity, and kind of impurities in hyaluronan. High-molar-mass HA has anti-inflammatory, immunosuppressive, and antiangiogenic properties, while low-molar-mass HA has opposite properties. A number of chemical modifications have been performed to enhance the stability of HA and its applications in medical practice. Hyaluronan is widely applied in medicine, such as viscosupplementation, ophthalmology, otolaryngology, wound healing, cosmetics, and drug delivery. In this review, we summarized several medical applications of polymers based on the hyaluronan backbone.
Collapse
Affiliation(s)
- Katarína Valachová
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia
| | - Mohamed E. Hassan
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia
- Centre of Excellence, Encapsulation & Nanobiotechnology Group, Chemistry of Natural and Microbial Products Department, National Research Centre, El Behouth Street, Cairo 12622, Egypt
| | - Ladislav Šoltés
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia
| |
Collapse
|
15
|
Akbari A, Emamzadeh R, Nazari M, Brandstetter T, Rühe J. Enhancing protein delivery for tissue regeneration: Development of AGR2-loaded hydrogels with controlled release properties. Int J Biol Macromol 2024; 259:128846. [PMID: 38141714 DOI: 10.1016/j.ijbiomac.2023.128846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
The growth factor Anterior Gradient 2 (AGR2) has been shown to have an effective role in tissue regeneration, but remained largely unexplored in localized tissue engineering applications. Alginate beads have been proven as safe carriers for protein encapsulation, but they suffer from fragility and uncontrolled protein release. For such alginate systems, little is known about how changes in concentrations and ion-crosslinking affect protein release and accumulation in 3-D matrices. To address these questions, an engineered interpenetrating polymer network (IPN) has been used to synthesize a novel hybrid system consisting of AGR2 loaded beads composed of calcium-crosslinked sodium alginate (SA) and carboxymethyl cellulose (CMC). These beads are embedded in films consisting of SA and polyvinyl alcohol (PVA), using a simple ion gelation technique. We assess protein release kinetics and accumulation within the hybrid system by varying polymer concentrations and cross-linking parameters. The IPN hybrid system maintains controlled release over two weeks, without an initial burst period. Through this approach efficicnt delivery of AGR2 is achieved which in turn effectively mediates cell migration and proliferation, resulting in excellent cell viability and complete wound closure. The described release system opens new perspectives in tissue engineering.
Collapse
Affiliation(s)
- Atefeh Akbari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mahboobeh Nazari
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran; Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Thomas Brandstetter
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Jürgen Rühe
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.
| |
Collapse
|
16
|
Kumar M, Kumar D, Garg Y, Mahmood S, Chopra S, Bhatia A. Marine-derived polysaccharides and their therapeutic potential in wound healing application - A review. Int J Biol Macromol 2023; 253:127331. [PMID: 37820901 DOI: 10.1016/j.ijbiomac.2023.127331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Polysaccharides originating from marine sources have been studied as potential material for use in wound dressings because of their desirable characteristics of biocompatibility, biodegradability, and low toxicity. Marine-derived polysaccharides used as wound dressing, provide several benefits such as promoting wound healing by providing a moist environment that facilitates cell migration and proliferation. They can also act as a barrier against external contaminants and provide a protective layer to prevent further damage to the wound. Research studies have shown that marine-derived polysaccharides can be used to develop different types of wound dressings such as hydrogels, films, and fibres. These dressings can be personalised to meet specific requirements based on the type and severity of the wound. For instance, hydrogels can be used for deep wounds to provide a moist environment, while films can be used for superficial wounds to provide a protective barrier. Additionally, these polysaccharides can be modified to improve their properties, such as enhancing their mechanical strength or increasing their ability to release bioactive molecules that can promote wound healing. Overall, marine-derived polysaccharides show great promise for developing effective and safe wound dressings for various wound types.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201313, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| |
Collapse
|
17
|
Ma X, Ning W, Geng Y, Shao H, Liu Y, Liu F, Zhang D, Chi B, Hou Y, Fu X. An ECM-mimicking assembled gelatin/hyaluronic acid hydrogel with antibacterial and radical scavenging functions for accelerating open wound healing. Biomed Mater 2023; 19:015008. [PMID: 37972551 DOI: 10.1088/1748-605x/ad0d85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
A multifunctional hydrogel dressing with hemostatic, antibacterial, and reactive oxygen species (ROS)-removing properties is highly desirable for the clinical treatment of open wounds. Although many wound dressings have been prepared, the modification of polymers is often involved in the preparation process, and the uncertainty of biological safety and stability of modified polymers hinders the clinical application of products. In this study, inspired by the composition and crosslinking pattern of extracellular matrix (ECM), a deeply ECM-mimicking multifunctional hydrogel dressing is created. Tannic acid (TA) and poly-ϵ-lysine (EPL) are added into a gelatin/hyaluronic acid (Gel/HA) matrix, and a stable hydrogel is formed due to the formation of the triple helix bundles of gelatin and hydrogen bonds between polymers. The introduction of TA and EPL endows the ECM-mimicking hydrogel with stable rheological properties, as well as antibacterial and hemostatic functions. The as-produced hydrogels have suitable swelling ratio, enzyme degradability, and good biocompatibility. In addition, it also shows a significant ability to eliminate ROS, which is confirmed by the elimination of 2,2-diphenyl-1-picrylhydrazyl free radical. Full-thickness skin wound repair experiment and histological analysis of the healing site in mice demonstrate that the developed ECM-mimicking Gel/HA hydrogels have a prominent effect on ECM formation and promotion of wound closure. Taken together, these findings suggest that the multifunctional hydrogels deeply mimicking the ECM are promising candidates for the clinical treatment of open wounds.
Collapse
Affiliation(s)
- Xuebin Ma
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Wenli Ning
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250021, People's Republic of China
| | - Yiming Geng
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, People's Republic of China
| | - Huarong Shao
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Yang Liu
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Fei Liu
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Daizhou Zhang
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Yali Hou
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, People's Republic of China
| | - Xiao Fu
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250021, People's Republic of China
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, People's Republic of China
| |
Collapse
|
18
|
Huldani H, Kozlitina IA, Alshahrani M, Daabo HMA, Almalki SG, Oudaha KH, Alawadi AH, Alsalamy A, Joshi SK, Mustafa YF. Exosomes derived from adipose stem cells in combination with hyaluronic acid promote diabetic wound healing. Tissue Cell 2023; 85:102252. [PMID: 37922674 DOI: 10.1016/j.tice.2023.102252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Diabetic wound is one of the main challenges in dermatology. Although stem cell-based treatment has therapeutic benefits in wound repair, the clinical application is still limited. Herein we investigated whether adipose stem cells -derived exosomes (Exo) loaded on hyaluronic acid (HA) could promote healing in diabetic rats. Sixty diabetic rats were randomly planned into the control group, Exo group, HA group, and HA+Exo group. On days 7, 14, and 21, five rats from each group were sampled for stereological, molecular, and tensiometrical assessments. Our results indicated that the wound closure rate, the total volumes of new epidermis and dermis, the numerical densities of fibroblasts, the length density blood vessels, collagen density as well as tensiometrical parameters of the healed wounds were significantly higher in the treated groups than in the control group, and these changes were more obvious in the HA+Exo ones. Furthermore, the expression of TGF-β and VEGF genes were meaningfully upregulated in all treated groups compared to the control group and were greater in the HA+Exo group. This is while expression of TNF-α and IL-1β, as well as numerical densities of neutrophils decreased more considerably in the HA+Exo group in comparison to the other groups. Generally, it was found that using both HA injection and exosomes has more effect on diabetic wound healing.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia.
| | - Iuliia A Kozlitina
- Department of Pediatric, Preventive Dentistry and Orthodontics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mesfer Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Hussien Alawadi
- College of technical engineering, Islamic University, Najaf, Iraq; College of technical engineering, Islamic University of Al Diwaniyah, Iraq; College of technical engineering, Islamic University of Babylon, Iraq
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - S K Joshi
- Department of Mechanical Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
19
|
Khaliq T, Sohail M, Minhas MU, Mahmood A, Munir A, Qalawlus AHM, Jabeen N, Kousar M, Anwar Z. Hyaluronic acid/alginate-based biomimetic hydrogel membranes for accelerated diabetic wound repair. Int J Pharm 2023; 643:123244. [PMID: 37463619 DOI: 10.1016/j.ijpharm.2023.123244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/16/2023] [Accepted: 07/15/2023] [Indexed: 07/20/2023]
Abstract
The study aims to develop a new multifunctional biopolymer-based hydrogel membrane dressing by adopting a solvent casting method for the controlled release of cefotaxime sodium at the wound site. Sodium alginate enhances collagen production in the skin, which provides tensile strength to healing tissue. Moreover, the significance of extracellular molecules such as hyaluronic acid in the wound the healing cascade renders these biopolymers an essential ingredient for the fabrication of hydrogel membranes via physical crosslinking (hydrogen bonding). These membranes were further investigated in terms of their structure, and surface morphology, as well as cell viability analysis. A membrane with the most suitable characteristics was chosen as a candidate for cefotaxime sodium loading and in vivo analysis. Results show that the 3D porous nature of developed membranes allows optimum water vapor and oxygen transmission (>8.21 mg/mL) to divert excessive wound exudate away from the diabetic wound bed, MTT assay confirmed cell viability at more than 80%. In vivo results confirmed that the CTX-HA-Alg-PVA hydrogel group showed rapid wound healing with accelerated re-epithelization and a decreased inflammatory response. Conclusively, these findings indicate that CTX-HA-Alg-PVA hydrogel membranes exhibit a suitable niche for use as dressing membranes for healing of diabetic wounds.
Collapse
Affiliation(s)
- Touba Khaliq
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan; Faculty of Pharmacy, Cyprus International University, Nicosia 99258, Cyprus.
| | | | - Arshad Mahmood
- Collage of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Abubakar Munir
- Department of Pharmaceutical Sciences, The Superior University, Lahore 54600, Pakistan
| | | | - Nazish Jabeen
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Zobia Anwar
- Govt. Postgraduate College Mandian, Abbottabad 22010, Pakistan
| |
Collapse
|
20
|
Cosio T, Costanza G, Coniglione F, Romeo A, Iacovelli F, Diluvio L, Dika E, Shumak RG, Rossi P, Bianchi L, Falconi M, Campione E. From In Silico Simulation between TGF- β Receptors and Quercetin to Clinical Insight of a Medical Device Containing Allium cepa: Its Efficacy and Tolerability on Post-Surgical Scars. Life (Basel) 2023; 13:1781. [PMID: 37629638 PMCID: PMC10455185 DOI: 10.3390/life13081781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Objective: Keloid and hypertrophic scars are a challenge in clinical management, causing functional and psychological discomfort. These pathological scars are caused by a proliferation of dermal tissue following skin injury. The TGF-β/Smad signal pathway in the fibroblasts and myofibroblasts is involved in the scarring process of skin fibrosis. Today, multiple therapeutic strategies that target the TGF-β/Smad signal pathway are evaluated to attenuate aberrant skin scars that are sometimes difficult to manage. We performed a head-to-head, randomized controlled trial evaluating the appearance of the post-surgical scars of 64 subjects after two times daily topical application to compare the effect of a class I pullulan-based medical device containing Allium cepa extract 5% and hyaluronic acid 5% gel versus a class I medical device silicone gel on new post-surgical wounds. (2) Methods: Objective scar assessment using the Vancouver Scar Scale (VSS), POSAS, and other scales were performed after 4, 8, and 12 weeks of treatment and statistical analyses were performed. The trial was registered in clinicalTrials.gov ( NCT05412745). In parallel, molecular docking simulations have been performed to investigate the role of Allium cepa in TGF-β/Smad signal pathway. (3) Results: We showed that VSS, POSAS scale, itching, and redness reduced significantly at week 4 and 8 in the subjects using devices containing Allium cepa and HA. No statistically significant differences in evaluated scores were noted at 12 weeks of treatment. Safety was also evaluated by gathering adverse events related to the application of the gel. Subject compliance and safety with the assigned gel were similar between the two study groups. Molecular docking simulations have shown how Allium cepa could inhibit fibroblasts proliferation and contraction via TGF-β/Smad signal pathway. (4) Conclusions: The topical application of a pullulan-based medical device containing Allium cepa and HA showed a clear reduction in the local inflammation, which might lead to a reduced probability of developing hypertrophic scars or keloids.
Collapse
Affiliation(s)
- Terenzio Cosio
- Post Graduate School of Microbiology, Immunology, Infectious Diseases, and Transplants (MIMIT), Microbiology Section, Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (L.D.); (R.G.S.); (L.B.)
| | - Gaetana Costanza
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (L.D.); (R.G.S.); (L.B.)
- Virology Unit, Tor Vergata Hospital, 00133 Rome, Italy
| | - Filadelfo Coniglione
- Department of Surgical Sciences, University Nostra Signora del Buon Consiglio, 1000 Tirana, Albania;
| | - Alice Romeo
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.R.); (F.I.); (M.F.)
| | - Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.R.); (F.I.); (M.F.)
| | - Laura Diluvio
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (L.D.); (R.G.S.); (L.B.)
| | - Emi Dika
- Dermatology, Department of Medical and Surgical Sciences Alma Mater Studiorum, University of Bologna, 40138 Bolog, Italy;
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Ruslana Gaeta Shumak
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (L.D.); (R.G.S.); (L.B.)
| | - Piero Rossi
- Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy;
- Minimally Invasive Unit, Tor Vergata Hospital, 00133 Rome, Italy
| | - Luca Bianchi
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (L.D.); (R.G.S.); (L.B.)
| | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.R.); (F.I.); (M.F.)
| | - Elena Campione
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (L.D.); (R.G.S.); (L.B.)
| |
Collapse
|
21
|
Abdel-Rahman RM, Abdel-Mohsen AM. Marine Biomaterials: Hyaluronan. Mar Drugs 2023; 21:426. [PMID: 37623707 PMCID: PMC10456333 DOI: 10.3390/md21080426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
The marine-derived hyaluronic acid and other natural biopolymers offer exciting possibilities in the field of biomaterials, providing sustainable and biocompatible alternatives to synthetic materials. Their unique properties and abundance in marine sources make them valuable resources for various biomedical and industrial applications. Due to high biocompatible features and participation in biological processes related to tissue healing, hyaluronic acid has become widely used in tissue engineering applications, especially in the wound healing process. The present review enlightens marine hyaluronan biomaterial providing its sources, extraction process, structures, chemical modifications, biological properties, and biocidal applications, especially for wound healing/dressing purposes. Meanwhile, we point out the future development of wound healing/dressing based on hyaluronan and its composites and potential challenges.
Collapse
Affiliation(s)
- Rasha M. Abdel-Rahman
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 00 Praha, Czech Republic
| | - A. M. Abdel-Mohsen
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 00 Praha, Czech Republic
| |
Collapse
|
22
|
Quevedo BV, Komatsu D, de Lourdes Rezende M, de Rezende Duek EA. Synthesis of epoxidized natural rubber grafted with hyaluronic acid for the development of biomaterials. Int J Biol Macromol 2023; 244:125359. [PMID: 37321441 DOI: 10.1016/j.ijbiomac.2023.125359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
Natural Rubber (NR), extracted from Hevea brasiliensis rubber trees, is a biocompatible biopolymer with properties that support in the tissue repair process. However, its biomedical applications are limited due to the presence of allergenic proteins, hydrophobicity, and unsaturated bonds. To overcome these limitations and contribute to the development of new biomaterials, this study aims to deproteinize, epoxidize, and subject NR to copolymerization by grafting with hyaluronic acid (HA), which is widely recognized for its bioactive properties in the medical field. The deproteinization, epoxidation, and graft copolymerization through the esterification reaction were confirmed by Fourier Transform Infrared Spectroscopy and Hydrogen Nuclear Magnetic Resonance Spectroscopy analysis. Thermogravimetry and Differential Scanning Calorimetry demonstrated that the grafted sample exhibited a lower degradation rate and a higher glass transition temperature, indicating strong intermolecular interactions. Moreover, contact angle measurement revealed that the grafted NR exhibited a high hydrophilic character. The results obtained suggest the formation of a novel material with great potential for application in biomaterials involved in tissue repair processes.
Collapse
Affiliation(s)
- Bruna V Quevedo
- Postgraduate Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba, SP 13565-905, Brazil; Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP 18030-070, Brazil.
| | - Daniel Komatsu
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP 18030-070, Brazil; Department of Polymer, José Crespo Gonzales Faculty of Technology (FATEC), Sorocaba, SP 18013-280, Brazil
| | - Maira de Lourdes Rezende
- Department of Polymer, José Crespo Gonzales Faculty of Technology (FATEC), Sorocaba, SP 18013-280, Brazil
| | - Eliana Aparecida de Rezende Duek
- Postgraduate Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba, SP 13565-905, Brazil; Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP 18030-070, Brazil
| |
Collapse
|
23
|
Stan D, Codrici E, Enciu AM, Olewnik-Kruszkowska E, Gavril G, Ruta LL, Moldovan C, Brincoveanu O, Bocancia-Mateescu LA, Mirica AC, Stan D, Tanase C. Exploring the Impact of Alginate-PVA Ratio and the Addition of Bioactive Substances on the Performance of Hybrid Hydrogel Membranes as Potential Wound Dressings. Gels 2023; 9:476. [PMID: 37367146 DOI: 10.3390/gels9060476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Healthcare professionals face an ongoing challenge in managing both acute and chronic wounds, given the potential impact on patients' quality of life and the limited availability of expensive treatment options. Hydrogel wound dressings offer a promising solution for effective wound care due to their affordability, ease of use, and ability to incorporate bioactive substances that enhance the wound healing process. Our study aimed to develop and evaluate hybrid hydrogel membranes enriched with bioactive components such as collagen and hyaluronic acid. We utilized both natural and synthetic polymers and employed a scalable, non-toxic, and environmentally friendly production process. We conducted extensive testing, including an in vitro assessment of moisture content, moisture uptake, swelling rate, gel fraction, biodegradation, water vapor transmission rate, protein denaturation, and protein adsorption. We evaluated the biocompatibility of the hydrogel membranes through cellular assays and performed instrumental tests using scanning electron microscopy and rheological analysis. Our findings demonstrate that the biohybrid hydrogel membranes exhibit cumulative properties with a favorable swelling ratio, optimal permeation properties, and good biocompatibility, all achieved with minimal concentrations of bioactive agents.
Collapse
Affiliation(s)
- Diana Stan
- DDS Diagnostic, 031427 Bucharest, Romania
- Doctoral School of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Georgiana Gavril
- Department of Bioinformatics, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | | | - Carmen Moldovan
- National Institute for R&D in Microtechnology, 077190 Bucharest, Romania
| | - Oana Brincoveanu
- National Institute for R&D in Microtechnology, 077190 Bucharest, Romania
- Research Institute of the University of Bucharest, 060102 Bucharest, Romania
| | | | | | - Dana Stan
- DDS Diagnostic, 031427 Bucharest, Romania
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Cell Biology and Clinical Biochemistry, Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
| |
Collapse
|
24
|
Fadilah NIM, Riha SM, Mazlan Z, Wen APY, Hao LQ, Joseph B, Maarof M, Thomas S, Motta A, Fauzi MB. Functionalised-biomatrix for wound healing and cutaneous regeneration: future impactful medical products in clinical translation and precision medicine. Front Bioeng Biotechnol 2023; 11:1160577. [PMID: 37292094 PMCID: PMC10245056 DOI: 10.3389/fbioe.2023.1160577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Skin tissue engineering possesses great promise in providing successful wound injury and tissue loss treatments that current methods cannot treat or achieve a satisfactory clinical outcome. A major field direction is exploring bioscaffolds with multifunctional properties to enhance biological performance and expedite complex skin tissue regeneration. Multifunctional bioscaffolds are three-dimensional (3D) constructs manufactured from natural and synthetic biomaterials using cutting-edge tissue fabrication techniques incorporated with cells, growth factors, secretomes, antibacterial compounds, and bioactive molecules. It offers a physical, chemical, and biological environment with a biomimetic framework to direct cells toward higher-order tissue regeneration during wound healing. Multifunctional bioscaffolds are a promising possibility for skin regeneration because of the variety of structures they provide and the capacity to customise the chemistry of their surfaces, which allows for the regulated distribution of bioactive chemicals or cells. Meanwhile, the current gap is through advanced fabrication techniques such as computational designing, electrospinning, and 3D bioprinting to fabricate multifunctional scaffolds with long-term safety. This review stipulates the wound healing processes used by commercially available engineered skin replacements (ESS), highlighting the demand for a multifunctional, and next-generation ESS replacement as the goals and significance study in tissue engineering and regenerative medicine (TERM). This work also scrutinise the use of multifunctional bioscaffolds in wound healing applications, demonstrating successful biological performance in the in vitro and in vivo animal models. Further, we also provided a comprehensive review in requiring new viewpoints and technological innovations for the clinical application of multifunctional bioscaffolds for wound healing that have been found in the literature in the last 5 years.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shaima Maliha Riha
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zawani Mazlan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Adzim Poh Yuen Wen
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Looi Qi Hao
- My Cytohealth Sdn Bhd Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Blessy Joseph
- Business Innovation and Incubation Centre, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sabu Thomas
- International and Inter University Centre for Nanosciences and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Sheokand B, Vats M, Kumar A, Srivastava CM, Bahadur I, Pathak SR. Natural polymers used in the dressing materials for wound healing: Past, present and future. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
26
|
Pullulan in pharmaceutical and cosmeceutical formulations: A review. Int J Biol Macromol 2023; 231:123353. [PMID: 36681225 DOI: 10.1016/j.ijbiomac.2023.123353] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Pullulan, an α-glucan polysaccharide, is colorless, odorless, non-toxic, non-carcinogenic, highly biocompatible, edible and biodegradable in nature. The long chains of glucopyranose rings in pullulan structure are linked together by α-(1 → 4) and α-(1 → 6) glycosidic linkages. The occurrence of both glycosidic linkages in the pullulan structure contributes to its distinctive properties. The unique structure of pullulan makes it a potent candidate for both pharmaceutical and cosmeceutical applications. In pharmaceuticals, it can be used as a drug carrier and in various dosage formulations. It has been widely used in drug targeting, implants, ocular dosage forms, topical formulations, oral dosage forms, and oral liquid formulations, etc. Pullulan can be used as a potential carrier of active ingredients and their site-specific delivery to skin layers for cosmeceutical applications. It has been extensively used in cosmeceutical formulations like creams, shampoo, lotions, sunscreen, facial packs, etc. The current review highlights applications of pullulan in pharmaceutical and cosmeceutical applications.
Collapse
|
27
|
Exopolysaccharides of Fungal Origin: Properties and Pharmaceutical Applications. Processes (Basel) 2023. [DOI: 10.3390/pr11020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Fungal exopolysaccharides (EPSs) represent an important group of bioactive compounds secreted by fungi. These biopolymers can be utilized individually or in combination with different bioactive substances for a broad range of pharmaceutical field applications, due to their various biological activities, such as antioxidant, antimicrobial, anti-inflammatory, antiviral, anti-diabetic, and anticoagulant effects. The paper presents an up-to-date review of the main fungal polysaccharides (pullulan, schizophyllan, scleroglucan, botryosphaeran, lentinan, grifolan, and lasiodiplodan), highlighting their structures, producing strains, and useful properties in a double position, as controlled release (rate and selectively targeting) drug carriers, but mostly as active immunomodulating and antitumor compounds in cancer therapy.
Collapse
|
28
|
Liu Q, Hu L, Wang C, Cheng M, Liu M, Wang L, Pan P, Chen J. Renewable marine polysaccharides for microenvironment-responsive wound healing. Int J Biol Macromol 2023; 225:526-543. [PMID: 36395940 DOI: 10.1016/j.ijbiomac.2022.11.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Marine polysaccharides (MPs) are an eco-friendly and renewable resource with a distinctive set of biological functions and are regarded as biological materials that can be in contact with tissues and body fluids for an extended time and promote tissue or organ regeneration. Skin tissue is easily invaded by the external environment due to its softness and large surface area. However, the body's natural physiological healing process is often too slow or suffers from the incomplete restoration of skin structure and function. Functional wound dressings are crucial for skin tissue engineering. Herein, popular MPs from different sources are summarized systematically. In particular, the structure-effectiveness of MP-based wound dressings and the physiological remodeling process of different wounds are reviewed in detail. Finally, the prospect of MP-based smart wound dressings is stated in conjunction with the wound microenvironment and provides new opportunities for high-value biomedical applications of MPs.
Collapse
Affiliation(s)
- Qing Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Le Hu
- Marine College, Shandong University, Weihai 264209, China
| | - Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Meiqi Cheng
- Marine College, Shandong University, Weihai 264209, China
| | - Man Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Lin Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Panpan Pan
- Marine College, Shandong University, Weihai 264209, China.
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
29
|
Alam MS, Ansari A, Ahsan I, Shafiq-Un-Nabi S, Md S, Shaik RA, Eid BG, Ahmad MZ, Ahmad J. Topical gel containing Polysiloxanes and hyaluronic acid for skin scar: Formulation design, characterization, and In vivo activity. J Cosmet Dermatol 2023; 22:1220-1232. [PMID: 36606411 DOI: 10.1111/jocd.15574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Scar formation is undesirable both cosmetically and functionally. It shows that silicone gel is effective in preventing and improving scars formed due to a wound formation after injury. OBJECTIVES This study investigates whether a silicone gel composition based on a novel concept of infusing a biologically active material such as hyaluronic acid and/or salts with various polysiloxane derivatives in a specific proportion to achieve desired viscosity range and their action has a synergistic beneficial effect on skin scar after injury. METHODS We have developed a topical gel utilizing a combination of emulsifiers, sodium hyaluronate, polysiloxane, and its derivatives. The method of preparation comprises mixing of aqueous phase dispersion and polysiloxanes blend under stirring at room temperature. RESULTS It results in the formation of a homogenous smooth gel formulation. The developed topical gel formulation was characterized for physicochemical properties, rheology, stability, and anti-scar activity in Wistar rats. It was found that the developed formulation system consists of desirable attributes for skin applications. In vivo investigation of developed polysiloxane gel formulation for anti-scar activity shown promising outcomes compared to marketed product (Kelo-cote scar gel). Furthermore, a histopathology study of healed skin tissues observed the formation of microscopic skin structures compared to the Kelo-cote scar gel. CONCLUSIONS It indicates that the combination of polysiloxanes and sodium hyaluronate resulting an improvement in anti-scar activity compared to the marketed product containing polysiloxanes alone.
Collapse
Affiliation(s)
- Md Shoaib Alam
- Research and Development, Jamjoom Pharmaceuticals, Jeddah, Saudi Arabia
| | - Arif Ansari
- Research and Development, Jamjoom Pharmaceuticals, Jeddah, Saudi Arabia
| | - Iftikhar Ahsan
- Research and Development, Jamjoom Pharmaceuticals, Jeddah, Saudi Arabia
| | | | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rasheed A Shaik
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Basma G Eid
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| |
Collapse
|
30
|
A Comprehensive Review on Bio-Based Materials for Chronic Diabetic Wounds. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020604. [PMID: 36677658 PMCID: PMC9861360 DOI: 10.3390/molecules28020604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
Globally, millions of people suffer from poor wound healing, which is associated with higher mortality rates and higher healthcare costs. There are several factors that can complicate the healing process of wounds, including inadequate conditions for cell migration, proliferation, and angiogenesis, microbial infections, and prolonged inflammatory responses. Current therapeutic methods have not yet been able to resolve several primary problems; therefore, their effectiveness is limited. As a result of their remarkable properties, bio-based materials have been demonstrated to have a significant impact on wound healing in recent years. In the wound microenvironment, bio-based materials can stimulate numerous cellular and molecular processes that may enhance healing by inhibiting the growth of pathogens, preventing inflammation, and stimulating angiogenesis, potentially converting a non-healing environment to an appropriately healing one. The aim of this present review article is to provide an overview of the mechanisms underlying wound healing and its pathophysiology. The development of bio-based nanomaterials for chronic diabetic wounds as well as novel methodologies for stimulating wound healing mechanisms are also discussed.
Collapse
|
31
|
Alka, Verma A, Mishra N, Singh N, Singh P, Nisha R, Pal RR, Saraf SA. Polymeric Gel Scaffolds and Biomimetic Environments for Wound Healing. Curr Pharm Des 2023; 29:3221-3239. [PMID: 37584354 DOI: 10.2174/1381612829666230816100631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023]
Abstract
Infected wounds that do not heal are a worldwide problem that is worsening, with more people dying and more money being spent on care. For any disease to be managed effectively, its root cause must be addressed. Effective wound care becomes a bigger problem when various traditional wound healing methods and products may not only fail to promote good healing. Still, it may also hinder the healing process, causing wounds to stay open longer. Progress in tissue regeneration has led to developing three-dimensional scaffolds (3D) or constructs that can be leveraged to facilitate cell growth and regeneration while preventing infection and accelerating wound healing. Tissue regeneration uses natural and fabricated biomaterials that encourage the growth of tissues or organs. Even though the clinical need is urgent, the demand for polymer-based therapeutic techniques for skin tissue abnormalities has grown quickly. Hydrogel scaffolds have become one of the most imperative 3D cross-linked scaffolds for tissue regeneration because they can hold water perfectly and are porous, biocompatible, biodegradable, and biomimetic. For damaged organs or tissues to heal well, the porosity topography of the natural extracellular matrix (ECM) should be imitated. This review details the scaffolds that heal wounds and helps skin tissue to develop. After a brief overview of the bioactive and drug-loaded polymeric hydrogels, the discussion moves on to how the scaffolds are made and what they are made of. It highlights the present uses of in vitro and in-vivo employed biomimetic scaffolds. The prospects of how well bioactiveloaded hydrogels heal wounds and how nanotechnology assists in healing and regeneration have been discussed.
Collapse
Affiliation(s)
- Alka
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Abhishek Verma
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Raquibun Nisha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
- National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| |
Collapse
|
32
|
Wang Z, Li K, Xu Q, Fu G, Li H, Yang W. Preparation and evaluation of chitosan- and hyaluronic acid-grafted pullulan succinate films for skin wound healing. Int J Biol Macromol 2022; 223:1432-1442. [PMID: 36400206 DOI: 10.1016/j.ijbiomac.2022.11.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
A novel wound dressing that possesses antibacterial properties and accelerates skin wound repair was developed by physically blending hyaluronic acid-grafted pullulan succinate (HA-st-Pu) with chitosan (CS). The HA-st-Pu polymer was synthesized and characterized, and then CS/HA-st-Pu film dressings were prepared by a freeze-drying method. The novel film wound dressings exhibited a three-dimensional cavity structure under scanning electron microscopy (SEM) and a better swelling ratio than CS, HA and Pu alone, absorbing a large amount of liquid and effectively maintaining the moist environment of the wound. CS/HA-st-Pu materials had no cytotoxicity and increased cell proliferation when coincubated with L929 cells. Moreover, CS/HA-st-Pu wound dressings exhibited a certain antibacterial capability against E. coli and S. aureus. In rat skin wound healing, CS/HA-st-Pu film dressings outperformed both the control and market band-aid groups with respect to the reduction of inflammation and acceleration of wound closure.
Collapse
Affiliation(s)
- Zhen Wang
- College of Pharmaceutical Science & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Kaiyue Li
- College of Pharmaceutical Science & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Qianru Xu
- College of Pharmaceutical Science & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Guoliang Fu
- Beijing Fangyi Biomedical Co. LTD, Beijing 101399, PR China
| | - Haiying Li
- College of Pharmaceutical Science & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.
| | - Wenzhi Yang
- College of Pharmaceutical Science & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.
| |
Collapse
|
33
|
Effects of the molecular weight of hyaluronan on the conformation and release kinetics of self-assembled 5-fluorouracil-loaded lysozyme-hyaluronan colloidal nanoparticles. Int J Biol Macromol 2022; 223:87-99. [PMID: 36347364 DOI: 10.1016/j.ijbiomac.2022.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
Lysozyme (LYS) and hyaluronan with low (HA1: 3 kDa), medium (HA2: 120 kDa), and high (HA3: 1200 kDa) molecular weights were used to fabricate lysozyme-hyaluronan colloidal nanoparticles using a green self-assembly method. Fourier transform infrared spectroscopy indicated that hydrogen bonding, hydrophobic and electrostatic interactions promoted the formation of the colloidal nanoparticles. The hydrophobic area of prepared colloidal nanoparticles was quantified using a pyrene fluorescent probe, and the results showed that the LYS-HA3 nanoparticles had the strongest hydrophobic capacity. Furthermore, 5-fluorouracil (5-Fu) was used to evaluate encapsulation performance, demonstrating that the LYS-HA3 nanoparticles had the highest encapsulation ability (>90 %). All prepared 5-Fu-loaded lysozyme-hyaluronan (5-Fu@LYS-HA) colloidal nanoparticles exhibited excellent long-term storage stability at 4 °C for 60 days. Cellular uptake and in vitro release results indicated that the LYS-HA2 nanoparticles exhibited the highest cellular uptake efficiency, and the LYS-HA3 nanoparticles had the best slow-release effect, while the release process was mainly controlled by the combination of Fickian diffusion and structural relaxation, respectively. This study demonstrates the influence of molecular weight on the conformational and structural properties of colloidal nanoparticles, which has implications for the design of insoluble drug self-assembly systems.
Collapse
|
34
|
Khachatryan G, Khachatryan L, Krystyjan M, Lenart-Boroń A, Krzan M, Kulik K, Białecka A, Grabacka M, Nowak N, Khachatryan K. Preparation of Nano/Microcapsules of Ozonated Olive Oil in Hyaluronan Matrix and Analysis of Physicochemical and Microbiological (Biological) Properties of the Obtained Biocomposite. Int J Mol Sci 2022; 23:14005. [PMID: 36430484 PMCID: PMC9694719 DOI: 10.3390/ijms232214005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogels, based on natural polymers, such as hyaluronic acid, are gaining an increasing popularity because of their biological activity. The antibacterial effect of ozone is widely known and used, but the instability the gas causes, severely limits its application. Ozone entrapment in olive oil by its reaction with an unsaturated bond, allows for the formation of stable, therapeutically active ozone derivatives. In this study, we obtained an innovative hydrogel, based on hyaluronic acid containing micro/nanocapsules of ozonated olive oil. By combination of the biocompatible polymer with a high regenerative capacity and biologically active ingredients, we obtained a hydrogel with regenerative properties and a very weak inhibitory effect against both bacterial commensal skin microbiota and pathogenic Candida-like yeasts. We assessed the stability and rheological properties of the gel, determined the morphology of the composite, using scanning electron microscopy (SEM) and particle size by the dynamic light scattering (DLS) method. We also performed Attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy. The functional properties, including the antimicrobial potential were assessed by the microbiological analysis and in vitro testing on the HaCat human keratinocyte cell line. The studies proved that the obtained emulsions were rheologically stable, exhibited an antimicrobial effect and did not show cytotoxicity in the HaCat keratinocyte model.
Collapse
Affiliation(s)
- Gohar Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Mickiewicz Ave. 21, 31-120 Krakow, Poland
| | - Lusine Khachatryan
- Department of Orthopaedics and Traumatology, University Hospital in Cracow, Macieja Jakubowskiego 2, 30-688 Krakow, Poland
| | - Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture in Krakow, Mickiewicz Ave. 21, 31-120 Krakow, Poland
| | - Anna Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Krakow, 30-059 Krakow, Poland
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Klaudia Kulik
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Krakow, 30-059 Krakow, Poland
| | - Anna Białecka
- Jan Bober Center for Microbiology and Autovaccines, 31-016 Krakow, Poland
| | - Maja Grabacka
- Faculty of Food Technology, University of Agriculture in Krakow, Mickiewicz Ave. 21, 31-120 Krakow, Poland
| | - Nikola Nowak
- Faculty of Food Technology, University of Agriculture in Krakow, Mickiewicz Ave. 21, 31-120 Krakow, Poland
| | - Karen Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Mickiewicz Ave. 21, 31-120 Krakow, Poland
| |
Collapse
|
35
|
Ultra-high molecular weight pullulan-based material with high deformability and shape-memory properties. Carbohydr Polym 2022; 295:119836. [DOI: 10.1016/j.carbpol.2022.119836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022]
|
36
|
Chen M, Yu P, Ao C, Zhang M, Xing J, Ding C, Xie J, Li J. Ethanol-Induced Responsive Behavior of Natural Polysaccharide Hydrogels. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Meilin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Chuanbei Ao
- Jingmen Oral Hospital, Jingmen 448000, P. R. China
| | - Miao Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jiaqi Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
37
|
Gardikiotis I, Cojocaru FD, Mihai CT, Balan V, Dodi G. Borrowing the Features of Biopolymers for Emerging Wound Healing Dressings: A Review. Int J Mol Sci 2022; 23:ijms23158778. [PMID: 35955912 PMCID: PMC9369430 DOI: 10.3390/ijms23158778] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Wound dressing design is a dynamic and rapidly growing field of the medical wound-care market worldwide. Advances in technology have resulted in the development of a wide range of wound dressings that treat different types of wounds by targeting the four phases of healing. The ideal wound dressing should perform rapid healing; preserve the body’s water content; be oxygen permeable, non-adherent on the wound and hypoallergenic; and provide a barrier against external contaminants—at a reasonable cost and with minimal inconvenience to the patient. Therefore, choosing the best dressing should be based on what the wound needs and what the dressing does to achieve complete regeneration and restoration of the skin’s structure and function. Biopolymers, such as alginate (ALG), chitosan (Cs), collagen (Col), hyaluronic acid (HA) and silk fibroin (SF), are extensively used in wound management due to their biocompatibility, biodegradability and similarity to macromolecules recognized by the human body. However, most of the formulations based on biopolymers still show various issues; thus, strategies to combine them with molecular biology approaches represent the future of wound healing. Therefore, this article provides an overview of biopolymers’ roles in wound physiology as a perspective on the development of a new generation of enhanced, naturally inspired, smart wound dressings based on blood products, stem cells and growth factors.
Collapse
Affiliation(s)
- Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Florina-Daniela Cojocaru
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Correspondence: (F.-D.C.); (G.D.)
| | - Cosmin-Teodor Mihai
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Vera Balan
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Gianina Dodi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Correspondence: (F.-D.C.); (G.D.)
| |
Collapse
|
38
|
Yang W, Zhang Y, Wang J, Li H, Yang H. Glycyrrhetinic acid-cyclodextrin grafted pullulan nanoparticles loaded doxorubicin as a liver targeted delivery carrier. Int J Biol Macromol 2022; 216:789-798. [PMID: 35914549 DOI: 10.1016/j.ijbiomac.2022.07.182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
In this work, glycyrrhetinic acid (GA)-β-cyclodextrin grafted pullulan (GCDPu) was synthesized and used to form nanoparticles for liver-specific drug delivery. GCDPu was characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance (1H NMR). The self-aggregated nanoparticles (GCDPu NPs) with a spherical dimension of about 200 nm were prepared and analyzed by dynamic light scattering (DLS), zeta potential, and transmission electron microscopy (TEM). Doxorubicin (DOX) was selected as an anti-cancer model drug, and the drug-loaded GCDPu NPs were prepared by the emulsion solvent evaporation method. Moreover, the drug encapsulation efficiency (LE%) and loading content (LC%) were determined. Slow DOX release from DOX/GCDPu NPs was confirmed. GCDPu NPs were cytocompatible with Bel-7404 cells and showed high cellular uptake according to the MTT assay, confocal laser scanning microscope (CLSM) and flow cytometry (FCM) results. Compared with free DOX, DOX/GCDPu NPs have exhibited a longer half-life time (t1/2) and a larger area-under-the-curve (AUC). GCDPu NPs significantly increased DOX contents in the liver and decreased in heart and kidney. Furthermore, DOX/GCDPu NPs exhibited a better anticancer therapeutic effect on tumor-bearing mice. These findings suggest that GCDPu can serve a liver-specific drug delivery system.
Collapse
Affiliation(s)
- Wenzhi Yang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Yi Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Jiajia Wang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Haiying Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409, United States.
| |
Collapse
|
39
|
Singh RS, Kaur N, Singh D, Bajaj BK, Kennedy JF. Downstream processing and structural confirmation of pullulan - A comprehensive review. Int J Biol Macromol 2022; 208:553-564. [PMID: 35354070 DOI: 10.1016/j.ijbiomac.2022.03.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
Pullulan is a microbial polymer, commercially produced from Aureobasidium pullulans. Downstream processing of pullulan involves a multi-stage process which should be efficient, safe and reproducible. In liquid-liquid separations, firstly cell free extract is separated. Cell biomass can be separated after fermentation either by centrifugation or filtration. Due to practically insolubility of pullulan in organic solvents, ethanol and isopropanol are the most commonly used organic solvents for its recovery. Pullulan can also be purified by chromatographic techniques, but these are not cost effective for the purification of pullulan. Efficient aqueous two-phase system can be used for the purification of pullulan. The current review describes the methods and perspectives used for solid-liquid separation, liquid-liquid separations and finishing steps for the recovery of pullulan. Techniques used to determine the structural attributes of pullulan have also been highlighted.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrates and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India.
| | - Navpreet Kaur
- Carbohydrates and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences, Punjabi University, Patiala 147 002, Punjab, India
| | - Bijender K Bajaj
- School of Biotechnology, University of Jammu, Jammu 180 006, India
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8SG Tenbury Wells, United Kingdom
| |
Collapse
|
40
|
Khaliq T, Sohail M, Minhas MU, Ahmed Shah S, Jabeen N, Khan S, Hussain Z, Mahmood A, Kousar M, Rashid H. Self-crosslinked chitosan/κ-carrageenan-based biomimetic membranes to combat diabetic burn wound infections. Int J Biol Macromol 2022; 197:157-168. [PMID: 34968540 DOI: 10.1016/j.ijbiomac.2021.12.100] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022]
Abstract
Diabetic wound infection often leads to compromised healing with frequent chances of sepsis, amputation and even death. Traditional patient care emphasized on early debridement and fluid resuscitation followed by intravenous antibiotics therapy. However, compromised vasculature often limit the systemic effect of antibiotics. Current study focused formulation of chitosan HCl, κ- carrageenan and PVA based physical cross-linked hydrogel membrane dressings loaded with cefotaxime sodium (CTX), for potential diabetic burn wound healing by adopting solvent casting method. Results of mechanical strength shows tensile strength and % elongation of 12.63 ± 0.25 and 48 ±3.05 respectively. Water vapor transmission rate (WVTR) depicts that despite of formulation KCP3 and KCP6, all hydrogel membranes have WVTR value in range of ideal dressing i.e., 2000-2500 g/m2/day. Whereas, all hydrogel membranes have oxygen permibility values more than 8.2 mg/ml. Bacterial penetration analysis confirms the barrier property of formulated membranes. Drug loaded hydrogel membrane showed control release up to 24 hr which provide protection against bacterial proliferation. Present study aims to constructs diabetic burn rat model which demonstrate that CTX loaded hydrogel membrane shown significantly rapid wound closure higher re-epithelization and numerous granulation tissue formation as compared to positive and negative control group. Conclusively, it is confirmed that formulated hydrogel membranes are beneficial and can be considered as a promising membrane dressing to treat diabetic burn wound.
Collapse
Affiliation(s)
- Touba Khaliq
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan.
| | | | - Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Nazish Jabeen
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Lower Dir, KPK, Pakistan
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Arshad Mahmood
- Collage of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Haroon Rashid
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| |
Collapse
|
41
|
Chen M, Yu P, Xing J, Wang Y, Ren K, Zhou G, Luo J, Xie J, Li J. Gellan gum modified hyaluronic acid hydrogel as viscosupplement with lubrication maintenance and enzymatic resistance. J Mater Chem B 2022; 10:4479-4490. [PMID: 35613532 DOI: 10.1039/d2tb00421f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteoarthritis (OA) is a common disease caused by damage to articular cartilage and underlying bone tissues. Early OA can be treated by intra-articular injection of viscosupplements to restore the lost...
Collapse
Affiliation(s)
- Meilin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jiaqi Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yutong Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Kai Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Guangwu Zhou
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, P. R. China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
42
|
Smith MJ, Dempsey SG, Veale RWF, Duston-Fursman CG, Rayner CAF, Javanapong C, Gerneke D, Dowling SG, Bosque BA, Karnik T, Jerram MJ, Nagarajan A, Rajam R, Jowsey A, Cutajar S, Mason I, Stanley RG, Campbell A, Malmstrom J, Miller CH, May BCH. Further structural characterization of ovine forestomach matrix and multi-layered extracellular matrix composites for soft tissue repair. J Biomater Appl 2022; 36:996-1010. [PMID: 34747247 PMCID: PMC8721687 DOI: 10.1177/08853282211045770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Decellularized extracellular matrix (dECM)-based biomaterials are of great clinical utility in soft tissue repair applications due to their regenerative properties. Multi-layered dECM devices have been developed for clinical indications where additional thickness and biomechanical performance are required. However, traditional approaches to the fabrication of multi-layered dECM devices introduce additional laminating materials or chemical modifications of the dECM that may impair the biological functionality of the material. Using an established dECM biomaterial, ovine forestomach matrix, a novel method for the fabrication of multi-layered dECM constructs has been developed, where layers are bonded via a physical interlocking process without the need for additional bonding materials or detrimental chemical modification of the dECM. The versatility of the interlocking process has been demonstrated by incorporating a layer of hyaluronic acid to create a composite material with additional biological functionality. Interlocked composite devices including hyaluronic acid showed improved in vitro bioactivity and moisture retention properties.
Collapse
Affiliation(s)
- Matthew J Smith
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Sandi G Dempsey
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Robert WF Veale
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | | | - Chloe A F Rayner
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Chettha Javanapong
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Dane Gerneke
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Shane G Dowling
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Brandon A Bosque
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Tanvi Karnik
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Michael J Jerram
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Arun Nagarajan
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Ravinder Rajam
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Alister Jowsey
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Samuel Cutajar
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Isaac Mason
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Roderick G Stanley
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Andrew Campbell
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Jenny Malmstrom
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
| | - Chris H Miller
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Barnaby C H May
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| |
Collapse
|
43
|
Ferrari Cervi V, Parcianello Saccol C, Henrique Marcondes Sari M, Cristóvão Martins C, Saldanha da Rosa L, Dias Ilha B, Zovico Soares F, Luchese C, Antunes Wilhelm E, Cruz L. Pullulan film incorporated with nanocapsules improves pomegranate seed oil anti-inflammatory and antioxidant effects in the treatment of atopic dermatitis in mice. Int J Pharm 2021; 609:121144. [PMID: 34600055 DOI: 10.1016/j.ijpharm.2021.121144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
This study aimed to prepare pullulan films containing pomegranate seeds oil (PSO) based nanocapsules, and evaluate the formulation efficacy in the treatment of atopic dermatitis (AD)-like lesions induced by 2,4-dinitrochlorobenzene (DNCB). The Eudragit RS 100® nanocapsules (PSONC) were prepared by the interfacial precipitation of preformed polymer, whereas the films were produced by the solvent casting method. Pomegranate seed oil nanoemulsions (PSONE) were prepared by the spontaneous emulsification method for comparative reasons. Both nanosystems presented adequate mean diameter (248 ± 16 nm for PSONE and 181 ± 6 nm for PSONC), polydispersity index (below 0.2), zeta potential (-25.63 ± 1.1 mV for PSONE and + 43.13 ± 0.7 mV for PSONC) and pH in the acid range (6.77 ± 0.27 and 5.31 ± 0.17, PSONE and PSONC). By a pre-formulation study, sorbitol (6.5%) and PEG 400 (1.5%) were considered the most suitable plasticizers for developing pullulan films (6%) intending topical application. In general, pullulan films were classified as flexible and hydrophilic, with high occlusive properties, 57.6 ± 0.8%, 64.6 ± 0.8% for vehicle, PSONCF (pullulan film containing PSONC), respectively. All formulations (films and nanocarriers) presented no irritant potential in the chorioallantoic membrane test. In the in vivo model, the treatments with free PSO and PSONCF attenuated the skin injury as well as the mechanical hypernociceptive behavioral induced by DNCB exposure to mice. Importantly, the biochemical analyses provided evidence that only the treatment with PSONCF modulated the inflammatory and the oxidative stress parameters evaluated in this study. In conclusion, these data lead us to believe that PSONC incorporation into a pullulan film matrix improved the biological properties of the PSO in this AD-model.
Collapse
Affiliation(s)
- Verônica Ferrari Cervi
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Camila Parcianello Saccol
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Marcel Henrique Marcondes Sari
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Carolina Cristóvão Martins
- Laboratório de Pesquisa em Farmacologia Bioquímica - Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP 96010-900, RS, Brazil
| | - Lucas Saldanha da Rosa
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria CEP 97015-372, RS, Brazil
| | - Bruna Dias Ilha
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria CEP 97015-372, RS, Brazil
| | - Fábio Zovico Soares
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria CEP 97015-372, RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica - Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP 96010-900, RS, Brazil
| | - Ethel Antunes Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica - Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP 96010-900, RS, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil.
| |
Collapse
|
44
|
Dalgic AD, Koman E, Karatas A, Tezcaner A, Keskin D. Natural origin bilayer pullulan-PHBV scaffold for wound healing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112554. [DOI: 10.1016/j.msec.2021.112554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 01/14/2023]
|
45
|
Hydrophobically Grafted Pullulan Nanocarriers for Percutaneous Delivery: Preparation and Preliminary In Vitro Characterisation. Polymers (Basel) 2021; 13:polym13172852. [PMID: 34502895 PMCID: PMC8434112 DOI: 10.3390/polym13172852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 12/27/2022] Open
Abstract
Polymeric colloidal nanocarriers formulated from hydrophobically grafted carbohydrates have been the subject of intensive research due to their potential to increase the percutaneous penetration of hydrophilic actives. To this goal, a series of hydrophobically grafted pullulan (BMO-PUL) derivatives with varying degree of grafting (5–64%) was prepared through functionalisation with 2-(butoxymethyl)oxirane. The results demonstrated that monodispersed BMO-PUL nanocarriers (size range 125–185 nm) could be easily prepared via nanoprecipitation; they exhibit close-to-spherical morphology and adequate stability at physiologically relevant pH. The critical micellar concentration of BMO-PUL was found to be inversely proportional to their molecular weight (Mw) and degree of grafting (DG), with values of 60 mg/L and 40 mg/L for DG of 12.6% and 33.8%, respectively. The polymeric nanocarriers were loaded with the low Mw hydrophilic active α-arbutin (16% loading), and the release of this active was studied at varying pH values (5 and 7), with a slightly faster release observed in acidic conditions; the release profiles can be best described by a first-order kinetic model. In vitro investigations of BMO-PUL nanocarriers (concentration range 0.1–4 mg/mL) using immortalised skin human keratinocytes cells (HaCaT) evidenced their lack of toxicity, with more than 85% cell viability after 24 h. A four-fold enhance in arbutin permeation through HaCaT monolayers was recorded when the active was encapsulated within the BMO-PUL nanocarriers. Altogether, the results obtained from the in vitro studies highlighted the potential of BMO-PUL nanocarriers for percutaneous delivery applications, which would warrant further investigation in vivo.
Collapse
|
46
|
Özbaş Z, Özkahraman B, Bayrak G, Kılıç Süloğlu A, Perçin I, Boran F, Tamahkar E. Poly(vinyl alcohol)/(hyaluronic acid-g-kappa-carrageenan) hydrogel as antibiotic-releasing wound dressing. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01824-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Kida D, Zakrzewska A, Zborowski J, Szulc M, Karolewicz B. Polymer-Based Carriers in Dental Local Healing-Review and Future Challenges. MATERIALS 2021; 14:ma14143948. [PMID: 34300865 PMCID: PMC8308048 DOI: 10.3390/ma14143948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 02/01/2023]
Abstract
Polymers in drug formulation technology and the engineering of biomaterials for the treatment of oral diseases constitute a group of excipients that often possess additional properties in addition to their primary function, i.e., biological activity, sensitivity to stimuli, mucoadhesive properties, improved penetration of the active pharmaceutical ingredient (API) across biological barriers, and effects on wound healing or gingival and bone tissue regeneration. Through the use of multifunctional polymers, it has become possible to design carriers and materials tailored to the specific conditions and site of application, to deliver the active substance directly to the affected tissue, including intra-periodontal pocket delivery, and to release the active substance in a timed manner, allowing for the improvement of the form of application and further development of therapeutic strategies. The scope of this review is polymeric drug carriers and materials developed from selected multifunctional groups of natural, semi-synthetic, and synthetic polymers for topical therapeutic applications. Moreover, the characteristics of the topical application and the needs for the properties of carriers for topical administration of an active substance in the treatment of oral diseases are presented to more understand the difficulties associated with the design of optimal active substance carriers and materials for the treatment of lesions located in the oral cavity.
Collapse
Affiliation(s)
- Dorota Kida
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-784-0315
| | - Aneta Zakrzewska
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Jacek Zborowski
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Małgorzata Szulc
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Bożena Karolewicz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
| |
Collapse
|
48
|
Characterization of interactions between whey protein isolate and hyaluronic acid in aqueous solution: Effects of pH and mixing ratio. Colloids Surf B Biointerfaces 2021; 203:111758. [PMID: 33865090 DOI: 10.1016/j.colsurfb.2021.111758] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/03/2023]
Abstract
Interactions between whey protein isolate (WPI) and hyaluronic acid (HA) were characterized as functions of pH (6.0-1.0) and protein to polysaccharide ratio (R, 1:4-10:1). Intramolecular soluble complexes formed at pHc of 5.6-5.8, followed by intermolecular insoluble complexes formed at pHΦ1 of 4.4-4.6. Complexes at ratios below 4:1 reached maximum optical value at pH 2.4 while samples above 4:1 peaked at pH 3-3.4 then precipitated. WPI/HA coacervates completely dissociated into soluble complex at pH 1.6-1.8 (pHΦ2). WPI/HA mixtures showed shear thinning behavior and elastic property. Whey protein underwent significant α-helix structure change when interacting with HA in range of pHΦ1>pH > pHΦ2 and at low R values (1:4 and 1:2). Scanning electronic microscope (SEM) pictures showed pH and mixing ratio dependent microstructural changes corresponding with phase transition. Data may provide helpful information for further application of WPI/HA complexes in medical, food and cosmetic fields.
Collapse
|
49
|
Redox-responsive hyaluronic acid-based nanoparticles for targeted photodynamic therapy/chemotherapy against breast cancer. J Colloid Interface Sci 2021; 598:213-228. [PMID: 33901847 DOI: 10.1016/j.jcis.2021.04.056] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022]
Abstract
Specific cellular uptake and sufficient drug release in tumor tissues are important for effective cancer therapy. Hyaluronic acid (HA), a skeleton material, could specifically bind to cluster determinant 44 (CD44) receptors highly expressed on the surface of tumor cells to realize active targeting. Cystamine (cys) is sensitive highly reductive environment inside tumor cells and was used as a connecting arm to connect docosahexaenoic acid (DHA) and chlorin e6 (Ce6) to the HA skeleton to obtain redox-sensitive polymer HA-cys-DHA/Ce6 (CHD). Nanoparticles were fabricated and loaded with chemotherapeutic drug docetaxel (DTX) by physical encapsulation. The prepared nanoparticles had significantly increased uptake by MCF-7 cells that overexpressed CD44 receptors, and DTX was effectively released at high reducing condition. Compared with mono-photodynamic therapy (PDT) or mono-chemotherapy, the prepared nanoparticles exhibited superior anti-tumor effect by inhibiting microtubule depolymerization, blocking cell cycle and generating reactive oxygen species (ROS). In vivo anti-tumor experiments proved that DTX/CHD nanoparticles had the best antitumor response versus DTX and CHD nanoparticles under near-infrared (NIR) irradiation. These studies revealed that redox-responsive DTX-loaded CHD nanoparticles held great potential for the treatment of breast cancer.
Collapse
|
50
|
Wound Healing Promotion by Hyaluronic Acid: Effect of Molecular Weight on Gene Expression and In Vivo Wound Closure. Pharmaceuticals (Basel) 2021; 14:ph14040301. [PMID: 33800588 PMCID: PMC8065935 DOI: 10.3390/ph14040301] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Hyaluronic acid (HA) has been known to play an important role in wound healing process. However, the effect of molecular weight (MW) of exogenously administered HA on the wound healing process has not been fully understood. In this study, we investigated HA with different MWs on wound healing process using human epidermal keratinocytes and dermal fibroblasts. Cell proliferation and migration ability were assessed by water soluble tetrazolium (WST) assay and wound scratch assay. We examined the effect of HA addition in a full-thickness wound model in mice and the gene expression related to wound healing. Proliferation and migration of HaCaT cells increased with the increase of MW and concentration of HA. Interleukin (IL-1β), IL-8 and vascular endothelial growth factor (VEGF) as well as matrix metalloproteinase (MMP)-9 and MMP-13 were significantly upregulated by high molecular weight (HMW) HA in keratinocytes. Together with VEGF upregulation and the observed promotion of HaCaT migration, HA with the MW of 2290 kDa may hold potential to improve re-epithelialization, a critical obstacle to heal chronic wounds.
Collapse
|